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I. 'EXECUTLVE SUMMARY

OVERVIEW

This report is the first of two technical reports that describe a
methodology for analyzing and forecasting public transit ridership. The
methodology is applied to data from the public transit system in Portland,

Oregon. The second report, A Handbook for Developing Time-Series Transit

Ridership Models, focuses on the statistical methodology for developing time-

series models.

Analyzing past variation in transit ridership and forecasting future
ridership varlation are two important concerns for the public transit
analyst. Before a service or fare change is instituted, its potential impact
on ridership must be assessed. After implementation, and equilibrium
conditions have been reached, the impact of the change must be analyzed. Has
ridership increased or decreased, and has this been the result of the service
or fare change? Often it is difficult to isolate the variation in ridership
that can be attributed to a fare or serwvice level change from the effects of
some exogeneous factor such as a change in gasoline supply or price.

There are usually several processes that are occurring simultaneously,
each in some way affecting ridership. A change in transit ridership in 1979,
for example, might have been strongly related to rapidly increasing gasoline
prices and supply constraints. But changes in the size of the travel market
or in the level of transit service would also have had a direct impact on
ridership levels if these variables were also changing during this time.
Thus, any study of the variation in transit ridership must consider all of the
relevant influencing factors that are themselves changing. Similarly, to
satisfactorily forecast future variation in transit ridership, a clear
understanding of these factors is necessary. Because the nature of these
relationships may themselves change over time, it seems clear that models
based upon time-series data are more likely to capture these dynamics than
those based upon cross-sectional data.

There have been several important efforts in recent years in the
development of time-series based transit ridership models. Of particular
importance is the work of Gaudry (1975, 1978), Kemp (198la, 1981b) and Wang
(1981, 1982). This report describes the results of a project which builds
upon the work of these researchers and extends it into several important

areas:



1. A methodology is proposed that provides a logical framework for the
analysis and forecasting of transit ridership. The essence of the
methodology is that in order to assess past impacts or to forecast
future variation, a model must be developed that is time-series in
nature and explicitly considers all of the relevant factors that

influence transit ridership.

2. Consideration is given to the functional relationship between the
input variables and transit ridership, particularly the nature of
the delay that exists between a change in an input variable and when
its effects in ridership can be measured. Also of importance is the
method of specifying transit service level when using time-series

data.

3. Extensive use is made of a statistical methodology that has not had
wide application in transportation, the Box-Jenkins time-series
models. This technique resolves several problems that occur when
standard regression models are used with time-series data, including
multicollinearity and serial correlation. Recent availability of
the appropriate computer software makes use of this approach

practical and available to most analysts.

THE METHODOLOGY

The basic methodology used in this project is shown in Figure 1. It
includes three phases:
l. Model development phase
2. Impact analysis phase
3. Forecasting phase

In the Model Development Phase, a model form is postulated that includes a

description of the variables that are assumed to affect transit ridership.

The structural relationships between transit ridership and the input variables
are then identified and estimated. This includes identification of the lag
structure that exists. Finally, the complete model is estimated and checked
to insure consistency with the appropriate statistical assumptions. The model

proposed here is known as a Transfer Function Model, as developed by Box and




Jenkins (1976).
The Transfer Function Model can then be used in the Impact Analysis Phase

to analyze the impact on transit ridership of past changes in service level,
fare or other factors. The model coefficients provide an estimate of the
average response to all previous changes in each of the input variables. To

analyze the impact of a specific change, an intervention variable is

introduced to the Transfer Function Model. The intervention variable is a
binary variable which assumes a value of zero when the change is not in
effect, and a value of one when the change is in effect. The Transfer

Function Model can also be used in the Forecasting Phase when an assessment of

a proposed future change is desired.
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Impact Analysis Phase

I(_

FIGURE 1
METHODOLOGY FOR ANALYSIS AND FORECASTING
OF PUBLIC TRANSIT RIDERSHIP
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FINDINGS AND RESULTS

Model Development Phase

Data for Portland, Oregon covering the period 1971 through 1982 were used
to develop a total of sixteen transit ridership models: one for the system as
a whole, six representing distinct geographic sectors of the Portland region,
and nine for individual routes in the Portland transit system. Figure 2
illustrates the three different data sets and the models that have been
developed.

Four input variables were used for each of the models: transit service
level, transit fare, gasoline price as a surrogate for auto operating costs,
and employment as a measure of the travel market size (see Figure 3). Natural
logarithms of the data were used, so that model coefficients give the
elasticities directly for each variable. The nature of the market response
was included in the model by introducing lagged variables. This allowed a
direct assessment of the time delay between the introduction of a service
level or fare change and when a change in ridership could be measured.

Service level delays ranged from one to ten months for the system model and
zero to three quarters for the sector and route models. Fare delays ranged up
to two quarters. A summary of the elasticities and lags are given in Table 1.

Examination of Table 1 shows that there are some important consistencies
in the results obtained by the three model categories. For example, the
response delay to service level changes tends to be about two to three times
longer for urban routes than for suburban routes. Another comparison is the
consistency of the elasticities for the four input variables between the
system model and the sector models, as given in Figure 4. Note that the
elasticities estimated for the six sector models tend to vary around the

system mean for each variable.



FIGURE 2

SUMMARY OF MODELS DEVELOPED
AND THEIR INTERRELATIONSHIP
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FIGURE 3

BASIC MODEL FORM
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TABLE 1

SUMMARY OF MODELS

MODEL DESCRIPTION SERVICE GAS
Data Data Model LEVEL FARE PRICE EMPLOYMENT
Aggregation Period Description Elasticity Lag Elasticity Lag Elasticity Lag Elasticity Lag
System Monthly System o031 1,10 -.29 0 .32 0 <49 0
Sector Quarterly | City radial lines .71 2 =13 0 .14 0 .43 0
City crosstown lines «60 0-3 —.42 0 =39 0 =
Urban Eastside lines w25 2 =15 0 .18 0 .65 0
! Westside sub. lines .80 0 =32 0 .31 0 47 0
SW Suburban lines .49 0 e 1 .28 0 .67 0
SE Suburban lines .88 0,2 -.16 0 .27 0 .69 1
Route Quarterly { City radial line-
| Route 2 1.81 0,2 -.39 0 12 0 1.14 2
Route 3 1.73 0,2,3 -.90 0,1 1.39 0-3 N
Route 6 .23 0 -.80 0 .62 0 .95 0
Route 8= 25 3 _ =35 2 1.23 0,1 -
City Crosstown line- | |
Route 71 .72 0 = 3.24 2 o
Route 72 35 0 & l .68 3 -
Route 73 = = .60 0 -
Route 75 = = 1.72 3 s
Route 77 .35 0 = .24 2 =
A )
Elasticity = total elasticity for given variable
Lag = lag or delay for which change in ridership was measured. A lag of 2 using quarterly data for example,

indicates that a change in ridership was measured two quarters after the input variable was changed.
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Impact Analysis Phase

The elasticities computed in the model development phase represent an
average elasticity for a given variable over the entire study period. If four
service changes were implemented during a given period, for example, the
service level elasticity would be an average of the impact of each service
level change. However, to study the impact of a specific service level

change, an intervention variable, which represents that change élone, must be

added to the model. The model is then re-estimated with the intervention
variable and the coefficient yields the elasticity of the specific change
under study. If the variable coefficient is not statistically significant, it
can be concluded that the change had no measurable impact on ridership.

Eleven service changes instituted between 1973 and 1979 were analyzed
using the intervention analysis technique. The results are summarized in
Table 2. Seven of the eleven changes were found to have had a significant
impact on ridership.

Forecasting Phase

The models developed in the initial phase of this project can be used to
forecast future transit ridership variation. For example, the impact of a
future fare change can be estimated using the appropriate model. But because
the model depends upon future variation in gasoline price and employment as
well, these variables must also be forecasted or assumptions must be made
about their future values.

Table 3 shows the results of a forecast of system ridership for twelve
periods (months) ahead. It was assumed that service level and fare were set
by policy and that gas price and employment had to be forecasted using time-
series models. These results, with a mean absolute percent error of 2.1%,
show the high quality of forecast that can be achieved using this approach.

Actual observed values and the forecast are compared graphically in Figure 5.

10



TABLE 2
IMPACT ANALYSIS OF PAST SERVICE CHANGES
ROUTE LEVEL

AT THE

Significant Coefficient of the
Route | Date | Type of Change Impact? Intervention Variable
2 1975 Frequency improvement Yes .13
1978 | Route extension No impact -
3 1973 | Frequency improvement Yes .11
1974 | Frequency improvement, Yes .13
Route extension
1978 Service reduction No impact w
6 1974 | Route extension No impact =
1975 Frequency improvement Yes «23
71 1979 Frequency improvement, Yes .72
Route extension
72 1976 Route extension Yes .81
75 1979 Route extension No impact -
77 1979 | Frequency improvement Yes «35

11




TABLE 3
FORECAST OF TRANSIT RIDERSHIP SYSTEM DATA

Month Actual Forecast % Error
July 1981 125,800 128,300 +2.0%
August 1981 121,400 124,700 +2.7%
September 1981 132,600 135,200 +2.0%
October 1981 141,700 142,600 +0.6%
November 1981 141,700 141,600 —0.1%
December 1981 132,900 136,200 +2.5%
January 1982 146,100 144,800 ~0.9%
February 1982 142,500 145,800 +2.37%
March 1982 141,900 140,000 -1.3%
April 1982 143,200 138,400 -3.4%
May 1982 139,400 133,700 ~4.1%
June 1982 132,700 127,600 -3.8%
Annual

Total 1,641,900 1,638,900

Monthly Total, Mean Absolute Percent Error 2.1%
Annual Total, Percent Error 0.2%

12




FIGURE 5
COMPARISON OF FORECASTS, SYSTEM MODEL
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Legend
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COMPARISON WITH STANDARD REGRESSION MODELS

It has been traditional to use multiple regression models when developing
models relating transit ridership to explanatory variables. Using time-series
data with regression models, however, invariably leads to a variety of
statistical problems. Table 4 highlights the major areas in which problems
are likely to arise by contrasting standard regression with transfer function
models: multicollinearity, autocorrelated errors, lag structures, and
coefficent estimates and standard errors. To determine whether these problems
would, in fact, result, both standard regression and transfer function models
were developed using the Portland system data.

Using the non-differenced data, a high degree of correlation was found
among the input variables. Seven of the ten input variable combinations were
highly correlated, with correlation coefficients of 0.60 or greater (see Table
5). Second, the residuals were highly correlated and not indeépendent as
required for regression models. Third, the delay in the response to service
level changes would have been missed if only contemporaneous correlations were
included in the model. Finally, the biased standard errors from the
regression model would have erroneously lead to the conclusion that one of the
variables (service level-suburban lines) was statistically significant when in
reality, it wasn't. These results argue for the wider application of the

appropriate statistical methodology when time-series data is used.

14



TABLE 4

COMPARISON OF STANDARD REGRESSION AND TRANSFER FUNCTION MODELS

Comparison

Standard Regression

Transfer Function

Correlated input
variables

Autocorrelated
errors

Lag structure for
input variables

Coefficient estimates
and standard errors

Yes, the input variables
are highly correlated.
Multiceollinearity is
present

Yes, the error structure
is highly autocorrelated,
violating basic model
assumptions.

No, only contemporaneous
correlation assumed

Estimates are in-
efficient and the standard

errors (and thus the
significance tests) are
biased.

No, data is
differenced

Yes, but model structure
allows for correlated
errors

Yes, methodology directly
investigates the nature
of dynamic relationships

Estimates are efficient
and the standard errors

are unbiased

15




TABLE 5

MULTICOLLINEARITY OF NON-DIFFERENCED DATA

Correlation Matrix — Input Variables

Service Level Service Level Fare Gasoline Employment
City Lines Suburban Lines Price
Service Level 1.00 «96 o45 .85 +89
City Lines
Service Level .96 1.00 48 .88 «84
Suburban Lines
Fare +45 .48 1.00 .80 .60
Gasoline Price .85 .88 .80 1.00 .89
Employment .89 .84 «60 .89 1.00
TABLE 6

COMPARISON OF COEFFICIENT ESTIMATES

STANDARD REGRESSION VS. TRANSFER FUNCTION MODELS

Variable Coefficient Estimate and Standard Error
Regression Transfer Function
Service level - city lines .39 + .21 +28 + .17
Service level - suburban lines «31 + .12 .08 + .06
Fare -.,30 + .08 -+28 + .07
Gas Price 27 % .07 25 % 1
Employment 48 £ .09 «57 £ .26
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II. PREVIOUS RESEARCH IN TIME-SERIES TRANSIT DEMAND MODELING

The methodologies used in the analysis of transportation changes over
time can be divided into two broad categories: those that use before-and-
after data only and those that attempt to develop structural relationships or
models for the processes under study.

With respect to public transportation, before-and-after studies have
focused primarily on the effects of fare changes implemented by various
transit systems. Examples of these include efforts by Rainville (1948),
Curtin (1968), and Kemp (1974). A number of such studies have been summarized
by Barton Aschmann (1981) and Ecosometrics (1981).

Studies that modeled the relevant structural relationships have relied
upon several different approaches. Three groups will be discussed here. The
first group used traditional multiple regression techniques to relate changes
in transit ridership over time to changes in service level, transit fare, and
other factors. Agrawal (1978) used annual time series data for Philadelphia
for the period 1964 to 1974. The independent variables used included transit
fare, annual miles of bus service, jobs in Philadelphia, and a dummy variable
for miscellaneous events or interventions. Uhlborg (1982) used monthly time
series data for Seattle and his model included transit fare, gasoline price
and supply, and employment. Agrawal did not specifically account for serial
corralation in his data, while Uhlborg used first—-differences to account for
first-order serial correlation. Since the major purpose of both studies was
to develop forecasting tools, no detailed assessment of past service or fare
changes was considered. 1In the Uhlborg study, service level was not even
found to be a statistically significant variable. It can be argued that using
a total system measure of service level with no consideration of the lag
structure that may be involved would tend to mask any effects in such a
model. Use of annual data as by Agrawal would also preclude such an
analysis. Cherwony and Polin (1977) used daily ridership data to develop
models for new transit routes. They found that patronage on a new route
generally builds up rapidly during the first few days after service has begun,
and then stabilizes after a perlod of time. They used a logistic curve to
approximate this relationship. Finally, Bates (1981) analyzed transit
ridership for Atlanta using multiple regression models that included service

level, transit fare, and gasoline price inputs.
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The second group of studies used econometric methods to study the
interrelated effects of ridership, service level, and travel costs in the
context of supply, demand, and cost functions. These studies also were
cognizant of the more complex error structure inherent in time-series analysis
by using first-order and sometimes twelfth-order autocorrelation terms.

Gaudry (1975) analyzed fifteen years of system level transit data for Montreal
(1956-1971) using linear regression techniques in conjunction with Box-Jeukins
procedures for specification of the rth-order autoregressive process of the
error terms. He developed separate functions for demand, supply, and cost and
used generalized least square procedures to estimate these models. He has
expanded this work (see Gaudry and Wills (1978)) to include a more thorough
analysis of the functional forms relating ridership to service level, and
travel costs. Kemp (1981) used a simultaneous equations model using pooled
time~series and cross-sectional data to estimate transit ridership for
specific bus routes for the San Diego transit system. Separate equations were
developed for passenger volumes, level of service, and service operation.

Kemp used two-stage least squares methods with correction for first-order
autocorrelation only. Moody (1976) and Schmenner (1976) have also considered
econometric methods using multiple equations for demand, supply, and cost.

The third group used the techniques of Box and Jenkins to model changes
in travel demand over time. Der (1977), Elder (1977), Holmesland (1979),
Ahmed and Cook (1979), and Nihan and Holmesland (1980) developed
autoregressive integrated moving average (ARIMA) models to study changes in
traffic volumes over time. Harmatuck (1975) and Wang (1981) used intervention
ARIMA models to study the effects of intervening events such as transit
strikes and fare changes on transit ridership levels. McLeod, Everest, and
Paully (1980) developed both univariate ARIMA models and transfer-function
models to study air and rail passenger traffic between London and Glasglow.
Polhemus (1976, 1979) studied air traffic volumes using both univariate and
transfer function models.

This previous work has provided the basis for the research undertaken
here. It is apparent that a number of factors influence changes in transit
ridership over time, including service characteristics of the competing modes
(e.g. auto and transit), transportation costs, and size of the travel
market. While a complete specification of these input variables is necessary,

Gaudry (1975) found that the interdependence of several key input variables
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affected his model estimation process adversely. Specification of transit
level of service can also be a problem if this data is not further refined or
categorized in any way. Note, for example, the difficulty that Uhlborg had in
using bus hours as a surrogate for service level. In general, these studies
did not attempt to review the functional forms that related transit ridership
to the various explanatory variables, particularly with respect to any lag
structure that might exist. (Exceptlons are Gaudry (1978) and Uhlborg (1982)
who included some delays in their models). This is particularly distressing
since most theories of market response assume that there is usually a delay
between the introduction of a change and the response to that change. The
fact that transit demand and supply are interrelated functions must also be
explicitly accounted for. Finally, the autocorrelation of the time series
data (usually both month-to-month as well as year-to-year) must be more firmly
introduced into accepted analytical methodologies. Some of the studies cited

above do directly account for serial correlation; most, however, ignore it

completely.
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III. METHODOLOGY

The methodology that has been used in this research includes three

phases. The first phase, Model Development, consists of postulating the form

of the model, identifying the structural relationships between transit
ridership and the input variables, estimating the model parameters, and

checking the validity of the model. Impact analysis is the second phase.

Here, the model that has been developed is used to determine the impact on
ridership of a previous change in transit service level or fare. The final
phase is Forecasting, in which the model is used to forecast future transit
ridership levels.

PHASE I: MODEL DEVELOPMENT

Model Form

It is hypothesized that transit demand can be described as a function of
level of service, cost, and market size. This approach has been variously
used by Gaudry (1975, 1978), Kemp (1981a, 1981b), and Wang (1981, 1982), whose
general model structures are given in Table 7.

A model structure suggested by theory must be tempered with the reality
of the data that is actually available. The model considered here has been

developed with this balance in mind. The model has the form:

(1) R, = F(SLt, TC MS S

c
where R, = transit ridership

SL

t? e It) * Nt

level of transit service

t
TCt = travel costs by auto and by transit
Mst = gize of the travel market
St = seasonal factors such as weather
Ly = interventions such as gasoline shortages, marketing plans, etc,
Ny = the noise model or error structure
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TABLE 7

GENERAL MODEL FORMS
PROPOSED BY OTHER RESEARCHERS

Gaudry (1975, 1978)

n n
R.=pR _.+p R .+ ) BX._ - | L BpX . ,-e
t 17t-1 127t-12 40 1 it 1=0 2=1,12 17871, t-2 t
where Ry = transit ridership

Xit = the independent variables (travel time, travel
cost, comfort, activity levels, etc)
p = the autoregressive structure
the error term

Kemp (1981la, 1981b):

(1) Demand function:
Transit ridership is a function of bus fare, gasoline price, bus
speed, passenger waiting time, number of school days.

(2) Performance function:
Bus Speed is a function of bus stop density and traffic congestion

(3) Supply function:
Seat miles operated is a function of patronage, variable cost per
seat mile, subsidy level, available seat capacity

Equations were estimated using Two-Stage Least Squares with correction for
autocorrelation,

Wang (1981, 1982)

n
R, = ) BiXqp + U

1=0 &
where R, = transit ridership
X;¢ = the independent variables (service level, bus fare,

gasoline price, seasonal dummy variables, working
day variables)
U, = stationary ARIMA error terms

Equations were estimated using generalized least-squares.
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The first issue to be considered with respect to model form is the level of
change that can be expected for a given change in the input. In other words,
does that relative change in transit ridership depend upon whether the change
in the input is large or small? It is assumed here that changes in transit
ridership resulting from changes in sevice level or travel costs are subject
to the law of diminishing returns. That is, for a fixed market size, there is
a maximum number of transit riders that can be expected to use the transit
sytem (assuming no capacity constraint) even if service level is raised to an
extremely high level and if the transit fare 1Is zero. For a variety of
reasons, some travelers must or will always use their automobile no matter how
attractive public transit becomes. Thus, for each additional increment of
service level that is added, for example, there will be a smaller increase in
the number of new riders that result. Figure 6 illustrates the use of a log
model that approximates a diminishing return function. While a more
generalized functional form can be used, log transformations, which have other
useful properties as well, have been used here.

The second issue with respect to model form is that of lagged response.
Changes in service level, travel costs, or market size do not alwayé result in
instantaneous changes in transit ridership. It takes time for potential
riders or current riders to hear about or perceive a change in the level of
service, for example, and then make decisions about whether to change their
pattern of usage. For this reason, the function relating transit ridership to
changes in the independent variables must allow for these lag effects. While
the form of the lag is unknown, it may have the form as shown in Figure 7.

Previously, the variables of the model were listed in general form as
service level, travel cost, market size, and seasonal variation. The final
issue with respect to model form is the specific form of the variables.

Service Level. One of the major determinants of transit ridership is the

level of service available on the transit system. Most cross—sectional travel
demand models use such measures as in-vehicle time, waiting time, and access
time by transit and by auto for each origin-destination pair to describe level
of service. 1In time series models, however, the data is simply not available
at this level of disaggregation. Typically, time-series demand models use
such measures as platform hours or miles of service as a surrogate for transit
service level. (Exceptions are Gaudry (1975) and Kemp (1981), who each

attempted to construct waiting time and in-vehicle time time-series for
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RIDERSHIP

FIGURE 6
EFFECT OF DIMINISHING RETURNS
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CHANGE IN RIDERSHIP

FIGURE 7
LAGGED RESPONSE

TO T1 ) 34 1D
TIME

TO = Time at which change in service level
or fare is implemented
T1= First response in ridership to the
change is measured
T2 = Maximum response
T3 = Time at which response/effect disappears
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Montreal and San Diego. Gaudry was working at the system level, while Kemp
was working at the route level). Here, platform hours, platform miles, and
route miles are used.

Platform hours and platform miles are gross measures of the amount of
service provided each day, but each also includes non-service layover and
deadhead time. Route miles describes the extent of the coverage of the
system. Classification of the data by service change category (frequency of
service, times of operation, network modification, new route, service
reduction, and route elimination) provides a further useful refinement.

Combinations of these three variables are also of interest. Platform
miles per platform hour yields a crude measure of system speed, while platform

miles per route mile describes the intensity of service over a given network.

Service Level Descriptor Variable

Gross Service Available Platform hour or miles

Extent or coverage of network Route miles

System speed Platform miles/platform hours
Intensity of service Platform miles/route miles

For the Portland data, at the route and sector levels, these variables
are reasonable estimates for level of service. At the system level, the
aggregation of service level into one variable such as platform hours results
in a variable that is insensitive to the variation of ridership productivity
by geographic sector of the service area. For this reason, the service level
variable has been disaggregated by sector, even when using the system data.

Travel Cost. Two variables are used to describe travel cost: transit
fare and gasoline price. Transit fare is the actual (average) cost for a
transit trip, while gasoline price is a surrogate for the cost of an
automobile trip. Assuming that trip lengths have remained fairly stable
between 1973 and 1982, gasoline price is a reasonable estimate of auto travel
costs. It can be argued on economic grounds that both transit fare and
gasoline price should be deflated using the consumer price index (see Kemp for
a discussion of this approach). However, it was found here that non-deflated
prices are more directly correlated with transit ridership.

Market Size. Employment is used to describe the size of the travel

market.
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Seasonal Variation. Transit ridership varies in a seasonal manner for

two major reasons. First, ridership declines in the summer are directly
related to vacations from school and work. Second, adverse weather conditions
during the non-summer months (particularly during the winter) often make
transit more attractive than walking or using the auto. 1In regression
analysis, seasonal variation must be specifically accounted for by dummy
variables. Seasonal variation can be considered in the transfer function
models more simply by adding a seasonal difference and/or a seasonal
multiplicative component to the error structure of the model.

Other Variables. The variables listed above are the primary ones

considered here. Others that could be tested include the effects of gasoline
supply constraints (1973-1974 and 1979), marketing and promotional programs,
and construction of capital facilities.

Identifying, Estimating and Checking the Model

The statistical methodology that has been used to develop these models
has come to be known as the Box-Jenkins approach. This approach is based upon
the philosophy that models should be parsimonious (or represented with the
smal lest possible number of parameters) and that model building should be
iterative. That is, there is a logical sequence of steps and checks that
should be followed when constructing a model and which may need to be repeated
until a satisfactory model results. These steps include identification of a
tentative model based upon various statistics constructed from the data
itself, estimation of parameters for the tentatively identified model, and
diagnostic checking for model adequacy. One of the most important aspects of
this approach is that the form of the model is not assumed in advance but is
inferred based directly upon the data. While theory may provide some guidance
regarding which variables to include and the signs of the model coefficients,
the analyst must look to the data for clues regarding the lag structure of the
independent variables and the error structure of the model.

Tentative models are identified by analysis of the autocorrelation
function (ACF) and partial autocorrelation function (PACF) of a given series

z o The ACF between z, and z, + k (that is, at lag k) is defined as follows:
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El(z, = w) (z_, - W]

(2) ACF(k) =
Elz, - WIPE((z,,, - w2112

= Yk/YO
where Yk is the autocovariance of z at lag k

YO is the variance 022 of the process z

The PACF can be described qualitatively as the autocorrelation that

exists between z_  and z ., after all of the intervening correlation has been

t
accounted for. The characteristics of the ACF and the PACF provide the

guidelines for selecting an autoregressive (AR), a moving average (MA) or a
mixed ARMA process for a given set of data. For example, a pure moving
average process of order one has a non-zero ACF at lag one and is zero for all
other lags, and a PACF that dies out exponentially for increasing lags. Such

a process, known as an MA(1l) process, is written as:

Conversely, a pure autoregressive process of order one has a non-zero PACF at

a lag one and is zero for all other lags, and an ACF that dies out

exponentially for increasing lags. An AR(1) process is written as:

(4) Zt = ¢zt_l + at

The general autoregressive moving-average model of order (p,q) is written as:
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(5) ¢p(B)zt = 9q(B)at, or

(6) z = =a -0 a

m b Y teer _..._e =
£ 70217 %% e L g2t e

where z, 1s the time-series under consideration
¢p(B) is the autoregressive polynomial of order p in B
Bq(B) is the moving average polynomial of order q in B
is a random shock that is N(O, 02)

is the backshift operator, where B(zt)=zt_1

It is assumed that the series z. is stationary, that is, it varies about
some mean value. In addition, stationarity assumes that the covariance
structure between 2z, and z,,, depends only upon the lag k, and not on t.
Stationarity can frequently be induced in a series by taking differences;
usually first or second differences are sufficient. When a series is non-
stationary, and differencing 1s necessary, the more general autoregressive

integrated moving average (ARIMA) model results:

d
(7) 0 (B (1-B) 2z, = 8 (B)a,

where z_ 1is the time—-series under consideration

¢p(B) is the autoregressive polynomial
of order p in B
Gq(B) is the moving average polynomial
of order q in B
d is the order of differencing necessary to induce

stationarity in the series Z

is a random shock that is N(O,Uz)

is the backshift operator, such that Bz =z, _,

Also of interest in the univariate case is the seasonal multiplicative

model, which has the form:
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d s\ D
8 B)® (B)(1-B) (1-B" )z, = 6 (B)O (B)a
(8) 0 (B)e (B)(1-B)( 1= 9 (B)O(B)a,
where ¢, d, 6 are the non-seasonal components of the
model
?, D, © are the seasonal components of the model

s 1s the seasonal period

The class of ARIMA models of particular interest here is the transfer

function model, which can be written:

Yt is the dependent variable, or the transit ridership series in this case.
The Xit terms are the independent variables or those factors that explain or
effect the variation in Yt' The polynomial ratio uﬁ(B)féi(B) represents the
lag structure associated with the variable Xit' The error structure is
represented by the ARIMA model B(B)at/¢(B).

An example may help to illustrate this general form. Suppose that two
factors, service level (SL) and transit fare (F) are found to affect transit
ridership. Further, the effects of a service level change begin immediately
and decay over the next several time periods, while transit fare has an impact

one period after a fare change. Then the general model (9) can be written:

(10) Rt = (tuO/(l-6B)SLt + wlF + B(B)at/qJ(B) _r

t=1

Note that the coefficient of SLy is simply an exponentive decay term.
Several methodologies exist for identifying the form of the transfer function
model. The one used here is not unlike stepwise regression in which one

variable is added to the model at a time. The following steps are included in
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thiﬁ DTOCeSS .
Step l. Difference each series of interest so that each is
stationary.
Step 2. Analyze the ACF and PACF for the dependent variable (or
output series) Yoo The ARIMA model suggested for this
series should then be used as the first approximation for

the noise model of the transfer function model.

(1) ¥, = 6(B)a /é(B)

Step 3. Add the first variable X;, to the model with a lag

structure sufficient to cover all lags possibly suggested

by theory. Estimate the parameters of this model using

generalized least squares methods.

(12) Y, = VX ¥V Ky Y Kyt oeee + 8(B) a /¢(B)

1l

W(B)x,  + 8(B)a /$(B)

Step 4. Analyze the coefficients V(B) representing the lag
structure for the variable X and keep only those that
are statistically significant (Vv'(B)) and of the correct
sign. Re-estimate the model parameters using only those

coefficients v'(B).

(13) Y = U'(B)Xlt + e(B)at/dJ(B)
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Step 5. Add the second variable X,, and follow the procedure of
steps 3 and 4. After analysis and re-estimation, the

model will be of the form:

(14) Yt = \J'(B)xIt + v‘z(B)x2t + 8(B)at/¢(B)

Step 6. After all of the input variables have been added in this

manner, and the significant ones identified and estimated,

the model can be estimated in its more parsimonious form:

wi(B) B(B)at
(15) T = % 5B it T THE)

where Yt is the output series
mi(B)/ﬁi(B) is the transfer function polynomial ratio
Xy are the input series
ﬁ(B)/d:(B)at defines the ARIMA noise model
B is the backshift operator

Step 7. Finally, the independence of the residuals a, s the
adequacy of the noise model B(B)at/¢(B) and the
independence of the a
checked.

If all conditions are satisfied, the model is assumed to be in its final

¢ series with each Xit series can be

form. It should also be noted that a one-way relationship is assumed between
Xit and Y5 that is, Xjp may cause changes in Ye» but not vice-versa. While
this assumption is a reasonable approximation for this case, it should be
pointed out that, in fact, a two-way relationship does exist. For example,
continued growth in transit ridership will eventually require an increase in
capacity and thus in level of transit service provided. This case can be

handled by the general multiple time-series model, but will not be covered in
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this report. For a discussion of the multiple time-series methodology, see
Tiao and Box (1981).
PHASE 2: IMPACT ANALYSIS

The transfer function model developed in Phase 1 provides an indication
of the "average" response of transit ridership to changes in service level or
transit fare. The model is estimated based upon all of the service level or
transit fare changes that occur during the period for which the data is
available and thus the elasticities represented by the model coefficients
represent the combined effect of all of these changes. If, however, the
analyst desires to study the impact of one particular change, that change must
somehow be isolated from the other changes that occurred during the study

period. This can be achieved using intervention analysis.

Intervention analysis, developed by Box and Tiao (1975), is based upon
the transfer function model but with the addition of a variable that
represents one specific change or event. The event, which could be a strike,
the implementation of a marketing program, or a period of gasoline shortage,
is represented by a binary variable Cjt which assumes a value of zero before
or after the event and a value of one during the time that the event or
intervention is taking place.

The basic form of the transfer function model with intervention is:

w, (B) w. (B) 6(B)
(16) ¥ = E“5%'("%')“ BPH %y, + E 5, (B IRORIRUIE ¢ LN

The variables of equation (16) are the same as previously defined for equation
(15), with the addition of the j intervention variables ;jt'
The following steps are included in the Impact Analysis:
Step 1. Identify, estimate, and check the transfer function
model. This represents the Model Development Phase.
Step 2. Describe the past change whose impact is to be analyzed.

Formulate an intervention variable to represent this

change.
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Step 3. Modify the data base to eliminate the effects of this
change from the other data representing this variable.
For example, if the impact of a previous five cent fare
increase is to be analyzed, this increase should be
"subtracted out™ of the fare data. This is illustrated in
Table 8.

Step 4. Re-estimate the model with the intervention variable
included, as in equation (16). If the coefficient of the
intervention variable is statistically significant, the
coefficient represents the effect of the specific change
under analysis. If the coefficient is not statistically
significant (that is, not significantly different than
zero), then the intervention had no measurable impact on
transit ridership.

PHASE 3: FORECASTING

The transfer function model developed in Phase I can also be used to
forecast future levels of transit ridership. But since the model depends upon
several inputs, these variables must also be assumed or forecasted. Some of
the input variables are under the direct control of the transit manager (e.g.,
service level and fare), and thus a given policy option (e.g., reduced fares)
can be assumed. Other variables such as employment and gasoline price,
however, are exogeneous and these must be forecasted directly. Forecasts of
the input variables are accomplished by using "univariate” models. A
univariate model for gasoline price is simply a model of today's gasoline
price as a function of past values of gasoline price. For a further
discussion of univariate models see Box and Jenkins (1976).

The following steps are included in the Forecasting phase:

Step 1. Identify, estimate, and check the transfer function
model. This represents the Model Development Phase.

Step 2. Describe the nature of the forecast problem including the
input assumptions and the length of the forecast period.

Step 3. Forecast the future values of the exogeneous input
variables, such as employment and gasoline price.

Step 4. Using either the forecasted and/or assumed values for the
input variables, forecast the future values of transit

ridership.
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The actual computations involved in transfer function forecasting are
complex and are not described here. Several computer programs include the
forecasting process and, once a transfer function model has been developed,
are straightforward and easy to use. See, for example, SAS (1982) and SCA
(1983) for further information.
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TABLE 8
ELIMINATING THE EFFECT OF AN INTERVENTION
FROM ITS INPUT DATA BASE

Problem: Analyze the impact of a five cent fare increase that occurred in
April 1980.

Modified Transit Fare Data

Period Transit Fare With Effect of Intervention Removed
Jan. 1980 30¢ 30¢
Feb. 1980 30¢ 30¢
Mar. 1980 30¢ 30¢
Apr. 1980 35¢ 30¢
May 1980 35¢ 30¢
June 1980 35¢ 30¢
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IV. CASE STUDY: PORTLAND, OREGON

OVERVIEW OF PORTLAND, OREGON

The Portland, Oregon metropolitan area includes 1.2 million people and
covers over 900 square miles. The transit operator in Portland is the Tri-
County Metropolitan Transportation District of Oregon (Tri-Met). Tri-Met was
formed in 1969 by the Oregon legislature to take over the private bus
cperations within the City of Portland and to expand services into the rapidly
growing three county area.

Starting from 50,000 weekday riders in 1970, ridership had grown to over
140,000 by 1980, averaging a nine percent annual growth rate. The three year
period 1973-1976 saw a nearly twenty percent annual increase. Platform hours
and miles increased at an anhual rate of nearly seven percent between 1972 and
1982, The major period of expansion was from 1973 to 1976 when the annual
growth rate was l4.5 percent. Area coverage, as measured by route miles,
increased by 4.3 percent annually during this ten year period. Service level
intensity (platform miles per route mile) increased by an annual rate of 1l.5
percent from 1973 to 1976, but remained constant between 1976 and 1982.

By nearly all measures, auto travel costs increased significantly during
this period, while transit travel costs declined. Gasoline price increased at
a 15.6 annual rate during the ten year period, with the largest increase
occuving between June 1979 and June 1980 when a 30 percent annual rate was
recorded., Employment increased at an annual rate of between 2 and 5 percent
untiLil980 when it began to decline. Some of these trends are summarized in
Table:9 and Fiéures 8 through 15.

Three basic data sets have been compiled and reduced. The first data set
consists of monthly data for the transit system as a whole, a total of 114
data points covering the period January 1973 through June 1982. The second
set consists of quarterly data for each of six geographic sectors of the Tri-
Met service area. It includes 44 data points and covers the period Summer
1971 through Spring 1982. The third data set includes quarterly data for each
Tri-Met bus route (a total of 71 routes) during this same time period. A

summary of the data is given in Table 10.
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TABLE 9

PORTLAND TRENDS,

1972-1982

Annual Growth Rates

1972-1982 19/3-19/6 19/76=-19/9 19/9-1982

Weekday Riders + 8.9% +19.4% + 3.2% + 8.5%
Platform Hours + 6.67% +14,57% + 1.9% + 4.47%
Platform Miles + 6.8% +17.4% + 0.3% + 3.8%
Route Miles + 4,3% + 5.7% + 1.4% + 2.8%
Platform miles + 3.5% +11.5% - l.4% - 0.4%

per route mile
Platform miles + 0.2% + 2.0% - 1.47 - 0.6%

per hour
Gas Price, unadj. | +15.6% +15.6% + 6.8% +23.8%
Gas Price, adj. + 6.9% + 6.5% + 0.5% +21.47%
Fare, unadj. + 3.4% - 7.4% + 9.3% +11.7%
Fare, adj. - 3.2% -14.7% + 2.9% + 7.0%
Income, unadj. +12.5% +16.0% +14.2% +10.3%
Income, adj. + 4,7% + 2,.8% + 7.5% + 0.8%
Population + 1.8% + 1.0% + 1.8% + 2.9%
Employment + 5.0% + 5.4% + 6447 + 1.7%
Housing Units + 3.47% + 2.3% + 3.7% —
CPI + 7.2% + 8.5% + 6.3% + 9,.5%

Note:

Growth rates were calculated using the

for the year shown.

month of January
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FIGURE 12
PLATFORM MILES PER ROUTE MILE, SYSTEM LEVEL
PORTLAND DATA
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FIGURE 13
AVERAGE TRANSIT FARE
PORTLAND DATA
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FIGURE 14
GASOLINE PRICE
PORTLAND DATA
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FIGURE 156
TRI-COUNTY EMPLOYMENT
PORTLAND DATA
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TABLE 10

SUMMARY OF PORTLAND DATA BASE

SYSTEM LEVEL DATA

Variable

Transit ridership

Service level

Travel costs

Market size

Time—-Series

Average weekday originating transit
riders

Daily platform bus hours

Daily platform bus miles

Daily route miles

Daily platform miles per route mile

Average bus fare in cents
Gasoline price per gallon in cents

Total employment by county

SECTOR AND ROUTE LEVEL DATA

Variable

Transit ridership

Service level

Travel costs

Market size

Time—Series

Total weekday boarding riders

Daily platform bus hours

Daily platform bus miles

Daily route miles

Daily platform miles per route mile

Average bus fare in cents
Base cash fare in cents
Gasoline price per gallon in cents

Total employment by county
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For the system level, a total of eight time—-series are available. The
transit ridership series is the total originating weekday riders, with
transfer passengers excluded. Four series are available to describe transit
service level: platform hours, platform miles, route miles, and platform
miles per route mile. In addition, each series is categorized both according
to geographic sector in which the service is provided, and by the category of
service change. The service change categories include: change in the
frequency of service or times or operation, modification of the service
network, extension of a route, establishment of a new route, elimination of a
route, or reduction in the service frequency or times of operation. Transit
travel cost is measured by the average transit fare which includes
consideration of the base cash fare plus any price discounts (i.e. monthly
passes or senior citizen fares) that may be in effect. Auto operating cost is
approximated by the current gasoline price per gallon. Market size is
measured by the total employment by county.

The six sectors represented here include the aggregation of bus routes
serving the following areas (see Figure 16).

1. Radial lines primarily serving the City of Portland only.

2. Crosstown lines primarily serving the City of Portland only.

3. Radial and local lines serving the City of Portland and East Multnomah
County.

4. Radial and local lines primarily serving the Westside suburban area of
Washington County.

5. Radial lines primarily serving the Southwest suburban areas of Washington
and Clackamas Counties.,

6. Radial and local lines primarily serving the Southeast suburban area of
Clackamas County east of the Willamette River.

These areas are relatively homogenous with respect to transit service
network, population density, and socio-economic characteristics of the
population. Service level data for each sector is categorized into the same
six groupings as described above for the system level data. Transit fare
includes two different series: the average fare and the base cash fare.
Gasoline price and employment are as described for the system level data.

The route level data is in the same form as for the sector level data.
MODEL DEVELOPMENT

As described earlier, it has been postulated that transit ridership is a

47



function of service level, travel costs, and market size. But these
relationships are often not contemporaneous. That is, a change in service
level may not have an effect on ridership for several time periods. For
example, it may take time for the public to hear about a change and to make
decisions regarding travel patterns and habits. It is important, therefore,
to determine the correlations that exist at different lags or the delay
between a change in an input variable and when a change in the output variable
can be measured.

Figure 17 illustrates the cross—correlation function for the system data
relating transit ridership to service level, transit fare, and gasoline
price. It indicates that ridership is affected by changes in service level at
one month and at 8 to 9 months after a given change is implemented. Transit
fare has an immediate effect on ridership (lag 0) as well as a smaller impact
one month after a fare change. Gasoline price effects are completely
contemporaneous. Once this lag structure is determined, the complete transfer
function model can be estimated.

The system model was developed using service level, transit fare,
gasoline price, and employment as input variables. Both platform hours and
platform miles per route mile were used to approximate service level, with
these variébles further broken down by city and suburban service areas. Both
models are summarized in Table 1ll. The error structures in both models
included terms for lags 12 and 24 indicating a strong seasonal variation in
transit ridership.

The sector models were developed using the same four variables. Platform
hours, platform miles, and platform miles per route mile were variously used
to approximate service level. The models are summarized in Tables 12, 13 and
14,

Route level models were developed for four city radial lines and five
city crosstown lines. Transit service level, fare, gasoline price, and
employment were used as independent variables. The models are summarized in
Tables 15 and 16.
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FIGURE 16
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FIGURE 17
CROSS—CORRELATION FUNCTIONS RELATING
RIDERSHIP TO SERVICE LEVEL, FARE, AND GAS PRICE
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TABLE 11

SUMMARY OF SYSTEM MODELS

Model #1
STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(months)
Service Level, City Lines (platform hours) 8 .31 .18
Service Level, Suburban Lines (platform hours) 1 .08 .07
Transit Fare 0 -.27 .07
Gasoline Price 0 .26 +12
Employment (Tri-county area) 0 .56 .28
Error Structure (312) 12 »30 .11
(apy) 24 .31 12
Model #2
STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(months)

Service Level, City Lines

(platform miles per route mile) 10 «29 .16
Service Level, Suburban Lines

(platform miles per route mile) 1 22 .09
Transit Fare 0 -.29 «07
Gasoline Price 0 32 .12
Employment (Tri-county) 0 .49 .28
Error Structure (aIZ) 12 .29 <12

(324) 24 «26 o
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TABLE 12

SUMMARY OF SECTOR MODELS

CITY RADIAL LINES SECTOR MODEL

STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(quarters)
Service Level (platform hours) 2 L .28
Transit Fare 0 -.13 .10
Gasoline Price 0 .14 .07
Employment (multnomah county) 0 43 .27
Error Structure (al) 1 .76 .13
(&4) 4 .56 .16
CITY CROSSTOWN LINES SECTOR MODEL
STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(quarters)

Service Level (platform miles) 0 W42 .21

1 .18 .09

2 .07 .03

3 .03 .01
Transit Fare 0 -.42 .27
Gasoline Price 0 .39 .22
Employment (multnomah county) N/S
Error Structure (al) 1 .40 .17

(a,) 4 .58 .16
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TABLE 13

SUMMARY OF SECTOR MODELS

URBAN EASTSIDE LINES SECTOR MODEL

STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(quarters)
Service Level (platform miles) 2 «55 .14
Transit Fare 0 -.15 .07
Gasoline Price 0 .18 .08
Employment (multnomah county) 0 .65 .30
Error Structure (al) 1 «75 14
(34) 4 .67 ]
WESTSIDE SUBURBAN LINES SECTOR MODEL
STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(quarters)
Service Level (platform miles) 0 .80 .07
Transit Fare 0 32 .08
Gasoline Price 0 .31 .08
Employment (Washington County) 0 47 12
Error Structure (a3) 3 .49 .15
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TABLE 14

SUMMARY OF SECTOR MODELS

SOUTHWEST SUBURBAN LINES SECTOR MODEL

STANDARD
INPUT VARIABLE LAG COEFFICILENT ERROR
(quarters)
Service Level (platform miles per route mile) 0 49 +19
Transit Fare 1 ~l2 .09
Gasoline Price 0 .28 o 17
Employment (tri-county) 0 .67 .29
Error Structure (a,) 4 .99 .10
SOUTHEAST SUBURBAN LINES SECTOR MODEL
STANDARD
INPUT VARIABLE LAG COEFFICIENT ERROR
(quarters)
Service Level (platform hours) 0 «32 o1l
Service Level (platform hours) 2 «50 .11
Transit Fare 0 -.16 13
Gasoline Price 0 27 .16
Employment 1 .69 .30
Error Structure (al) 1 .30 .49
(aa) 4 .19

'18
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TABLE 15

SUMMARY OF CITY RADIAL LINES SECTOR AND ROUTE MODELS

SERVICE LEVEL FARE GASOLINE PRICE EMPLOYMENT ERROR STRUCTURE
MODEL Vv L C SE L G SE L & SE L Cc SE L C SE
City Radial Lines HR 2 71 .28 0 —.1¥3 10 0 .14 .07 0 430 .27 1 .76 .13
Sector Model 4 56,16
Line 2 - St. Johns HR 0 91 .43 0 =-.39 .20 0 .72 .15 2 L.ld. 42 4 64 14
Route Model 2 .90 .43
Line 3 - Fessenden HE 0 «956 .25 0 =.46 .21 0 .69 .16 N/S 3 =.81 .13
Route Model 2 .51 .16 1 —.44 .19 1 .38 .09
3 .66 .25 2 S .05
, 3 o 11 .03
Line 6 — Sellwood/Union HR 0 .23 .06 0 -.80 .20 0 .62 27 0 .95 .64 | 1 =47 413
Route Model
Line 8 — Irvington/ ! HR 3 .25 .07 2 w3y 523 0 59 .29 N/S 1 =243 415
Jackson Park Route Model i 1 .64 .28 5 =-.49 13
! 8 .27 .14
|

Notes: V =

oo
]

won

SE
N/S

the service level variable that is used for the particular model. HR indicates that platform hours was
the variable used.
the lag, in quarters, for which the input variable affected transit ridership

model coefficient or elasticity
standard error of the model coefficient

variable not statistically significant and was not included in the model
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TABLE 16

SUMMARY OF CITY CROSSTOWN LINES SECTOR AND ROUTE MODELS

SERVICE LEVEL FARE GASOLINE PRICE EMPLOYMENT ERROE STRUCTURE

MODEL v I G SE I C SE L C SE L 8 SE L C SE
City Crosstown MI 0 A2 G2 0 =.42 .27 0 .39 22 N/S 1 +H40 17
Lines Sector Model 1 .18 .09 4 .58 .16

2 .07 .03

3 .03 .01
Line 71 - Killingsworth TESTY O 72 27 N/S 0 3.24 .63 N/S 4 251
Route Model
Line 72 - 82nd Avenue I(19) O .64 .15 N/S 3 .68 =30 N/S 1 L4200 .15

Route Model

HR O .30 .23

Line 73 — 102nd Avenue N/S N/S 0 .60 N/S

Route Model

Line 75 — 39th Avenue N/S N/S 3 luid2 N/S 1 .40

Route Model 4 .43

Line 77 - Northeast/ I(26) 0 35wl N/S 2 24 .18 N/S 1 .56 .16
Northwest 2 L4200 .18

Route Model

Notes: 'V

SE
N/S

the service level variable that is used for the particular model. HR = platform hours, MI = platform
miles, and I(t) indicates an intervention variable at quarter t.

lag, in quarters, for which the input variable affected transit ridership

model coefficient or elasticity

standard error of the model coefficient

variable not statistically significant and was not included in the model




CONCLUSIONS REGARDING MODEL DEVELOPMENT

Several useful conclusions can be drawn from an analysis of the sixteen

models that have been developed.

1.

The Box-Jenkins approach for identifying, estimating, and checking
transfer function models is an appropriate one for modeling the variation
in public transit ridership over time. It has several useful attributes
of particular interest here. The cross—correlation analysis clearly
identifies the lag structure that exists between transit ridership and the
input variables. The error structure is identified directly from the
autocorrelation and partial autocorrelation functions of the output
(ridership) series. This error structure is often complex because of both
the month—to-month and year-to-year serial correlation in the output
series. Misspecification of this noise structure, which often occurs when
standard regression techniques are used with time-series data, yields
spurious estimates of the model parameters and their statistical
significance. See, for example,the work of Wang and others (1982) where a
re-estimation of the Bates (1981) Atlanta models yielded elasticities that
were half the original estimates.

For many of the models that have been developed, all four input variables
were statistically significant contributors. This confirms the basic
theoretical approach assumed here that these four variables in combination
yield models for transit ridership that include sufficient explanatory
power to allow for analysis of past changes as well as to forecast future
changes.

Four different input variables were used to measure transit service

level: platform hours, platform miles, route miles, and platform miles
per route mile. Route miles was typically the least effective in
approximating service level, leading to the conclusion that area coverage
itself is not a good predictor of transit ridership. The other three
variables were good measures of level of service, but their relative
effectiveness varied from model to model. More analysis is needed before
conclusions can be drawn regarding the situations most appropriate for
each variable.

Typically, the impacts of service level changes in the urban sectors
lagged about two quarters or eight to ten months. Suburban service

changes usually showed less of a delay, often one quarter or one month.
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Average transit fare was used in the system model while both average fare
and base cash fare were used in the sector models. Average fare was more
effective in the city lines sector model and the southeast sector model,
while cash fare was superior in the southwest sector model. Both series
were nearly equally effective in the crosstown, urban eastside, and
westside sector models. The systemwide fare elasticity was estimated to
be 0.27. Sector fare elasticities showed two basic groups above and below
this level: the crosstown and westside sectors at -0.40 and the other
sectors at about -0.20. Effects of fare changes typically were
instantaneous, usually occuring in the same period as the implementation
of the fare change. However, some effects were measured for one month
after a fare change for the system data thus suggesting an exponential
decay function. Also, the effect of fare changes for the southwest sector
was delayed by one quarter.

Gasoline price and employment series were effective inputs in nearly all
models. The system gas price elasticity was estimated to be 0.26. Sector
elasticities ranged from 0.19 to 0.40. Employment elasticities varied from
0.5 to 0.7. The effects of gasoline price changes were also usually
instantaneous. However, strong correlations were identified at negative
lags (up to two months or one quarter) thus showing some anticipatory
effects of known future price changes. While transfer functions cannot
handle this kind of two-way relationship, multivariate ARIMA models (the
subject of future research efforts) can. The effects of employment
changes were also instaﬁtaneous for all model groups except for the
southeast sector which included an employment variable lagged one quarter.
The most price sensitive sector was found to be the crosstown lines sector
which had high elasticities for both transit fare (-0.39) and gasoline
price (0.40). The most price inelastic sectors were the city radial,
eastside urban, and southwest sectors.

There was generally good consistency in the coefficients and lag
structures when comparing models estimated at the system, sector, and
route levels. This can be seen particularly in the system and sector
model comparisons shown in Figure 18. Much more variation, however, shows
up in the sector to route level comparisons (Figures 19 and 20). This

larger variation at the route level is likely the result of using
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10.

aggregated data to explain more disaggregate or micro~level changes. This
is particularly true for the measurement of market size at the route
level., The lowest level of disaggregation for employment is by county.
Thus, for individual routes, it is obviously only an approximation of the
market size. But while it can't account for the small-scale variation in
trip-making activity along a given route, its statistical significance in
some of the route models and most of the sector models indicates that it
can account for some of the larger scale variation in market size that
occurs over time.

Models for four individual routes from the city radial sector were
developed. In total, the city radial lines sector includes eighteen
radial routes that operate exclusively in the City of Portland. These
routes serve the highest density and most transit dependent sections of
the Portland metropolitan area and typically have the highest levels of
service of any of the routes in the Tri-Met system. Service level
elasticities tended to be higher on routes with lower levels of service
(Routes 2 and 3) than for those routes with higher levels of services
(Routes 6 and 8). The varying lag structures for service level, fare, and
gasoline price indicates the different level of response for the rider
populations served by each route. Finally, the lack of inclusion of
employment for two of the route models shows the difficulty of trying to
capture route level variation in market size using a county level
variable.

The City Crosstown sector includes the eight crosstown routes that operate
(or did operate) in the eastside section of the City of Portland during
the study period. Service levels on these routes are typically poor
(headways vary from 20 minutes to 60 minutes) and since the downtown is
not served directly, the potential market from which these routes can draw
is relatively small. The result is that most riders on the crosstown
routes are captive riders. Models were developed for the five routes that
operated through at least 37 of the 44 quarters of the study period.
Employment was not a significant variable in any of these models,
supporting the earlier statement that users of the crosstown routes were
transit dependents (largely students), and illustrating the problem of
using the county level data at the route level. The insignificance of

fare reflects the transit dependent nature of the users as well. However,

62



gasoline price changes did have a significant effec£ on inducing new
riders to the crosstown lines, particularly as service levels were
increased in the late 1970's.

IMPACT ANALYSIS

The elasticities computed in the model development phase represent an
average elasticity for a given variable over the entire study period. If four
changes were implemented during a given period, for example, the service level
elasticity would be an average of the impact of each service change. However,

to study the impact of a specific service level change, an intervention

variable which represents that change alone, must be added to the model. The
model is then re-estimated with the intervention variable and the coefficient
yields the effect of the specific change under study. If the variable
coefficient is not statistically significant, it can be concluded that the
change had no measurable impact on ridership.

Eleven service changes implemented between 1973 and 1979 on seven
different routes were analyzed using the intervention analysis technique. The
service changes included frequency improvements, route extensions, and service
reductions. The results are given in Table 17.

Four of the service changes did not result in measurable impact transit
ridership. While this sample is too small to yield any useful inferences, it
can be noted that three of these changes were route extensions. This result
may be consistent with that previously found in the use of route miles as a
variable to represent service level: increased area coverage or extensions of
service into new areas may not provide many new transit riders.

One of the route extensions that did have a significant impact on
ridership was that implemented on Route 72 in 1976. The mean service leval
elasticity from the Route 72 transfer function model was estimated to be
0.45. When the intervention variable was added to the model, the mean service
level elasticity dropped to 0.30. The route extension itself, when modeled
with an intervention variable, was estimated to have an elasticity of 0.55.
This example shows the value of modeling individual changes and how the

elasticity for a specific change might vary from the mean value.
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TABLE 17

IMPACT ANALYSIS OF PAST SERVICE CHANGES

AT THE ROUTE LEVEL

Route Date Type of Change
2 1975 Frequency Iimprovement
1978 Route extension
3 1973 Frequency improvement
1974 Frequency lmprovement,
Route extension
1978 Service reduction
6 1974 Route extension
1975 Frequency improvement
71 1979 Frequency improvement,
Route extension
72 1976 Route extension
75 1979 Route extension
77 1979

Frequency improvement

Significant Coefficient of the Mean Elasticity
Impact Intervention Variable from Model
Yes .13 1.81
No impact -
Yes .11 1.73
Yes .13 1.73
No impact -
No impact -
Yes <23 .23
Yes .72 o712
Yes .81 w35
No impact -
Yes - 33 «35
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FORECASTING

The system model was used to make forecasts of future transit
ridership. First, the model was re—estimated using only the first 102 data
points. The last twelve data points were "held back” to enable a comparison
with the forecasted values. The model coefficients in the forecasting model
are approximately the same as for the "full" model (See Table 18). The
difference in the employment coefficient probably results from the fact that
the last twelve data represent a period of major decline in employment.

The next step is to determine the nature of the forecast to be made. The
two variables over which transit management has control are service level and
fare. It was assumed that these variables would take on their historical
values for the forecast period, July 1981 to June 1982. Gasoline price and
employment, the other two model inputs, are variables that are beyond the
control of transit management. Thus, these variables must themselves be
forecasted. To accomplish this task, univariate ARIMA models were identified
and estimated. Essentially, the univariate models state that a present value
of the variable (e.g., gasoline price) depends only on some combination of
past values of the variable itself. The forecasted values for gasoline price
and employment, as well as the assumed values for service level and fare, are
given in Table 19.

Finally, transit ridership was forecasted. The results given in Table 20
and Figure 21, show a mean absolute percent error of only 2.1% for the twelve
monthly ridership forecasts.

COMPARISON WITH STANDARD REGRESSION MODELS

It has been traditional to use multiple regression models when developing
models relating transit ridership to explanatory variables. Using time-series
data with regression models, however, invariably leads to a variety of
statistical problems. Table 21 highlights the major areas in which problams
are likely to arise by contrasting standard regression with transfer function
models: multicollinearity, autocorrelated errors, lag structures, and
coefficent estimates and standard errors. To determine whether these prbblems
would, in fact, result, both standard regression and transfer function models
were developed using the Portland System data.

Using the non—-differenced data, a high degree of correlation was found
among the input variables. Seven of the ten input variable combinations were

highly correlated, with correlation coefficients of 0.60 or greater (see Table
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22). Second, the residuals were highly correlated and not independent as
required for regression models. Third, the delay in the response to service
level changes would have been missed if only contemporaneous correlations were
included in the model. Finally, the biased standard errors from the
regression model would have erroneously lead to the conclusion that one the
variables (service level-suburban lines) was statistically significant when in
reality, it wasn't. These results argue for the wider application of the

appropriate statistical methodology when time-series data is used.
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TABLE 18
COMPARISON OF SYSTEM MODELS:
FULL-MODEL AND FORECSTING MODEL

MODEL DESCRIPTION ELASTICITIES
SERVICE GASOLINE
LEVEL FARE PRICE EMPLOYMENT
Full-model +51 -.29 .32 .49
Forecasting Model .38 ~.28 +33 .70

The Full-model was estimated using the complete data set of 114

points:

January 1973 - June 1982

The Forecasting Model was estimated using 102 data points, with the
last twelve data points (July 1981 - June 1982) withheld so that the
forecasted values could be compared with the actual valuves for the

period.
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INPUTS USED IN FORECASTING

TABLE 19

SYSTEM RIDERSHIP

Service Transit Gasoline Price/ Employment

Level Fare Gallon, Cents
MONTH Plat Hrs Cents Forecast T

Actual Actual
July '81 4,788 49.1 135.0 476,100
Aug '8l 4,788 49.1 135.6 476,900
Sept '8l 4,788 49.1 136.1 486,900
Oct '81 4,788 49,1 136.5 486,500
Nov '81 4,788 49,1 136.8 488,500
Dec '8l 4,788 49.1 137.0 489,900
Jan '82 4,788 49.9 137.1 478,400
Feb '82 4,788 49.9 137.2 479,000
Mar '82 4,788 49.9 137.3 483,700
Apr '82 4,788 49.9 137.3 484,200
May '82 4,788 49.9 137.3 484,700
June '82 4,788 49.9 137.4 493,700
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TABLE 20

SUMMARY OF FORECASTS

FORECAST OF INPUTS

FORECAST OF OUTPUT

Gasoline Price Employment Ridership
MONTH Actual Forecast % error|Actual Forecast % errorl|Actual Forecast % error
July '81(135.1 135.0 =0.1 478,900 476,100 -0.6 125,800 138,300 +2.0
lAug  '81{135.0 135.6 +0.4 475,900 476,900 +0.2 121,400 124,700 +2.7
Sept '81(135.0 136.1 +0.8 483,600 486,900 +0.7 132,600 135,200 ~2.0
Oct '81133.6 136.5 +2.2 477,300 486,500 +1.9 141,700 142,600 +0.6
Nov '81{132.7 136.8 +3.1 475,800 488,500 +2.7 141,700 141,600 =0.1
Dec '811}132.5 137.0 +3.4 475,100 489,900 +3.1 132,900 136,200 +2.5
Jan '82{131.3 137.1 +4 .4 461,300 478,400 +3.7 146,800 144,800 -0.9
Feb '82(128.5 137.2 +6.8 458,100 479,000 +4.6 142,500 145,800 +2.3
Mar '82(121.9 137.3 +12.6 459,200 483,700 +5.3 141,900 140,000 -1.3
Apr '82{119.1 137.3 +15.3 459,400 484,200 +5.4 143,200 138,400 -3.4
May '82 {121.7 137.3 +12.8 460,600 484,700 +5.2 139,400 133,700 -4,1
June '82 {126.3 137.4 +8.8 476,300 493,700 +3.7 132,700 127,600 -3.8
Mean Absolute
Percent Error 5.9% 3.1% 2.1%
of Monthly
Forecasts
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FIGURE 21
SUMMARY OF FORECASTS
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TABLE 21

COMPARISON OF STANDARD REGRESSION AND TRANSFER FUNCTION MODELS

Comparison

Correlated input
variables

Autocorrelated
errors

Lag structure for
input variables

Coefficient estimates
and standard errors

Standard Regression

Yes, the input variables
are highly correlated.
Multicollinearity is
present

Yes, the error structure
is highly autocorrelated,
violating basic model
assumptions.

No, only contemporaneous
correlation assumed

Estimates are in-—
efficient and the standard

errors (and thus the
significance tests) are
biased.

Transfer Function

No, data is
differenced

Yes, but model structure
allows for correlated
errors

Yes, methodology directly
investigates the nature
of dynamic relationships

Estimates are efficient
and the standard errors

are unbiased
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TABLE 22

MULTICOLLINEARITY OF NON-DIFFERENCED DATA

Correlation Matrix — Input Variables

Service Level Service Level Fare  Gasoline Employment
City Lines Suburban Lines Price
Service Level 1.00 .96 .45 .85 .89
City Lines
Service Level .96 1.00 48 .88 .84
Suburban Lines
Fare 45 .48 1.00 .80 .60
Gasoline Price .85 .88 .80 1.00 .89
Employment .89 .84 .60 .89 1.00
TABLE 23
COMPARISON OF COEFFICIENT ESTIMATES
STANDARD REGRESSION VS. TRANSFER FUNCTION MODELS
Variable Coefficient Estimate and Standard Error
Regression Transfer Function
Service level — city lines .39 + .21 28 + .17
Service level - suburban lines 31 12 .08 + .06
Fare -,30 + .08 -.28 + .07
Gas Price .27 + .07 w29 F 11
Employment .48 + .09 57 + .26
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V. ISSUES REQUIRING FURTHER RESEARCH

In every research project, not all issues that require attention can be

adequately addressed. This project is no exception. There are several issues

in particular that deserve further work.

ll

Only nine route level models have been developed. There is sufficient
data to develop nearly forty more route level models for the Tri-Met
system. When all models have been developed, a statistical comparison of
service level and fare elasticities will be possible by route type and
geographic sector served. Also, an impact analysis of all service
changes, for example, would allow an analysis of elasticity by service

change category.

It was determined here that route miles is not a useful variable in
estimating level of service. But more analysis is needed to determine
which data best represents level of serﬁice: platform hours, platform
miles, or platform miles per route mile. It is likely that this will vary
accbrding to the route type and the kinds of service changes that are
being modeled.

The transfer function models used here assume only a one-way dependence;
that is, input variables affect the output variable, but not vice-versa.
In actuality, there are feedback loops among several of the variables.
For example, as capacity limits are approached as ridership increases,
additional service might be required. Thus, ridership level will
influence level of service. The general multiple-time series model

developed by Tiao and Box (1981) has the ability to handle this two-way

dependence.
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VII. APPENDIX — MODEL EQUATIONS

The models that have been described earlier in this report are presented
in the equation form in the Appendix. Tables 24, 25, 26, and 27 show the
standard time-series form. Tables 28 and 29 give the route level models in
their expanded form thus showing the autoregressive nature of the models.

The notation used in the Appendix is defined below:

LRy = log of transit ridership at time t

LHRC, = log of city platform hours at time t

LHRS, = log of suburban platform hours at time t

LHR = log of total platform hours at time t

LM1, = log of total platform miles at time t

LPLTRTC, = log of city platform miles per route mile at time t
LPLTRTS, = log of suburban platform miles per route mile at time t
LF, = log of average transit fare at time t

LAFT = log of average transit fare at time t

LCF, = log of basic cash transit fare at time t

LG, = log of gasoline price per gallon at time t

LE, = log of total tri-county employment at time t

LMLEt = log of Multnomah county employment at time t

LWLE = log of Washington County employment at time

LCLEt = log of Clackamas County employment at time t

B = backshift operator, which BLHR, = LHRt_l

ap = error term at time t

(texx) = gtandard error of the coefficient estimate

[ = intervention variable, usually representing a specific

service level change
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TABLE 24

SYSTEM MODELS

LR, = .31LHRC
t -
(+.18) ©

-+

- 08LHRS
(£.07)

t-1

.27LFt + .26LG, + .56LE_ +

(£.07)

12 24

t t

(1 - .30B - .31B" )a
(£.11) (+.12)
(1 = B ~ #L2)

(+.12)" (+.28)

LR, = .29LPLTRC,_;, + .22LPLTRTS, _

(£.16)

(£.09)

=]

= «29LF _ + .32LG_ + J49LE_ +

t

(+.07)Y (12" (2.28)t

(1 - .29312 - .25324
(£:12)  (£.12)

)a

t

@, ~ B - B%)




TABLE 25
SECTOR MODELS

City Radial Sector Model

R, = +7ILHR, _, — 13LAF, + J14LG, + J43LMCE,
(+.28) (+.10) (+£.07) (+.27)

(1 - .76B)(1 - .56B)a
(+.13) (£.16)

(1-B)(1-B")

t

City Crosstown Sector Model

4
LR, = J42IMI. - J42LCF_ + .39LG, + (1 - .40B) (1 - .58B")a
1=.42B°  (+.27)% (+.22)F (+.17)  (+.16) =

(1 -8B - BA)

Urban/Suburban Sector Model

LR, = «55LMl, 5 — «15LCF, + .18LG, + .65LMCE

(+.14) (+£.07) (:t.08)t (£.30)

(1 - .75B)(1 - .67B)a
(+.14) (£.15)

(1-B)(1-B%)

t

t

Westside Suburban Sector Model

LR, = .80LMI, - .32LAF, + .31LG, + .47LWCE, + (1 + .49B)a,
(£.07) (£.08)  (£.08) (4412} (:15)

(1-8%)

Southwest Suburban Sector Model

LR, = 49LPLTRT, - .22LCF

v + .28LG. + .67LE
(+.19) (+.09)

&= (+.1DF  (£.29)

t

+

(1-B) (1-8%)

Southeast Suburban Sector Model

LRt = L33LHR, + .SOLHRt_2 - ..I.6LAFt + .Z?LGt + .69LCCE

(£.11)°  (2.11) (+.13)"  (£.16)°  (£.30) T

+ (1 - .30B) (1 - .49B%)a,
(£.19) (£.18)
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TABLE 26

CITY RADIAL LINE SECTOR
ROUTE MODELS

Route 2
(1 - B“)LRt = (.91 + .9032)(1 - B)LHR_ - .39(1 - B)LAF,
(£.43) (£.43) (+£.20)
+ .72(1 - B)LG, + 1.148% (1 - B)LMCEMP,
(£.15) (£.42)
+ (l . .643 )a
(£.14)
Route 3
(1 - B*)LR, = (.56 + .51B2 + .66B3)(1 - B)LHR, + (-.46 - .44B) (1 - B) LAF,
(£.25) (£.16) (£.25) (£.21) (£.19)
.69(1 - B)LG, + (1 + .81B3)at
. (£.16) (£.13)
(1 = .55B)
(£.16)
Route 6
(1 - B‘*)LRt = .23(1 - B)g,; - .80B (1 - B)LAF, + .62(1 - B)LG,
(£.06) (+.20) (+.27)
+ .95B(1 - B)Et + (1 + .47B)at
(£.64) (£.13)
Route 8
(1 - BY)IR, = .25B3(1 - B)g 5 - .35B2(1 - B)LAF, + (.59 + .64B)(l - B)LG,

(£.04) (£.23) (£.29) (£.28)

+ (1 + .43B + .498% — ,2788)a

(£,15) (£.13) (Eo14)
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TABLE 27

CITY CROSSTOWN SECTOR ROUTE MODELS

Route /1
(1—34)LRt = 72(1-B)Ey, + 3.26(1-B)LG, + (1—.5134)at
(£.27) (x . 63)
Route 72
(1 - .42B)a
(£.15) E
LR = 6484 + J30LHR + -68LG,_4 + (1-8)
(£.15) ( £.23) (£.30)
Route 75
(1-BY)LR, = 1.72(1-BYLG,_5 + (1+.40B) (1-.438%)a,
Route 77

(l—.SﬁB)(l-.4282)a

_ (£.16) (+.18)
LR_ = .35&,, + .24LG6_ . + —
£ (t.11)26 (£.18) o (1-B)
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TABLE 28

CITY RADIAL LINE SECTOR ROUTE MODELS
(EXPANDED FORM)

Route

LR, =

2
LRy_4 + <91LHR, - .91LHR,_; + .90LHR,_, - .90LHR,_3

.39 LAFt + .39LAF + .72LGt - 721G

t-1
1.14LMCEMP__, = 1.14LMCEMP, 5 + a_ - .64a,_,

t-1

Route

IR_ =

3

LR,_, * «56LHR_ - .S6LHR__, + .SILHR__, + .15LHR_,
«66LHR, _, - .46LAF_ + .02LAF,_, + .44LAF __,

691G, + .31LG._; + .10LG,_, + a, + .8la__4

Route

LR, =

b

&t + -47at_1

Route

8
LRy s + +258,5 = +25C5 = .35LAF,_, + .35LAF,_,

.59LGt + +05LG - 641G

t-l t-2

82




TABLE 29

CITY CROSSTOWN SECTOR ROUTE MODELS
(EXPANDED FORM)

t t

Route 71
R, =R _, * .72(530—529) + 3.24(Gt_2—Gt~3) +a - .Sla
Route 72
R, = Rt_1+.64(519—518)+.30(HRt—HRt_1)+.68(Gt_3—Gt_4)+at-.42at_l
Route /3
Route 75
= +1.72 - +a_+. -. -.
R, = R, +1.72(6,_5=G,_,)*a +.40a, =432 =173, g
Route 77
= +. - e - +a_=. -, +.
R =R __ +.35(8, =8, )+.24(G =G, _,)+a -.56a _ -.42a ,+.242 .
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