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I. INTRODUCTION

QVERVIEW
This report is the second of two technical reports that describe the
methodology for analyzing and forecasting public transit ridership. The first

report, Development and Application of Time-Series Ridership Models for

Portland, Oregon, focuses on the development of the methodology and its

application to data from Portland, Oregon. That report describes findings
relating to the structure of the models, the impacts of past service level and
travel cost changes on transit ridership, and the effectiveness of the models
in forecasting transit ridership. Because the statistical techniques used in
this work have not had wide application by transportation analysts, it was
determined that a Handbook that explained these techniques was needed. The
purpose of this second report is to provide such a step-by-step procedure for

applying time-series analysis techniques to the problem of estimating transit

ridership models. These techniques have come to be known as the Box-Jenkins
Method .
The remainder of this Handbook addresses the following topics:
l. Why time-series analysis represents a needed improvement over
standard regression models.
2. The techniques for identifying, estimating, and checking time-series
models.
3 The three basic kinds of time—series models: Univariate Models,
Transfer Function Models and Intervention Models.
b, How to prepare forecasts using these models.
It is assumed that the analyst who will use this handbook has some statistical
background, including experience with multiple-regression models. The analyst
should also have access to a standard computer statistical package with.time—
series modeling capability. (See Appendix A for a list of available
packages.) The examples in the Handbook utilize the SAS and SAS—ETS
statistical programs, one of the more readily available software packages. It
is suggested that while reviewing those examples, the analyst should have

access to the SAS/ETS Users Guide: Econometrics and Time Series Library for a

complete description of job control language and program set—ups. The reader
is also referred to Box and Jenkins (1976) and Hoff (1983) for a complete

discussion of time-series methodology.



METHODOLOGY
The basic methodology used in this project includes three phases (see

Figure 1). In the Model Development Phase, a model form is postulated that

includes a description of the variables that are assumed to effect transit
ridership. The structural relationships between transit ridership and the
input variables are then identified, and the model is estimated and checked.

The model can then be used in the Impact Analysis Phase to analyze the

impact on transit ridership of past changes in service level, fare, or other

factors. An intervention variable is introduced to the basic model to account

for a specific change. The intervention variable is a binary variable which
assumes a value of one when the change is in effect and zero at all other
times.

The model can also be used in the Forecasting Phase when an assessment of

a proposed future change is desired.
THE MODEL STRUCTURE

The basic model structure used here represents a compromise between
theoretical considerations and a practical sense of the data available to the
transportation analyst. Specifically, it is assumed that the current level of
transit ridership is a function of present and past values of level of
service, travel costs, market size, and special events or interventions. Data
available to the transit analyst will guide the manner in which these general
variables can be specifically described. Table | lists some of the specific
time-series that can be used for each variable. The example used in this
Handbook uses the following independent variables: platform hours of bus

service, transit fare, gasoline price and employment.
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REGRESSION MODELS

A number of researchers have used the basic model form described above,
or some variant of it, to develop transit ridership regression models using

time-series data. For example:

(1) R =B

t g+ BBk, * BF, * &,

relates ridership to service level (SLt) and transit fare (Ft)‘ In standard

regression methods, B., 61, and 82 are unknown regression parameters to be

estimated from the historical data and a, is the "error" term due to all other
variables affecting ridership other than transit fare or service level.
There are several difficulties with such models. First, regression

models assume that the error terms, a;, a;, ... are statistically independent

—— an assumption that will rarely be true of variables measured over time.
Secondly, the effects of a fare or service change may not be instantaneously
felt in ridership. For example, this month's ridership may be affected by a
transit fare change that occurred two months ago, so that variables lagged
over time are needed in the model. Furthermore, lagged effects which decay

exponentially into the past as

i 2 3
(2) Ry = B " BFe * BF Y B Fp P e T ey

are not easily incorporated into regression models. Finally, it is often true
that two or more of the independent variables increase or decrease together
over a long period of time. For example, service level and gasoline price
both significantly increased during the 1970's in many cities. This
similarity in variation often leads to multicollinearity between variables and
reduces the ability to separately estimate variable coefficients. For all of

these reasons, other statistical techniques have been developed to handle

time—-series data.



TABLE 1
TIME SERIES VARIABLES

General Variable Specific Data to Represent Variable

Level of Service Platform hours or miles
Route miles

Platform miles per route mile

Travel Costs Transit fare
Gasoline price per gallon

Market Size Population of service area
Employment of service

Seasonal Factors Monthly temperature, rainfall, or snowfall
School days per month

Special Events Gasoline shortages

or Interventions Marketing or promotional programs
Opening of new facilities
Weather extremes




TIME-SERIES MODELS

The statistical models described in this Handbook have several attributes

that make them more appropriate for use with time-series data than standard

regression models:

l. The models include both present and past values of the input series
(i.e., independent variables) at both present and past time periods,
which reflect the lag structure relating the input and output

series. See equation (2), for example.

2. The error structure usually includes the effects of previous time
periods. Instead of the single a  term, additional terms that
reflect correlation with the previous time period (at_l) and with the

same time period, a year ago (at~12) are often included.

3. The model usually relates the differences of the variables from one
time period to the next, rather than the nominal values of the
variable. That is, instead of the nominal value of fare at time t

(Ft), the differenced variable (Ft = Ft_l) might be used. This

usually resolves such statistical problems as multicollinearity.

Three different kinds of time-series models will be developed in this

Handbook: Univariate Models, Transfer Function Models, and Intervention
Models.

Univariate Models. Univariate models relate the current value of a time-

series to its own past values. As an example of a univariate time-series
model, consider the gasoline price series denoted G.. Tt will be shown later
that an adequate model for gasoline price relates its current value (Gt) to

its price in previous months plus an error term:

- ¢ G + a

(3) Gt o (1 + ¢) Gt_ =2 t

1

Though simple in form, such a model is often sufficient to make accurate

forecasts of future values of a given time-—series.



A more complicated univariate model was developed for transit ridership:

(4) R_=R - R

This model relates the current value of transit ridership to three of its
previous values (lagged 1, 12, and 13 months) plus three error terms. Note
that the model includes terms that are precisely twelve time periods apart,
indicating the importance of the seasonal component in transit ridership.

Univariate models will serve only as a means to an end here. They are
the first step in developing Transfer Function Models, which interrelate
several time-series.

Transfer Function Models. Transfer Function Models use several "input”

variables to explain the behavior of the "output” variable, transit

ridership. Describing the methodology for developing transfer functions is
the main goal of this Handbook.
A simple example of such a model that relates ridership to one input

variable (transit fare) would be:

Here, current ridership is related to last year's ridership for the same month
(Rt—12)’ current and past values of the transit fare (Ft)’ and several error
terms. The transit fare has been weighted in such a way that its previous
values have less of an influence than its current values. That is, the fare
coefficients (wo and §) describe a decay function. The error terms are
correlated between twelve month periods reaching back two years in time.

Intervention Models. Intervention Models include the effects of one or

more special events, such as a marketing program, severe weather, or a

gasoline supply shortage, that influence transit ridership. These events are

represented by a binary variable that has a value of one during the period
that the event is occurring, and zero otherwise. A gasoline supply shortage

that occurred during months 17, 18 and 19 of the study period would be



represented as follows:

(6) R, =R P T T Y Ry 2

1 for months 17, 18, and 19

t-24

0 otherwise

An intervention variable can also be used to represent a specific service or
fare change so that its effects may be sorted out from other service or fare
changes that occurred during the study period.

MODEL BUILDING STRATEGY

To develop the time-series models, the model building strategy of Box and
Jenkins (1976) will be used. See Figure 2. The purpose of model

identification is to separate out the particular time series models which may
be appropriate for a given observed series. In this step, the time plot of
each series is analyzed as well as a number of statistics computed from each
series. In addition, the transit analysts' knowledge of the data is brought
to bear.

It should be emphasized that the model specified at this point is
tentative and always subject to revision later in the analysis. It should
also be pointed out that the structure of the model is often not assumed in
advance. The analyst lets the data "speak for itself”.

With regard to model identification, the Principle of Parsimony is

followed, which asserts that the models should contain the smallest possible
number of parameters consistent with an adequate representation of the data.

Albert Einstein is quoted in Parzen (1982) as remarking that "everything
should be made as simple as possible, but not simpler”.




FIGURE 2 -~ MODEL BUILDING
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[ Application of Model
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Also, the model will surely contain one or more unknown parameters whose

values must be estimated from the observed series. Model estimation consists

of finding the best possible estimates of those unknown parameters within a
given model.

Model criticism is concerned with investigation of the quality of the




model that has been specified and estimated in explaining the observed time
series. How well does the model fit the data? If no inadequacies are found,
the model may be used for analysis and forecasting. Otherwise, the nature of
the inadequacies are used to respecify the model, and the analyst returns to
step 1 of the process. 1In this way, a cycle is made through the three steps
until, hopefully, an acceptable model is found.

EXAMPLE DATA

The data that are used in the examples in this Handbook are from
Portland, Oregon. The data set includes 114 monthly data points covering the
period January 1973 through June 1982, This period represented one of
substantial growth in ridership for Portland's transit system. The changes in
service level, transit fare, gasoline price, and employment during this period
make it an example of practical interest. Each of the time series are
presented in graphical form on the following pages. The detailed list of the
data is given in Appendix B.

10
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FIGURE 4

PORTLAND PLATFORM HOURS SERIES
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FIGURE 5

PORTLAND TRANSIT FARE SERIES
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Portland Gascoline Price Series

FIGURE 6

PORTLAND GASOLINE PRICE SERIES
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FIGURE 7

PORTLAND EMPLOYMENT SERIES
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I1. UNIVARIATE TIME-SERIES MODELS

This chapter covers the development of univariate time-series models.

The topics covered include:

1. Stationary and Non-Stationary Models
2. The Autocorrelation Function

3. Autoregressive Models

4. Moving—Average Models

5. The Backshift Operator

6. Seasonal Models

7. The Model Building Process

A number of terms and concepts are introduced here. They are listed and

defined briefly on the next page.

16



2.

Univariate Models are models which depend only on their own past

values.

Stationarity is a notion of statistical stability. A time-series is

said to be stationary if it varies about some mean value and if the
correlation between any two points in the series depends only on the
relative time lag between the two points.

The autocorrelation function describes the relative dependence or

correlation between two values in the time-series that are a given
number of time periods apart. It is one of the major tools
available in identifying the form of time-series models.

The lag between two points in a time-series is the number of time-
periods between the two points.

Autoregressive Models are a class of models which relate the current

value of a variable to past values of the variable.

Moving—Average Models are a class of models which relate the current

value of a variable to past values of the random error terms.
Differences are the difference between a current value of a series
and its value one month or ome year previous.

The Backshift Operator B takes a time series Zt and shifts all

values back one time unit to produce a new time series: B(Zt) =

Ze-1°
Seasonal Models are a class of time—series models with a seasonal

component.,

17




STATLONARITY

The first technical concept which we need to discuss is the notion of

Stationarity. For our general discussion we will let the term Z, denote the

observed series at time t. Time units could be in months, quarters, or years;
but we do assume that the series is observed at equally spaced time units.

The most important aspect of time series models is that we do not assume
that the observations at different time points are statistically
independent. It is precisely this dependence which we wish to capture. In
our models, although we do not assume independence, it is important that the
time series have some degree of statistical stability. We say that the series

7. is stationary if the following two conditions hold:

T The mean value of Zt is the same for all times t.
D The correlation between a series value at time € (Zt) and a series
value at time t-k (zt—k) depends only on the time lag k and not on

t.

Figure 8 illustrates characteristics of stationary and non—-stationary
series. Particularly simple stationary models which have been found to be
useful in practice are the autoregressive and moving-average models.

THE AUTOCORRELATION FUNCTION

The autocorrelation function (ACF) is one of the primary tools available

to aid the analyst in identifying time series models. The form of the ACF
provides clues regarding the nature and form of the models. For a stationary
time-series, the autocorrelation function at lag k is defined as the
correlation between Z  and 7, _, . The values for the ACF will always lie
between -1 and +1 and indicate the strength of linear dependence between

series values which are k units apart in time.

18



I"LGURE 8
CONDITIONS FOR STATIONARLTY

(a) A stationary time-series varying about a mean value

XV/\\/\//\\/\\/A\//\/\/ -

TIME ——

(b) A non-stationary time-series

mean

TIME ——

(c) Correlation depends only on lag k, not on t

Correlation between z) and zy 18 the same
as between zq and 2y,

TIME —

19



AUTOREGRESSIVE MODEL

An analogy with ordinary regression models can be made if we consider the

relationship:

(7) Zp = $Lg_q + ag

M
i
|
|
|

Here we are regressing the series at time t on itself (hence auto) but at time
t-1. For example, with monthly series we are saying that April's value is
a ¢ proportion of March's value plus, of course, an "error term” a, which does
not depend on past values. Such a model is called an autoregressive model of
order 1. Such a model forces Z, to "depend on" Z.—1 and does capture a
certain kind of dependence.

Tt may be shown that such a model will be stationary if and only

if -1<¢<l. Also if ¢ is so restricted the autocorrelation function p, is:

‘| (8) = g o= Ly B By was

The dependence dies out in an exponential fashion as the lag k increases. The
closer ¢ is to tl the slower the decay. If ¢ is near zero, the decay will be
quite rapid. Note that if ¢ is positive all autocorrelation values are
positive while if ¢ is negative then P is negative for odd lags k and
positive for even lags k. Typical shapes for Dk are given in Figure 9.

Exhibit 1(c), page 38 shows the sample autocorrelation function for the
monthly changes in gasoline prices in Portland, Oregon over the period 1971-
1972. This is an estimated or sample autocorrelation function (SACF) but its
general shape shows the tendency for exponential decay which is characteristic
of the first order autoregressive, or AR(l). Thus we can see the ACF has

definite patterns or shapes that relate directly to a specific class of

models.
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FIGURE 9
AUTOCORRELATION FUNCTIONS

FOR SEVERAL AR(1) MODELS
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More complex autocorrelation patterns apply to higher order

autoregressive models. The second order autoregressive model is given by

(9) %, = ¢Izt—l + ¢22t_2 + a

C £t .

Here the current value Z,  depends linearly on the previous two values Z,_ ; and

Zi_o plus a random error a,.
Explicit formulas for the autocorrelation function in the second order

case are more difficult to express. However under certain conditions on the

will follow a damped sine curve. Some illustrative

parameters ¢1 and ¢2, P

shapes are given in Figure 10.

Clearly there is no difficulty in now defining an autoregressive model of

order p:

We say that Z, follows an AR(p) model.
MOVING-AVERAGE MODELS

A second type of time series model relates the current value Z, to the

random error terms present and past a .+» instead of the past

tr qg-1> -2
values of Z.

A moving average model of order one or MA(l) for Zy 1is given by

(11) Z =a - 0 a

(The negative sign on 8, 1is purely converitional.)

1
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FIGURE 10
AUTOCORRELATION FUNCTIONS
FOR SEVERAL AR(2) MODELS
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For this model the autocorrelation function is non—-zero only at lag 1.
That is, for an MA(1) process, there is no correlation between any values that

are greater than one lag apart.

A general qth order moving average process satisfies

(12) Zt ¥ My < Glat—l - BZat—l - 4« s« =~ B.a

For the MA(q) model we can show that Prs Pys = = =y Py are non-zero but for
all lags k greater than q, P = 0. The dependence in the series extends only
to q time lags.

MIXED AUTOREGRESSIVE MOVING AVERAGE MODELS

Quite general time series models may be formed by putting the two
concepts of autoregressive and moving average together into one model. For

example:

(13) LI e

We call this an ARMA(1,1) model. This model is stationary if —l<¢1<1. The
autocorrelation function (pk) exhibits exponential decay but, unlike the AR(1)
case, from an "initial value™ of 0 rather than pO=i.

A general ARMA (p,q) model is given by

Ga —..-—e

(14) zt = ¢lzt_1+ ¢2zt_2+ e + zt_p+ - el e-1” %Ha

p qat_qa

Fortunately, for real applications, p and q will usually be quite small,
typically less than 4 or 5.
NON-STATIONARY ARIMA MODELS

Many, if not most, time series encountered in practice fail to appear
stationary. They tend to show substantial growth or decay over time rather

than stable statistical fluctuations around a fixed mean level. Fortunately
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many such series can be transformed to stationary series by differencing. For

a series Z, the first difference, &Zt , 1s defined by

(15) AZ = Z. =27 .

That is, 6Zt is the series of changes in Z  over successive times. Figure 6
shows a plot of the average monthly gasoline price in Portland, Oregon over
the period 1971-1982. The growth in the series over that period is not
compatible with the assumption of a stationary series. However, Figure 11
shows the first difference of the gasoline prices over the same period. Here
an assumption of stationarity is quite tenable.

In some cases a second difference will need to be taken to achieve

2 i
stationarity. The second difference of Z, denoted A Z is just

t,

2 = = -
(16) A Zt = b(AZt) = A(Zt s )

£l
= o 'a L .
I B

Most (nonseasonal) "real world"” time series can be transformed to stationarity
with one, or at most two, differences.

Another aspect of nonstationarity may be reflected in the common
occurrance of series whose magnitude of variability is directly related to the
level of the series itself - the higher the level of the series, the larger
the variability of the series around that level. The Portland Transit
Ridership Series in Figure 3 illustrates this point. Under such
circumstances, the series is usually transformed by taking logarithms of the
values. Figure 12 shows the logs of the ridership series. Notice that now
the variability is roughly the same for low ridership periods and high
ridership periods. We would now consider differencing to attempt to make the
series stationary.

Once we have transformed a series to stationarity either with
differencing and/or logarithms we may assume that the transformed series may

be modelled by a parsimonious ARMA (p,q) model. A model which after suitable
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differencing satisfies an ARMA model is called an integrated autoregressive
moving average model. If d differences are necessary to achieve stationarity
we say that we have an ARIMA (p,d,q) model.

As an example, consider an ARIMA (0,1,1) model. This says that the first
difference Ze=Zeog satisfies an MA(1l) model. So

(17) Z - Z = a - B .a

or

An ARIMA (1,1,0) model satisfies

(18) Zt = zt—l = ¢(Zt_1 = Zt—2) + a

or

t

Zg = (402 — ¢Zp o + 3, .

ARIMA (p,d,q) models form a large flexible class of time series models
but they do not cover models which exhibit seasonal characteristics. Before

our discussion of seasonal models it is convenient to introduce a shorthand

notation.
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Difference of Gasoline Price Series

FIGURE 11

GASOLINE PRICE SERIES
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FIGURE 12

LOGARITHMS OF RIDERSHIP SERIES
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THE BACKSHIFT OPERATOR

ARIMA models may be expressed very compactly in terms of the backshift

operator B. The backshift operator B takes a time series Z, and shifts time

back one time unit to produce a new series. In particular

Since B(Zt) is a new series, we could use B once more to obtain

(20) B(B(Z.)) = B(Z,_;) =2, ,

and we write

2
(21) B (Zt) =Zig o

Similarly then

(22) B2, % Zpp o

Using the backshift operator, the autoregressive and moving average models

described earlier may be more compactly written.

MA(2) MODEL

(Z49) e 7% T %1% T %%
=g = GIB(at) —282B (at)
= (1 - GlB - GZB )at
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AR(2) Model

|

(24) zt = ¢1 Z + ¢2 Z + a

t—-1 2 t-2 t
z, - ¢ BZ - ¢§B z, =a
(1 - ¢ B- ¢,8) 2 =a

Any ARMA(p, q) model may then be expressed as

(25) q‘:(B)Zt = G(B)at
where
o Fdi B o o HEL e i o HP
p(B) = 1 ¢1B ¢2B P ¢pB
and

{ v _ 2 _ _ q
6(B) =1 @lB 82B cos qu

Differences may also be written as

(26) azt =7 = =Z7Z - B(Zt) = (1—3)2t

and the dth order difference of Zt is then (I—B)d(Zt). Therefore the general

ARIMA (p,d,q) model may be expressed as

(27) ¢<B>(1—B>dzt - 0(B)a,

The polynomials ¢(B) and 8(B) are called the autoregressive and moving average

characteristic polynomials.

SEASONAL MODELS

Seasonal behavior is very common in time series measured on a monthly or

quarterly basis. The Portland Transit Ridership Series in Figure 3 shows a
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rather strong seasonal tendency — high during the winter months and relatively
lower during the summer months. This is not a completely regular or fixed
pattern, but only a general tendency which undergoes continual change over

time.

Can ARIMA type models account for such seasonal effects? Consider the

simple model

(28) Z = a

Such a series will have non-zero correlation only at lag l2. That is, only
values that are twelve months apart will be correlated. The correlation at

all other lags will be zero. This model is known as a seasonal MA(l) model,
with period 12.

A seasonal AR(1) model with period 12 is similarly defined as

(29) Z =19

The only lags with non-zero correlation are those that are multiples of 12:
12, 24, 36, 48, etc.

Most realistic models will involve both seasonal and short-term non-

seasonal effects such as

(30) z, =9z

+
t

t-12 ¥ 8 " %13 .

In backshift notation this is expressed as

12

(31) (l-@IB )Zt = (l-GIB)at .
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In addition, seasonal differencing

(32) BypZy = Ze = Lyayy = (1-B

will frequently be employed to obtain a stationary series.
A model which we will find to be quite satisfactory for the Portland

transit ridership series is given by

(33) (1-8)(1-812)z, = (1-0;8'2 - 6,8%)a,

where 6] = L43 and 92 = ,20. The transit ridership series required both
regular and seasonal differencing to induce stationarity. Correlation twelve
and twenty-four months back was accounted for with the a_1o and a_o4 terms.

A completely general multiplicative Seasonal ARIMA (p,d,q) X (P,D,Q)

model with period s may be expressed as

(34) p(B)e(B) (1-8)1(1-8%)"2 = o(B)o(B)a,
where
d is the order of non—-seasonal differencing
D is the order of seasonal differencing
$(B) = 1-¢ B~ ... - ¢po is the non seasonal
autoregression characteristic polynomial
o(B) = 1—@1 N @szP is the seasonal
autoregresive characteristic polynomial
8(B) = l—SlB ST Bqu is the non-seasonal
moving average characteristic polynomial

2

0(B) =1 - 0.B" - ... -0 B5? is the seasonal moving average

1 Q

characteristic polynomial.

Once more in practical applications p,d,q,P,D and Q will all be small--
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typically 2 or less.
MODEL BUILDING

We have now a large, flexible class of parametric models for both
stationary and nonstationary series which can account for short-term
nonseasonal dependence and also seasonality. Our model building task may be

conveniently broken into four steps:

Step 1. Choose appropriate orders p, d, and q for the autoregressive,
differencing, and moving-average components of the model. (P,

D, and Q also if we are considering a seasonal series.

Step 2. Efficiently estimate the parameters (¢'s, 8's) for the model

selected in step 1.

Step 3. Criticize the model estimated in step 2 to check its

appropriateness.

Step 4. Is the Model Adequate? If yes, this task is completed. If not,
Step 1 should be repeated.

If the model appears inadequate in some way, we use the nature of the
inadequacy to hypothesize an alternative model and proceed to estimate that
new model and check it for adequacy. With a few iterations of this "model
building strategy™ we hope to arrive at the best model for a given series.

Step l. TIdentification of the Model. The major tool for analyzing an

observed time-series and identifying the nature of the model, is the sample

autocorrelation function (SACF). The SACF is an estimate of the theoretical
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autocorrelation function (pk). On the basis of the SACF, we look for patterns
which are characteristic of known patterns in pk for common ARMA models. For
example, we know that By, = 0 for k > g in an MA(q) model so that if the SACF
is close to zero for k > 2, say, then an MA(2) model is indicated.

Our first task however, 1s to decide on d, the number of differences, if
any, needed to achieve stationarity and to decide if logarithms should be
taken. An inspection of the plot of the series versus time should be made.
Figure 6 shows the monthly gasoline prices in Portland for the period 1971 to
1982. Figure 13 gives the logarithms of the same series. The logged series
seems to have better stability with respect to variability but could not be
assumed stationary. Figure 14 plots the first difference of the logarithmic
gas price series. This series could reasonably be assumed stationary.
Additional indication of stationarity is given by computing the SACF of the
logged series and of its first difference. Exhibit 1(b) shows the SACF for
the logged gas prices. Note that it dies out very slowly. This is a strong
indication of a nonstationary series. Exhibit 1{c) shows the SACF after we
have differenced the series. We now see the nice exponential decay
characteristic of an AR(1) model. Apparently, the logarithms of gasoline
prices may be modeled as an ARIMA (1, 1, 0) series.

Another useful tool for identifying the order of AR(p) processes is the

partial autocorrelation function. The partial autocorrelation

function, at lag k, measures the correlation between z_ and Ziegk after

¢'kks t

removing the effect of the intervening variables Zi4l> Zp42s s Zpip—1e The

theory for is somewhat difficult and we will only note that it may be

¢kk
shown that for an AR(p) process ¢kk will be zero for k > p. The lag k just
before ¢kk drops to zero will then indicate the order of the AR model.

Exhibit 1(d) shows the estimated partial autocorrelation function for the
first difference of the logged gasoline price series. Note that it is nearly
zero except for lag 1 reinforcing our earlier selection of p = 1.

The plots of both the sample autocorrelation and partial autocorrelation
functions give marks at "two standard errors”. Based on large sample size
theory, these marks allow us to easily see the "significance" of the
correlations. T1If a sample correlation is outside these marks, we would reject

the hypothesis of zero correlation at that particular lag, and assume that

there is significant correlation at that lag.

34



Logarithm of Gasoline Price Series

FIGURE 13

LOGARITHMS OF GASOLINE PRICE SERIES
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FIGURE 14

LOGARITHMS OF GASOLINE PRICE SERIES
FIRST DIFFERENCES
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EXHIBIT 1

MODEL IDENTIFICATION FOR GASOLINE PRICE SERIES

(a) SAS input listing
DATA BUS; 1 List of input variables:
INPUT YEAR MONTH RIDERS HOURS EWPLOY BAS FARE CPI RIDERS = transit ridership
HRC HRY HRU HRN HRSW HRSE; HOURS = platform hours
CARDS; EMPLOY = employment
[Data] GAS = gasoline price
FARE = transit fare
DATA BUS2;
SET BUS; 2 Data transformation: o
LRIDERS=L0G{RIDERS) ; logarithms are taken of all input data.
LHOURS=LOG (HOURS) §
LFARE=LOB(FARE) ; 3 IDENTIFY statement computes the simple

LBAS=LOB(BAS);
LENPLOY=LOG(EMPLOY);

PROC ARIMA;
TDENTIFY VAR=LGAS;
IDENTIFY VAR=LGAS(1};

price series.
are requested for

series,

autocorrelation functions to assist in
the model identification for the gas
Here the SACF and SPACF

and the first difference of the lag

both the lag series

(b) Autocorrelation function, undifferenced series

NAHE OF VARIABLE = LEAS

HEAN OF WORKING SERIES=  4,2824
STANDARD DEVIATION = 0.394877
NUMBER OF DBSERVATIONS= 114

LAG COVARIANCE CORRELATION -1 987 63432101 2345678891

0 0.155928  1,00000
b 0.152313  0.97682
2 0.14B49  0.93230
3 0.1443  0,92671
b 0.140189  0.89913
3 0.135482  0,B6BAB
& 0.130747  0,83851
7 0.12587  0,B0723
g 0.l120888  0.77528
9 0.115697  0.74199
10 0.110452  0,70834
11 0.105251  0.67300
12 0,100332  0.64345
13 0.0954785  0.41233
14 0.0907297  0.58187
13 0.08636%1  0,55390
16 0.0821727  0.52659
17 0.0781007  0.30088
18 0.0743094  0,47856
19 0,0705535  0.45248
20 0.0456428  0.42740
21 0.0626967  0.40209
22 0,0385039  0.37520
23 0.0341732  0.34743
20 0.049821  0.3195]

1
b
!
i
1
'
|
1
i
|
I
1
1
'
U
[l
1
'
1
[
'
H
[
1
1
Ll
’

The slow linear
decay of the SACF
indicates that this
series is non-

RUTOCDRRELATIONS stationary.
51D

HERISRsbiRRaadsittiih 0

o TVRRRRRRRERSRRRNNERRE] 0.0936588

. PRRERERRRRIASNIRRRLL | 0.159724

. RERRARRRERERFRENNE SUMN AL

. Reesssees 1 0.237673

. RERARRRRAREE LR E R A ] 11 B

' st | 0,289683

; RERERESRURRREEI}] to0.310244

. N v 0.328151

. EERERERRANIREEE] I 0,343843

. RERRRRREAEEEIY) v 0.357613
[EE2EEFRREREEE NN i 0.369718

‘ RERERERRESEES N 1 0.380372

. R SEEERRTEEE SN i 0.389804
. RERERRERESE § S 1 0,398152
. REEEREERERA 1 0.405342
. EESEERREEET NN P 0.412125
. BEiiieeit .4 0.417995
. REEERsEiiE) 1 0.423227
(R1SERNEEE] .4 0.427908

’ RiEERssiL) o1 0,432085
' IRERIEEAS 10435777
HEEEERE] « 1 0,43902

e o1 0441824

RiRIeE {0.444214

.’ HARKS TWO STANDARD ERRORS
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EXHIBIT 1 (continued)

(c) Autocorrelation function, one difference

NAME OF VARIABLE = LBAS
PERIODS OF DIFFERENCING= 1.

NEAN OF WORKING SERIES= 00108889
STANDARD DEVIATION = 0,0212049

The SACF dies out
fairly rapidly (after
two lags) indicating
that the first diff-
erenced series is
stationary. The

NUMBER OF OBSERVATIONS= 13 pattern also indi-
cates that an AR
model would probably

AUTOCORRELATIONS fit the data.
LAG COVARIANCE CORRELATION -1 987 6543210123456 7891 810
0 000449649 1.00000 | TRRRRRRREERILANINRANY 0
1 000282389  0.62802 ! N SERERRRRENEY] 1 0.094072
2 .000168535  0.36614 § . nn 1 0,125818
3 .000075367  0.16B06 | ' i 14 To0.134919
§ ,000059131  0,13150 ! M £ § 1 10.136759
5 0.00002937  0.06532 ! . i3 V 10137873
6 2.908BE-06  0.00647 & . H ' 10.138147
1 -2,730E-05  -0.06072 . . i 0.138149
8 -2.789E-05  -0.06202 A & . 1 0.138383
9 .000007262  0.01415 i . b ' i 0.138831
10 -1,0426-05 -0.02317 | . ; v P 0.130648
i1 &557E-06  0.01013 ! . i ' i 0.138882
12 ,000014798  0.03291 | . R N i 0.138688
13 -5, 116E-06 -0.01138 | . H . i 0.138758
14 -2,107E-05  -0.04687 | . 1 . i 0.138766
15 =7.810E-06  -0.01737 . H ' 1 0.138906
16 7.000E-06  0.01557 . H ' 10.1368925
17 ,000012502  0.02780 | ' it . P 0.138941
18 b6,4328-06  0.01430 | ‘ i . {0,13899
19 .000014749  0.03280 | : B P 0.139003
20 -8.221E-06 -0.01828 | . H . 10,139071
21 -3, 426E-05  -0.07819 | N L b . P 0.139093
22 -,00006348  -0.14118 ! Pk . T0.139481
23 -7,1B0E-05  -0.15969 .oHy . i 0,14072
24 -5, 51BE-05  -0.14495 | . . 1 0.142313
',' MARKS TWO STANDARD ERRORS
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(d)

Partial autocorrelation function, one difference

EXHIBIT 1 (continued)

LAG CORRELATION -1 987 65432101234587891
o IRNERRERRLEY

0.42802
~0.04668
-0.07166

0.11053
=0.06483
-0, 04623
-0.04979

0.0174

0.11316
=0.13791

0,09883

0.04244
=0, 14785

0.01364

0. 04858

0.00951
-0.00283
-0.02568

0.10238
-0.15528
=0, 10210

0. 00852
-0,06315
=0, 02338

PARTIAL AUTOCORRELATIONS

1
L]
i
o in
S
R S
|
I
r
i
1
I

1
. N
BitH
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The SPACF is non-zero only
at lag 1, confirming an AR
model. A model of order 1
is suggested.




As a second example of identifying p, d and q consider the Portland
Transit Fare series plotted in Figure 5. Again we will take logs before any
further analysis. Exhibit 2 displays the sample ACF and PACF for the logged
fare series and also for the first difference of the logged fare series. The
autocorrelations with no differencing indicate nonstationarity. After
differencing virtually no autocorrelation is observed. Thus, a model with p =
q = 0 and d = 1 appears to be adequate.

We turn now to an example involving seasonality. Most ridership series
measured monthly or quarterly will show some seasonality. We look
gpecifically at the logged monthly Portland bus ridership series of Figure
12. Anticipating nonstationarity and seasonal nonstationarity we compute the
sample ACF and PACF out to 36 lags for the original series but also for the
first differenced series and for the series differenced twice—-one ordinary
difference and one seasonal difference. The results are given in Exhibit 3.
Results for the original series reinforce our prior belief that the series is
nonstationary. Exhibit 3(c) shows the strong seasonal autocorrelations which
remains after one ordinary difference has been taken. An additional seasonal
difference produces the autocorrelations in Exhibit 3(d) where now minor
correlations remain at lags 1l and 12. A model with d =1, D=1 and Q =1

appears tenable for the ridership series.
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(a)

EXHIBIT 2
MODEL IDENTIFICATION FOR FARE SERIES

SAS input listing

(b)

DATA BUS:

INPUT YEAR MONTH RIDERS HOURS EMPLOY GAS FARE CPI
HRC HRX HRU HRW HRSM HRSE;
CARDS:

[Data]

DATA BUSZ:
SET BUS:
LRIDERS=LOG (RIDERS)}
LHOURS=L0B (HDURS) §
LFARE=LOG(FARE}:
L6A5=L06(6AS) 4
LENPLOY=LOG(ENPLOY) }

1 The IDENTIFY statement computes SACF
and SPACF of the Fare series to assist
in the model identification.

PROC ARINAS
IDENTIFY VAR=LFARE:
IDENTIFY VAR=LFARE(1);

Autocorrelation function, undifferenced series

NAME OF VARIABLE = LFARE
MEAN DF WORKING SERIES=  3.55483 2 The slow linear
STANDARD DEVIATION = (.192958 decay of the SACF
NUMBER OF OBSERVATIONS= 114 indicates that this
series is non-
stationary.
AUTOCORRELATIONS
LAG COVARIANCE CORRELATION -1 9B7 654321 012345467891 571D
0 0.0372329 1.00000 ! VEEEEERRRERRIEEREANRL] 0
1 0.0362028  0.97233 | o VEERERRBERERERREEEEE ] 0,0934586
2 0.0351727 0.94467 | 3 JREERRRRRRRRBERREEERE | (,]59243
3 0.0341425  0.,91700 " JEERERRRERERERRESER ] 0, 20252
4 0,0331124 0.88933 | i VEERERRERRRRRERESEE | 0,23415
5 0.0321254  0.84282 | ” VERERRNRRRREEREREE | 0, 263R99
b 0.0311385  0.83s32 ! : PEERERN R EREREEEE | (), 287082
7 0.0300048 0.80392 | . [RE222223232 2228 i 0.30B178
8 0.0288751  0.773%2 | A TREREERRVRRRRERES ] 0,326142
P o0.0276722  0.74322 1 . JREEEEREEHAREIEE T 0.341938
10 0.0264735  0,71103 TEEREEERE Y 1 0.355824
11 0.025275 0.476883 VEREERRERRNRERE, V0.368077
12 0.0240573 0.64513 i LEEREREERRNREY | H 0.378%
13 0.02284 0.61343 4 VERREEREEEAEE v 0.388445
14 0.0215957 0.38002 3 PEREERERERRRE Vo 0.394851
15 0.0203654 0.54897 ” VEREEERERERE 10.404219
16 0.0190581 0.51186 i LEEREEEEIEY T 0,41068
17 0.0177463  0.47663 LEREEEERNRY T 0.416219
18 00164166  0.44092 1 ., VREEEEREER 1 0.42098
19 0,0151652  0.40731 LEEEEREEE Vo 0.425011
20 0.0136954  0.367B3 LRREEEEE Vo 0.428422
20 0.0122257  0,372836 1 . [ HETEEEE + 0 (L431183
22 0,001191  0,30057 ) . lHEREEE 00,4333
23 00001756 0.27330 4 . LReEEE v 0.435196
24 0.00916024  0.24503 ! (HEEEE Vo 0.436699

-" NARKS THO STANNART FRRNRS
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EXHIBIT 2 (continued)

(c) Autocorrelation function, one difference

LAG COVARIANCE CORRELATION

0 .000949683
1 -1,078E-05
2 -1.0B4E-05
3 -.00001095
4 ~5.459E-05
3 -1 114E-05
6 000184047
7 -1.0B6E-03
B .000060793
§ -2,435E-03
10 -. 00001287
Il 6.101E-08
12 -1, 306E-05
13 000013823
14 -2,731E-05
15 000065742
16 -B.bb2E-08
17 4.742E-06
18 -9.225E-05
159 . 000206787
20 -1,355E-05
21 000012814
22 -2.854E-05
23 -9.591E-08
24000024384

NAHE OF VARIABLE = LFARE
FERIODS OF DIFFERENCINB= 1.

MEAN OF WORKING SERIES=0.00328603
STANDARD DEVIATION = 0.0308149

The SACF is non-
zero only at lag
zero, indicating
that the first

difference of the

NUMBER OF OBSERVATIONS= 113 :
fare series is
stationary.
AUTOCORRELATIONS

-l 98765432101 2345467891 STD

100000 VEER R R R RS 0
=0.01133 ) o i 0.094072
-0.01143 ! . 1 0.0940841
-0.01153 S V0. 0940544
-0.05748 | R v 0.094108%
=0.01173 | v b v 00944191
0.1%95%0 | . o REEE 1 0,074432
-0.01144 ) . V 0.0979626
0,06401 PO V 0,0979744
-0,02564 8. v 0,0583438
-0.01355 | S 1 0.0984029
0.00642 | b o= 1 0.0954195
-0.01375 T (e Vv 0.0984232
0,01458 VoG 1 0.0984402
-0.02876 . i 0.0984592
0,06922 .o, i 0.0985335
-0.00912 | i [ o= | 0.098943
0.00499 T i 0.0989704
=0.09714 Ly 1 0,0989727
0,21774 HhEE 1 0.0998128
-0,01427 3 i F T 0.103931
0.01349 . 1 10.103949
-0,03048 AR T0,103954
-0.01010 £ i 0.104043
0,02558 o, T 0.104052

" NARKS TWD STANDARD ERRORS
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EXHIBIT 2 (continued)

(d) Partial autocorrelation function, one difference

PARTIAL AUTOCORRELATIONS

4 The SPACF is non-zero at all
lags indicating that the first
difference of the fare series
is simply white noise.

LAG CORRELATION -1 9876 543210123454678891

1 -0.01133 ! . b H
2 -0.01156 s F o H
I -0.01180 | s b !
4 -0,05790 A i
5 -0,01343 | S T !
6 0.19484 | . leERE '
7 -0.00892 v bFoou |
8  0.06539 P { !
9 -0.02267 ! S I ]
10 0.00925 e b |
I 0.01079 i b ou !
12 -0.04758 ! R H
13 0.,01807 « B 3 ]
14 -0.05837 A 1 !
15 0.08494 | T T '
16 -0.01778 | « b !
17 0.00827 | PR }
18 -0.09439 | . B, H
19 0.23204 !} T TIT !
20 -0,00085 « F ou |
21 -0,01408 | A |
22 -0.03316 | .M H
23 0.00151 s L !
24 0,08232 | . e, 1
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EXHIBIT 3
MODEL IDENTIFICATION FOR THE RIDERSHIP SERIES

(a) SAS input listing

DATA BUS:
INPUT YEAR MONTH RIDERS HOURS EMPLDY BAS FARE CP1
HRC HRX HRU HRW HRSW HRSE{
CARDS:

[Data]

DATA BUSZ:
SET BUS:
LRIDERS=LOG (RIDERS):
LHOURS=L DG (HOURS) {
LFARE=LOB(FARE)
LBAS=L06(6AS);
LEMPLOY=LOB (EMPLOY):

PROC ARIMAY

IDENTIFY VAR=LRIDERS NLAG=3&4
IDENTIFY VAR=LRIDERS{1) NLAB=3b:
IDENTIFY VAR=LRIDERS{1,12) NLAB=3&}

1 The IDENTIFY statement computes
the SACF and SPACF for three
versions of the Rider series:
the original series, the series
with one difference, and the
series with one regular differ-
ence and with one seasonal
difference of period 12.
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EXHIBIT 3 (continued)

(b) Autocorrelation function, undifferenced series

NANE OF VARIABLE = LRIDERS
HEAN OF WORKING SERIES= 11,5939 2 The slow linear decay
STANDARD DEVIATION = 0.24912 of the SACF indicates
NUMBER OF OBSERVATIONS= 114 that this series is
non-stationary.
AUTOCORRELATIONS
LAG COVARIANCE CORRELATION -1 9B 7 65432101234567891 §TD
0 0.0701782 1.00000 | THERER R EEEE IR} ]
1 0.0675337 0.98232 1 o EEERRRRERRRERREEEEE | 0,0536584
2 0.0647607  0.92280 | . TRERRRRERRRERESEEER | (,]58172
3 0,0624568 0.88997 VEREEERERRERRRREREE |, 199898
4 0,0600704  0.85597 | ¥ VREEEERERRRREREIEE ), 232045
5 0,0574136  0.81B11 | i VREEREREEEEEERERE Vo 0,25827%
6 0.0549172  0.78254 ! . VREEERREEEREERNEE Vo 0.,28009
7 0.0528261 0,75274 . VEEREREREEEEREEE 1 0.298653
8 0.0507576  0,72327 | [ HER RS HR RS V0.314856
9 0.0490081 0.69834 z RITITTIT2E2211) 10.329107
10 0,0474532  0.47418 | . (R REEEEEEERE i 0,341859
11 0.0465316  0.68305 THERR A RERERE, i 0,35339¢
12 0.0458357 0.65313 . TR EREREEREEE | 10.364145
13 0.0438339  0.62489 | : TEERERERREREE | i 0.37428
14 0.041B506  0.59635 ! TEREERRREERRE ! 0.383323
15 0.0401426  0.57201 | : TREERERERREE i0,391378
16 0,03B1393  0.54375 | 3 TREERREREREE 1 0,398442
17 0,0359825  0.51273 | . TEEEEEBRARE v 0.405098
18 0.0338178  (0.48188 ! TEREREEREEN . i 0.410749
19 0,0319164  0.43479 | TREEEEEERE o0 0.415679
20 0.0299143  0.42626 !} JRERREREEE .1 0.420021
21 0.0281326  0.40087 | VREEEREEE o0 0.423799
22 0.0264B84  0,37742 | VREREREEE b 0.a27112
23 0,0251603 0,35852 1+ . lEREEEEE . 0.430027
24 0.0237515  0.33845 LERREREE o 0432641
25 0.02134625 0.30440 ' LEREEEE 1 0.434958
26 0,0191401  o0.27274 0, LHREEE . 0.438822
27 0.0170756  0.24332 | LHREEE ! 0.438314
28 0.0150347  0.21424 ! RT1t b 0.439497
29 0.0128981 0.1837%9 ) . Ve . b 0.440412
30 0.0108736  0.154%4 | T L0 0,441084
31 0.00916851  0.13085 1 Lhed 1 0,441561
32 0.00741502  0.10566 | . |44 ! 0.4419
33 0.00597763  0.08518 | L hE Lo 0442122
34 0,00512737  0.07306 | . it o 0.442268
35 0.00492594  0.0701% | I 4 0.442372
36 0.00440624  0.06279 | i v 0442469

." MARKS TWO STANDARD ERRORS
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EXHIBIT 3 (continued)

(e¢) Autocorrelation function, one regular difference

NANE OF VARIABLE = LRIDERS
PERIODS OF DIFFERENCING= 1. 3 The slow linear decay between
consecutive time periods has been
MEAN OF WORKING SERIES=0,004634323 eliminated with a first difference.
STANDARD DEVIATION = 0.0508814 But, there is still a slow decay
NUMBER OF OBSERVATIONS= 13 in the SACF for the seasonal
component (lags 12, 24, 36, etc.).
AUTOCORRELATIONS
LAG COVARIANCE CORRELATION -1 98765432101 2345867891 STD
0 0.002588%2 1.00000 | [HEREERE RS E AR ] 0
1 -1.618E-05  -0.00624 | P b 0,094072
2 -.00061679  -0.23824 | R 1 0.0940757
3 .000150893  0,06207 | %AW 1 0,0992715
4 ,000047622  0.01839 ! ow 1 0.0998144
5 -.00031429  -0.12140 | 1w, 1 0.0996444
b -.00032165  -0.12424 LM, b 0.100945
7 -,00021659  -0.0834686 ! N 1 . v 0.10228%
8 -2.396E-03  -0.00925 | £y Vo 0.102893
9,000111387  0.04302 i . v 0,1029
10 -. 00054945  -0,21223 L1211 1 0,103059
11 -, 00021661 -0.0B347 . HE) i 0.106857
12 0.00181535  0.70120 ! TR ERERERREIREY 10,107435
13 000016603  0.00841 i . i 0.142284
14 -,00051501 -0,19893 fhee] i i 0.14228%
15 000132518 0.05119 ! . i* ; i0.144727
16 -4,952E-05 -0.01913 | H i 1 0.144887
17 -.00026375  -0.10188 | R . 1 0.144509
18 -0.0003483 -0,13454 | . ) R b0, 145541
19 -0,0001128  -0.04357 " Y * T 0.146638
20 .000043603  0.01484 ! 5 H % 1 0,146752
21 000175733 0.04788 | " i . i 0.14877
22 -,00032199  -0,12437 | . HE V014708
23 -.00014334  -0,05537 | R " i 0.147975
24 0,00140071 0.54104 s | EREEERERERE t0,14B138
25 -1,374E-05  -0.00531 i i ! . Vo 0.18471B
26 =,0004104%  -0,15856 | . RRE) . V0164719
27 .000111027  0.04289 ! . 1 V0. 168064
28 -1,998E-05 -0.00772 ! 3 | i 0.168182
29 -, 00020008 -0.07728 ! . (1H 1 0.164185
30 -.0003329  -0,12881 | . , 10, 186483
31 -.00010577  -0.04086 | L H . o0.14738
32 0.00003902 0.01507 ‘ i v 0. 167448
33 9.131E-06  0.00333 | . H ; T 01674
34 -,00033052  -0.12767 i . REE) b 0.167481
33 -B.0b4E-05  -0,03115 ! i) 5 i 0.16832
36 000117906 0,45543 TEREE R ! 0,148371

" NARKS TWD STANDARD ERRORS
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(d)

EXHIBIT 3 (continued)

Autocorrelation function, one regular and one seasonal difference

LAG COVARIANCE CORRELATION

0 0.00108836
000122615
=1.501E-05
000114183
000023759
-5, 973E-03
000129027
000087103
-3,952E-05
§ -, 00015909
10 -0.0001723
11 -,00027786
12 -, 00028133
13 -3, 666E-05
14 -1.827E-03
13 -3.B03E-05
16 -.00023396
17 -5.435E-05
18 -9,997E-05
19 -2.734E-05
20 .000026388
21 000169353
22 ,000125856
23 0,0000955%
24 -,00010132
25 000047785
26 000053558
27 000113092
28 000068945
29 000108066
30 ,000010503
31 000040585
32 000035208
33 . 00011798
34 -7.199E-05
33 6.783E-04
36 =,00008344

e I - ]

L=}

NAME OF VARIABLE = LRIDERS 4

PERIODS OF DIFFERENCING= 1,12,

MEAN OF MORKING SERIES=-.002346887
STANDARD DEVIATION = 0,0329903
NUNBER OF DBSERVATIONS= 101

1,00000
011268
=0.01379
0.10489
0.02183
-0,05488
0.11855
0.08156
-0,03432
-0, 14418
-0.13849
-, 25530
-0, 25849
-0,03369
-0.01678
-0, 03494
-0,21497
-0.04994
-0,09185
-0,02512
0.02425
0. 15541
0.11563
0.08783
-0.0%5310
0.04391
0,04921
0.10391
0.06337
0,0992%
0.01002
0.03729
0.03233
-0, 10838
-0,06814
0.00823
-0.07467

AUTOCORRELATIONS

Linear decay patterns have
been eliminated from the

SACF, indicating stationarity.

Some correlation is still
present at lags 11 and 12
suggesting that a model with
a seasonal component might
be appropriate.

-19878354321012345467889

TEERERRER AR AR R REEEE]
T i

T |
e, i
i

.

o, !

. .

o R .
HARKS THO STANDARD ERRORS
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0
0.09%5037
0.100759
0.100777
0,101853
0.101899
0,1021%1
0.103544
0.103907
0.104032
0,106047
0.108366
0114166
0.119821
0. 115915
0.119938
0,120039
0.123791
0.123991
0. 124863
0.124713
0124759
0.126666
0.127708
0,128304
0,128971
0.129119
0.129305
0.13012%
0. 130434
0.13118
0.131188
0.131293
0,131372
0,132234
0.132381
0.132384



(e)

Partial autocorrelation function, one re

EXHIBIT 3 (continued)

gular and one seasonal difference

PARTIAL AUTOCORRELATIONS

5

The SPACF indicates significant
correlation at the seasonal
lags. This would suggest a
seasonal MA(1) or MA(2) model.

LAG CORRELATION -1 98765432101234567851
. i,

0.11268
-0.02682
0.11100
-0.00376
=0.05269
0.12382
0.02846
=0.03077
-0.16546
~0. 14977
-0.23076
-0.23733
~-0.013%8
=0.00453
0.05118
-0.2059%4
0.01387
=0.07884
=0,01163
~0,08554
0.01340
0.03762
-0.01153
-0,19325
=0.0277%
-0,04432
~0.00350
=0.13170
0.02363
=0,01998
0.10080
0.01843
=0.09395
-0.10027
~0,09541
-0.20167

" - = s =

(LTI
e

C e

" m 8 @ ® @ @ & ® & ® 8 ® &8 & s ® w8
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Step 2. Model Estimation. Once a tentative specification of the various

orders (p, d, q, P, D, Q) has been made, we proceed to estimate the various
coefficients in the model. The statistical and computational details of the
estimation are beyond the scope of this handbook but may be found in most time
series textbooks such as Box and Jenkins (1976). We simply note that
nonlinear least squares estimates are obtained and we will rely on standard
computer software (SAS/ETS in our examples) to carry out the necessary
calculations.

Consider again the gasoline price series which we identified as p = 1 and

~

d = 1. Exhibit 4 shows the estimation results: ¢ = 0.716558 The estimated

model could be written as

(35) log G, = log Gy = 0.72 (log Gy_| - log G._p) + ay

where the estimated variance of the error term a, is 0.000285. Rewriting we

have

(36) log Gt = 1.72 log Gt-l - 0.72 log Gt—Z + a,

for the dynamic model describing the development of monthly gasoline prices.
Note that the printout also gives us a standard error of the estimate and
a T-ratio (est/std error). Based on large sample size theory, the T-ratio may
be easily used to test the hypothesis that the theoretical coefficient (in
this case ¢1) is zero. A T-ratio larger than 2 in magnitude would lead us to

reject that hypothesis with a significance level of about 5%Z. 1In this example

we have a T-ratio of 10.63 so there is no doubt as to the significance of the

estimated coefficient.
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EXHIBIT 4

MODEL ESTIMATION FOR GASOLINE

PRICE SERIES

(a) SAS input listing

DATA BUS:

INPUT YEAR MONTH RIDERS HOURS EMPLOY BAS FARE;
LRIDERS=LOG(RIDERS)
LHOURS=LOG (HOURS)
Uﬁﬁ=w5ﬂﬂ¥ii 1 Here we are estimating, an
LEAS=LOGIBAS) ¢ ARC1) del [P=1] as
LENPLOY=LOGIENPLOY) § PR
CARDSH suggested by the earlier

analysis of the SACF and

(Data] SPACF (see Exhibit 1).
PROC ARIMAG

IDENTIFY VAR=LEAS{I) NOPRINT:

ESTIMATE P=1 NOCONSTANT;

2 The estimation process yields
(b) Model estimation a model with a significant
constant term and AR(1)
component .
ARIMA: LEAST SQUARES ESTINATION
PARAMETER  ESTIMATE  5TD ERROR T RATID LAG
ARL, 1 0.716558  0.0673776 10.63 1

VARIANCE ESTIMATE =,000285242
87D ERROR ESTIMATE = 0.0168891
NUMBER OF RESIDUALSa 113

CORRELATIONS OF THE ESTINATES

ARL. L

ARL, 1 1,000

AUTOCORRELATION CHECK OF RESIDUALS

3 The SACF for the residuals
do not show any correlation
that could be further model-
ed. That is, there is
essentially no correlation
"left" in the residuals, and
the model appears adequate.

0.016 0.040
0,034 0.116
0.087 -0.001

70 CHI AUTOCORRELATIONS
LAG SHUARE DF  PROB
& 2,70 5 0.746 0.002 0.028 -0.123 0.071
12 8.91 11 0.830 =0.049 -0.033 0.167 -0.039
18 10.76 17 0.86% 0.037 -0.056 0.020 0,038
24 13,89 23 0.530 0.143 0,023 0.031 -0.037 -0.027 0.07%
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Exhibit 5 displays the estimation results for the logged ridership series

with d = 1, D =1 (season of 12 months) and Q = 1 (season of 12 months). We
see that 6 = 0.494653 with o2

readily shows the significance of the estimate 81. The estimated model may be

= 0.000976. Note also that the T-ratio of 5.46

written as:

(37) AA,, log B, ® a = 0.49 a_q9

or

A(log R, - log R ) = a_ - 0.49 a

£=12 t t=12
or

(log R, - log Rt—lZ) - (log Re_; ~— log Rt—lB) = a_ - 0.49 a_19

Note how current ridership Rt depends upon past months ridership Rt—l but also

on ridership 12 and 13 months ago, Rt—lZ and Rt—13' In addition, there are
effects from 12 months ago captured in the .49 a,_, term which are not
explained by ridership alone.
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EXHIBIT 5
MODEL ESTIMATION FOR RIDERSHIP SERIES

(a) SAS input listing

DATA BUS:
INFUT YEAR MONTH RIDERS HOURS EMPLOY GAS FARE CPI
HRC HRX. HRU HRW HRSW HRSE:

CARDS:
[Data] —_—
1 Here, a seasonal MA(1)
DATA BUSZi model is estimated, as
SET BUS:

suggested by the earlier

LRIDERS=LOG(RIDERS) 3 analysis (see Exhibit 3).

LHOURS=LOG (HOURS Y §
LFARE=LOG(FARE) §
LBAS=L06 (BAS) 4
LENPLOY=LOG (ENPLOY) 3

PROC ARIMA;
IDENTIFY VAR=LRIDERS(1,12) NOPRINT}
ESTIMATE B=(12) NOCONSTANT;

2 The estimation process
yields a model with a
Y MR SRR L significant seasonal MA(1)

component.

ARIMA: LEAST SQUARES ESTINATION
PARANETER  ESTIMATE  STD ERROR T RATID LAG
HAlL L 0.494853  0.0905199 3.46 12
VARIANCE ESTINATE =0,00097442

STD ERROR ESTINATE = 0,0312477
NUMBER OF RESIDUALS= 101

CORRELATIONS OF THE ESTIMATES 3 The SACF for the residuals
do not show any correlation
Hal, 1 that could be further model-
HAL, 1 1.000 ed. That is, there is

essentially no correlation
"left" in the residual, and

AUTOCORRELATION CHECK OF RESIDUALS the model appears adequate.
0 CH AUTOCORRELATIONS
LAB SQUARE DF  PRDB
5 .08 5 0,298 0.038 -0,083 0.092 -0.068 -0.046 0,180
12 1458 11 0,203 0,048 -0.029 -0.047 -0,144 -0.197 0,095
18 20,11 17 0,289 0.038 -0.044 0,030 -0.196 ~0.049 -0,012
W 2460 23 0,371 0,031 0,047 0.118 0.072 0,017 -0,107
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Step 3. Model Criticism or Diagnostics. The third step in the model

building process is that of model criticism or model diagnostics. We will
present two complementary approaches: analysis of the residuals from the
fitted model and analysis of overparameterized models, that is, models which
are more general than the specified model but which contain the specified
model as a special case.

As always, residuals are defined as the difference between what 1is

actually observed and what the model predicts:

(38) residual = actual-prediction.

With an adequate model the residuals should "behave like" independent random
errors. Thus, an important diagnostic procedure is to inspect the
autocorrelations of the residuals to check for lack of independence. A guide
to assessing the magnitude of these autocorrelations is given by an
approximate standard error of 1//n where n is the number of residuals. Only
autocorrelations falling outside of +2/vn would be considered significantly
different from zero and indicate model inadequacy. In this way, we can look
at the autocorrelations individually. A statistic constructed to consider the

magnitude of several autocorrelations simultaneously is given by

¥ .2
(39) Q = n(n+2) ) r, /(n-k)
k=1

where r) is the sample autocorrelation of the residuals at lag k. The
statistic Q was originally proposed by Box and Pierce (1970) and modified by
Ljung and Box (1978). They showed that if the model is adequate, then Q has
approximately a chi-square distribution with m—p—q degrees of freedom. If the
model is inadequate then Q would be inflated and we would reject the specified
model if Q exceeds the critical value from the upper tail of the appropriate
chi-square distribution.

Exhibit 4(b) shows these residuals checks for the ARIMA (1, 1, 0) fit to
the logs of the gasoline price series. In this case 2/YI13 = 0.188 and none
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of the autocorrelations are this large. In addition, none of the chi-square
statistics are unusually large. To reject the model the values under PROB
should be small, say, 0.05 or smaller.

Exhibit 5(b) displays similar checks on the residuals of the ridership
model. Here 2/YI0T = 0.199 and only lag 11 comes close to being
significant. The chi-square tests also indicate model adequacy.

We now turn to overfitting. Consider, in particular, overfitting an
AR(1) model with an AR(2) model. If the AR(1) is acceptable we should see two
things:

(a) the estimate of the new parameter ¢, should not be significantly

different from zero.
and

(b) the new estimate of the parameter is common between the

models, ¢1, should not change very much.
As an example, consider the gasoline price series with p = 2., Exhibit 6(b)
presents the est{mation results. Notice that %2 is not significant (T-ratio =
-0.03) and that ¢1 = (0.7185 has not changed much from our AR(1) model estimate
of 0.7166.

An overfit for the ridership series is displayed in Exhibit 7(b). Here
we have added an extra term at lag 24. The new parameter is almost
significant with a T-ratio of 1.91 so we might be willing to keep this
parameter in the model. The estimate of the common parameter is now 0.4256
compared with 0.4947 under the original model.

Having completed our discussion of models for single series we move on to

the so-called transfer function models which interrelate two or more series.
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EXHIBIT 6
MODEL ESTIMATION (OVERFITTING) FOR GASOLINE PRICE SERIES

(a) SAS input listing

DATA BUSH
INPUT YEAR MONTH RIDERS HOURS ENPLOY BAS FARE CPI
HRC HRY HRU HRW HRSW HRSE:

CARDS:

[Data] 1 Here an AR(2) model

DATA BUSZ; [P=2] is estimated.
SET BUS:

LRIDERS=L06 {RIDERS)
LHOURS=L0G (HOURS 1 §
LFARE=LOG(FAREH
LEAB=L0B(BAS) ¢
LENPLOY=LOB (ENPLOY};

PROC ARIMA:
IDENTIFY VAR=LBAS(1) NOPRINT;

2 The estimation process
= T PLOTs
ESTIMATE P=2 NOCONSTANT PLOT indicates that an AR(2)

is not warranted and that
the AR(1) model originally
(b) Model estimation proposed is adequate.

ARTMA: LEAST SOUARES ESTIMATION
PARAMETER ~ ESTIMATE ~ STD ERROR T RATI0 LAG

ARL, L 0.718526  0.0956231 7.31 1
ARL, 2 =, 0027963% 0,075%8 -0.03 2

VARIANCE ESTINATE =.000287809
STD ERROR ESTIMATE = 0,0169649
NUMBER OF RESIDUALS= 113
CORRELATIONS OF THE ESTIMATES

ARL1  ARI,2
ARI,L 1,000 0,706 —
ARL,2  -0.706  1.000 ' 3 The SACF of the residuals

indicate an adequate model.

AUTOCORRELATION CHECK OF RESIDUALS

70 CHI AUTOCORRELATIONS
LAG SQUARE DF  PROB
6 2,71 4 0.807 -0.000 0.029 -0.122 0.072 0,017 0.040
12 B.94 10 0.538 -0.048 -0.053 0.16B -0.039 0.034 0,116
18 10,79 16 0.822 0.037 -0.056 0.020 0.038 0,087 -0.00!
4 13,9322 0.904 0113 0.023 0,031 -0.037 -0,027 0.077
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EXHIBIT 7

MODEL ESTIMATION (OVERFITTING) FOR

(a) SAS ipnput listing

DATA BUS:
INPUT YEAR HONTH RIDERS HOURS EMPLOY GAS FARE CPI

CARDS}
[Data]

DATA BUSZ:
SET BUS:

LRIDERS=LOG(RIDERS)

LHOURS=L0G (HOURS) §
LFARE=LOG{FARE)
LBAS=L0O6{BAS);
LEMPLOY=LOG (EMPLDY)}

PROC ARIMA
IDENTIFY VAR=LRIDERS{!,12) NOPRINT}
ESTIMATE @=(12,24) NOCONSTANT PLOT:

HRC HRX HRU HRW HRGW HRSE:

RIDERSHIP SERIES

1 Here a seasonal MA(2)

model is estimated.

(b) Model estimation

ARIMA: LEAST SQUARES ESTIMATION

PARAMETER ~ ESTIMATE  STD ERROR T RATID LAG
HAL, L 0,425422 0.101148 4,21 12
WAL, 2 0,204935 0.107039 191 24

VARIANCE ESTIMATE =, 000945629
STD ERROR ESTIMATE = 0,0307473
NUNBER OF RESIDUALS= 101

CORRELATIONS OF THE ESTIMATES

MAL,1  MAL,2
MAL,L 1,000 -0.514
MAL,Z <0514 1.000

RUTOCORRELATION CHECK OF RESIDUALS

2 The estimation process shows
that a seasonal MA(2) model
is perhaps warranted, so that
the "overfitting" was
justified.

CHI AUTOCORRELATIONS

SQUARE DF  PROB
8.09 4 0.192 0,087 -0.049 0,121 -0.023 -0.032 0.174
14,18 10 0,185 0,064 -0,050 -0.067 -0.143 -0.197 0,019
19.29 16 0,254 0.017 -0.,047 -0.004 -0.188 -0.041 -0,003
24,43 22 0,325 0,021 0,039 0.152 0.101 0.050 0.039
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IILl. TRANSFER FUNCTION MODELS

This chapter covers the development of transfer function models. The

topics covered include:

l. Notation for Transfer Function Models

2. The Model Building Process

A number of terms and concepts are introduced here. They are described below.

The univariate time series models of the previous chapter

relate a series to its own past. Transfer function time series

models allow us to, in addition, relate a series to present and
past values of other series which explain the behavior of the
series in question. For example, transit ridership will be related
to fare level, service level, market size and so forth. We call
ridership the output series and the other series which influence
ridership are called input series. It will usually be the case
that changes in input series will produce delaved response in the
output series, that is, the relationship is dynamic in nature. It
takes time for current or potential riders to assess the impact of
fare or service changes and modify their ridership patterns

accordingly. Thus, our models must include lagged effects in

addition to contemporaneous effects.

NOTATION FOR TRANSFER FUNCTION MODELS

A simple transfer function model can be written:

This model says that there is a pure delay of one month, say, before the input
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series X, influences the output Yt' Subsequently, the effect of the input
decays exponentially at rate § in the following months. The series N¢, which

is unobservable, is called the noise or disturbance series and includes all

the other influences on the output Y, not captured in the input series X. and

its past.

In general we may represent the model as

(41) Y= R K F R Foeee N

1 t

where the coefficients vo’ vl, Vs ees define the transfer function of the

model. Using the backshift operator we may write

(42) Yt = v(B)Xt h Nt ‘

where V(B) = Vo T le ¥ szz + e However, it will usually be

unsatisfactory to parametrize the model in terms of the v's. Rather a
parsimonious representation of V(B) as a ratio of low order polynomials will

be sought. @B

For example, the ratio v(B) = T%gﬁ'containing just two parameters, w,

and 6, can be rewritten as

(43)  w(B) = w (B + 682 + 6787 + 6784 + ...

which, when used in (42), produces our example of (40).
THE MODEL BUILDING PROCESS

As with univariate time series modeling our first task is to specify the
nonzero coefficients in the polynomials defining v(B). Several alternative
schemes have been presented in the literature to do this in general
circumstances. However, our experience leads us to believe that the following

method will usually suffice with typical transit data. With monthly ridership
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data, one ordinary difference and/or one seasonal difference is necessary to
induce stationarity. In addition there will be seasonal effects in the

disturbance term N. but not in the input series such as fare, gasoline price
or service level, Based on these considerations, we fit a transfer function

model of the form:

(44) A&lz log Rt = voxt + v Xt_ + eee * \%xt“m + a - elat*l - BIZat-12

1 1

where X = aélZIt’ I, is the input series in question and m is of the order of
10 or 12. The value of m should be selected so that the maximum lag for which
effects might be produced will be included in the model. Previous research
indicates that all effects should be evident within 10 to 12 months after a
change in the input variables. We then look for significant values among the
estimates of Vos Vs e Vo and also for exponential decay patterns
indicative of denominator polynomials. Finally, we hypothesize a parsimonious
form for V(B) and estimate the parameters of that model. As in Chapter 2 we
then criticize the model and change it as appropriate.

\To illustrate we consider using the transit fare series as an input to
thé éidership series. With m = 10 we estimate the model of (44) the results

1

bzing presented in Exhibit 8. We see that 8 = -0.006 is insignificant
but 6., = 0.268 and ¥ = -0.294 are significant. All other \3 are

12

insignificant but Vv, has a T-ratio of 1.56 and might be further

; 1
investigated. We also note the residual autocorrelation at lag 24 is -0.181
whicﬁ, though not significant, is nearly so. On this evidence we decide to

fit a model of the form:

Yo 12 24
i=ep 2812 108 Fp + (L= 9,8 ~ 8B Ja,

(45) AA . log R, =

12

Exhibit 9 shows the results of this estimation. Note that all parameter

estimates are judged significant with w_ = -0.240, 6= 0.625, 8, =
0.342, 824 = —,279 and o, = 0.0287. Furthermore, the autocorrelations of the

residuals from this model look quite good. We also note that use of fare as
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(a)

EXHIBIT 8

TRANSFER FUNCTION MODEL ESTIMATION

SAS input listing

DATA BUS:

SINGLE INPUT (TRANSIT FARE)

INPUT YEAR MONTH RIDERS HOURS ENPLDY BAS FARE CPI

HRC HRY HRU HRW HRSW HRSE:
CARDS;

[Data]

DATA BUSZ;
SET BUS;
LRIDERS=LOB (RIDERS) ¢
LHOURS=LOG (HOURS) §
LFARE=LOG (FARE) ;
L6AS=LO6 (BAS) §
LEMPLOY=LOG (ENPLOY) }

PROC ARINAI

The input series (or indepen-
dent wvariable) in this transfer
function model is Transit Fare.
To determine the lag structure
for Transit Fare, all lags
between 0 and 10 are included
in this preliminary model. The
initial noise model includes
both regular and seasonal MA(1)
terms.

IDENTIFY VAR=LRIDERS(I,12) CROSSCOR= (LFARE{1,12)) NOPRINT;
ESTINATE 0={1,12) INPUT=(11,2,3,4,5,6,7,8,9, 10 LFARE) NOCONSTANT;
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EXHIBIT 8 (continued)

(b) Model estimation
ARINA: LEAST SQUARES ESTINATION
PARAMETER  ESTINATE  STD ERROR T RATIO LAG VARIMBLE [2 The estimation process
shows that the seasonal
HALL L -,00598438  0.112062  -0.05 1 LRIDERS MA(1) form and the Fare
MA1,2 0,267983  0.124224 2.16 12 LRIDERS forne.at Tage 0 and 1
NUNT -0.294143 0.079337 =371 0 LFARE are the most signifi-
NUK1, ! 0.123917  0.0793927 1,56 1 LFARE Caut. The pthet Eovhs
RUNL,2  0.00942421  0.0797815 0.12 2 LFARE can be Aropped Erom the
NUNI,3 0113822 0.0792045 144 3 LFARE fext Madel LEetatioi.
NUMI, 4 0.0989929  0.079441 1.25 4 LFARE
NUM1,5 0.04{7513  0.0778711 0.5 5 LFARE
NUM1,6  -0.0639779  ©,07955M1  -0.B0 & LFARE
NUR1,7 0.0283007  0,0788501 0.35 7 LFARE
NUK1,8 0.0155406  0.0791369 0.20 B LFARE
NUMI,9  -0.0599349  0,0819997  -0.85 9  LFARE
NUKI, 10 -0.0374005  0.0BI5071  ~-0.46 10 LFARE
VARIANCE ESTIMATE =0.00098035
STD ERROR ESTINATE = 0.0313137
NUNBER DF RESIDUALS= 91
CORRELATIONS OF THE ESTIMATES
WAL, MAL,2  NUKL  NUMI,1 NUMI,2 NUMI,3  WUNI,&  NUNL,5 NUNI,6 NUNI,7 NUNI,8  NUNI,9  NUNI,10
MALY 1,000  0.1BS -0.029 -0.005 -0.047 -0,055 -0.051 -0.024  0.034 0,042  0.013  0.037 0,009
A2 0.185 1,000 -0.030 -0.049 -0.153 -0,118 -0.148  0.053  0.142  0.031  0.046  0.063 -0.039
NUNI  -0.029 -0.030  1.000 -0.01% -0.018 -0.038 -0.074 -0.028  0.157 -0.084  0.088 -0.018  0.024
NUNI, 1 -0.005 -0.04% -0.019  1.000  0.028 0,027  0.053 0,074  0.017 -0.160  0.078 -0.095  0.017
RUNI,2 -0.087 -0.153 -0.01B  0.028  1.000 0,042  0.044  0.040  0.047  0.019 -0.167  0.071 -0.086
NUK1,3 -0.055 -0.118 -0.038  0.027  0.042 1,000 0,055 0,004 0.024 0,077  0.018 -0.152  0.089
NUML,4  -0.051 -0.148 -0.074  0.053  0.044 0,053 1,000 0,043 -0,027 0,035 0,065  0.014 -0,142
NUN1,5 -0,024 0,055 -0,028 0.074  0.040 0,004  0.043 1,000  0.057 0,009 0.045  0.082 0,02
NUMD,5  0.034 0,142 0157 0017 0,047 0,024 -0.027  0.057 1,000 0,038 0.028 0.042  0.075
NUNI,7 0,082 0,031 0,084 -0.1s0 0,019 0,077 0,036 0,009 0,038 1,000 0.025 0.026  0.029
NUM1,8 0,013 0,085 0,088 0,078 -0.167 0,018  0.085 0,046 0,028  0.025 1.000  0.026  0.023
NUN1,9 0,037 0,063 -0.018 =-0.095  0.071 -0,152  0.014 0,082  0.042 0,026  0.026  1.000  0.027
NUMI,10 0,009 -0.039 0,024 0017 -0.086  0.089 -0.142  0.026  0.075  0.029 0.023  0.027  1.000
AUTOCORRELATION CHECK OF RESIDUALS
3 The SACF of the resi-
0 CH AUTOCORRELATIONS duals indicates that
LAG GSAUARE DF  PROB the addition of a
6 324 4 0.58 -0,016 -0.030 0,034 -0.130 -0,091 0,075 seasonal MA(2) might
12 64510 0.776 0.010 -0,042 -0,034 0,017 ~0.153 0,041 be warranted because
18 15.18 16 0.512 0.056 0.118 0,090 -0.179 0.143 -0.006 of the correlation
242070 22 0.5%9 -0.085 0.032 0,019 -0.048 0,023 -0.181 remaining at lag 24.
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EXHIBIT 9
TRANSFER FUNCTION MODEL ESTIMATION
SINGLE INPUT (TRANSIT FARE)

(a) SAS input listing

DATA BUS;

INPUT YEAR MONTH RIDERS HOURS EMPLOY GAS FARE CPI
HRC HRX HRU HRW HRSW HRSE;

CARDS;

[Data]

DATA BUS2; 1 The model has been modified
SET BUS; based upon the first iteration
LRIDERS=LOG (RIDERS) ; shown in Exhibit 8. An expon-
LHOURS=LOG {HOURS ) ; ential decay was indicated for
LFARE=LOG{FARE); the Fare series and a seasonal
L6AS=LOG(GAS) ; MA(2) form was suggested for
LENPLOY=LOE (ENPLOY) ; the noise model.

PROC ARINA;
TDENTIFY VAR=LRIDERS(1,12) CROSSCOR=(LFARE(1,12)) NOPRINT;
ESTINATE =(12,24) INPUT=(/(1)LFARE) NOCONSTANT PLOT
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EXHIBIT 9 (continued)

2 The estimation process
shows that this model
form can be supported
as all coefficients
are significant.

The SACF plot for
the residuals
indicates an
adequate model fit.

(b) Model estimation
ARIMA: LEAST SHUARES ESTIMATION
PARAMETER ESTINATE STD ERROR T RATIO LAG VARIABLE
NAL, L 0. 341691 0. 10218 3,34 12 LRIDERS
KAl,2 0.279424 0,107482 2,60 24 LRIDERS
NUN1 -0, 240442 0,0656156 -3.66 0 LFARE
DENL, 1 0.624719  0.182735 4,33 | LFARE
VARIANCE ESTINATE =,000824233
§TD ERROR ESTIMATE = 0. 0287095
NUNBER OF RESIDUALS= 100
CORRELATIONS OF THE ESTIMATES
HAL, 1 HA1,2  NUMI DEM1, 1
HAL, L 1,000 -0.463 -0.025 -0.114
MAL,2 -0, 443 1,000 0.088  0.206
NUM{ -0.025 0.088 1.000 0,527
DENI,1  -D.118 0.204 0.527 1.000
AUTOCORRELATION CHECK OF RESIDUALS
10 CHI AUTOCORRELATIONS
LA6 SAUARE DF  PROB
b L7104 0,319 0,045 -0.087 0.013 -0,083 -0,100 0.132
12 6,16 10 0,802 0,039 -0.039 0.000 0,006 -0.072 0,025
18 12,40 16 0.718 0,033 -0.052 -0.003 -0,170 0,111 0,080
24 13,00 22 0.933 -0.043 0,022 0.034 0.005 0.010 0,029
(c) Autocorrelation plot of residuals
LAG COVARIANCE CORRELATION -1 987 65432101234567891 gp |3
0 .000824233 1.00000 [RESRRRRERESREREARSCN 1]
1 .000037157 0.04508 1 v, i 0.1
2 -7.134E-05  -0,086556 | |} . 1 0.100203
3 .000010977 0.01332 % ¢ A 1 0.100948
4 -5, B47E-05  -0.08307 . v 0.100963
5 -B.265E-05  -0,10028 N | I 1 0.101647
b .000108711 0.13189 .oat, v 0.102631
7 .000048892 0.05932 |} S 1 0.104312
B -4,B67E-05  -0.05905 "o V0, 104449
9 3.388E-07 0.00041 P 1 0,104982
10 5.065E-06 0.00615 1 I 1 0.104982
11 -5,764E-05  -0,07235 | PO 1 S 1 0.1049B4
12 ,000020531 0.02491 v A w i 0.105483
13 .000027247 0.03306 [ S 1 0.105542
14 -4,297€-03  -0.05213 | [ S 1 0.105645
15 -2,291E-06  -0,00278 | S 1 0,105%02
16 -, 00014006  -0,16992 | A, 1 0.105903
17 .000091078  0.11050 | P § | i 0.1083935
18 .000065559  0.07954 . in T 0.109714
19 -3.571E-05  -0,04333 | O | S i 0.110289
20 .000018244 0.02214 P O P 0.110459
21 .000029829  0.03519 A | T v 0.110503
22 4,024E-04 0.00488 PO Vo0.110622
23 B.375E-06  0.010186 P R to0,110624
24 . 000023534 0,02835 1 ] Vo 0.110633

.’ MARKS THO STANDARD ERRORS
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an input variable has reduced the residual standard deviation about 8% from
the value for the univariate model based on ridership alone.

We proceed in this same way to investigate the effects of various lags of
other potential input variables: gasoline price, service hours and employment
level. It was found the gasoline price and employment level affect ridership
only contemporaneously, (i.e., at lag zero) whereas service hours contains
only a delayed effect at lag eight months. Thus, from a multiple input

setting we consider the model:

W

P S
(46) 6512 log Rt =55 Aa,, log Ft + wlablz log Gt + wzaﬁlz log Et

8 12 24
+ Wy B aalz log HRt + (1 8128 8263 )at

In Exhibit 10 we display the results from fitting this model. The § being
only marginally significant we drop it from the model and re—estimate
obtaining the results shown in Exhibit 11. The residual analysis

substantiates the adequacy of this model which we summarize as:

(47) AA ., log Rt = woﬂa

12 log Ft + w

aal log Gt + w, AA , log Et l

12 1 2 12

8 12 24 |
+ w3B aalz log HRt + (1 SlzB - 6243 )at

or |

2

AA., log Rt = —-,272 AA

12 log FT + .277 AA log Gt

12

+ .541 BA, log E, + .259 B8 aa

12 log HRt

12

+ (1 - 324812 - .2918%%)a,
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EXHIBIT 10
TRANSFER FUNCTION MODEL ESTIMATION

FULL MODEL

(a) SAS input listing

DATA BUSS
INPUT YEAR MONTH RIDERS WOURS ENPLOY BAS FARE CPI
HRC HRX HRU HRW HRSW HRSE}
CARDS:

[Data]

DATA BUSL;
SET BUS;
LRIDERS=LOG (RIDERS)
LHOURS=L 06 (HOURS) §
LFARE=LOG(FARE}}
LBAS=LOG (GAS}
LEMPLOY=LOG(ERPLOY)

PROC ARIMAY

IDENTIFY VAR=LRIDERS{1.12) CROSSCOR={LBAS{1,12) LFARE(!,12) LHOURS(I,12)
LENPLOY{1,12)) NOPRINT:

ESTIMATE 0=(12,24) INPUT={/{{)LFARE LENPLOY BSLHOURS LGAS) NOCONSTANT:

1 The full transfer function
is estimated. The Fare
series includes an exp-
onential delay function
while the Hours series
has a delay of 8 months.
The Employ and Gas series
are contemporaneously
correlated with Riders.
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(b) Model estimation

(c)

Al
AL, 2
KUML
DENI, 1
NUNZ
NUK3
NUM4

EXHIBIT 10 (continued)

RARIMA: LEAST SQUARES ESTIMATION

10
LAB
]
12
18

Three of the terms are only
marginally significant, and
some modification of the model
form is warranted for the next
iteration. A good rule of
thumb is to always simplify
the model if possible, so the
denominator term of the Fare
series will be dropped for the
next iteration.

PARAMETER  ESTIMATE  STD ERROR T RATID LAG VARIABLE
HAL,1 0.30141 0.114904 2.62 12 LRIDERS
KAl 2 0.296777 0.116384 2.55 24 LRIDERS
NUM1 -0,25775  0.070%758 -3.63 0 LFARE
DENL, 1 0.412635 0.211345 1.95 1 LFARE
NUNZ 0.476623 0,285166 1.67 0  LEMPLOY
NUN3 0,232458 0,131283 1.77 0 LHOURS
NUM4 0.2565879 0.119932 2,22 0 LGAS
VARIANCE ESTIMATE =0.00079058
STD ERROR ESTINATE = 0.0281173
NUMBER OF RESIDUALS= 93
CORRELATIONS OF THE ESTIMATES
MAL.1  MAL,2  NUMI DENL.1  NUM2 NUN3 NUM4
1,000 -0.474  -0.171  -0.179  0.263  0.002 -0,193
-0.474 1,000  0.214 0,158 -0.17% -0.014 0,159
-0.171 0.214 1.000 0.425 -0.234 -0.029 0.137
-0.179  0.156  0.425 1,000 -0.216 -0.183 -0.047
0.263 -0.179 -0.234 -0.216  1.000  0.070 -0.240
0.002  ~0,014 -0,029 -0.163 0,070 1,000 0,081
-0.193  0.159 0,137 -0.047 -0,240  0.08! 1,000
Autocorrelation check of residuals
CHI AUTOCORRELAT IONS
SQUARE DF  PROB
L3514 0.478 -0.027 -0.145 0,006 -0.023 -0.041 0.108
8.92 10 0,540 0.057 -0,128 -0.070 0.0%4 -0.131 0,027
16,29 14 0,433 0.047 -0,016 0.025 -0,202 0.128 0,083
17.99 22 0,707 -0.089 -0,036 0,000 0.045 0.038 0.034

K
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EXHIBIT 11
TRANSFER FUNCTION MODEL ESTIMATION
FULL MODEL

(a) SAS input listing

DATA BUS:
INPUT YEAR MONTH RIDERS HOURS ENPLDY BAS FARE CPI
HRC HRX HRU HRW HRGW HRSE:

CARDS:

[Data]

DATA BUSI: 1 This next iteration
SET BUS: includes a lag of 8
LRIDERS=LOG (RIDERS) § months for the Hours
LHOURS=L0G (HOURS) & series and no lag
LFARE=LOB(FARE); structure for the
LBAS=LOGIBAS) other input series.

LENPLOY=LOG (ENPLOY)S

PROC ARTMA
1DENTIFY VAR=LRIDERS(1,12) CROSSCOR=(LBAS(1,12) LFARE(l,12) LHOURS(,12)

LEMPLOY(1,12)) NOPRINT}
ESTIMATE @=(12,24) INPUT=(LFARE LENPLOY BSLHOURS LBAS) NOCONSTANT:
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EXHIBIT 11 (continued)

2 The model estimation indicates
. that all coefficients are

statistically significant
or nearly so.

ARIMA: LEAST SQUARES ESTIMATION

PARANETER  ESTIMATE 57D ERROR T RATIO LAE VARIABLE

HALL 0.324207 0.112925 2.87 12 LRIDERS
HAL,2 0.290834 0.115107 2,33 24 LRIDERS
NUM1 =0.27236  0.0722462 =377 0 LFARE
NUNZ2 0.541324 0.279504 1,93 0 LENPLOY
NUN3 0,258949 0.131279 1,97 0 LHOURS
NUN4 0.277233 0.11924 2,33 0 LG6AS

VARIANCE ESTIMATE =,000796547
STD ERROR ESTIMATE = 0.0282232
NUMBER OF RESIDUALS= 93

CORRELATIONS OF THE ESTIMATES

HAL.1  HAL,2  NUMI NUN2 NUN3 NUN4
MAl, 1 1,000 -0.4B4  -0.126  0.230 -0.010 -0.19%9
WAl.2  -0.484 1,000  0.152 -0.145  -0.006 0,158
NUR1 -0.426 0,152 1,000 -0,202 -0.012 0.138
NUNZ 0.230  -0.145 -0,202  1.000  0.047 -0.251
NUN3 -0.010 0,006 -0.012  0.047  1.000 0,042
KUN4 -0.19%  0.158  0.138 -0.231  0.082 1,000

(c¢) Autocorrelation check of residuals

10 CHI AUTOCORRELATIONS
LAG SQUARE DF  PROB .
6 2,36 4 0,670 -0.018 -0,098 0.031 -0.005 -0.027 0,110
12 B.16 10 0,613 0.058 -0.116 -0.079 0.062 -0.184 0,030
18 16,15 16 0,443 0.057 -0,020 0.012 -0.242 0.079 0.030
24 18.88 22 0,853 -0.094 -0,040 -0.017 0.068 0.076 0.035

3 The SACF of the residuals
shows no unaccounted for
correlation.
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IV, INTERVENTION ANALYSIS

The assessment of the impact of special events, either controlled or
otherwise, on time series such as transit ridership is an important
endeavor. What is the effect of a particular (controllable) fare or service
change? How did ridership react to fuel shortages or severe winter weather
(uncontrollable)? The methodology of time series intervention analysis has
been developed to answer these questions -- the original reference being Box
and Tiao (1975). The theory developed allows for delayed appearance of
effects after the intervention, tapered responses and gradual diminishing of
the effect rather than abrupt on-off behavior.

As a simple example of intervention modeling, we consider the effect on
bus ridership of a very severe ice storm in January 1979 in Portland. Such an
event should impact ridership during the storm but presumably have no lasting
effect., Therefore, to model the intervention we create a variable which

equals zero except for January 1979 when it equals one:

-

1 if t = January 1979,

1]

(48) I
0 otherwise.

We then add I, as an additional input variable in our full transfer function
model and re-estimate the model checking for significance on the coefficient
associated with the indicator variable It'

Exhibit 12 displays the results of this estimation. The intervention
variable (called TEST in the computer output) shows a significant coefficient
of -0,04769 (with a T—-RATIO of —3.12) indicating the substantial negative

impact of the storm on ridership.
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EXHIBIT 12
INTERVENTION MODEL
EXAMPLE: SEVERE WEATHER

1 The intervention variable
test is created with the
IF statements.

(a) SAS data listing

DATA BUS:
INPUT YEAR MONTH RIDERS HOURS EMPLOY BAS FARE CPI
HRC HRY HRU HRW HRSMW HRSE:
IF YEARCTS THEM TEST=0i
IF YEAR=79 AND MONTH=1 THEN TEST=1i
IF YEAR=79 AND HONTH! THEN TEST=0;
IF YEAR)79 THEN TEST=0:
CARDS;

[Data]

DATA BUSIL;
SET BUSs
LRIDERS=LOG (RIDERS)
LHOURS=L06 (HOURS) 4
LFARE=LOB (FARE) ;
LEAS=LOG(BAS)
LEMPLOY=LOB (ENFLOY);

PROC ARIMA:

IDENTIFY VAR=LRIDERS(I,12) CROSSCOR=(LGAS(1.12) LFARE(],12) LHOURS{1,12)
TEST(1,12) LEMPLOY(1.12)) NOPRINT:

ESTIMATE @=(12.24) INPUT=(LFARE LEMPLOY BSLHOURS LGAS TEST) NOCONSTANT:

2 The model is estimated
with the original inputs
(see Exhibit 11) and the
intervention variable
test.
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EXHIBIT 12 (continued)

3 The variable TEST is
statistically significant
indicating that the inter-

(b) Model estimation vention has an effect on

ridership.

ARINA: LEAST SQUARES ESTIMATION

PARAMETER  ESTIMATE  STD ERROR T RATID LAG VARIABLE

KAl 1 0.2698%% 0. 110505 2,44 12 LRIDERS
HAL, 2 0.300655 0.113088 2.66 24  LRIDERS
NUN1 -0,277854  0.0672102 -4,13 0 LFARE
NUNZ 0.4268418 0.267451 160 0 LEMPLOY
KUK 0,257509 0.12195 2.11 0 LHOURS
NUN4 0.2844%8 0.113364 2.51 0 LG6AS
HURS -0.0476929  0.0152871 =312 0 TEST
VARIANCE ESTINATE =,000724982

STD ERROR ESTINATE = 0,0249253

NUMBER OF RESIDUALS= 93
CORRELATIONS OF THE ESTIMATES

KAL.1  MAL,2  NUME KUKZ NUN3 NUM4 NUMS
HAL, 1 1,000 -0,3%2 -0.123  0.181 -0,002 ~-0.167 -0.008
NALZ  -0,392  1.000  0.137 -0,080 -0.018  0.109 0,097
NUNL -0.123 0 0137 1000 -0.201  -0.011  0.144  0.050
NUNZ 0.181  -0.080 -0.201  1.000  0.031 -0.243 (.05
NUM3 -0.002  -0.018 0,011  0.051 1,000  0.083  0.012
NUMA =0.167 0,109 0.144 -0.243 0,063 L.000 0,034
NUNS -0,008  0.097  0.050 0,085 0,012 0.034 1,000

(c) Autocorrelation check of residuals

T0 CHI AUTOCORRELAT IONS
LAG SBUARE DF  PROB
& .45 4 0,479 0.010 -0.041 -0.033 -0.107 0,055 0,132
12 .35 10 0.673 0.003 -0,022 -0.091 0.006 -0.148 0,026
18 15.41 16 0.495 0,056 -0.,068 0.070 -0.229 0,040 0,048
24 20,09 22 0.577 -0.079 -0.077 0.009 0.019 0.154 0,036
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As a second example, we wish to assess the impact of the (average) fare
increase of 5.3 cents which occurred in September 1978. To isolate the fare
increase from the rest of the fare variable we first remove the increase from

the fare series.

OLDFAREt, if t is before Sept. 1978
(49) NEWFAREt =
OLDFAREt - 5.3, if t is Sept. 1978 or after.

{
|
|
!
l
1

Then we define a new variable St as

S 0 if t is before Sept. 1978

(50) St =
li if t is Sept. 1978 or after.

(st is a step function with step at September 1978.) We then re-estimate the

transfer function model with our new fare and step function as input
variables.

The results are shown in Exhibit 13. Notice that the intervention
variable (called TEST in the computer output) has significant coefficient of
-0.06197 (with a T-RATIO of -2.67) and shows the negative effect of the fare

increase of September 1978.
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(a)

EXHIBIT 13
INTERVENTION MODEL

EXAMPLE :

SAS data listing

bATA BUS:
INFUT VEAR MONTH RIDERS HOURS ENPLOY BAS FARE CFI
HRC HRYX HRU HRW HRSW HRSE:
IF YEAR=7B AND MONTH 28 THEN TEST=1:
IF YERR=78 AND HONWTH(9 THEN TEST=0%
IF YEAR<78 THEN TEST=0
IF YERR:78 THEN TEST=1:
1F YEAR=78 AND MONTH#B THEN FARE=FARE-3.3:
IF YEAR:78 THEN FARE=FARE-3.3:
CARDS:

[Data]

DATA BUSLS
SET RUS:
LRIDERS=LOG (RIDERSTS
LHOURS=LOG tHOURSY:
LFARE=LOGIFARED S
L6A3=LOGIGAS]
LENFLOY=LOG (EMFLOYIS

FROC ARIM#:

TDENTIFY VAR=LRIDERSY!,1Z) CROSSCOR={LGAS(L,12) LFARE{L.12) LHOURSIL.ID)
TEST(L.12) LEMFLOY(1,12)) NOPRINT:
ESTIMATE @=i12,24) INFUT={LFARE LEMFLOY @SLHOURS LBAS TEST) NOCONSTANT:
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INCREASE

1 The intervention variable
test is created and the
Fare series is modified.

(oS

The model is estimated
with the original medel
inputs and the interven-
tion variable test.




EXHIBIT 13 (continued)

(b) Model estimation
AR IMA: LEAST SBUARES ESTIMATION
PREAHETER ESTINATE 51D ERROR T RATID LAG VARIABLE
MAl. 1 0, 313809 . 113357 2,77 1Z  LRIDERS
WAl. 2 {1, 286745 0,115513 2,50 24 LRIDERS
NUM1 -0,211938 0.0766304 -2.71 0 LFARE
NUNZ 0. 477603 0,283084 1.6 O LEMPLOY
NUN3 0. 2433 0.131772 1.86 0  LHDURS
NUM4 0.,2827%1 0.119267 .37 0 LGRS
NUNS -0, 0619734 4. 0231873 -2.67 0 TEST
VARIANCE ESTINATE =.G00B01104
STD ERROR ESTIMATE = 0.0ZB3038
NUMBER OF RESIDUALS= &3
CORRELATIONS DF THE ESTIMATES
HAl. 1 HAL, 2 NUMI NNz NUM3 HUH4 NUMS
MAL. L Lood  -0.470  -0,124 0,233 -0.008 -0.186  -0.019
WAL 2 -0,470 1000 @50 =0,137  -0.011 0,145 0,028
NUMJ -0, 134 0. 150 000 =0,222  -0,038 0117 -0.001
NUN2Z 0,233 -0.137  -0.222 1309 G059 0,744 0.019
NUM3 0,008 0,011 -0, 058 0,059 1,000 0,062 0.081
NUM4 -0, 188 0,145 G117 -0.248 (. 062 1. 000 0,060
HUNS -0.01% 0,028 =0.001 w019 0,081 0, 040 1. 000
(c) Autocorrelation check of residuals
10 CHI AUTOCORRELATIONS
LAB SBUARE DF  FROE
b i.t5 4 0,689 G 003 =0,0B1 0,008 0,038 0,006 0,170
12 Tell 10 0,457 0,050 -0,108 -0.062 0,048 -0.173 0.034
18 15,08 18 0.5<1 0,032 =0,028 0,030 -0,240 0.082 0.004
4 17,77 22 0,720 -0,083 =0,015 -0.033 0,081 0.072 0.042
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significant




V. FORECASTING

One of the primary objectives of building a model for a time series is to
be able to forecast or predict the values for that series at future times. We
also need to be able to asses the precision of those forecasts. Modern time
series analysis software allows us to readily make these forecasts and measure
their precision.

With our transfer function models, the input series can be put into two
different classes - controllable and uncontrollable., Fare and service level
are controllable whereas gasoline price and employment levels are not. With
respect to forecasting future ridership levels clearly uncontrollable inputs
must themselves be forecast into the future but fare and service level could
be set to whatever we would like them to be. TFor example, the impact of
proposed future fare or service level changes could be assessed by
incorporating those changes into the future input values for fare and/or
service level and then note the implied ridership forecasts.

Alternatively, forecasting techniques may be applied to judge the overall
usefulness of the time series model. For example, we could "back up" one year
from the end of our data set. Then use the model to forecast that last year
using the actual known values for all the input series. We then compare the
ridership forecast by the model to the known ridership for that last year.

Exhibit 14 illustrates this procedure. Our final transfer function model
has been used to forecast the last year of observed ridership using the actual
last year values for all of the input series. The computer output lists the
forecasts for ridership (in logarithm terms), their standard errors, 95%
prediction limits, the actual ridership values and the residuals or prediction
errors.

Exhibit 15 presents forecasting results when we forecast the
uncontrollable input series, gasoline price and employment level but set fare
and service level to their actual values. We again have forecast ridership
from one year back so that we may compare the forecasts to actual values. In
comparison with the results in Exhibit 14 the forecast standard errors are
somewhat larger reflecting the additional uncertainty associated with having

to forecast future gasoline price and employment levels.



EXHIBIT 14
FORECASTS

{a) SAS input listing

DATAL
INPUT YEAR MONTH RIDERS HOURS ENPLOY BAS FARE;
LRIDER8=LOB(RIDERS); LHOURS=LOG(HOURS)} LEMPLOY=LOB(ENPLOY)}

L6AS=L06 (BAS)§ LFARE=LOG {FARE)}

N=_N_jLABEL N=Month; 1 TForecasts for the Rider
CARDS; series are made using
[Datal] historical data for the

input series.

PROC ARINA:
IDENTIFY VAR=LRIDERS(1,12)
CROSSCOR={LFARE(1,12) LEMPLOY{I,12) LBAS{1,12) LHOURS{1,12)) NOPRINT:
ESTINATE @=(12,24) INPUT=IBSLHOURS LFARE LEAS LEMPLOY) NOCONSTANT NOFRINT;

FORECAST LEAD=12 BACK=12
0UT=B 1D=N {

PROC PLOT DATA=BIFIRSTOBS=103)}
PLOT FORECAST#N="F’ LRIDERS#N="#" L93eN="L" U95eN="U’/ OVERLAY

VPOS=40 HPOS=b04
TITLE Ridership Forecast, Actual and Confidence Lieits;

2 TForecasts are plotted.
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EXHIBIT 14 (continued)

(b) Forecasts

FORECASTS FOR VARIABLE LRIDERS 3 Forecasts for the Rider
series are shown with the
DB5  FORECAST G7TD ERROR  LOWER 951  UPPER 95% ACTUAL RESIDUAL confidence band, the actual

values, and the residuals.

103 11.7648  0.0282 11,7095 11.8202 11,7424 -0.0224
104 11.7225  0,0399 11,6443 11,8007 11.7068  -0.0157
105 11.8052  0.0489 11,7054 11.9010 11,7951 -0.0101
106 11.8491  0.0544 11,7384 11,9597 11,8615 0.0124
107 11.840%9  0.0631 1,772 11.9646 11,8615 0.0206
108 11,7867 0.0691 11,8512 11,9222 11,7974 0.0108
10% 11,8302 0.0747 11,6838 11,9745 11,8920  0.081%
10 11,8273 0.0798 11.6709 11.9838 11,8671 0.0398
{11 11,7816 0.0847 11,8156 11.9475 11.8629  0.0813
112 11,7852 0.08%2 11,6103 11,9601 11.8720  0.0Bs8
113 11,7763 0.0938 11,3848 11,9537 11.8452  0.0749
114 11,7497 0.,0978 11,5580 11.9413 11,7958 0.0482
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EXHIBIT 14 (continued)

(c) Forecast plots

Ridership Forecast, Actual and Confidence Liaits 15:05

PLOT OF FORECAST#N  SYMBOL USED IS F
PLOT OF LRIDERSN SYMBOL USED 15 #
PLOT OF L95#N SYMBOL USED 15 L
PLOT OF U95#N SYMBOL USED IS U
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EXHIBIT 15
FORECAST

(a) SAS input listing

DATA;
INPUT YEAR MONTH RIDERS HOURS EMPLOY GAS FARE:
LRIDERS=LOG(RIDERS)} LHOURS=LOG(HOURS): LEMPLOY=LOG(EMPLOY):

L6AS=LOG{BAS); LFARE=LOGI{FARE);
N=_N_iLABEL N=Month; 1 Univariate models for

CARDS; Gas and Employ series
are identified and

[Data]
estimated

PROC ARINA3

IDENTIFY VAR=LGAS{1,12) NOPRINT}

ESTIMATE P=1 NOCONSTANT NOPRINT;

IDENTIFY VAR=LEMPLOY{1,12) NOPRINT:

ESTINATE B=(1)(12) NOCONSTANT NOPRINT:

IDENTIFY VAR=LRIDERS(!,12)

CROSSCOR={LFARE{!,12) LEMPLOY(!,12) LGAS{I,12) LHOURS{1,12)) NOPRINT;

ESTIMATE 0={12,24) INPUT={B$LHOURS LFARE LBAS LENPLDY) NOCONSTANT NOPRINTS

FORECAST LEAD=12 BACK=12

0UT=B 1D=N }

2 Forecasts for the Rider series are made -_1

using the forecasted values for Gas and
Employ and the assumed values for Hours
and Fare as inputs. Back=12 establishes

the forecast origin as June 1981.

PROC PLOT DATA=BIFIRSTORS=103)%
PLOT FORECAST#N="F' LRIDERS#N="#’ L93#N="L" U95#N="U’/ OVERLAY
VPOS=40 HPOS=b0;
TITLE Ridership Forecast, Actual and Confidence Limits;

3 Forecasts are plotted.
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EXHIBIT 15 (continued)

(b) Forecast-ridership series

FORECASTS FOR VARIABLE LRIDERS

088

----==--FORECAST BEGINS

103
104
103
106
167
108
109
110
1l
H2
13
3]

FORECAST STD ERROR

117576
11,7193
11,8056
11,8583
11,8356
11,8030
11.8581
11.8785
11,8543
11,8450
11,8447
11,8068

0.0294
0.0423
0.0330
0.0621
0.0703
0.0778
0.0847
0.0912
0.0973
0.1030
0.1083
0.1137

LOWER 951

11,7000
11,6362
11.7018
11,7386
11,7179
11,6506
11.6%01
11,6998
11,6636
11,6630
11,6320
11,5837

UPPER 3%

11,8151
11,8027
11.9094
11.9800
11,9933
11,9553
12.0221
12,0573
12,0450
12,0670
12,0574
12,0293
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4 TForecasts for the
Rider series are made.

ACTUAL  RESIDUAL

H.7424  -0.0151
11,7068 -0,0126
11,7951 -0.0105
11.8615  0.0032
11,8615 0.0059
11.7974  -0.0057
11,8920 0.0359
11.8671  -0,0114
11,8629  0.00Bb
11.8720  0.0070
11.8452  0.0005
11.7958  -0.0107



EXHIBIT 15 (continued)

(c) TForecast plots

Ridership Forecast, Actual and Confidence Limits 15:2

PLOT OF FORECASTN  SYMBOL USED IS F
PLOT OF LRIDERG#N SYMBOL USED 1S #

PLOT OF L95#N SYNBOL USED IS L
PLOT OF U95#N SYMBOL USED IS U
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APPENDIX A

TIME SERIES COMPUTER PACKAGES

There are a number of time-series computer packages currently available

for both main—frame and microcomputer environments.

Three packages that have

been used by the authors of this report are listed below.

l.

SAS (Statistical Analysis System)

Available from:

SAS Institute, Inc.
Box 8000

Cary, NC

SCA System

Available from:

Scientific Computing Associates
P.0. Box 625

De Kalb, IL 60115

BMDP

Available from:

BMDP Statistical Software, Inc.
1964 Westwood Blvd.

Suite 202

Los Angeles, CA 90025
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APPENDIX B
LISTING OF PORTLAND DATA
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o

AG? -Q?c?

& & z§§? & égj J;Q%{*‘
AT Y R & ®
73 1 64800 2714 329800 34.% 34.5
732 64600 2714 332700 36,9 34.5
733 63900 2714 339500 36.9 J4.5
73 4 65400 2761 340300 36.9 34.5
73 5 63000 2761 343100 37.1 34,5
73 6 62200 2761 353000 3B.7 34.5
73 7 ol700 2761 351000 38.9 34.5
73 8 61300 2755 355000 38,9 34.5
73§ b&100 2791 356800 38,4 34.5
13 10 69500 2791 354100 39.3 32.5
73 11 65000 2830 354700 40.4 32.3
73 12 70700 2830 354800 43.4 32.5
74 1 BI700 2866 372800 44.6 32.5
74 2 B3900 2505 374900 45.9 32.5
743 BIOOO 2909 378500 49,6 32.5
74 4 78900 2933 378800 51.7 32.8
74 5 76000 2933 382700 53.3 32.8
74 & 72400 3172 392700 354.2 32.8
74 7 70400 3172 387100 54.7 32.8
74 B 69100 3172 391700 54.4 3.8
749 74500 3229 397800 54,9 32,8
74 10 80300 3229 393700 53,2 32.8
74 11 78000 3229 391000 52.3 32.8
T4 12 78100 3229 389800 52,4 32.8
75 1 BS700 3464 378200 52.8 29.4
75 2 90700 3644 374300 52,4 29.4
75 3 B7300 3731 374000 52.1 29.4
75 4 91000 3731 377800 52.5 29.4
75 5 90000 3731 379000 53.5 29.4
75 & BBUOO 3748 385900 54,8 29.4
75 7 B&700 3748 378000 356.7 29.4
75 8 83400 3748 382300 S57.4 29.4
75 9 92800 3Bb0 389400 57.6 29.4
75 10 106400 3860 390500 57.4 27.4
75 11 110300 3860 387800 §7.3 27.4
75 12 102600 3976 350400 57.4 27.4
76 1 110200 3976 385900 57.0 27.4
76 2 108000 3975 383500 S5é6.4 27.4
76 3 103400 3976 385700 §5.3 27.4
76 4 108300 3976 391300 54.5 27.4
76 5 107800 3976 394100 55.5 27.4
76 & 102000 3976 401600 56,9 27.4
76 7 98400 3576 397500 5B.4 30.7
76 B 95200 3374 400100 58,7 30.7
76 9 103300 3976 407100 59.4 30,7
76 10 111400 3976 407300 59.3 30.7
76 11 116000 3376 407400 59,3 29.4
76 12 105800 3976 410200 59.3 29.4
77 1 120900 3976 401700 59.6 29.4
772 120000 3967 403000 60.3 29.4
773 113000 3967 407000 80,9 29.4
77 4 118200 4183 410700 41,3 29.4
77 5 115200 4183 413500 &1.7 29.4
77 6 111600 4171 422400 82,1 29.4
77 7 109800 4171 420200 2.4 29.4
77 B 104400 4171 421500 2.3 29.4
779 114200 4171 430200 62.4 29.4

TABLE 2
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X
Q
& ewe
S
z?& £9k$?§ *5? & S @

AN0T QT R0 A (P 4P
77 10 122200 4171 433100 2.4 29.4
77 11 123400 4171 438400 &2.4 29.4
77 12 115500 4183 442000 &2.4 29.4
78 | 128600 4183 439900 &3.1 30.5
78 2 128100 4183 441700 63.5 30.5
78 3 122400 4183 447800 3.5 30.5
78 4 128000 4183 453900 63.4 30.5
78 5 122800 4183 457200 64.9 30.5
78 & 118100 4183 473300 45.9 30.5
78 7 115800 41B3 4463100 &£7.0 30.5
78 B 112400 4183 452800 &7.9 30.5
78§ 115200 4183 470200 48,6 35.8
78 10 120500 4183 470600 68.9 35.8
78 11 126000 4183 472500 68,9 35.8
78 118800 4183 476800 49.2 35.B
79 121200 4183 465300 49.5 35.B
79 2 126500 4155 468200 70.4 35.8
79 124600 4165 475500 72,3 35.8
79 129900 4165 478800 75,1 35.8
79 128400 4165 483200 B80.9 36.3
79 6 134500 4165 499300 B86.1 36.3
79 134100 4481 486400 92.2 3b.3
79 130800 4481 488000 94.3 3&.3
79 144800 4527 497200 98,35 36.3
79 145400 4527 498900 98.9 3&.3
79 145700 4527 502400 99.6 3.3
79 12 143100 4527 502900 101.1 36,3
80 1 151000 4527 487100 106.3 35.3
80 155800 4562 492100 113.4 34.3
B0 3 153500 4562 497000 116,8 35,3
80 4 152300 4573 494500 118.1 42.4
BO 149200 4573 491200 119.8 42.4

o
=
—_—— e — —_—
O LN e G b = R e O -0 00 = 0 LN S Cd B = b e O 0 0D =0 LN s L] R e R e O A0 00 =) O LN e L kD = RO

143700 45637 499200 120,8 42.4
136500 4657 481500 120.8 42.4
131000 4657 481600 120.8 42.4
144100 44637 493100 120,8 42.4
143000 4657 491100 120.8 49.1
142400 4657 492200 120.8 49.1

142900 4657 481800 122.5 4
144000 4657 479600 129.8 4
141400 4457 483600 131.3 49.
142400 4657 483300 13).9 4
140800 4657 484300 132.7 4
133700 4788 491000 134,0 4
125800 4788 478900 135.1 49.
121400 4788 475900 135.0 49.
132600 4788 483600 135.0 &
141700 4788 477293 133.6 49.
141700 4788 475793 132.7 49.
132900 4786 475080 132,5 4
146100 4788 461279 131.73 49.
142300 4788 456140 128.5 4
141900 47BB 459172 121.9 4
143200 4788 459347 119.1 49.
139411 4788 460563 121.7 49.
132700 4788 478336 126.3 4
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