Use of UTPS for Subarea Highway Analysis:

 A Case StudyJanuary 1985

This document is disseminated under the sponsorship of the Department of Transportation in the interest of informatiom exchange. The United States Government assumes no liability for the contents or use thereof.

	FHVA/PL/85/002	2 Goummen Allenon No.	3. Focirent. Coboeg No.
```Use of UTPS for Subarea Highway Analysis; A Case Study```			5. Roport Dole January 1995
			6. Perlorming Oiponizotion Code
7. Author's)   David M. Levinsohn			8. Pariorming Organization
9. Performing Orgonizalion Name and Address COMSIS Corporation 11501 Georgia Avenue Wheaton, MD 20902			10. Work Unit No. (tRals)
			$\begin{aligned} & \text { 11. Controct or Giont No. } \\ & \text { DTPH61-80-C-00070 } \end{aligned}$
			13. Type of Report ond Patiod Covered
12. Sponsoting Agoncy Nome ond Address   U.S. Dept. of Transportation, FHWA Urban Planning \& Transportation Mgmt Div. 400 7th Street, S.W. (HHP-22) Washington, D.C. 20590			Final Report   Dec. 1981-Oct. 1983
			14. Sponsoring Agoncy Code HHP-22
15. Supplementary Notes   Contracting Officer's Technical Representative William A. Martin, Jr., Technical Support Branch			

16. Abstroct

This case study illustrates the use of UTPS to analyze the potential traffic impacts of a proposed major subarea highway system change. Specifically, this analysis predicts the traffic flow changes resulting from a proposed conversion of a major CBD arterial street to a bus-only thoroughfare. This candidate transit improvement project was identified as a result of a preliminary sketch planning analysis utilizing a so-called pivot-point application of a logit mode choice model. This sketch planning analysis identified the transit street as a beneficial project in terms of reducing auto travel and increasing transit ridership and operational efficiency.

The focus of the analysis described in this case study is the estimation of the likely traffic flow impacts on automobiles in the CBD in the event that the major arterial is reserved for transit vehicles. Subarea analysis capabilities of UTPS for highway network analysis are illustrated, specifically network "windowing." The analysis time horizon is the medium term future, year 1990, when the candidate project may be deployed.

17. Kor Words Transportation Pla Subarea Analysis Traffic Assignment UTPS		18. Distribution Statement	
19. Security Cloasif. (of mis ropori) Unclassified	20. Security Clossif. (of this poge)   Unclassified	21. No. of Poges $56$	22. Price

17549

HE 318
.L665
1985

FEB $24^{9} 94$

## PREFACE

This report was prepared to illustrate the use of Urban Transportation Planning System (UTPS) software in the analysis of a subarea transportation change. The application of UTPS to "window out" a portion of the regional highway network and trip-tables is described to show how the potential traffic impacts of a highway system change can be dtermined.

The report was prepared by the COMSIS Corportation for the Federal Highway Administration and the Urban Mass Transportation Administration, U.S. Department of Transportation. The project was accomplished under a contract to provide UTPS planner aids to assist MPO and State officials in utilizing techniques, methodologies and data.

The principal author of this report was David M. Levinsohn. The Federal Highway Administration contracting officers technical representative was William A. Martin. Other personnel who contributed significantly to the report include Christopher Fleet of the Federal Highway Administration and A. Joseph Ossi of the Urban Mass Transportation Administration. Special thanks goes to Dieter Klinger of COMSIS Corporation and to Ralph Hoar who did a notable job in editing the material.

## TABLE OF CONTENTS

Page
INTRODUCTION ..... 1
OVERALL APPROACH ..... 1
SKETCH PLANNING APPROACH ..... 2
Pivot Point Model ..... 3
DETAILED UTPS-ANALYSIS APPROACH ..... 6
UTPS Analysis of Network Change ..... 6
NAG Application ..... 10
Increase Subarea Detail. ..... 21
Expand Subarea Triptable ..... 22
Increase Subarea Network Detail ..... 29
Calibrate Subarea Traffic Assignment ..... 38
Developing Network without Third Avenue ..... 48
Analyzing Network Alternative ..... 51
SUMMARY ..... 56

## LIST OF TABLES

Table Page
11990 REGIONAL FORECASTS (DAILY WORK TRAVEL) ..... 4
2 RELATIONSHIP BETWEEN SUBAREA ZONES AND SUBZONES ..... 25
LIST OF FIGURES
Figure Page
1 SUBAREA ANALYSIS PROGRAM FLOW ..... 7
2 PROJECT LOCATION AND SUBAREA ..... 9
3 NAG SET-UP ..... 11
4 FOCAL NODES ..... 13
5
NAG REPORT 3 ..... 15
6 NEW CENTROIDS ..... 16
7 NAG REPORT 4 ..... 17
89 UFMTR RUN TO PRINT 1977 SUBAREA TRIPTABLEFROM NAG (REPORT 1)19
10 UFMTR RUN TO PRINT 1977 SUBAREA TRIPTABLE FROM NAG (REPORT 4) ..... 20
11 SUBAREA ZONES ..... 23
12 USQUEX SET-UP TO EXPAND SUBAREA ZONES ..... 28
13 EXPAND ZONE MATRIX ..... 30
14 HNET SET-UP TO DELETE LINKS ..... 32
15
HNET RUN TO UPDATE SUBAREA N-FILE (REPORT 5) ..... 3316
17 HNET RUN TO UPDATE SUBAREA N-FILE (REPORT 7) ..... 36
DETAILED SUBAREA NETWORK ..... 35
Figure Page
18 HNET SET-UP TO CREATE SUBAREA LINK Z-FILE ..... 37
19 HNET RUN TO CREAT SUBAREA Z-FILE ..... 39
UROAD SET-UP TO PEREORM MULTIPATH ASSIGNMENT ..... 40
MULTIPATH ASSIGNMENT ..... 42
22
MULTIPATH ASSIGNMENT (UROAD REPORT 4) ..... 44
23
UROAD REPORT 12: MULTIPATH CAPACITY RESTRAINED ASSIGNMENT ..... 45
24 UROAD REPORT 4: MULTIPATH CAPACITY RESTRAINED ASSIGNMENT ..... 46
25
HNET SET-UP TO COPY N-FILE ..... 48
26 HNET RUN TO UPDATE SUBAREA N-FILE (REPORT 1) ..... 50
27 UROAD REPORT 12: SUBAREA ASSIGNMENT WITHOUT THIRD AVENUE ..... 52
28 SUBAREA LINK VOLUMES WITH THIRD AVENUE ..... 54
29 SUBAREA LINK VOLUMES WITHOUT THIRD AVENUE ..... 55

This case study illustrates the use of UTPS to analyze the potential traffic impacts of a proposed major subarea highway system change. Specifically, this analysis predicts the traffic flow changes resulting from a proposed conversion of a major CBD arterial street to a bus-only thoroughfare. This candidate transit improvement project was identified as a result of a preliminary sketch planning analysis utilizing a so-called pivotpoint application of a logit mode choice model. This sketch planning analysis identified the transit street as a beneficial project in terms of reducing auto travel and increasing transit ridership and operational efficiency.

The focus of the analysis described in this case study is the estimation of the likely traffic flow impacts on automobiles in the CBD in the event that the major arterial is reserved for transit vehicles. Subarea analysis capabilities of UTPS for highway network analysis are illustrated, specifically network "windowing." The analysis time horizon is the medium term future, year 1990, when the candidate project may be deployed.

## OVERALL APPROACH

The overall approach to defining and analyzing the candidate transportation improvement measures was to first perform a sketch planning analysis which examined a large number of candidate transportation options to reduce the growth of auto travel in various subareas (including the CBD) of a large metropolitan area experiencing population and travel increases.

Once the sketch-planning analysis was completed, a relatively small set of most promising alternatives was proposed for more detailed analysis. The CBD transit-only arterial was one of these alternatives. Detailed analysis was required to estimate the auto traffic flow impacts. The highway network analysis capabilities of UTPS were used in this aspect of the analysis.

The overall approach used in both the sketch-planning and detailed UTPS analyses of the proposed transit-only CBD arterial are described in more detail in the remainder of this section.

## SKETCH PLANNING APPROACH

Given a large set of transportation system management (TSM) measures to analyze, a sketch planning analysis framework was utilized to estimate the travel changes that would occur if each TSM measure was implemented. Sketch planning is a style of travel forecasting analysis that allows many alternatives to be analyzed, although at a relatively low level of detail.

Since the majority of proposed measures were aimed at reducing automobile travel to work, the analysis was confined to estimating each TSM measure's impact on work travel.

The planning horizon for the analysis was 1990 and regional travel forecasts served as the "base case" on which the effects of the TSM measures were estimated. Accepted regional travel forecasting models produced estimates of travel by mode in the region in 1990. The Regional 319 zone work production/attraction trip tables for 1990 were forecast for three modes of travel: transit, non-carpool (1-2 passenger autos), and carpool (3+
passenger autos). For sketch planning, these zone-to-zone trip tables were aggregated to 38 superdistricts for further analysis. Table 1 defines the base case travel conditions, both the volume of trips and mode shares, for the $C B D$ and the region. These forecasts were a definition of the travel "markets" that the TSM measures were designed to affect to reduce auto travel. Since the measures are primarily aimed at reducing auto travel for work purposes, it should be pointed out that 1990 work travel was forecast to comprise approximately 27 percent of total travel in the region and 46 percent of travel to the CBD. Therefore while certain TSM measures or packages of measures could be shown to have a substantial impact on the reduction of auto travel for work, the reduction of total daily travel would be greatly diluted.

The general analytical approach to estimate the travel changes (reduction in auto trips and vehicle miles of travel) of each of the TSM measures and the packages of measures was a "pivot point" approach using the regional mode choice model.

## Pivot Point Model

The pivot point modeling approach is based on a study done for the Federal Energy Administration ${ }^{1}$ which used a logit mode choice model to examine incremental changes in mode shares as a function of changes in modal levels of service from an existing

[^0]
## TABLE 1

1990 REGIONAL FORECASTS
Daily Work Travel

\% Work Trips By:	To CBD	Total   Region
Transit	44.4	11.0
Non-Carpool (1-2)	47.9	80.2
Carpool (3+)	7.7	8.8
Total Daily Work Trips	159,515	$1,735,628$
\% of Daily Vehicle Trips   that are Work Trips		

or base condition. The use of a logit mode choice model in this incremental fashion is also termed a pivot point analysis as the existing mode shares are an observation point from which the model "pivots" to estimate changes in mode shares. The FEA report used a logit mode choice model calibrated on Washington, D.C. data. While the report (and subsequent others) demonstrate that this model is transferable to other urban areas, this case study used a pivot point procedure developed from the case study site's logit mode choice model. This mode choice model originally consisted of five modes for the work purpose: transit, auto drive alone, auto two person, auto three person, and auto four or more persons. The model was modified for use in the region and forecasts modal shares summarized into three modes: transit, non-carpool (1-2 person autos), and carpool (3+ person autos). These forecast shares are based on the relative times and costs of each mode for a given zone-to-zone trip. Model coefficients were calibrated to observed data and reflect the relative importance travelers place on travel time and cost components of their mode choice decision. The pivot point application of this model involved modifying the base work mode shares for a travel market (e.g., 1990 forecast work trips by mode destined to the CBD) by changes in times and costs for various modes caused by the implementation of a TSM measure. For example, the forecast base mode shares for work trips to the CBD were: transit, 0.444 ; noncarpool, 0.479 ; carpool, 0.077 . If a hypothetical measure were to increase parking costs in the CBD by $25 \%$ the pivot point model could be used by adjusting the cost component of both the non-carpool and carpool modes upward by $25 \%$ over the assumed 1990
base value. This would lead to a forecast change in mode shares to: transit, 0.531; non-carpool, 0.386; and carpool, 0.083. When these changes are applied to the total forecast work trips to the CBD, changes in total auto vehicle trips and, knowing trip lengths, changes in total auto work VMT could be calculated.

## DETAILED UTPS-ANALYSIS APPROACH

This approach utilizes UTPS programs to " window" out the CBD portion of the regional highway network and associated triptables. The detail of both the network and triptable in the windowed area can be increased to analyze traffic flow changes at a finer level of detail than provided in the regional data bases. UTPS programs NAG, USQUEX, HNET, and UROAD are used and illustrated in this hypothetical analysis using an actual urban data base.

The concept of "windowing" is illustrated for subarea analysis under the supposition that successive investigation of subarea transportation problems are cheaper when run with a smaller, more detailed network and triptable than with the entire regional network and triptable.

## UTPS Analysis of Network Change

The detailed analysis of the traffic flow impacts of the proposed bus-only arterial using UTPS is illustrated in Figure 1. The process was supposed to be applied twice, once to validate the approach using 1977 data and traffic counts, and then to the forecast year of 1990. As will be described later, only 1977 data were available and therefore the 1990 analysis was


FIGURE 1
SUBAREA ANALYSIS PROGRAM FLOW
represented using 1977 data. The first step in each case is to "window" the CBD subarea from the regional network and triptable, using UTPS program NAG.

## Windowing the Subarea

The rationale behind windowing, or "cutting-out" a subarea of the regional network and triptable is to save computing time and cost by applying subsequent analyses to only the subarea of interest. This approach presupposes that the project to be studied has travel demand and network effects that do not substantially extend beyond the subarea. The determination of the range and geographical scale of the travel effect of a network change is not a prescribed process, but rather a judgemental determination that can be confirmed by trial-and-error testing. Generally, if the subarea is defined to be "somewhat" larger than the immediate area of the proposed network change, sufficient space has been allocated. In the specific case of this example, that of the restriction of an arterial street for only a 0.8 mile length, travel changes in terms of $0-D$ patterns, mode shifts, and regional scale highway path changes were not expected. Therefore, the windowing approach was deemed appropriate to analyze the expected subarea traffic routing changes associated with the proposed network change. The location of the proposed transitonly street, Third Avenue, is shown in Figure 2. The selected subarea boundary is also shown in the figure. The subarea boundary was chosen so as to allow "room" for the traffic within the subarea to be reassigned to alternative paths under the conditions where Third Avenue is removed from the highway network.
0
FIGURE 2


The subarea of the regional network and traffic zones was "cut-out" from the regional zone and highway network system with UTPS program NAG. NAG takes as input the regional highway network and up to four associated triptables and outputs a subarea network and associated trip tables. The subarea network is defined as those links which lie within the subarea boundary. The subarea triptable(s) are defined as those trips which travel into, out of, or through the subarea. NAG creates new zone centroids along the subarea boundary which represent new "cordon zones" where particular trip movements enter or leave the subarea to/from zones inside the subarea boundary. (Refer to the UTPS Program NAG (12 December 82 version) writeup for a thorough discussion of this process.) NAG renumbers all zones inside the subarea and the new zones created at the subarea boundary consecutively from one to the new highest zone number and outputs subarea triptables numbered according to the new zone numbers. Centroid nodes and cordon nodes that are renumbered as new zones are correspondingly renumbered in the associated subarea network file. These concepts are best illustrated by reviewing the specifics of the NAG run used to create the case study subarea network and triptables.

## NAG Application

Figure 3 displays the JCL and control card "set-up" used to apply NAG to window the subarea network defined above and the associated triptables from the 319 zone regional network and triptable. The input files consisted of the OLDHR file of the 1977 regional highway network and the Jl file containing the

```
//NAG EXEC NAG,CORE=512K,
// OLDHR='DSN=UMTA.COMSIS.SEA77NET,VOL=SER=UMTA2',
// Jl='DSN=UMTA.COMSIS.SEAUUTRP,VOL=SER=UMTA2',
// NEWHR='DSN=UMTA.SEA77.SUBNET, VOL=SER=UMTA2',
// UNITNEW='SYSDA,SPACE=(TRK,(10,5),RLSE)'
// UNITJ9='SYSDA,SPACE=(TRK,(5,5),RLSE)'
//NAG.SYSIN DD *
 NAG RUN TO WINDOW CBD 1977
 &PARAM TFIELD=32,TABLES=101,ZONES=150,NAMEl='SEASUB77' &END
 &OPTION WINDOW=T,DRYRUN=F &END
 &SELECT FOCI=1609,1798,1806,1828,1862,1884,1890,1867,
 1899,1901,1873,1913,3237,3252,3227,3241,3232,3249,
 3247,3230,R=0.60,REPORT=3,4 &END
```

regional 1977 estimated a.m. peak hour vehicle triptable. This peak hour vehicle triptable was created by applying observed peak hour factors to the person triptables by purpose described earlier. The predominant purpose during the a.m. peak hour is work trips. The output files were the NEWHR which would contain the subarea network and the J9 file which would contain the associated subarea triptable.

The control cards indicate the specific functions NAG was to perform in the particular application. WINDOW=T on the \&OPTION card indicates that the application was to create a subarea network and triptable. TABLES=101 says that the input triptable is on Table 1 of $J-f i l e ~ l . ~ T F I E L D=32$ indicates that NAG is to use observed link speed (if coded on any links) from oLDHR halfword location 32 when building minimum time paths needed to determine subarea boundary crossing points for regional zone to zone trip movements. (Refer to UTPS program NAG writeup.) If no value was coded in that field of the OLDHR, NAG would use the UTPS link speed/capacity table as does the UTPS traffic assignment program UROAD. The table assigns a speed and capacity
value to each link based upon its facility type, area type and number of lanes (see UTPS programs UROAD or HNET documentation available on the UTPS tape). ZONES=150 specifies that NAG will reserve space in the output NEWHR file for up to 150 zones. This was greater than the number estimated for the subarea and cordon to allow space in the file for additional zones to be added.

The \&SELECT control card is where the location of the subarea to be windowed is defined. The earlier versions of NAG (prior to the December 1982 release) accommodated two ways of specifying the subarea. One way was to specify a list of highway network nodes that formed a closed, continuous boundary around the subarea, along with one or more "foci" nodes interior to the subarea. The alternative way, utilized in the case study, was to specify a set of foci nodes (FOCI = ) and an over-the-network distance (R), in miles, which define a subarea by including all links within the shortest path link distance $R$ of each foci node. Figure 4 locates the focal nodes in the regional network utilized to define the subarea for the case study in conjunction with a shortest link path distance of 0.60 miles ( $R=0.60$ ). This foci list and distance was selected in order to define a subarea similar to the one shown in Figure 2. (Note: A new version of NAG was released in December 1982. It differs from previous versions, as used in the case study, in two important ways. First, the new NAG reads/writes the highway network files in link z-file format only. Second, the method of specifying the subarea has been changed. The newer version requires that the user specify the subarea by providing a list of a-nodes and b-nodes

which define a set of links which are bisected by the subarea boundary. Refer to the current NAG (12 December 82) program writeup for more detail.)

NAG Reports 3 and 4 display the results of the windowing process. Report 3 (Figure 5) informs the user which nodes have been renumbered in the new subarea network relative to the old regional network. The nodes renumbered were those which were zone centroids within the subarea and those network nodes which became boundary centroids. Note that these are flagged with a "*" in Report 3. Figure 6 displays a portion of the regional highway network with the new subarea centroids highlighted. NAG Report 4 displays a listing of the subarea network link data referenced by both the old (regional network) and new (subarea network) node numbers. The data displayed for each link includes its distance, number of lanes, facility type and area type. Figure 7 displays a portion of Report 4 from the NAG case study output.

Once NAG was run to create the subarea highway network and subarea a.m. peak hour triptable, a run of UTPS program UFMTR was made to display the contents of the new subarea triptable. Figure 8 contains the UFMTR set-up used to display the subarea triptable. The input Jl file was the subarea triptable dataset created previously by NAG. Reports 1 and 4 were requested, portions of which are displayed in Figures 9 and lo. Report 1 displays the zone to zone trips (in this case a.m. peak hour vehicle trips) in ascending order by I-zone (origin zone) and by J-zone (destination zone) with a subtotal of trips originating in

NAG REPORT 3

SUEAREA NODE N UMAERI NG
(* INDICATES RENUMBERED NODE/ZONE)

rilo	NE	OLT	NEV:	OLD	NE K	OLD	NEw	OLD	NEW
NICEE	nunt	More	$\because \mathrm{ODE}$	Natet	- C, DE	voue	NODE	NODE	NODE
146	-	147	1*	148	--	149	--	150	
981	2*	182	3*	163	$4 *$	184	5*	185	6 *
186	7 *	187	8*	188	- *	189	-*	190	10*
191	11*	192	12*	193	13*	194	14 *	195	15*
196	16*	197	17*	198	18*	199	--	200	15*
300	-*	307	--	3 ct	19*	3 ra	$20 *$	310	-
1591	1591	1592	21*	1543	- -	1594	--	1595	- -
1 ACO	--	1607	2è*	1608	23*	1009	1609	1610	610
1611	24*	1612	25*	1613	26*	1614	16	1615	
1636	-	1637	-	1638	1638	1639	27*	1640	-
1771	- -	1772	28*	1773	--	1774	-	1775	
1776	-	1777	-	1778	- -	1779	29*	1780	--
1781	-	1782	-	1743	-*	1764	3 C *	1785	1785
1786	1786	1787	31 *	1788	1788	1769	1789	1790	1785
1791	-	1792	--	1793	--	1794	32*	1795	1795
1796	1790	1797	1797	1796	1798	1799	1799	180	1800
1801	1601	1892	1802	180 ?	1803	1804	1904	1805	1805
1800	1800	1807	1907	1808	1808	1809	1809	1810	1810
1811	1811	1812	33*	1813	-	1814	1814	1815	1815
1815	1810	1817	9817	1818	1518	1819	1819	1820	1820
1921	1821	1822	1827	1823	1823	1874	34*	1825	1825
1926	1820	1827	-827	1828	1828	1629	1829	1830	1830
1931	35*	1832	--	1833	,	1834	1878	1835	
1830	--	1837	1837	$123 \mu$	183\%	1839	1839	1840	36*
1841	1441	1842	1842	1843	1843	1844	1844	1845	1845
1846	1840	1847	1847	1940	184F	1809	1849	1850	1850
1851	1651	1857	1852	$1+53$	1853	1854	1854	1855	1855
1850	1056	1657	1857	1558	185R	1859	1859	1860	1860
1 AOL	$1 \times 61$	1802	1862	1803	18.3	1864	1864	1865	1865
1806	1065	1807	1667	1 180H	1 ROR	1869	1869	1870	1870
1871	1071	1872	1872	1873	1873	1874	1874	1875	1875
1876	1876	1877	1877	1578	1878	1879	1879	1880	37*
1881	- =	1882	--	1883	- -	1864	1884	1885	1885
1886	1080	1887	1887	18ER	1888	1889	1889	1890	1890
1891	1891	1892	1897	1893	1893	1894	1894	1895	1895
1896	1896	1897	1897	1896	1898	1899	1899	1900	1900
1001	1901	1902	1902	1903	1903	1904	$\cdots$	1905	1905



S	


A NODE	B TODE	- NORE	F NOOF	$\begin{aligned} & \text { DIST } \\ & \text { (.OO) } \end{aligned}$	L	F	T
	1861		1869	7	2	3	2
1859	1856	1856	1858	1HAY			
	3250		3250	-	9	5	2
1860	16*	1860	190	17	9	5	1
	1863		1863	6	2	3	1
1861	1844	$1 * 01$	1244	28	2	3	2
	1862		1867	4	2	3	2
186?	1817	1thz	1847	$1+$	2	3	2
	$18 \times 3$		1862	6	?	3	?
1863	18 Co	1563	1360	6	2	3	1
	1879		1479	11	2	3	2
1864	1865	1864	1865	$?$	$\bigcirc$	5	2
	3233		$323 ?$	InAY			
1865	1864	1865	1 164	2	9	5	2
	1917		1917	15	1	3	2
1 Rot	1667	1466	1867	1	2	3	
	3234		3234	12	$\bigcirc$	5	
1867	18.66	$18+7$	1965	1	2	3	
	1916		1916	17	2	3	
1808	1867	1 Les	1867	12	?	3	2
	1930		1930	15	?	3	2
1869	1854	186.4	1864	1 Hay			
	3236		3234	19	9	5	2
1870	1871	1476	1871	15	-	5	2
	51*		325?	10	9	5	2
1871	1670	18.71	1870	15	$\bigcirc$	5	
	49*		3237	13	9	5	2
1872	1851	1472	1851	$\stackrel{8}{8}$	2	3	
	1675		1075	8	2	3	
1673	1850	1873	1850	8	2	3	
	1874		1874	19	2	3	
1874	1848	1876	1848	16	?	3	1
	1873		1573	19	2	3	
1875	1872	1875	1877	8	2	3	
	1885		1485	4	2	3	
1876	1873	1876	1273	8	2	3	
	1577		1877	19	2	3	
1877	1874	1077	1870	A	2	3	1
	1878		1875	19	2	3	1
1878	1860	187h	1960	5	?	3	1
	1858		1258	$\checkmark$	9	5	1
1679	18ち?	18.74	186 ?	15	2	3	2
	1865		1865	8	1	3	2
1884	19*	1894	$30^{\circ}$	$1 ?$	9	5	
	1896		189h	38	2	3	$?$


--NEW-	--CLD	DIST	$N$	$F$	${ }^{\text {A }}$
6 VRDE	R NOODE	(.00)	L	T	T
1878	1878	A 4			
1860	1860	3	9	5	2
1859	1859	IWAY			
1878	1678	5	2	3	1
1858	1858	7	2	3	2
1861	1861	4	2	3	?
1879	1879	15	2	3	2
1862	1862	8	?	3	2
1892	1892	22	2	3	2
1869	1869	32	9	5	2
1879	1879	8	1	3	2
1892	1892	14	2	3	1
1868	1868	12	2	3	2
1917	19.7	14	2	3	2
1869	1869	11	9	5	2
3251	3251	7	9	5	2
1868	1868	11	9	5	2
3235	3235	28	9	5	2
1943	1943	16	9	5	2
1873	1873	12	2	3	1
1872	1672	12	2	3	1
1876	1876	8		3	1
1857	1857	6	2	3	1
1877	1877	8	2	3	
1876	1876	12	2	3	1
1875	1875	12	2	3	
1886	1886	7	2	3	
1876	1876	19	2	3	1
1890	1890	13	2	3	1
1877	1877	19	2	3	1
1863	1863	11	2	3	2
37*	1880	33	2	3	
1839	1839	44	2	3	

//EMTR EXEC UFMTR,CORE=256K, // Jl='DSN=UMTA.SEA77.SUB.TRIPS,VOL=SER=UMTA2'
//UFMTR.SYSIN DD *
UFMTR RUN TO PRINT 1977 SUBAREA TRIPTABLE FROM NAG \&PARAM ZONES=51, TABLES=101, TITLEl='77SUBTRIPS' \&END \&SELECT REPORT=1,4 \&END

FIGURE 8: UFMTR SET-UP TO DISPLAY SUBAREA TRIPTABLES

## I/J ZONAL INTERCHANGE VALUES

1	$J$	SUB	I	J	77 SUB	I	J	SUB	I	$J$	SUB
1	1	25	?	44	8	4	16	3	5	39	2
1	2	7	2	45	14	4	17	3	5	43	39
1	3	28	$?$	48	5	4	18	8	5	44	31
1	4	20	2	49	13	4	20	3	5	47	26
1	5	23	2	50	1	4	28	10	5	48	25
1	6	17	2		84	4	33	4	5	49	28
1	7	5	3	1	18	4	34	1	5	50	11
1	8	4	3	2	5	4	35	8	5	51	43
1	9	11	3	3	20	4	37	$\Delta$	5		444
1	16	5	3	4	15	4	38	3	6	1	17
1	17	5	3	5	21	4	39	2	6	2	7
1	18	14	3	6	14	4	43	33	6	3	23
1	20	3	3	7	3	4	44	22	6	4	25
1	28	40	3	8	3	4	45	27	6	5	44
1	30	17	3	9	6	4	48	19	6	6	34
1	33	7	3	16	3	4	49	48	6	7	8
1	34	2	3	17	5	4	50	8	6	8	5
1	35	13	3	18	7	4	51	2	6	9	10
1	37	6	3	20	2	4		313	6	10	4
1	42	15	3	28	18	5	1	13	6	11	8
1	43	38	3	33	5	5	2	4	6	12	13
1	44	57	3	34	1	5	3	21	6	13	4
1	45	98	3	35	13	5	4	20	6	14	5
1	48	29	3	37	4	5	5	29	6	15	17
1	49	20	3	42	6	5	6	23	6	16	10
1	51	52	3	43	35	5	7	5	6	17	8
1		561	3	44	33	5	8	3	6	18	20
$?$	1	3	3	45	60	5	9	4	6	20	2
?	2	1	3	48	24	5	10	3	6	25	8
2.	3	4	3	49	17	5	11	8	6	29	13
2	4	4	3	50	4	5	12	12	6	33	6
$?$	5	4	3	51	40	5	13	3	6	34	3
?	6	3	3		382	5	14	3	6	37	10
2	7	1	4	1	10	5	15	12	6	39	3
2	8	1	$\Delta$	2	4	5	16	6	6	41	4
?	17	1	4	3	13	5	17	4	6	42	19
2	18	1	4	4	16	5	18	10	6	43	74
2	20	1	4	5	21	5	20	3	6	44	22
2	28	3	4	6	13	5	25	8	6	47	21
$?$	33	2	4	7	4	5	28	16	6	48	31
2	34	1	4	8	2	5	29	10	6	49	101
2	35	3	4	9	4	5	33	5	6	50	18
2	37	1	4	11	5	5	34	2	6	51	8
$?$	42	1	4	12	6	5	37	7	6		605
2	43	$\bigcirc$	4	15	7	5	38	5	7	1	11


each zone. The zone numbers displayed represent the renumbered zones of the subarea as created by NAG. UFMTR Report 4 displays the triptable in tabular form over several pages of output which can be cut-and-pasted together to produce a "wall-paper" display of the triptable. Figure 10 contains a portion of Report 4. Origin (I) zones form the rows of the table and destination (J) zones form the columns. The largest number of trips originate from zones that correspond to subarea cordon nodes lying on the major facilities entering the subarea such as the interstate ("zones" 43,49,51). The total number of a.m. peak hour vehicle trips destined to, from or through the subarea network output by NAG was 63,382 which compared with the 319 zone regional total of 576,525 trips.

## Increase Subarea Detail

Once the subarea highway network and triptable had been cutout from the regional network and triptable, the next step in the analysis process was to increase the detail of the subarea both in terms of traffic zones and highway network. This increase in detail was necessary in order to more accurately model changes in traffic flow as a result of the proposed small geographic scale change in the highway network. The level of detail of the regional highway network in the subarea, while appropriate for regional analyses, was inadequate for the type of analysis described here. Comparison of the subarea street map shown in Figure 2 with the network map shown in Figure 4 illustrates the difference in detail between the actual highway system and its
regional network representation. Many CBD arterials and collectors have been omitted from the regional network. Traffic on these streets would presumably be impacted by an operational change in traffic patterns such as prohibiting auto traffic on Third Avenue, therefore they should be included in the subarea network.

Correspondingly, the regional traffic zones needed to be disaggregated into smaller geographic units that would produce and attract trips at a finer geographic scale relative to the increased network detail. This would serve to "smooth" simulated traffic flow onto and off of the network links. These zones also needed to be defined in such a way that travel activity could be forecast for each zone as well. Figure 11 displays subarea zones that were used in the analysis of this case study problem. They were developed by the city planning agency for downtown transportation analyses and have associated population and employment forecasts. They are related to the regional transportation analysis zones as shown in the same figure.

To add this increased detail to the subarea for subsequent UTPS analysis required the application of program USQUEX to disaggregate the subarea triptable to the smaller zones and program HNET to increase the detail of the subarea highway network.

## Expand Subarea Triptable

UTPS program USQUEX was used to expand the subarea trip table from the 51 internal and cordon zones created by NAG to the 89 disaggregated subarea internal and cordon zones used for

subsequent detailed network analyses. The user provides USQUEX with a list of input zones and corresponding subzones to which each input zone is to be "split" (one \&EQUIV card for each input zone). The analyst also must provide a set of "fraction card" data which instructs USQUEX how to apportion trips from each input zone to each associated subzone. This apportioning or "splitting" of zones should be based on the estimated proportion of trips each smaller subzone will attract and produce relative to the larger zone or zones of which it is a part. USQUEX accommodates different splitting fractions for production, or origin, ends of trips and attraction, or destination, ends. The ability to hande multiple fractions relates to the fact that a subzone may contain a different percentage of trip producers (e.g., households) relative to the "parent" zone than trip attractors (e.g., employment).

Apportioning fractions based upon subzone employment were developed in the case study to split the 12 regional subarea zones into the 50 new subzones. Employment was utilized for two reasons: first, it is closely related to the amount of work travel. Since a.m. peak hour travel conditions were being analyzed, which are primarily comprised of work trips, employment was assumed to be a good basis for apportioning trip ends. Second, forecasts of employment by subzone were available both for the base year of 1977 and for the study year of 1990. Table 2 displays the list of regional subarea zones (as created by NAG), their associated subzones (with new zone numbers as shown in Figure ll), and the fraction of 1977 employment in each new subzone relative to the regional, subarea zone.

Relationship Between Subarea Zones and Subzones
Subarea
Zone22
Subzone*
Percent
Employment
99 ..... 44
80 ..... 23
79 ..... 27
104 ..... 6
3 94 ..... 33
95 ..... 18
91 ..... 24
92 ..... 23
94 ..... 2
49010
87 ..... 10
86 ..... 26
89 ..... 26
88 ..... 23
85 ..... 5
5 74 ..... 12
81 ..... 37
82 ..... 42
75 ..... 9
6 90 ..... 13
76 ..... 24
83 ..... 2084102
77 ..... 2 ..... 24
78 ..... 7
7 ..... 31
105 ..... 62
8 97
964
1
101 101 ..... 69
100 ..... 26
10 10 ..... 100
116916
63 ..... 22
60 ..... 62

Subarea   Zone	Subzone*	Percent   Employment
	68	10
	67	17
	61	20
	62	30
16	64	23
	73	1
	72	3
	65	7
	16	16
	71	5
	66	37

[^1]Figure 12 displays the USQUEX input used to split the subarea regional zones into smaller subzones. The subarea a.m. peak hour vehicle trip table created by NAG was input on file Jl while the new expanded subarea trip table was output on file J9. The highest zone number for the output subarea triptable would be 105 (ZONES=105) while the highest input subarea zone number from NAG was 51 (DISTS=51). By definition, NAG considers input zones for splitting, or expansion to be "Districts" while output subzones are "zones." The \&OPTION card indicates that the USQUEX run will be to expand (split) a triptable (EXPAND=T) and that the program should check to insure that all fractions sum to one (ONE=T), that is, that each input zone's trips are fully apportioned to equivalent subzones. The \&EQUIV card defines the correspondence between input regional subarea zones (from NAG) and output subarea zones. For example, DIST $=2, Z=99,80,79,104$ indicates that regional subarea zone 2 is to be split by USQUEX into more detailed subarea zones $79,80,99$, and 104 . The last \&EQUIV card image with $\operatorname{SAME}=9,10,12,-14,17,19,-51$ indicates that the input zones listed are not to be split but are to remain constant in the output triptable. These zones represented the subarea cordon centroids created by NAG.

An additional data requirement of USQUEX in the expand function is the fraction of trip productions and attractions that are to be allocated from the input zones to output subzones. The fractions displayed in Table 2 were input to USQUEX via "zone/district fractions cards" which enter the input stream following an \&DATA card. The \&DATA card and fraction cards come

```
//STEP EXEC USQUEX,CORE=256K,
// Jl='DSN=UMTA.SEA77.SUB.TRIPS,VOL=SER=UMTA2',
// J9='DSN=UMTA.SEA77.XSUB.TRIPS,VOL=SER=UMTA2',
// UNITJ9='SYSDA,SPACE=(TRK, (10,5))'
//USQUEX.SYSIN DD *
 EXPAND ZONE MATRIX
 &PARAM ZONES=105,DISTS=51,TABLES=101 &END
 &OPTION EXPAND=T,ONE=T &END
 &SELECT REPORT=1,-3 &END
 &EQUIV DIST=1, Z=1,98 &END
 &EQUIV DIST=2, Z=99,80,79.104 &END
 &EQUIV DIST=3, Z=94,95,91,92,93 &END
 &EQUIV DIST=4, Z=87,86,89,88,85 &END
 &EQUIV DIST=5, Z=74,81,82,75 &END
 &EQUIV DIST=6, Z=90,76,83,;84,77,102 &END
 &EQUIV DIST=7, Z=78,7,105 &END
 &EQUIV DIST=8, Z=97,96,101,100 &END
 &EQUIV DIST=11, Z=69,63,60 &END
 &EQUIV DIST=15, Z=68,67,61,62,64 &END
 &EQUIV DIST=16, Z=73,72,65,16,71,66,70 &END
 &EQUIV DIST=18, Z=18,103 &END
 &EQUIV SAME=9,10,12,-14,17,19,-51 &END
 &DATA
```

after the set of \&EQUIV cards in the USQUEX set-up and are displayed in Figure 13. Finally, USQUEX prints out a message which indicates the sum of the cell values of the output matrix. In the case study, this sum represents the total number of a.m. peak hour vehicle trips traveling to, from, or through the subarea. This sum should match the number of trips on the input triptable created by NAG and in the case study run it does at 62,382 trips.

## Increase Subarea Network Detail

Once the subarea detailed zones and triptable were created with USQUEX the next step undertaken was to increase the detail of the subarea highway network. This detail was required in order to more accurately model the changes in traffic volumes that might occur due to the proposed elimination of auto traffic from Third Avenue. This detailing required major changes to the subarea regional scale highway network. As illustrated earlier in Figure 6, many CBD streets were not included in the regional highway network. Due to expected "small-scale" changes in traffic flows within the CBD due to the proposed restriction of Third Avenue (e.g., vehicles shifting over one or two streets around Third Avenue) it was necessary to include these additional facilities in the network. In addition, the regional network simplified and abstracted network characteristics by representing oneway pairs of streets as a single two-way street, and representing the number of through lanes of travel as a composite of allday conditions rather than accounting for differences in peak versus off-peak capacity. Finally, additional network links were


TONE	P (1)	A (1)	$P(2)$					
20NE	$P(1)$	A (1)	$f(2)$	$A(2)$	$P(3)$	$\Delta(3)$	$P(1)$	$\Delta(4)$
-5	- 1	!	-3	$5=0-$	-45-			- -7


1	.50	.50
7	.31	.31
6	.31	31


16	.31	.3


60	62	62
61	20	20


61	.20	.2
62	30	.3

$63.22 \quad .22$
$64 \quad .23 \quad .23$
$\begin{array}{lll}65 & .07 & .07 \\ 66 & .05 & 05\end{array}$
$\begin{array}{lll}67 & .05 & .05 \\ 68 & .17 & .17\end{array}$
$68 \quad .10 \quad .10$
$69 \quad .16 \quad .16$
$\begin{array}{lll}70 & .37 & .37\end{array}$
71 .16 .16
$72 \quad .03 \quad .03$
$73 \quad .01 \quad .01$
$74 \quad .12 \quad .1$ ?
$75 \quad .09 \quad .09$
$76 \quad .24 \quad .24$
$77 \quad .24 \quad .24$
$78 \quad .07 \quad .07$
$79 \quad .27 \quad .27$
$80 \quad .23 \quad .23$
$81 \quad .37 \quad .37$
$82 \quad .42 \quad .42$
$83 \quad .20 \quad .20$
$84 \quad .02 \quad .0 ?$
$85 \quad .05 \quad .05$
86 . 26 . 26
87.20 .20
$88.23 \quad .23$
$89 \quad .26 \quad 2 h$
$90 \quad .26 \quad .26$
$91.24 \quad .24$
92.23
93.02 .02
$94 \quad .33 \quad .33$
$95 \quad .18 \quad .18$

required as "centroid connectors" between the new, smaller subarea zones and the more detailed subarea highway network. The process followed in increasing the detail of the subarea network can be summarized as follows:
o Run HNET to convert subarea OLDHR to N-file

- Run HNET to delete regional network links from N-file
- Run HNET to add subarea network links to $N$-file
- Run HNET to create link z-file from N-file

This process can be considered "conservative" since fewer HNET runs could have been made (e.g., adding and deleting links in the same run). However, due to the increased complexity of the subarea highway network, it was felt that this four-step approach to network updating made detection of coding errors easier and hence may have saved additional runs at a later stage of the analysis. Each of these HNET runs is described briefly below.

The first HNET run was made to convert the NAG subarea OLDHR file into an $N-f i l e$. This represent an interim conversion that allowed the subsequent use of $H N E T$ and the newer version of UROAD. The current version of NAG (12 December 82) would eliminate this step by directly outputting a subarea $N$-file, which is the most current UTPS highway network file structure, replacing the PLANPAC/UTPS "historical record" (OLDHR) file structure. All current UTPS programs only process the $N-f i l e$ and link and node Z-file highway network file structures (with the exception of HNET which converts OLDHR files into $N$-files, as illustrated here). The HNET set-up to convert is straightforward in that the UTPS format OLDHR file is read in and the $N$-file is written out.

The only keyword necessary to effect the conversion is coding OLDHR=T on the \&OPTION card. The subarea regional scale network contained 218 nodes and 325 links.

Once the subarea regional scale highway network was converted into $N-f i l e$ format, $H N E T$ was run again to delete links in the subarea that were to be replaced with the more detailed set of subarea links. This was accomplished by coding a set of link data cards which listed the links to be deleted from the network. Figure 14 contains a listing of the job set-up used for the run. Note that there is only one network file, Nl, which is modified (as compared with OLDHR and NEWHR files utilized by older UTPS program HR). Also input are the link data cards in the input stream following the //HNET.LINKS DD * card. HNET Report 5 (Figure 15) displays the updates that occurred to the $N-f i l e$ in that particular run. In this example, it is a listing of those links that were deleted from the $N$-file during that run of HNET.

## FIGURE 14: HNET SET-UP TO DELETE LINKS

```
//HNET EXEC HNET,CORE=256K,
// Nl='DSN=UMTA.SEA77.SUBAREA.NFILE,VOL=SER=UMTA2'
//HNET.LINKS DD *
//HNET.SYSIN DD *
 HNET RUN TO UPDATE SUBAREA N-FILE
 &SELECT REPORT 1,-5,7,14 &END
```

The next run of HNET added the more detailed, subarea highway links to the subarea $N$-file. The intent was to code into the highway network the CBD streets that were omitted from the regional scale network. In addition, the geometric and capacity characteristics of these facilities in the a.m. peak period, for

HNET RUN TO UPDATE SUBAREA N-FILE 5Jatise 15.20.01

HE:E T REPCKT E

which the analysis was performed, were coded into the network. This required the net addition of 358 links and 229 nodes to the subarea network (including the additional centroid connector links). Figure 16 shows the detailed subarea network. Subarea zonal centroid connections were made at "mid-blocks" so that assigned volumes at intersections would be more accurate and oneway street pairs have been accurately represented rather than abstracted as single two-way links. The number of through lanes of traffic on each street segment represented the conditions in the CBD in the a.m. peak period where certain curb lanes were reserved for transit while others allowed peak period curb parking. Also, the appropriate facility type and area type codes were developed for each new link (based on the UTPS default classifications) as well as the link distance, which was scaled from available maps of the subarea. The job set-up used for this run is almost identical to the HNET set-up in the previous run shown in Figure 14. The difference is in the link card file which, in this run, contains a list of links to be added along with their attributes. HNET Report 7, a portion of which is shown in Figure 17, displays the 1 ink contents of the $\mathrm{N}-\mathrm{file}$ after the updates have been processed. Link speed and time are not typically displayed as they are generally not included in the $N-f i l e$ but are written into the link $z$-file based upon the speed/capacity table values coded into HNET. These speed and capacity values are a function of each link's area type, facility type, and number of lanes. (See UTPS programs HNET and UROAD writeups for more detailed discussion of speed and capacity table values). The coded values on the subarea links for facility type and area

FIGURE 16




FIGURE 17
type presumed the use of default values provided in HNET and corresponded as closely as possible to the operating conditions of those streets in the a.m. peak hour. These default values could be changed during calibration of the assignment process to better reflect traffic volumes by street. Note that the "inbound" direction of one-way links (an "I" displayed under the "D" column in Report 7) contains no additional data which signifies that HNET considers the A-node, B-node link to be the "wrong way" of a one-way street.

The final $H N E T$ run was made to create the UTPS link z-file which contains the complete set of highway network information needed by program UROAD to perform traffic assignments. All network attributes contained in the $N-f i l e$ are copied by HNET into the $z$-file along with the speed and capacity values from the tables in HNET. Alternatively, speed and capacity values could be coded directly onto the link data cards. As described previously, this case study analysis made use of the speed and capacity tables in HNET to assign those values to each link. Figure 18 shows the HNET set-up which created the subarea link $Z-$ file. Note that the $N$-file (N1) created in the previous HNET run

FIGURE 18: HNET SET-UP TO CREATE SUBAREA LINK Z-FILE
//HNET EXEC HNET,CORE=256K
// Nl='DSN=UMTA.SEA77.SUBAREA.NFILE,VOL=SER=UMTA2',
// Zl='DSN=UMTA.SEA77.SUBAREA.ZFILE,VOL=SER=UMTA2',
// SPACEZl='(TRK,25)',DISPZl='(NEW,KEEP)'
//HNET.SYSIN DD *
\&PARAM ZONES $=105$ \&END
\&SELECT REPORT=9,14,-16 \&END
was input and the link $Z-f i l e(Z l)$ was output. The HNET control cards specified the highest zone number in the subarea network and which reports were requested.

Figure 19 displays an excerpt from HNET Report 9 which shows the link data contained in the link $z-f i l e$ of the enriched subarea network. Note that the freeflow time (minutes) and speed (mph), the link capacity (in vehicles/hour) and the link length ("DIS" column) to the nearest tenth of a mile are displayed. The subarea centroid connectors were assigned a uniform time of 1 minute, a capacity of 90,000 vehicles per hour, and no distance. These parameters reflect the nature of zonal centroid connectors which are fictitious links that provide connectivity between trip ends represented by zone centroid nodes and the street network.

## Calibrate Subarea Traffic Assignment

Once the subarea detail of both zones and highway network was increased, the next step in the analysis process was to calibrate a traffic assignment technique such that subarea traffic volume estimates reasonably matched 1977 observed traffic count data. Since a.m. peak hour traffic conditions were being simulated, some sort of traffic dispersion method was thought to be needed, either stochastic multipath assignment or some variation of capacity restraint, or some combination of those assignment methods. UTPS program UROAD provides the capabilities of performing a variety of traffic assignment methods including all-or-nothing, incremental (CATS), stochastic multipath, and iterative capacity restraint. (See the UTPS UROAD program writeup and the UROAD Lecture Guide for further details.)

7JMN82	98.03.14				HIVFT	REPORT	9		Page	
			L I		$\bigcirc$ ¢ T A	$W^{\prime}$ I $T$	L	$\bigcirc \triangle 0 \mathrm{~S}$		
A	B	U	FREEF	Low	---OESERVEO	CBASE	)--	---ASSIGNED	(LOAD	1)--
NOLE	NODE	C	TIME	$S^{\text {D }}$	CAP VOL	TIME SP	CIS	IMP VOL	Time SP	V/C
95	509				90000	1.00*				
96	600				90000	1.00*				
97	001				90000	1.00*				
97	002				90000	$1.00 *$				
98	603				90000	1.00*				
98	604				90000	1.00*				
99	9823				90000	1.00*				
100	605				90000	1.00*				
100	606				90000	1.00 *				
101	607				00000	1.00*				
102	608				90000	1.00*				
102	609				00000	1.00*				
103	610				90000	1.00*				
104	611				90000	1.00*				
105	612				00000	1.00*				
401	402		0.22	32	2700		0.1			
401	1906		0.17	28	1100		0.1			
401	1908		0.06	28	1100		0.0			
402	401									
402	501		0.21	32	2700		0.1			
402	1905		0.13	28	1100		0.1			
402	1954		0.13	$2^{R}$	1100		0.1			
403	405		0.46	29	1650		0.2			
403	501									
403	1900		0.14	25	1100		0.1			
403	1953		0.14	25	1100		0.1			
405	403									
405	505		0.08	22	1200		0.0			
405	514		0.44	22	2100		$0 . ?$			
405	9893		0.16	22	1200		0.1			
406	514									
406	520		0.08	22	2100		0.0			
406	1885		0.17	22	1200		0.1			
406	1886		0.16	22	1200		0.1			
407	520									
407	521									
407	522		0.11	22	2100		0.0			
407	523		0.08	22	1400		0.0			
408	522									
408	544		0.11	22	2100		0.0			
408	1872									
408	1873		0.16	22	2100		0.1			
409	544									
409	545									
409	546		0.11	22	2100		0.0			
409	547		0.08	2?	1400		0.0			

The first assignment method tested was a single iteration of stochastic multipath assignment. Stochastic multipath, or probabilistic traffic assignment, assigns traffic to multiple paths between zone pairs based upon the relative impedance of each path as compared to the lowest impedance path. The dispersion of assigned traffic to these competing paths is also a function of a parameter, theta, which varies the likelihood of the dispersion function allocating traffic to the competing paths. (See UTPS Report, The UROAD Stochastic Assignment Algorithm: A Sample Application Using Hand Calculation.) The assignment method acts to "spread around" the traffic to the links in the network rather than concentrating assigned trips to the links comprising the minimum impedance paths between zones as would occur in an all-or-nothing loading. Figure 20 displays the UROAD set-up used to

FIGURE 20: UROAD SET-UP TO PERFORM MULTIPATH ASSIGNMENT

```
//UROAD EXEC UROAD,CORE=336K
// Zl='DSN=UMTA.SEA77.SUBAREA.ZFILE,VOL=SER=UMTA2',
// Jl='DSN=UMTA.SEA77.XSUB,TRIPS,VOL=SER=UMTA2',
// UNITJl='3330-1'
//UROAD.SYSIN DD *
UROAD STOCHASTIC ASSIGNMENT
 &PARAM TABLES=101,THETA=.0015,CONFAC=1.0,LAVN=1,
 ASSIGN='SEASUBSTOCH' &END
 &SELECT REPORT=4,6,I=1,7,9,10,12,-14,16-51,60,-105,
 J=1,7,9,10,12,-14,16,-51,60,105 &END
```

perform a single iteration multipath assignment. The input files were the link $Z-f i l e$ on file $Z 1$ created by HNET and the subarea peak hour expanded vehicle triptable created by USQUEX. UROAD outputs the results of an assignment (e.g., link volumes, speeds, v/c ratio, etc.) to the link $z-f i l e(Z l)$ as new LAVs, as well as providing information through reports. The \&PARAM card controls
most UROAD functions. TABLES=101 indicates that the input trip table to be assigned was on Table l of J-file l. THETA=0.0015 indicates that UROAD was to perform a stochastic multipath assignment (since $0<T H E T A<10)$ with a dispersion parameter of 0.0015. (See UTPS Report, The UROAD Stochastic Assignment Algorithm: A Sample Application Using Hand Calculation for a discussion of the effect of theta on the multipath assignment results.) CONFAC=1.0 instructs UROAD to consider the input vehicle trips to be in terms of a peak hour table. (UROAD multiplies input vehicle trip volumes by CONFAC to estimate hourly volumes to compare with link capacity, which is in terms of vehicles per hour.) LAVN=1 indicates that when UROAD outputs the results of the assignment to the link $Z-f i l e$, each resultant link LAV will have a "l" appended to its LAV name (e.g., CTl, congested traveltime for assignment number 1 , etc.). The ASSIGN keyword permits the labeling of the assignment results in the link z-file with up to a 24 character name to better identify results in subsequent reports. The \&SELECT card denotes reports which were desired in the UROAD assignment run and which zones for trip assignment were selected (with the I and J keywords). Zone selection was required because the subarea zones were not numbered consecutively when created in USQUEX (though they could have been). The UROAD reports provided an indication of how the trial multipath assignment technique performed on the subarea network. Report 12 (Figure 2l) is a summary of the assignment results relative to network supply-demand equilibrium (see UTPS program UROAD writeup). The subarea multipath assignment results summary indicated that the network was overly congested (Congestion Index $=0.9173$

## MULTIPATH ASSIGNMENT


and Average $\mathrm{Speed}=2.26 \mathrm{mph})$. That is, the single multipath loading assigned too many trips to a selected number of 1 inks resulting in unrealistically low speeds and high v/c ratios. This was confirmed by examining UROAD Report 4 (Figure 22) which shows many links with v/c ratios greater than 1.25 and loaded speeds under 10 mph . These results indicated that some form of capacity restrained assignment was needed to "move around" the traffic on the network and better balance volume and capacity to produce more reasonable link loadings. Therefore, the next assignment method tested was one iteration of multipath assignment followed by two additional iterations of all-or-nothing assignment with capacity restraint recalculating link traveltimes between each iteration.

The only difference in the UROAD set-up to test this second assignment method was the coding of the keyword THETA which controls both the type of loading and the iterations of capacity restraint. In this run, it was coded as THETA=.0015,0,0 which indicated to UROAD that an initial stochastic multipath loading was to be followed by two additional all-or-nothing loadings with UROAD automatically applying capacity restraint between each loading. A review of Report 12 (Figure 23) from this UROAD run indicates major differences from the previous run of multipath assignment. Note that the congestion index has dropped to 0.4846 and the weighted average speed of all traffic assigned to the network increased to 14.59 mph . These statistics indicate that the network assignment is less "congested" than the previous assignment test. Comparing individual link volumes in Report 4 (Figure 24), it was observed that, in general, assignment volumes

LINK ANO TURN VOLUNES

	$\wedge$	$\stackrel{4}{4}$	$A-T O=b$		2-biar	$\Delta V^{\prime}$,		P	A-T0-8		$\begin{aligned} & \text { Z-WAY } \\ & \text { VOLUME } \end{aligned}$	$\begin{aligned} & \Delta V_{0} \\ & S P D \end{aligned}$
	NOLE	NOLE	VOLUME	SPD	VUl U"E	SPi		NODE	VOLUME	SPD		
(	461) 1	457)	755	P1	790	21	$($	462)	0	0	610	22
	(	516)	93	73	200	23						
(	46?) (	458)	477	22	011	22	(	461)	610	22	010	22
	,	465)	75	22	75	22.	$($	469)	217	22	694	22
	(	532)	0	0	$76{ }^{\circ}$	22						
6	463) (	532)	780	22	780	$? 2$	(	533)	0	0	581	23
	(	534)	0	0	1193	20	(	535)	984	23	984	23
$($	464) (	534)	1322	20	1322	20	(	1857)	0	0	1456	20
	(	1858)	134	22	134	22						
$($	465) (	16)	189	0	189	0	$($	462)	0	0	75	22
	(	406)	1433	20	1433	20	,	469)	0	20	1547*	9
6	466) (	465)	0	0	1433	20	$($	470)	2040*	4	3934*	4
	?	519)	497	30	497	30	$($	1892)	2184*	3	3578*	7
$($	467) (	519)	0	0	495	30	(	1868)	495	29	495	29
$($	$469)($	410)	915	21	915	21	(	462)	477	22	694	22
		465)	1547*	9	1547 *	9	(	470)	$1476+$		$2563+$	14
	1	536)	71	25	3237*	2	(	557)	73	23	054	23
	1	1851)	757	20	1026	21						
(	470) (	414)	2409*	4	2409*	4	$($	406)	1894*	5	3434*	4
	(	469)	1055-	17	$2563+$	14	1	571)	534	23	691	23
	!	581)	2570*	0	4152*	3	(	1863)	433	25	3901*	4
$($	471) ?	1803)	1558*	1	1644*	2	(	1823)	313	26	1418=	19
	1	1948)	$(1$	26	680	24						
(	$472)($	605)	53	75	99	25	$($	606)	41	26	114	26
	(	1795)	60	76	95	26						
(	473) (	450)	0	0	287	23	$($	1806)	629	23	029	23
		1853)	6	0	342	23						
$($	474) (	448)	0	0	952	23	(	1817)	958	23	958	23
	(	1828)	0	0	6	23						
$($	$501)($	-0)	263	0	410	0	$($	402)	0	0	402	31
	(	$403)$	280	31	286	31						
$($	502) (	$60)$	532	0	597	0	(	1953)	54	25	752	24
	(	1954)	297	25	417	25						
$($	503)(	61)	354	0	435	0	$($	423)	269	32	269	32
	i	424)	0	0	542	32						
6	504) (	62)	540	0	661	0	(	1901)	0	0	702	29
	(	1951)	283	29	293	29						
$($	505) (	63)	281	0	355	0	(	$405)$	149	23	617	23
	(	1952)	332	23	552	23						
C	506) (	64)	197	0	270	0	(	1914)	1010=		1993-	19
	1	1915)	951.	19	2053-	18						
(	507)(	64)	213	0	233	0	$($	1894)	179	22	283	22
	(	1895)	41	22	350	22						
	- =	VOLUME	CAPACIT	Y RA	TIO FROM	0.7	T	T0 1.00				
	+ =	VOLUME	CAPACIT	$Y$ RA	IIO FROM	1.00	T	T0 1.25				
	* $=$	VOLUME	CAPACIT	$Y$ RL	T10 1.25	AND	0	VER				
	\$ $=$	TOLL L	NKS CVOL	LlMe	= PEVENUE	, SP	=	CONGES	ED TIme			

## FIGURE 22

URUAD = STOCHASTIC ISSIG:MENT


## FIGURE 23

## UROAD REPORT 12

MULTIPATH CAPACITY RESTRAINED ASSIGNMENT

were spread over more links, with fewer links being over assigned. Comparison of assigned link volumes with peak hour traffic counts indicated a reasonably close correspondence. Major arterials in the CBD, for which a.m. peak hour counts were available, were generally within $10-15$ percent of assigned volumes for those links. Therefore the assignment method of one iteration of stochastic multipath followed by two iterations of all-or-nothing loading with capacity restraint was deemed acceptable for further use in subarea assignments.

Once the windowing process and assignment method was validated on 1977 data, the next step in the analysis process was to apply the procedures to the forecast year to test the effects of the restriction of Third Avenue to auto traffic. Unfortunately, as was indicated earlier, 1990 forecast year data were not available for testing in this case study analysis. However, the analysis concepts could still be illustrated using the 1977 triptables and network. If forecast year data were used, then the same process described in the previous section would have been applied: window the subarea network and triptable; expand subarea zones based upon forecast year expansion factors; increase future year network detail in the subarea; and assign traffic to the subarea network to obtain base condition or "do nothing" results. The next steps illustrate the remainder of the analysis process: creating subarea network alternatives and then assigning traffic to evaluate the results.

In order to create the representation of the CBD street system with access to Third Avenue prohibited to auto traffic, the base subarea highway network was modified by deleting those links representing Third Avenue from the network. HNET facilitates the creation of highway network alternatives by allowing for the copying of $N$-files with the ability to then make network modifications to the network copy without disturbing the original network representation. A run of $H N E T$ was made to copy the base, detailed subarea network in preparation for creating a network without Third Avenue. Figure 25 displays the HNET set-up used to copy the subarea network $N-f i l e$. Note there are two $N$-files coded in the run, $N 2$, which was the existing subarea network, and Nl, to which the copied network was written. The copy function was invoked by the coding of the " $\mathrm{N}=$ " keyword on the \&SELECT card. N specifies a list of nodes, and, by implication, associated links, to be copied from the $N 2$ file to the $N 1$ file. Since a copy of the entire subarea network was desired, $N$ was equated with all nodes in the subarea network (e.g., l-3256).

FIGURE 25: HNET SET-UP TO COPY N-FILE
//HNET EXEC HNET,CORE=256K,
// N2='DSN=UMTA.SEA77.SUBAREA.NFILE,VOL=SER=UMTA2',
// Nl='DSN=UMTA.SEA77.EXP.NFILE,VOL=SER=UMTA2',
// SPACENl='(TRK,20),DISPNl=(NEW,KEEP)',UNITNl='SYSDA'
//HNET.SYSIN DD *
HNET RUN TO COPY N FILE
\&SELECT $N=1,-3256$, REPORT $=1,5,7,14$, \&END

Once the copy of the detailed subarea network was created, the next step was to modify the network to delete Third Avenue
from the a.m. peak highway network to reflect the proposed restriction of that street to bus only traffic.

An alternative approach, not taken in the case study, would have been to code use codes on the links in the subarea network to facilitate the restriction of traffic during assignment. HNET and UROAD now allow the designation of a use code (UC) on links in the network. Then, by coding the UC keyword in UROAD during an assignment run, the user can restrict the assignment to only those links coded with the designated use codes. In the case study example, the subarea network links could have been assigned a use code of 1 , except for those links representing Third Avenue, which could have been assigned a different use code value of say, 2. Then, when an assignment was desired in which auto use of Third Avenue was prohibited, a "UC=1" would have been coded on the \&SELECT card of the UROAD assignment run. UROAD would then have effectively deleted those links with a use code other than $l(e . g .$, Third Avenue) from the network during its assignment.

The case study approach, however, was to create a network N file copy as described above, and then run HNET again to update the network $N-f i l e$ by deleting those links representing the portion of Third Avenue to be restricted to bus only traffic. The HNET update run was made with a set of link card updates which deleted Third Avenue between Steward and Yesler (see Figure 26). Then $H N E T$ was run to create a new link $z-f i l e$ of this alternative network for input to UROAD for traffic assignment. The set-up for this run is not shown as it is similar to update runs described earlier.

HNET RUN TO UPUATE
SUBAFE N-FILE
20JAN82 17.05 .11 HNET RFPORT 1 PAGE 4
I NPUT
LINK
D $A T A$
CARD I M A GES

D2 18861876
D2 18761873
D2 18731850
D2 18501849
D2 1849561
025611841
D2 1841 563
$02 \quad 5631837$
021837573

025731827
021827575
02575420
02420584
025841818
D2 1818580
025861819
0218191804
D2 1804421
HNT500 8200 (WARNING):NO NUOE CAROS EXIST DN THE NGDE UP LIATE CARD FILE


HNTO20 120 (INFORMATION): N-FILE UPDATING BEGINNING
HNTO20 120 (INFOKMATION): IV-FILE UPDATING CONPLETEU

Once the subarea network without Third Avenue was created, the next step was to assign the a.m. peak hour vehicle triptable and compare the results with the base subarea network with Third Avenue. UROAD was run again with the link $z-f i l e$ without Third Avenue as input and applying the same, calibrated assignment method of one iteration of stochastic multipath followed by two iterations of all-or-nothing capacity restraint. The set-up of the UROAD assignment is identical to the run described earlier. The following paragraphs describe the results of the assignment and compare it to the base case results. While comparisons of 1977 assignments with and without Third Avenue are being made, the typical application would have been to compare these assignments for 1990 conditions. Lack of regional forecast data prevented this future year analysis.

UROAD Report 12 (Figure 27) is the first basis for comparison as to the potential effects on traffic of prohibiting autos from using Third Avenue. Note that total vehicle-miles of travel (VMT) on the subarea network was estimated at 86,153 and total vehicle hours of travel (VHT) as 5964, with a resultant average speed of 14.44 mph . Comparing these statistics with Report 12 from the base network assignment (Figure 23) indicates that the assignment for the network without Third Avenue produced an estimated increase in VMT of 0.2 percent, and an increase in VHT of 1.2 percent, while subarea network-wide estimated average speed decreased 0.15 mph . It can be concluded from this subareawide analysis that the proposed prohibition of auto traffic on Third Avenue would not have an overall significant impact on auto


## FIGURE 27

UROAD REPORT 12
SUBAREA ASSIGNMENT WITHOUT THIRD AVENUE
travel. The next step was to look at the assignment results in more detail, to see if link or intersection specific problems may have been created or exacerbated.

Figures 28 and 29 show the assigned volumes on selected subarea arterials with and without Third Avenue, respectively. Note that traffic flow was shifted, by the assignment model, primarily to the parallel one-way arterials of 2 nd and 4 th Avenues. Additionally lst and 5 th Avenues absorbed some additional vehicles. However, the $v / c$ ratios on those facilities did not appreciably change in the assignment.

More detailed analysis of intersection performance could be performed by using the so-called micro-analysis options within UROAD which allows the user to examine in more detail the performance of specified intersections. Detailed information must be provided to the program on intersection geometry, approach lanes and signal phasing, and outputs include details of average and peak delay by approach and total delay. Refer to the UTPS program UROAD (12 December 82) writeup and the "UROAD Micro-Assignment: User's Guide."

Additionally, more detailed analysis could be performed using techniques available in the recent updates to the Highway Capacity Manual (NCHRP Circular 212) such as critical movement summation (CMS) which computes an intersection level of service based upon intersection geometry and approach and turn volume information. The inputs can be produced by UROAD as an optional output to the assignment results.

If problems are discovered as a result of these analyses, alternative network improvements can be tested using HNET to code

FIGURE 28


the network changes and UROAD to reassign traffic and produce network performance information or volumes to be used in the more detailed analysis techniques indicated above. This analysis can be done in an iterative fashion until a preferred alternative is identified.

## SUMMARY

This case study has illustrated the application of UTPS software to the analysis of a proposed subarea highway network change. The use of programs NAG, USQUEX, HNET and UROAD to "window" the subarea affected by the proposed elimination of a CBD arterial from the regional network, increase subarea detail and assign traffic to determine street system performance changes was illustrated. The application of UTPS software and complementary analysis techniques to these types of problems was demonstrated.


## MTA LIBRARY

## MTA DOROTHY GRAY LIBRARY 8 aRCHIUE <br> Use of UTPS for subarea highway analys <br> |||||||||||||||||||||||||||||||||||||||||||||||| <br> 


[^0]:    ${ }^{1}$ Cambridge Systematics, Inc., Guidelines for Travel Demand Analysis of Program Measures to Promote Carpools, Vanpools, and Public Transportation, prepared for the Federal Energy Administration, Washington, D.C., 1976.

[^1]:    *Note: Subzone numbers in this table do not correspond to those shown in Figure 11 for network coding reasons. The boundaries are the same, however.

