

UMTA-PA-06-0083-86-3

# ENERGY MANAGEMENT GUIDELINES FOR RAIL TRANSIT SYSTEMS VOLUME II

SEPTEMBER 1986

V.1

UMTA Technical Assistance Program

•

•

# ENERGY MANAGEMENT GUIDELINES FOR RAIL TRANSIT SYSTEMS

# AL TRANST STSTEM

# **VOLUME II**

by

Richard A. Uher Onkar N. Sharma RAIL SYSTEMS GENTER Mellon Institute Carnegie-Mellon University Pittsburgh, PA 15213

> SEPTEMBER 1986 FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION URBAN MASS TRANSPORTATION ADMINISTRATION Office of Systems Engineering Washington, D.C. 20590

| HE     |          |
|--------|----------|
| 4211   |          |
| • U5 4 | 17874    |
| 1987   |          |
| V - 1  | NY 23 94 |

MTA LIBRARY

.



Iechnical Report Documentation Page

| 1. Report No.                                                       | 2. Gavernment Acce |                            |                                  |                |
|---------------------------------------------------------------------|--------------------|----------------------------|----------------------------------|----------------|
|                                                                     | 2. Gevernment Acce | Jilon No. J. I             | Recipient's Catalog              | ne.            |
| UMTA-PA-06-0083-86-3                                                | }                  |                            |                                  |                |
| 4. Title and Subtitle                                               | <u> </u>           |                            | Report Date                      |                |
|                                                                     |                    |                            | eptember 1986                    | )              |
| "Energy Management Guidel                                           | ines for Rail      |                            | Performing Organizat             |                |
| Systems" Volume II                                                  |                    | ,                          |                                  |                |
| Systems vorumerr                                                    |                    |                            |                                  | <b>D</b>       |
| 7. Author's)                                                        |                    | 0. /                       | <sup>9</sup> erlorming Organizet | ien Keperi Ne. |
| Richard A. Uher, Onkar N.                                           | Sharma             | {                          |                                  |                |
| 9. Performing Drganization Nome and Addres                          |                    |                            | Work Unit No. (TRA               |                |
| -                                                                   |                    | 19.                        | Hark Unit No. (1KA               | 13)            |
| Rail Systems Center, Mell                                           | on Institute       |                            | Contract or Grant N              |                |
| Carnegie-Mellon Universit                                           | y                  | 1                          | A-06-0083                        | σ.             |
| 4400 Fifth Avenue                                                   |                    |                            | Type of Report and               |                |
| Pittsburgh, PA 15213                                                |                    |                            | type of Kepart and               | Period Covered |
| 12. Spensoring Agency Name and Address<br>U.S. Department of Transp | ortation           |                            | inal Report                      |                |
| Urban Mass Transportation                                           | Administratio      | n 7                        | /9/84-10/30/8                    | 36             |
| 400 Seventh Street, S.W.                                            |                    |                            | Sponsoring Agency (              |                |
| Washington, D. C. 20590                                             |                    |                            | shoutering wasnes .              |                |
|                                                                     |                    |                            |                                  |                |
| 15. Supplementery Notes                                             |                    |                            |                                  |                |
|                                                                     |                    |                            |                                  |                |
|                                                                     |                    |                            |                                  |                |
| 16. Abstract                                                        |                    |                            |                                  |                |
| The cost of electric                                                | ity is a signi     | ficant portion of t        | he operating                     | costs of mail  |
| transit systems. The impa                                           | ity is a signi     | ing energy costs is        | ne operating                     |                |
| presently in operation and                                          | luill ha falt      | by these in the n          | anning of an                     | se systems     |
| phases. Because of the nu                                           | mbon of nuclo      | by chose in the pi         | anning or co                     | in exercision  |
| served by transit, the inf                                          | Huber of Hucle     | ar power plants com        | nny on tine                      | in areas       |
| policies of rail transit a                                          |                    |                            |                                  |                |
| Concerned by rising e                                               |                    |                            |                                  |                |
| have established energy ma                                          |                    |                            |                                  |                |
| energy cost reduction and                                           |                    |                            |                                  |                |
| process of understanding a                                          | system's one       | gy enforments w            | ryy manayeme<br>ith the geal     | c of reduced   |
| energy cost and increased                                           |                    |                            |                                  |                |
| productivity. The bottom                                            |                    |                            |                                  |                |
| As a rule, energy mar                                               |                    |                            |                                  |                |
| during the design and cons                                          |                    |                            |                                  |                |
| savings occur because low                                           |                    |                            |                                  |                |
| engineered into the system                                          |                    |                            |                                  |                |
| operations of present trar                                          |                    |                            |                                  |                |
| of energy cost can be achi                                          |                    |                            |                                  |                |
| power rate intervention.                                            |                    |                            |                                  |                |
| assessing energy conservat                                          |                    |                            |                                  |                |
|                                                                     |                    | and poner ruce at          |                                  | ,              |
|                                                                     |                    |                            |                                  |                |
|                                                                     |                    | ·                          |                                  |                |
| 17. Key Words                                                       |                    | 18. Distribution Statement |                                  |                |
| Rail Transit Systems                                                |                    | Report is avail            | able to the                      | public         |
| Energy Management                                                   |                    | through the Nat            |                                  |                |
| Power Rate Structure                                                |                    | Information Ser            |                                  |                |
| TOWER NALE STRUCTURE                                                |                    | Springfield, Vi            |                                  |                |
|                                                                     |                    | chrrugerered AT            |                                  |                |
| 19. Security Classif, (of this report)                              | 20. Security Class | if. (of this page)         | 21- No. of Pages                 | 22. Price      |
| Unclassified                                                        | Unclassif          | ied                        | 376                              | ļ              |
| V                                                                   |                    |                            |                                  | ļ              |

Reproduction of completed page authorized

|                                                | Symbel              |          |                | 5 9                      | 5 £       | P.                  | Ē              |                                               |               | ~                        | Ĵ9                        | ĩ                 |                                   |             |               |           | ā :         | ₽                             |       |                        |              | 1 01           | 8                 | 5                           | ā:                    | r T          |            |                  |                    | *                      |              |                              | ~        |          | ٥       |  |
|------------------------------------------------|---------------------|----------|----------------|--------------------------|-----------|---------------------|----------------|-----------------------------------------------|---------------|--------------------------|---------------------------|-------------------|-----------------------------------|-------------|---------------|-----------|-------------|-------------------------------|-------|------------------------|--------------|----------------|-------------------|-----------------------------|-----------------------|--------------|------------|------------------|--------------------|------------------------|--------------|------------------------------|----------|----------|---------|--|
| ic Measures                                    | Ta find             |          |                | inches<br>               | tant      | yards               | mies.          |                                               | 1             | Souther mitthey          | Square yands              | Square miles      | 80183                             |             |               |           | Saurces     | spands                        |       |                        | 1            | fluid ounces   | pinta             | 4 Linea                     | galions               | Cubic vards  |            | -                | -1                 | f airentie i l         | temperature  |                              |          | 160 200  |         |  |
| ersions from Metr                              | Multiply by         | LENGTH   |                | <b>5</b> .0              |           | 3                   | 9.6            |                                               | AREA          | 0.16                     | 1.2                       | • 0               | 1 2.5                             |             | MASS (weight) |           | 0.035       | 22                            | -     | VOLUME                 |              | E0.0           | 2.1               | 1.06                        | 7. ;                  |              |            | DEBATHOC (And    | TEMPENALUNE (SERCE | 3.5 (then              |              |                              |          |          | 20 40   |  |
| Apprezimate Conversions from Metric Meesures   | When You Knew       | 1        | :              | Canitaters<br>Canitaters | Relet.    | Tate: 1             | k i larreter s |                                               | ł             | Bquara cantinnators      | Equara melora             | Aquara hilomaters | heclares [10,000 m <sup>4</sup> ) |             |               |           | grams       | kilograms<br>terrar (1000 hot |       |                        | 1            | milliliters    | liters            | b tar s                     | liters<br>Subs meters | Cubic maters |            | TEM              |                    | Celsius                | lenge: stute |                              | •F 32    |          |         |  |
|                                                | Symbol              |          |                |                          | E         | E                   | Ę              |                                               |               | ر سر <b>م</b>            | ~                         | Ĩ <u></u>         | 2                                 |             |               |           | е .         | 2.                            | •     |                        |              | Ē              | -                 | -                           | -7                    | - <b>^</b> E |            |                  |                    | °,                     |              |                              |          |          | ·       |  |
| <b>5 53</b> ·                                  | IZ 1                | <b>z</b> | <b>oz</b>      | 61                       |           | <b>**</b>           | 112            | <b>L1</b>                                     | 10            |                          | <b>S</b> I                |                   | <b>\$1</b>                        | 1           | ì             | <b>13</b> | +<br>-<br>  | נו<br> <br>                   | ļ     | 77<br> <br>  11        | <b>6</b>     |                | •<br>•            | 1º9                         | <b>د</b><br>التلا     |              |            | ¶<br> <br>       | •                  | •                      | E            | :                            | <b>E</b> |          | •س<br>ا |  |
|                                                |                     |          | ;              | !                        | · ·       | 1                   |                | 50°-11                                        | 64.05         | ik                       |                           |                   | į)                                | 9 <u>18</u> | 8 ° 1         | i dil     | j1, i .:    |                               | 11.56 | 1,: 1,1                | (P.)         |                |                   |                             |                       | ha de        | •••        | 1                | .lai               | he                     | 11           |                              | H        |          | 35.31   |  |
| , 9<br>  (  ,   ,   ,   ,   ,   ,   ,   ,   ,  | <br>  1, <b> </b> 1 | 8        | <b>[</b> ,1,1] | יייי<br>יוי              | 1.1.      | ' <b> ' </b>        | T              | , <b>, , , , , , , , , , , , , , , , , , </b> | <b></b>       | ' ' <br> <br> <br> <br>6 | ']'                       | <b>I'</b>         | ' <b>I'</b>                       | 4           | 5             |           | <b>'</b>  ' | 1.1                           | 1111  | r: ⊪<br>  <b>` `</b>   | <b> '1</b>   | <b>'</b>  '    | 111               | ' <b> '</b>                 | <b>'</b> 1'           | <b>'</b>  '  | 11         | ' ' <br> <br>  2 | " "                | <b> ' '</b>  <br> <br> | " <b> ' </b> | ų                            | " "      | 1        | nches   |  |
| , a<br>  ,   ,   ,   ,   ,   ,   ,   ,   ,   , | Symbol              | 8        | <b>[</b> ,1, ] |                          | יין<br>ני |                     | -['<br>ε       | I.I.I                                         | <b>.1.1</b>   | ' ' <br> <br>  6         |                           | 1' <br> <br> <br> | ""<br> <br>                       | 'l'         | <b>'''</b> '  |           | <b>'</b>  ' | 1.1                           | 1111  | . <b> . .</b><br>1. 1. | <b>1.1</b>   | .1.1           |                   | ' <b> '</b>                 |                       | , _          | ןיין<br>   | ' '              | " "                | 1, 1, 1<br>1, 1, 1     |              |                              | " "      | ا<br>، ا | nches   |  |
|                                                | Te Find Symbol      |          | <b>[</b> ,1,1] | . <b>I.</b>              |           | 5                   | ε              | I.I.I                                         | <b>' '</b>    | ' ' <br> <br> <br>       | lers.                     |                   | I                                 | 1'<br>2     | <b>'''</b> '  |           | -           |                               | 1111  | <b>,   ,  </b> ,       | <b>  • 1</b> | Ē              | Ē                 |                             |                       | '   '        | '' <br>    | ' '              | " "                | 1° °                   | <b>' '</b>   | itatiure                     | " "      |          | nches   |  |
|                                                |                     |          | LENGTH         | •1•                      |           |                     | E State        | kni<br>1                                      | AREA          |                          | lers.                     |                   | square kilonelers                 | 1'<br>2     | 5             | •]•<br>]  | B - Sueto   | kriograms kg                  | -     | VOLUME                 | <b>1</b> •1  | millititers mt | milliliters mi    | allitten al a               |                       | liters -     |            | ' '              |                    | 1.1.1                  | ןיןין<br>יי  | 6 fontperature               | " "      |          | nches   |  |
| Approximate Conversions to Metric Measures     | Te Find             |          |                | • <b>1</b> •             |           | 30 Centimeters Crit | E State        | ku formelius km                               | 1" '<br> <br> |                          | es 6.5 Bquatt Centurelars |                   | 2.6 square kiloneters             | hectares ha | <b>'''</b> '  | •]•<br>]  | 5.0 Grams   | 0.45 kilograms hij            |       | .<br>  .               |              | millititers mt | 15 millifiters mi | bunces 30 millitaters mil u |                       | 0,95 liters  | 3.0 Itlets |                  |                    | TEMPERATURE (exect)    | Celsus "C    | ture suhtracture fengerature |          |          | nches   |  |

.

METRIC CONVERSION FACTORS

| TUNIO OF OOHIOHIO | Table | of | Contents |
|-------------------|-------|----|----------|
|-------------------|-------|----|----------|

| 1. ENERGY CONSERVATION STRATEGIES                                                                                       | 1             |
|-------------------------------------------------------------------------------------------------------------------------|---------------|
| 1.1. DESCRIPTIONS OF BASE AND CASE STUDY TRANSIT SYSTEMS                                                                | 1             |
| 1.1.1. Description of Base Transit System                                                                               | 1             |
| 1.1.1.1. Right of Way                                                                                                   | 1             |
| 1.1.1.2. Vehicles                                                                                                       | 1             |
| 1.1.1.3. Operating Scenario                                                                                             | 2             |
| 1.1.1.4. Power Transmission and Distribution                                                                            | 2             |
| 1.1.1.5. Normal Traction Operation                                                                                      | 2             |
| 1.1.1.6. Normal Support Operation                                                                                       | 4             |
| 1.1.1.7. Summary of Power and Energy Use                                                                                | 4             |
| 1.1.1.8. Power Bill Analysis for Normal Operation                                                                       | 4             |
| 1.1.2. Description of WMATA and MARTA Systems                                                                           | 5             |
| 1.2. TECHNICAL STRATEGIES                                                                                               | 7             |
| 1.2.1. Vehicle Weight Reduction                                                                                         | 7             |
| 1.2.2. Vehicle Streamlining                                                                                             | 8             |
| 1.2.3. Propulsion System Efficiency                                                                                     | 8             |
| 1.2.4. <u>Regeneration</u>                                                                                              | 9             |
| 1.2.4.1. Regeneration with Natural Receptivity                                                                          | 10            |
| 1.2.4.2. Regeneration with Assured Receptivity - On-Board Storage                                                       | 12            |
| 1.2.4.3. Regeneration with Assured Receptivity - Regenerative                                                           |               |
| Substations                                                                                                             | 12            |
| 1.2.4.4. Assured vs. Natural Receptivity                                                                                | 13            |
| 1.3. OPERATIONAL STRATEGIES                                                                                             | 14            |
| . 1.3.1. Performance Modification                                                                                       | 14            |
| 1.3.1.1. General                                                                                                        | 14            |
| 1.3.1.2. Acceleration Reduction                                                                                         | 1 =           |
| 1.3.1.3. Braking Reduction                                                                                              | 15            |
| 1.3.1.4. Speed Reduction                                                                                                | 16            |
| 1.3.1.5. Coasting                                                                                                       | 17            |
| 1.3.1.6. Optimum Performance Modification                                                                               | 19<br>25      |
| 1.3.1.7. Coasting vs. Speed Reduction<br>1.3.1.8. Performance Modification Predictions on WMATA and                     | 20            |
| MARTA                                                                                                                   | 28            |
|                                                                                                                         | 30            |
| 1.3.2. <u>Train Operation Strategies</u><br>1.3.2.1. Scheduling for Improved Passenger Load Factor                      | 30            |
| 1.3.2.2. Scheduling to Improve Regeneration Receptivity on MARTA                                                        | 31            |
| 1.3.3. Support Energy Reduction                                                                                         | 33            |
| 1.3.3.1. WMATA Case Study                                                                                               | 33            |
| 1.3.3.2. MARTA Case Study                                                                                               | 35            |
| 2. POWER RATE STRUCTURE EVALUATION                                                                                      |               |
|                                                                                                                         | 153           |
| 2.1. INTRODUCTION                                                                                                       | 153<br>159    |
| 2.2. COST OF SERVICE - BASIC PRINCIPLES                                                                                 |               |
| 2.3. RATE STRUCTURE<br>2.4. SURVEY OF POWER RATE STRUCTURES OF U.S. TRANSIT AUTHORITIES                                 | 161           |
| 2.4. SURVEY OF POWER HATE STRUCTURES OF U.S. TRANSIT AUTHORITIES<br>2.4.1. Serving Electric Utilities and Jurisdictions | 160<br>162    |
| 2.4.1. Serving Electric Othines and Junsdictions<br>2.4.2. Structure of Billing Demand                                  | 161<br>164    |
| 2.4.2. <u>Structure of Energy Use Cost</u>                                                                              | 104<br>166    |
| AND OUNCINE OF LIEIDY DE COST                                                                                           | <b>x</b> \(\) |

|    |      | 2.4.4. Seasonal and Time of Use Rates                         | 166          |
|----|------|---------------------------------------------------------------|--------------|
|    |      | 2.4.5. Electric Traction Annual Power Cost                    | 167          |
|    | 2.5. | REGULATORY CONSIDERATIONS AND RATE MAKING STANDARDS           | 167          |
|    |      | 2.5.1. Customer Classification                                | 167          |
|    |      | 2.5.2. Rate Design                                            | 169          |
|    |      | 2.5.3. Cost of Service Study Methodology                      | 170          |
|    | 2.6  | CASE STUDY RESULTS                                            | 174          |
|    | 2.0. | 2.6.1. Washington Metropolitan Area Transit Authority (WMATA) | 174          |
|    |      | 2.6.2. Chicago Transit Authority (CTA)                        | 175          |
|    |      | 2.6.3. SOUTHEASTERN PENNSYLVANIA TRANSPORTATION AUTHORITY     | 1/2          |
|    |      | (SEPTA/AMTRAK)                                                | 175          |
|    |      | 2.6.4. Metro - Dade County Miami                              | 175          |
|    |      |                                                               |              |
| 3. |      | DMANAGEMENT                                                   | 182          |
|    |      | INTRODUCTION                                                  | 182          |
|    | 3.2. | POWER DEMAND MONITORING                                       | 183          |
|    |      | 3.2.1. Real Time Monitoring                                   | 183          |
|    |      | 3.2.2. Batch Process Monitoring                               | 185          |
|    |      | 3.2.3. Electric Bill Monitoring                               | 186          |
|    | 3.3. | POWER DEMAND REDUCTION OPPORTUNITIES                          | 186          |
|    |      | 3.3.1. Traction Performance Modification                      | 187          |
|    |      | 3.3.2. Support Power Reduction                                | 188          |
|    |      | 3.3.3. Load Leveling Using Energy Storage                     | 188          |
|    | 3.4. | COST AND BENEFIT                                              | 189          |
|    |      | 3.4.1. Load Management with Demand Monitoring                 | 189          |
|    |      | 3.4.1.1. Cost Information                                     | 189          |
|    |      | 3.4.1.2. Benefit                                              | 190          |
|    |      | 3.4.2. Load Leveling Through Energy Storage                   | 191          |
|    |      | 3.4.2.1. Cost Information                                     | 191          |
|    |      | 3.4.2.2. Benefit                                              | 192          |
|    | 3.5. | LOAD MANAGEMENT AND THE POWER RATE STRUCTURE                  | 193          |
|    |      | TRACTION ENERGY MANAGEMENT MODEL                              | 202          |
| 4. |      |                                                               | 202          |
|    |      | INTRODUCTION                                                  | 202          |
|    | 4.2, | BRIEF DESCRIPTION OF THE ENERGY MANAGEMENT MODEL              | 202          |
|    |      | 4.2.1. Objectives                                             | 202          |
|    |      | 4.2.1.1. Functional Objectives                                | 202          |
|    |      | 4.2.1.2. Architectural Objectives                             | 20 <b>3</b>  |
|    |      | 4.2.2. Approach                                               | 203          |
|    |      | 4.2.3. Principal Modules                                      | 204          |
|    |      | 4.2.3.1. Train Performance Simulator (TPS)                    | 205          |
|    |      | 4.2.3.2. Electric Network Simulator (ENS)                     | 205          |
|    |      | 4.2.3.3. Energy Cost Module (ECM)                             | 206          |
|    |      | 4.2.3.4. File Construction Module (FILCMD)                    | 2 <b>0</b> 7 |
|    |      | 4.2.3.5. File Manipulation Module                             | 208          |
|    | 4.3. | TRAIN PERFORMANCE SIMULATOR                                   | 209          |
|    |      | 4.3.1. Input                                                  | 209          |
|    |      | 4.3.1.1. File Definition                                      | 210          |
|    |      | 4.3.1.2. Simulation and Control Parameters                    | 210          |
|    |      | 4.3.1.3. Train Data                                           | 211          |
|    |      | 4.3.1.4. Right of Way Data                                    | 211          |
|    |      | 4.3.2. The Main Program Description                           | 211          |
|    |      | 4.3.3. Output                                                 | 213          |
|    |      | 4.3.3.1. Detailed Output                                      | 213          |
|    |      | 4.3.3.2. Summary Output                                       | 214          |
|    |      | 4.3.3.3. Power Profile Output                                 | 214          |
|    |      |                                                               |              |

,

| 4.4. METHODOLOGY                           | 214 |
|--------------------------------------------|-----|
| 4.4.1. Equations of Motion                 | 215 |
| 4.4.1.1. Integration Formulae              | 215 |
| 4.4.2. Real and Reactive Power Estimates   | 216 |
| 4.5. ELECTRIC NETWORK SIMULATOR            | 216 |
| 4.5.1. Input                               | 216 |
| 4.5.1.1. File of Filenames                 | 217 |
| 4.5.1.2. Electric Network Description File | 217 |
| 4.5.1.3. Operating Time File               | 218 |
| 4.5.1.4. Train Locator File                | 218 |
| 4.5.1.5. Current Position File             | 219 |
| 4.5.1.6. Train Power Profiles              | 219 |
| 4.5.1.7. Main Program Description          | 219 |
| 4.5.2. Output                              | 220 |
| 4.5.2.1. Detailed Output                   | 221 |
| 4.5.2.2. Meter Load Curves                 | 221 |
| 4.5.2.3. Current Measurement Output        | 221 |
| 4.5.3. Methodology                         | 221 |
| 4.5.3.1. Load Flow                         | 221 |
|                                            |     |

| 5. ENERGY AUDIT                                               | 228 |
|---------------------------------------------------------------|-----|
| 5.1. INTRODUCTION                                             | 228 |
| 5.2. ENERGY AUDIT OF THE MARTA RAIL SYSTEM                    | 229 |
| 5.2.1. Description of the Power Metering Data                 | 229 |
| 5.2.2. Regression Analyses                                    | 230 |
| 5.2.3. Power Demand Statistics                                | 233 |
| 5.3. ENERGY AUDIT OF WMATA RAIL SYSTEM                        | 235 |
| 5.3.1. Traction Energy                                        | 235 |
| 5.3.1.1. Description of PEPCO Metering Data                   | 235 |
| 5.3.1.2. Regression Analyses: Daily Car-Miles and Temperature | 236 |
| 5.3.1.3. Selection of Metered Background Power                | 240 |
| 5.3.1.4. Consolidation Histogram Analysis                     | 241 |
| 5.3.2. Support Energy                                         | 242 |
| 5.3.2.1. Description of Audit                                 | 242 |
| 5.3.2.2. Regression Analyses: Temperature                     | 242 |
| 5.3.2.3. Average PEPCO Support Power                          | 243 |
| 5.3.2.4. PEPCO Support Power Model                            | 244 |
| 5.3.2.5. The VEPCO Support Power Model                        | 246 |
| 5.3.2.6. Algorithms for Estimating Support Power Demand and   |     |
| Energy Use                                                    | 247 |

.

# ENERGY MANAGEMENT GUIDELINES FOR RAIL TRANSIT SYSTEMS VOLUME II

# TABLES

Page

No.

Title

| Table | 1-1  | Vehicle Characteristics                  | 38          |
|-------|------|------------------------------------------|-------------|
| Table |      | Vehicle Propulsion and Braking System    |             |
|       |      | Characteristics                          | 39          |
| Table | 1-3  | Operating Timetable Summary              | 40          |
| Table |      | Train Performance and Energy Summary for |             |
|       |      | Normal Operation                         | 40          |
| Table | 1-5  | Normal Operation Chopper (Base) Estimate |             |
|       |      | of Turnaround and Car Storage Power      |             |
|       |      | for Base Transit System                  | 41          |
| Table | 1-6  | Normal Operation Chopper (Base)          |             |
|       |      | Energy Analysis                          | 41          |
| Table | 1-7  | Support Power Requirements By Function   |             |
|       | -    | By Season                                | 42          |
| Table | 1-8  | Summary Normal Power and Energy Use      | 43          |
| Table |      | Normal Operation Chopper (Base)          |             |
|       | _    | Power Bill Analysis                      | 43          |
| Table | 1-10 | Vehicle, Propulsion and Braking          |             |
|       |      | Characteristics                          | 44          |
| Table | 1-11 | Route and Operating Characteristics      |             |
|       |      | of Study                                 | 44          |
| Table | 1-12 | Timetable Data                           | 45          |
| Table |      | Annual and Hourly Car-Miles              | 45          |
| Table |      | Electric Bill Analysis                   | $4\beta$    |
| Table |      | Predicted vs Actual Energy Consumption   |             |
|       | _    | (KWHPCM)                                 | $4\epsilon$ |
| Table | 1-16 | Ten Percent Vehicle Weight Reduction     |             |
| -     |      | (Chopper) Energy Analysis                | 47          |
| Table | 1-17 | Ten Percent Vehicle Weight Reduction     |             |
|       |      | (Chopper) Power Bill Analysis            | 47          |
| Table | 1-18 | Vehicle Streamlining (Chopper) Energy    |             |
|       |      | Analysis                                 | 49          |
| Table | 1-19 | Vehicle Streamlining (Chopper) Power     |             |
|       |      | Bill Analysis                            | 4 E         |
| Table | 1-20 | Normal Operation Cam-Control (Base)      |             |
|       |      | Energy Analysis                          | 43          |
| Table | 1-21 | Normal Operation Cam-Control (Base)      |             |
|       |      | Power Bill Analysis                      | 49          |
| Table | 1-22 | Chopper vs Cam-Control No Regeneration   |             |
| _     |      | Energy Analysis                          | 50          |
| Table | 1-23 | Chopper vs Cam-Control No Regeneration   |             |
|       |      | Power Bill Analysis                      | 50          |

| Table         | 1-24  | Chopper (Regeneration) vs Cam-Control                                          |    |
|---------------|-------|--------------------------------------------------------------------------------|----|
|               |       | Energy Analysis                                                                | 51 |
| Table         | 1-25  | Chopper (Regeneration) vs Cam-Control<br>Power Bill Analysis                   | 51 |
| Table         | 1-26  | Chopper (1/4 Fleet) vs Cam-Control                                             |    |
| Table         | 1-27  | Separate Trains Energy Analysis<br>Chopper (1/4 Fleet) vs Cam-Control Separate | 52 |
| <b>m</b> -bl- | 1 00  | Trains Power Bill Analysis                                                     | 52 |
| Table         | 1-20  | Chopper (1/4 Fleet) vs Cam-Control<br>Mixed Consists Energy Analysis           | 53 |
| Table         | 1-29  | Chopper (1/4 Fleet) vs Cam-Control Mixed<br>Consists Power Bill Analysis       | 53 |
| Table         | 1-30  | Assured Receptivity-On Board Storage                                           |    |
| Table         | 1-31  | Energy Analysis<br>Assured Receptivity-On Board Storage                        | 54 |
| _             |       | Power Bill Analysis                                                            | 54 |
| Table         | 1-32  | Assured Receptivity-Regenerative<br>Substations Energy Analysis                | 55 |
| Table         | 1-33  | Assured Receptivity-Regenerative<br>Substations Power Bill Analysis            | 55 |
| Table         | 1-34  | Speed and Power Profiles for Cam-Control                                       |    |
| Table         | 1-35  | and Chopper Control<br>Definition of Level-Tangent Track Runs                  | 14 |
|               |       | for Performance Modification                                                   | 56 |
| Table         | 1-36A | Acceleration Reduction (2.5 MPHPS)<br>(Chopper) Energy Analysis                | 57 |
| Table         | 1-36B | Acceleration Reduction (2.5 MPHPS)<br>(Chopper) Power Bill Analysis            | 57 |
| Table         | 1-37A | Braking Reduction (2.5 MPHPS) (Chopper)                                        |    |
| Table         | 1-37B | Energy Analysis<br>Braking Reduction (2.5 MPHPS) (Chopper)                     | 58 |
|               |       | Power Bill Analysis                                                            | 58 |
| Table         | 1-38  | Energy and Power Bill Analyses for<br>Chopper Control (with Regeneration)      | 16 |
| Table         | 1-39A | Speed Reduction (Min Run Time +.25 MIN)<br>(Chopper) Energy Analysis           | 59 |
| Table         | 1-39B | Speed Reduction (Min Run Time +.25 MIN)                                        |    |
| Table         | 1-40A | (Chopper) Power Bill Analysis<br>Speed Reduction (Min Run Time +.5 MIN)        | 59 |
|               |       | (Chopper) Energy Analysis                                                      | 60 |
| Table         |       | Speed Reduction (Min Run Time +.5 MIN)<br>(Chopper) Power Bill Analysis        | 60 |
| Table         | 1-41A | Speed Reduction (Min Run Time +.75 MIN)<br>(Chopper) Energy Analysis           | 61 |
| Table         | 1-41B | Speed Reduction (Min Run Time +.75 MIN)                                        |    |
| Table         | 1-42A | (Chopper) Power Bill Analysis<br>Speed Reduction (Min Run Time +1. MIN)        | 61 |
| Table         | 1-42B | (Chopper) Energy Analysis<br>Speed Reduction (Min Run Time +1. MIN)            | 62 |
|               |       | (Chopper) Power Bill Analysis                                                  | 62 |
| Table         | 1-43A | Speed Reduction (Min Run Time +1.25 MIN)<br>(Chopper) Energy Analysis          | 63 |
| Table         | 1-43B | Speed Reduction (Min Run Time +1.25 MIN)                                       |    |
|               |       |                                                                                |    |

| <b>TT 1 1 4 4 4</b> | (Chopper) Power Bill Analysis                                                | 63  |
|---------------------|------------------------------------------------------------------------------|-----|
| Table 1-44          | Energy and Power Bill Analyses for Cam-<br>Control (No Regeneration)         | 17  |
| Table 1-45A         | Speed Reduction (Min Run Time +.25 MIN)                                      | 11  |
| TADIE I-45K         | (Cam-Control) Energy Analysis                                                | 64  |
| Table 1-45B         | Speed Reduction (Min Run Time +.25 MIN)                                      | 0-1 |
|                     | (Cam-Control) Power Bill Analysis                                            | 64  |
| Table 1-46A         | Speed Reduction (Min Run Time +.5 MIN)                                       | 04  |
|                     | (Cam-Control) Energy Analysis                                                | 65  |
| Table 1-46B         | Speed Reduction (Min Run Time +.5 MIN)                                       | 00  |
|                     | (Cam-Control) Power Bill Analysis                                            | 65  |
| Table 1-47A         | Speed Reduction (Min Run Time +.75 MIN)                                      | 00  |
|                     | (Cam-Control) Energy Analysis                                                | 66  |
| Table 1-47B         | Speed Reduction (Min Run Time +.75 MIN)                                      |     |
|                     | (Cam-Control) Power Bill Analysis                                            | 66  |
| Table 1-48A         | Speed Reduction (Min Run Time +1 MIN)                                        |     |
|                     | (Cam-Control) Energy Analysis                                                | 67  |
| Table 1-48B         | Speed Reduction (Min Run Time +1 MIN)                                        |     |
|                     | (Cam-Control) Power Bill Analysis                                            | 67  |
| Table 1-49A         | Speed Reduction (Min Run Time +1.25 MIN)                                     |     |
|                     | (Cam-Control) Energy Analysis                                                | 68  |
| Table 1-49B         | Speed Reduction (Min Run Time +1.25 MIN)                                     |     |
|                     | (Cam-Control) Power Bill Analysis                                            | 68  |
| Table 1-50          | Energy and Power Bill Analyses for Chopper                                   |     |
|                     | Control (Regeneration)                                                       | 18  |
| Table 1-51A         | Coasting (3 MPH Band) (Min Run Time +.25 MIN)                                |     |
|                     | (Chopper) Energy Analysis                                                    | 69  |
| Table 1-51B         | Coasting (3 MPH Band) (Min Run Time +.25 MIN)                                |     |
|                     | (Chopper) Power Bill Analysis                                                | 69  |
| Table 1-52A         | Coasting (3 MPH Band) (Min Run Time +.5 MIN)                                 | -   |
|                     | (Chopper) Energy Analysis                                                    | 70  |
| Table 1-52B         | Coasting (3 MPH Band) (Min Run Time +.5 MIN)                                 |     |
|                     | (Chopper) Power Bill Analysis                                                | 70  |
| Table 1-53A         | Coasting (3 MPH Band) (Min Run Time +.75 MIN)                                | 74  |
| M-11- 1 50D         | (Chopper) Energy Analysis                                                    | 71  |
| Table 1-53B         | Coasting (3 MPH Band) (Min Run Time +.75 MIN)                                | 71  |
| Table 1-54A         | (Chopper) Power Bill Analysis<br>Consting (2 MPU Bond) (Min Bun Time +1 MIN) | 71  |
| Table 1-54A         | Coasting (3 MPH Band) (Min Run Time +1 MIN)<br>(Chopper) Energy Analysis     | 72  |
| Table 1-54B         | Coasting (3 MPH Band) (Min Run Time +1 MIN)                                  | 12  |
| TADIE 1-04D         | (Chopper) Power Bill Analysis                                                | 72  |
| Table 1-55A         | Coasting (3 MPH Band) (Min Run Time +1.25 MIN)                               | 12  |
| TABLE I DOA         | (Chopper) Energy Analysis                                                    | 73  |
| Table 1-55B         | Coasting (3 MPH Band) (Min Run Time +1.25 MIN)                               | 10  |
|                     | (Chopper) Power Bill Analysis                                                | 73  |
| Table 1-56A         | Coasting (5 MPH Band) (Min Run Time +.25 MIN)                                |     |
|                     | (Chopper) Energy Analysis                                                    | 74  |
| Table 1-56B         | Coasting (5 MPH Band) (Min Run Time +.25 MIN)                                | -   |
|                     | (Chopper) Power Bill Analysis                                                | 74  |
| Table 1-57A         | Coasting (5 MPH Band) (Min Run Time +.5 MIN)                                 |     |
|                     | (Chopper) Energy Analysis                                                    | 75  |
| Table 1-57B         | Coasting (5 MPH Band) (Min Run Time +.5 MIN)                                 |     |
|                     | (Chopper) Power Bill Analysis                                                | 75  |
|                     |                                                                              |     |

| Table 1          |       | Coasting (5 MPH Band) (Min Run Time +.75 MPH)                                       |          |
|------------------|-------|-------------------------------------------------------------------------------------|----------|
| Table 1-         |       | (Chopper) Energy Analysis<br>Coasting (5 MPH Band) (Min Run Time +.75 MPH)          | 76       |
| Table 1          | 201   | (Chopper) Power Bill Analysis                                                       | 76       |
| Table 1          | -59A  | Coasting (5 MPH Band) (Min Run Time +1 MIN)                                         |          |
|                  | 500   | (Chopper) Energy Analysis                                                           | 77       |
| Table 1          | -28R  | Coasting (5 MPH Band) (Min Run Time +1 MIN)<br>(Chopper) Power Bill Analysis        | 77       |
| Table 1.         | -60A  | Coasting (5 MPH Band) (Min Run Time +1.25 MIN)                                      |          |
|                  |       | (Chopper) Energy Analysis                                                           | 78       |
| Table 1          | -60B  | Coasting (5 MPH Band) (Min Run Time +1.25 MIN)                                      | _        |
| m- <b>\</b> ]_ 4 | 0.1   | (Chopper) Power Bill Analysis                                                       | 78       |
| Table 1          | -61   | Energy and Power Bill Analyses for Cam-Control<br>(No Regeneration)                 | 18       |
| Table 1          | -62A  | Coasting (3 MPH Band) (Min Run Time +.25 MIN)                                       | 10       |
| 10010 1          | 0.111 | (Cam-Control) Energy Analysis                                                       | 79       |
| Table 1          | -62B  | Coasting (3 MPH Band) (Min Run Time +.25 MIN)                                       |          |
|                  |       | (Cam-Control) Power Bill Analysis                                                   | 79       |
| Table 1          | -63A  | Coasting (3 MPH Band) (Min Run Time +.5 MIN)                                        | 00       |
| Table 1          | -638  | (Cam-Control) Energy Analysis<br>Coasting (3 MPH Band) (Min Run Time +.5 MIN)       | 80       |
| tante t          | 055   | (Cam-Control) Power Bill Analysis                                                   | 80       |
| Table 1          | -64A  | Coasting (3 MPH Band) (Min Run Time +.75 MIN)                                       |          |
|                  |       | (Cam-Control) Energy Analysis                                                       | 81       |
| Table 1          | -64B  | Coasting (3 MPH Band) (Min Run Time +.75 MIN)                                       | 0.1      |
| Table 1          | -654  | (Cam-Control) Power Bill Analysis<br>Coasting (3 MPH Band) (Min Run Time +1.0 MIN)  | 81       |
| lable 1          | -058  | (Cam-Control) Energy Analysis                                                       | 82       |
| Table 1          | -65B  | Coasting (3 MPH Band) (Min Run Time +1.0 MIN)                                       |          |
|                  |       | (Cam-Control) Power Bill Analysis                                                   | 82       |
| Table 1          | -66A  | Coasting (3 MPH Band) (Min Run Time +1.25 MIN)                                      | ~ ~      |
| Table 1.         | CCD   | (Cam-Control) Energy Analysis                                                       | 83       |
| Table 1          | -005  | Coasting (3 MPH Band) (Min Run Time +1.25 MIN)<br>(Cam-Control) Power Bill Analysis | 83       |
| Table 1          | -67A  | Coasting (5 MPH Band) (Min Run Time +.25 MIN)                                       | 00       |
|                  |       | (Cam-Control) Energy Analysis                                                       | 84       |
| Table 1          | -67B  | Coasting (5 MPH Band) (Min Run Time +.25 MIN)                                       |          |
|                  | 20 A  | (Cam-Control) Power Bill Analysis<br>Coasting (5 MPH Band) (Min Run Time +.5 MIN)   | 84       |
| Table 1          | -00A  | (Cam-Control) Energy Analysis                                                       | 85       |
| Table 1          | -68B  | Coasting (5 MPH Band) (Min Run Time +.5 MIN)                                        | 00       |
|                  |       | (Cam-Control) Power Bill Analysis                                                   | 85       |
| Table 1          | -69A  | Coasting (5 MPH Band) (Min Run Time +.75 MIN)                                       | ~ ~      |
| ሞቴኬነሪ 1          | COD   | (Cam-Control) Energy Analysis                                                       | 86       |
| Table 1          | -096  | Coasting (5 MPH Band) (Min Run Time +.75 MIN)<br>(Cam-Control) Power Bill Analysis  | 86       |
| Table 1          | -70A  | Coasting (5 MPH Band) (Min Run Time +1 MIN)                                         |          |
|                  |       | (Cam-Control) Energy Analysis                                                       | 87       |
| Table 1          | -70B  | Coasting (5 MPH Band) (Min Run Time +1 MIN)                                         | <u> </u> |
| መ≂⊾ነ- ∢          | -714  | (Cam-Control) Power Bill Analysis                                                   | 87       |
| Table 1          | -/1A  | Coasting (5 MPH Band) (Min Run Time +1.25 MIN)<br>(Cam-Control) Energy Analysis     | 88       |
| Table 1          | -71B  | Coasting (5 MPH Band) (Min Run Time +1.25 MIN)                                      | 00       |
|                  |       |                                                                                     |          |

|             | (Cam-Control) Power Bill Analysis            | 88 |
|-------------|----------------------------------------------|----|
| Table 1-72  | Monte Carlo Results for WMATA Red Line       | 89 |
| Table 1-73  | Steepest Descent Results for WMATA Red Line  | 89 |
| Table 1-74  | Summary of Coasting Predictions on WMATA     |    |
|             | and MARTA                                    | 90 |
| Table 1-75  | Passenger Load Factor Improvement            |    |
|             | Operating Timetable Summary                  | 90 |
| Table 1-76A | Passenger Load Factor Improvement            |    |
|             | Energy Analysis                              | 91 |
| Table 1-76B | Passenger Load Factor Improvement            |    |
|             | Power Bill Analysis                          | 91 |
| Table 1-77  | Energy Cost Effect of Passenger Load Factor  |    |
|             | Improvement on WMATA and MARTA               | 92 |
| Table 1-78  | Estimates of Receptivity for Normal          |    |
|             | Operation at MARTA                           | 92 |
| Table 1-79  | Energy Cost Variation Resulting From Offset  |    |
|             | Variation at MARTA                           | 93 |
| Table 1-80  | Reduction of Power Demand and Energy Use     |    |
|             | By Employing Direct Mercury Vapor Lighting   |    |
|             | in Underground Stations                      | 94 |
| Table 1-81  | Energy Savings By Reducing Escalator         |    |
|             | Operation During Non-Peak Hours of Operation | 95 |
| Table 1-82  | Surveyed Installed Support Load              | 96 |
| TADIE I UZ  | Suffeyed installed support hoad              | 50 |

.

| Table 2-1 | Serving Electric Utilities and Regulatory |     |
|-----------|-------------------------------------------|-----|
|           | Jurisdictions                             | 177 |
| Table 2-2 | Grouping of Utility Rate Structures       |     |
|           | for Rail Transit by Classification        | 178 |
| Table 2-3 | Demand Aspects of Rail Transit Power Rate |     |
|           | Structures                                | 178 |
| Table 2-4 | Noncoincident and Coincident Peak Power   |     |
|           | Demand for Traction Meters on the WMATA   |     |
|           | Red Line                                  | 179 |
| Table 2-5 | Voltage Variation Influences on Power     | 179 |
| Table 2-6 | Description of Typical Transit Demand     |     |
|           | Ratchets                                  | 180 |
| Table 2-7 | 1983/1984 Electric Traction Annual        |     |
|           | Power Costs                               | 181 |
|           |                                           |     |

| Table 3-1 | Power Demand Monitoring Cost Components   |     |
|-----------|-------------------------------------------|-----|
|           | (1986 Dollars)                            | 195 |
| Table 3-2 | Cost of Demand Monitoring Equipment       |     |
|           | for WMATA (1983 Dollars)                  | 196 |
| Table 3-3 | Energy Cost Savings of Load Management on |     |
|           | WMATA Using Coasting (1983 Dollars)       | 196 |
| Table 3-4 | Cost/Effectiveness of Load Management at  |     |
|           | WMATA (1983 Dollars)                      | 197 |

| Table 3-5<br>Table 3-6 | Cost Details of Real Time Power Demand<br>Monitoring System on MARTA (1985 Dollars)<br>Cost/Effectiveness of Load Management | 197        |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| Table 3-7              | at MARTA (1985 Dollars)<br>Cost Coefficients for Battery Storage                                                             | 198        |
| Table 3-8              | System (1985 Dollars)<br>Summary of Peak Load Shaving Effectiveness                                                          | 198<br>199 |
| Table 5-1              | Metering Points and Power Feed Information                                                                                   | 329        |
| Table 5-2              | Regression Analyses Results                                                                                                  | 330        |
| Table 5-3              | Results of Regression Analyses on North-South<br>and East-West Lines During Different<br>Time Periods                        | 331        |
| Table 5-4              | Comparison of Terms of Regression Equation                                                                                   | 140        |
| Table 5-5              | to Total Daily Energy<br>Energy Consumed By Metro Operations                                                                 | 332        |
| TADIE 5-5              | During 1980                                                                                                                  | 333        |
| Table 5-6              | Summary of Average Actual vs Scheduled<br>Car-Miles for Metro (Feb. 1, 1980-                                                 |            |
| Table 5-7              | Oct. 15, 1980)<br>Results of Regression Analyses for                                                                         | 334        |
|                        | Power vs Car-Miles and Degree Days                                                                                           | 335        |
| Table 5-8              | Temperature Dependent Coefficient of<br>Regression Analyses and Load Differences<br>for Traction Meter Consolidation         | 336        |
| Table 5-9              | Average Powers (KW) for Traction Meters                                                                                      | 330        |
|                        | at Different Operating Times (May 1, 1980-                                                                                   |            |
| Table 5-10             | Oct. 15, 1980)<br>Derived Background of PEPCO Traction                                                                       | 337        |
|                        | Meters on Red, Orange and Blue Lines                                                                                         | 338        |
| Table 5-11             | Comparison of Maximum Power Demand to                                                                                        |            |
|                        | Average for Several Traction Energy Meter<br>Consolidations                                                                  | 339        |
| Table 5-12             | Results of Temperature Regression Analyses                                                                                   | 000        |
| <b>.</b>               | for Support Meters                                                                                                           | 340        |
| Table 5-13             | Temperature Dependent Coefficients of<br>Regression Analyses Load Differences for                                            |            |
|                        | Support Meter Consolidation                                                                                                  | 341        |
| Table 5-14             | Average Support Power (KW) for Passenger                                                                                     |            |
|                        | Stations, Office Buildings and Repair<br>Shops During Principal Daily Operational                                            |            |
|                        | Periods                                                                                                                      | 342        |
| Table 5-15             | Average Support Power for Meter Consoli-                                                                                     |            |
| ₩-₩1- 5 40             | dations at Various Operating Periods                                                                                         | 343        |
| Table 5-16             | Summary of Lighting Loads By Passenger<br>Station                                                                            | 344        |
| Table 5-17             | Summary of Lighting Loads By Meter                                                                                           |            |
| Table 5-19             | Consolidations<br>Resconson Station Average Daily Peyer                                                                      | 345        |
| Table 5-18             | Passenger Station Average Daily Power<br>of Escalators                                                                       | 346        |

| Table | 5-19 | Comparison of Predicted Daily Average    |     |
|-------|------|------------------------------------------|-----|
|       |      | Escalator Power with Observation Using   |     |
|       |      | Simple Escalator Power Formula           | 347 |
| Table | 5-20 | Summary of Background, Lighting and      |     |
|       |      | Escalator Power (KW) for Support Meters  |     |
|       |      | at Passenger Stations                    | 348 |
| Table | 5-21 | Average Power Demand During Peak Periods |     |
|       |      | and Daily Energy Consumption of Office   |     |
|       |      | Buildings and Repair Shop                | 349 |
| Table | 5-22 | Passenger Station Lighting and Escalator |     |
|       |      | Loads Provided by VEPCO                  | 350 |
| Table | 5-23 | Summary of Background, Lighting and      |     |
|       |      | Escalator Support Power (KW) Furnished   |     |
|       |      | By VEPCO                                 | 351 |
| Table | 5-24 | Estimate of Support Energy Use and       |     |
|       |      | Average Peak Power Demand by Utility/    |     |
|       |      | Jurisdiction                             | 352 |
|       |      |                                          |     |

# ENERGY MANAGEMENT GUIDELINES FOR RAIL TRANSIT SYSTEMS VOLUME II

# FIGURES

Page

No.

.

Title

| Figure 1-1   | System Layout                            | 97               |
|--------------|------------------------------------------|------------------|
| Figure 1-2   | Traction Curves Chopper Control          | 98               |
| Figure 1-3   | Propulsion Efficiency Power Mode         | 99               |
| Figure 1-4   | Propulsion Efficiency Braking Mode       | 100              |
| Figure 1-5   | Power Distribution Nodal Diagram         | 101              |
| Figure 1-6   | Speed Profile Eastbound Normal           | 102              |
| Figure 1-7   | Speed Profile Westbound Normal           | 103              |
| Figure 1-8   | Power Profile Eastbound Normal           | 104              |
| Figure 1-9   | Power Profile Westbound Normal           | 105              |
| Figure 1-10  | Status of 101 Mile Metro System          |                  |
|              | December 1980                            | 108              |
| Figure 1-11  | MARTA Rapid Transit System               | 107              |
| Figure 1-12  | Assured vs Natural Receptivity Base      |                  |
|              | Transit System                           | 108              |
| Figure 1-13  | Summary Regenerative Savings WMATA       | 109              |
| Figure 1-14A | Speed Profile Minimum Time               | ر و د<br>ماليد م |
| Figure 1-14B | Power Profile Minimum Time               | 111              |
| Figure 1-14C | Power Profile Minimum Time-Regeneration  | 112              |
| Figure 1-15A | Speed Profile Minimum Time-1.5 Mile Run  | 113              |
| Figure 1-15B | Power Profile Minimum Time-1.5 Mile Run  | 114              |
| Figure 1-15C | Power Profile Minimum Time-1.5 Mile Run- |                  |
|              | Regeneration                             | 115              |
| Figure 1-16A | Speed Profile Acceleration Reduction     | 118              |
| Figure 1-16B | Power Profile Acceleration Reduction     | 117              |
| Figure 1-16C | Power Profile Acceleration Reduction-    |                  |
| -            | Regeneration                             | 113              |
| Figure 1-17A | Speed Profile Acceleration Reduction-    |                  |
| _            | 1.5 Mile Run                             | 118              |
| Figure 1-17B | Power Profile Acceleration Reduction-    |                  |
| -            | 1.5 Mile Run                             | 120              |
| Figure 1-17C | Power Profile Acceleration Reduction-    |                  |
| _            | 1.5 Mile Run-Regeneration                | 1 - 1            |
| Figure 1-18A | Speed Profile Deceleration Reduction     | 100              |
| Figure 1-18B | Power Profile Deceleration Reduction     | 123              |
| Figure 1-18C | Power Profile Deceleration Reduction-    |                  |
| _            | Regeneration                             | 134              |
| Figure 1-19A | Speed Profile Deceleration Reduction-    |                  |
| -            | 1.5 Mile Run                             | 125              |
| Figure 1-19B | Power Profile Deceleration Reduction-    |                  |
|              | 1.5 Mile Run                             | 126              |
| Figure 1-19C | Power Profile Deceleration Reduction-    |                  |
| =            |                                          |                  |

|              | 1.5 Mile Run-Regeneration                   | 127         |
|--------------|---------------------------------------------|-------------|
| Figure 1-20A | Speed Profile Speed Reduction               | 128         |
| Figure 1-20B | Power Profile Speed Reduction               | 129         |
| Figure 1-20C | Power Profile Speed Reduction-Regeneration  | 130         |
| Figure 1-21A | Speed Profile Speed Reduction-1.5 Mile Run  | 131         |
| Figure 1-21B | Power Profile Speed Reduction-1.5 Mile Run  | 132         |
| Figure 1-21C | Power Profile Speed Reduction-1.5 Mile Run- |             |
|              | Regeneration                                | 133         |
| Figure 1-22A | Speed Profile Coasting                      | 134         |
| Figure 1-22B | Power Profile Coasting                      | 135         |
| Figure 1-22C | Power Profile Coasting-Regeneration         | 136         |
| Figure 1-23A | Speed Profile Coasting-1.5 Mile Run         | 137         |
| Figure 1-23B | Power Profile Coasting-1.5 Mile Run         | 138         |
| Figure 1-23C | Power Profile Coasting-1.5 Mile Run-        |             |
|              | Regeneration                                | 139         |
| Figure 1-24  | Speed Reduction Effect on Power Bill        |             |
|              | Chopper Propulsion (Regeneration)           | 140         |
| Figure 1-25  | Speed Reduction Effect on Power Bill        |             |
|              | Cam-Control Propulsion                      | 141         |
| Figure 1-26  | Coasting Effect on Power Bill Chopper       |             |
|              | Propulsion (3 MPH Speed Band)               | 142         |
| Figure 1-27  | Coasting Effect on Power Bill Chopper       |             |
|              | Propulsion (5 MPH Speed Band)               | 143         |
| Figure 1-28  | Coasting Effect on Power Bill Cam-Control   |             |
|              | Propulsion (3 MPH Speed Band)               | 144         |
| Figure 1-29  | Coasting Effect on Power Bill Cam-Control   |             |
|              | Propulsion (5 MPH Speed Band)               | 145         |
| Figure 1-30  | The Energy-Running Time Plane               | 146         |
| Figure 1-31  | Diagram of Forces Acting on a Train         | 147         |
| Figure 1-32  | Distributions Used in Monte Carlo           |             |
|              | Simulation                                  | 148         |
| Figure 1-33  | A Point on the Non-Inferior Portion of      |             |
|              | the Curve with Travel Time T=T <sub>1</sub> | 149         |
| Figure 1-34  | Algorithm for Selecting Optimal             |             |
| FIGULE 1 34  | Step Size                                   | 150         |
| Figure 1-35  | Discretization and Minimization             | 100         |
| Figure 1 55  | Flow Chart                                  | 151         |
| Figure 1-36  | Coasting vs Speed Reduction Chopper         | 101         |
| Figure 1 50  | Propulsion (Regeneration)                   | 152         |
| Figure 1-37  | Coasting vs Speed Reduction Cam-Control     | 102         |
| Figure 1 57  | Propulsion                                  | 153         |
| Figure 1-38  | Performance Modification Strategy           | 100         |
| Figure 1 50  | WMATA AM Peak                               | 154         |
| Figure 1-39  | MARTA Performance Modification Results      | 104         |
| FIGUIC I JO  | AM Peak Operation 100% Receptivity          | 155         |
| Figure 1-40  | Performance Modification Results WMATA      | 100         |
| LIENIC I AN  | Red Line Outbound                           | 156         |
| Figure 1-41  | Energy Variation with Schedule Offset       | 150         |
| LIEULO I II  | BASES VALIATION WITH DEMODALE OFFSET        | <b>TO</b> ( |

| Figure 3-1 | Power Demand Monitoring | 200 |
|------------|-------------------------|-----|
| Figure 3-2 | Peak Load Shaving       | 201 |

| Figure 5-1                 | Heating and Cooling Degree Day Models                                                   | 353        |
|----------------------------|-----------------------------------------------------------------------------------------|------------|
| Figure 5-2                 | Observed vs Predicted Daily Energy Use<br>(KWH)                                         | 354        |
| Figure 5-3                 | MARTA Meter Summary Statistics                                                          |            |
|                            | All Coincident, All Days                                                                | 355        |
| Figure 5-4                 | MARTA Meter Summary Statistics                                                          | 356        |
| Figure 5-5                 | All Coincident, January 1983<br>MARTA Meter Summary Statistics                          | 200        |
| Figure 0 0                 | All Coincident, April 1983                                                              | 357        |
| Figure 5-6                 | MARTA Meter Summary Statistics                                                          |            |
| - 0                        | All Coincident, July 1983                                                               | 358        |
| Figure 5-7                 | MARTA Meter Summary Statistics                                                          |            |
|                            | All Coincident, October 1983                                                            | 359        |
| Figure 5-8                 | MARTA Meter Summary Statistics                                                          | 0.00       |
|                            | All Coincident, January 1984                                                            | 360        |
| Figure 5-9                 | MARTA Meter Summary Statistics<br>All Coincident, April 1984                            | 361        |
| Figure 5-10                | MARTA Meter Summary Statistics                                                          | 501        |
| 179010 0 10                | All Coincident, July 1984                                                               | 362        |
| Figure 5-11                | Histogram Red Line-Car Miles (Feb. 1-                                                   |            |
| -                          | Oct. 15, 1980)                                                                          | 363        |
| Figure 5-12                | Histogram Blue Line-Car Miles (Feb. 1-                                                  |            |
|                            | Oct. 15, 1980)                                                                          | 364        |
| Figure 5-13                | Histogram Orange Line-Car Miles (Feb. 1-                                                | 365        |
| Figure 5-14                | Oct. 15, 1980)<br>Histogram Average Degree Day (Feb. 1-                                 | 300        |
| LIBULE 2.14                | Oct. 15, 1980)                                                                          | 366        |
| Figure 5-15                | Summary Statistics WMATA Red Line-AM Peak                                               | 367        |
| Figure 5-16                | Summary Statistics WMATA Blue/Orange Line-                                              |            |
|                            | AM Peak                                                                                 | 368        |
| Figure 5-17                | Summary Statistics DC Jurisdiction-AM Peak                                              | 369        |
| Figure 5-18                | Summary Statistics MD Jurisdiction-AM Peak                                              | 370        |
| Figure 5-19                | Summary Statistics VA Jurisdiction-AM Peak                                              | 371<br>372 |
| Figure 5-20<br>Figure 5-21 | Summary Statistics WMATA Red Line-PM Peak<br>Summary Statistics WMATA Blue/Orange Line- | 512        |
| FIGULE V CI                | PM Peak                                                                                 | 373        |
| Figure 5-22                | Summary Statistics DC Jurisdiction-PM Peak                                              | 374        |
| Figure 5-23                | Summary Statistics MD Jurisdiction-PM Peak                                              | 375        |
| Figure 5-24                | Summary Statistics VA Jurisdiction-PM Peak                                              | 376        |
|                            |                                                                                         |            |

# ENERGY MANAGEMENT GUIDELINES FOR RAIL TRANSIT SYSTEMS VOLUME II

# EXHIBITS

Page

No.

## Title

| Exhibit | 4-1  | Energy Management Block Diagram             | 210        |
|---------|------|---------------------------------------------|------------|
| Exhibit |      | Format for File of Filenames                | 224        |
| Exhibit |      | Format of Control File                      | 225        |
| Exhibit |      | Format of Train File                        | 650        |
| BAILDIU |      | Part 1 Weights and Dimensions               | 228        |
|         |      | Part 2 On Board Energy Storage              | 230        |
|         |      | Part 3 Propulsion                           | 231        |
|         |      | Part 4 Traction and Braking                 | 236        |
| Exhibit | 4-5  | Format of Corridor Related Files            | 237        |
| Exhibit |      | Program Flowchart                           | 239        |
| Exhibit |      | Equation of Motion of a Train               | 240        |
| Exhibit |      | Grade Resistance                            | 241        |
| Exhibit |      | Train Resistance Formulae                   | 241        |
| Exhibit |      | Format for File of Filenames                | 201        |
| Exhibit |      | Format of Electric Network Description File |            |
| Exhibit |      | Format of Operating Time File               | 203        |
| Exhibit |      | Format of Train Locator File                | 260        |
| Exhibit |      | Format of Current Position File             | 263        |
| Exhibit |      | Format of Train Power Profiles              | 264        |
| Exhibit |      | Summary Flowchart of ENS                    | 268        |
| Exhibit |      | Creation of Curve File                      | 278<br>278 |
| Exhibit |      | Creation of Grade File                      | 273        |
| Exhibit |      | Creation of Route File                      | 280        |
| Exhibit |      | Creation of Speed Restriction File          | 281        |
| Exhibit |      | Creation of Station File                    | 283        |
| Exhibit | . –  | Motor Control                               | 285        |
| Exhibit |      |                                             | 200<br>286 |
| Exhibit |      | Region I, II and III, TE vs SPD Curve       | 287<br>287 |
|         |      | Braking Effort vs Speed                     | 20<br>286  |
| Exhibit |      | Execution of TNF                            | 293        |
| Exhibit |      | Execution of NFC                            |            |
| Exhibit |      | Execution of OPF                            | 227        |
| Exhibit |      | Execution of TLF                            | 293        |
| Exhibit |      | Creation of Current Position File           | 300        |
| Exhibit |      | Format of Meter Load Curve File             | 30Ē        |
| Exhibit | 4-31 | Format of Meter Consolidation File          | i de       |

# **1. ENERGY CONSERVATION STRATEGIES**

## 1.1. DESCRIPTIONS OF BASE AND CASE STUDY TRANSIT SYSTEMS

#### 1.1.1. Description of Base Transit System

A base rail transit system was designed to illustrate the effects of energy conservation strategies on power demand and energy use. The baseline system has been made simple. The simplicity, however, does not mask reality. The effects observed in the application of traction energy cost reduction strategies are of the same nature as would be seen on real transit systems.

#### 1.1.1.1. Right of Way

The physical layout of the base system is shown in Figure 1-1. There are no curves nor grades, and only one speed limit is designated, a speed of 40 MPH between mileposts 3.8 and 5.1. The maximum speed of 70 MPH is allowed everywhere else on the double track line.

The location of the passenger stations and substations are also shown in Figure 1-1. The passenger stations are either 0.5, 1.0 or 1.5 miles apart. All mileposts (MP) are measured from passenger station A, designated as the western terminal. The eastern terminal is located at MP 8.0.

#### 1.1.1.2. Vehicles

The fleet of vehicles contain cars with identical characteristics. The fleet has 114 cars, 90% (or 102) of which are available and are used for peak transit service. The vehicle physical characteristics are listed in Table 1-1. The propulsion and braking characteristics are listed in Table 1-2.

The traction effort curves for power and electrical braking are shown in Figure 1-2. These curves represent the maximum capability of each car.

The propulsion system efficiencies in the power and braking modes are shown

in Figures 1-3 and 1-4, respectively. Each of the curves in the figures represent the efficiencies at different percentages (20, 40, 60, 80 and 100%) of maximum tractive effort.

#### 1.1.1.3. Operating Scenario

Table 1-3 provides a summary of the operating timetable. Passenger loading between all stations during the peak periods was assumed to be 50% of crush load. At all other time, passenger loading is assumed to be 25% of crush load. Dwell times at all passenger stations are 20 seconds.

#### 1.1.1.4. Power Transmission and Distribution

The nodal diagram for the power transmission and distribution for traction power is shown in Figure 1-5. The unit power is taken as 5MW and the unit voltage is taken as 750V on the track side of the substation. This means that the unit resistance is  $[(750V)^2/(500000W)=]0.11$  ohms. If the third rail resistance in series with the resistance of four parallel running rails (two parallel tracks) is 0.00321 ohms per 1000 ft., then the per unit resistance is 0.154/mile [.00642 \* 5.28/0.11].

The substations are all rated at 10000 MW with an impedance of 6%. Each substation feeds each third rail and four parallel rails of the ground return circuit.

## 1.1.1.5. Normal Traction Operation

#### 1.1.1.5.1 Moving Trains

The speed profile superimposed on the speed restrictions for normal operation during the peak period for eastbound and westbound trains is shown in Figures 1-6 and 1-7, respectively. Figures 1-8 and 1-9 show the power profiles for the same operations (eastbound and westbound). The negative values of power in the last two figures represent the power available during regenerative braking.

Terminal to terminal summaries of run time and energy use (minimum with full receptivity and with natural receptivity) are listed in Table 1-4. The minimum energy

consumption is measured at the third rail shoe or trolley. The energy use with natural receptivity is measured at the meters. Energy use during dwell times at stations is also included. Energy use during turnaround and layup (storage) was not included, and is estimated separately.

1.1.1.5.2 Estimate of Train Turnaround and Storage Energy Use

For a simple two track system with two terminals and a fixed headway, the power use during turnaround at the terminals due to on-board auxiliaries is

$$P = P_{A} \bullet TT / HW$$

where  $P_{o}$  is the power use of a single train, TT is the total turnaround time (min) and HW is the headway (min). For the base transit system, the minimum turnaround time is taken as 3 minutes per terminal or 6 minutes round trip.

Likewise, the minimum number of trains required to run the schedule specified in the operating timetable of Table 1-3 is given by the expression

$$N_{o} = RT + TT_{min} + \Delta T$$

where N<sub>o</sub> is an integer, RT is the round trip running time (sum of eastbound and westbound run times) expressed in units of headway (HW) and TT<sub>min</sub> is the minimum turnaround time expressed in units of headway. The quantity,  $\Delta T$ 

## $0 \leq \Delta T \leq 1$

expressed in units of headway is called the slack time.

Table 1-5 shows the details of the turnaround and storage power estimates based on the formulae above and operating scenario of the base transit system.

It is well to note that the turnaround and storage power were estimated independent of train movement. Some of this power requirement can be met by regenerating trains. During the peak period, the power requirement is smallest.

#### 1.1.1.5.3 Summary of Traction Power Requirements

Table 1-6 presents a summary of estimated power and energy use for traction operation for the normal conditions of the base rail transit system. It was assumed that none of the turnaround and storage power was supplied by regenerating trains. On the other hand, no network losses were included for the turnaround and storage power.

It was also assumed that on-board auxiliaries on the cars remained operating during storage periods. This assumption can cause the energy use per car-mile during off-peak operating periods to seem exaggerated.

The traction power requirement during the peak period is 16340 kW and the annual energy use 55.1 MkWh.

#### 1.1.1.6. Normal Support Operation

A facility breakdown of support power by support function and season of the year is presented in Table 1-7 for the base rail transit system. These power requirements are for normal operation.

#### 1.1.1.7. Summary of Power and Energy Use

Table 1-8 summarizes the energy use and power demand billing determinants of traction and support power for the base rail transit system. For the power demand component, the support power portion is 34% of the total demand, while for the energy use component, it is 57% of the total energy use.

#### 1.1.1.8. Power Bill Analysis for Normal Operation

Table 1-9 contains the power bill analysis for normal operation. The rates are expressed in units of the annual power bill, which is assumed 1.00. The rate is also shown as a function of the portion of the power bill which is demand (which varies from 0 - 1 in steps of .25). It is also assumed that the facilities charge is negligible so that

#### Demand Portion + Energy Use Portion = Power Bill

As an example, if the power bill is 50% demand related (and thus 50% energy use related) the unit rates are 0.00154/MW for demand and 0.00376/MKWH for energy. So if the total power bill were \$10M, the demand charge is \$15.40/kW (\$15400/MW) and 3.7 cents/KWH (\$37,000/MkWH).

#### 1.1.2. Description of WMATA and MARTA Systems

The operation studied at WMATA consisted of the RED, BLUE and ORANGE lines. At the time (1980-82), the RED line ran from Dupont Circle to Silver Spring, a distance of 9.9 miles. The BLUE line ran from National Airport to Addison Road, a distance of 15.9 miles. The ORANGE line ran from Ballston to New Carrollton, a distance of 16.6 miles. The ORANGE and BLUE lines shared common track from a point slightly west of Rosslyn Station to D/G Junction, a point east of Stadium Armory Station. Figure 1-10 shows a map of the WMATA rail system as it was in 1980-82, during the time of the study.

The operation studied at MARTA consisted of the North-South (NS) and East-West (EW) lines shown in Figure 1-11. During the early stages of the study, the service extended from West End to Arts Center on the NS line, but during 1985, the service was expanded so that it extended from Lakeview to Brookhaven. On the EW line, trains operated between Hightower and Avondale.

Table 1-10 shows the physical, propulsion and braking characteristics of the vehicle for both rail systems. During the time of the WMATA study, the cars were propelled using cam-controlled resistor switching (cam-control), which was not capable of regeneration. Cars which use chopper control were on order, and are now in service.

Table 1-11 lists the route and operating characteristics of the two rail systems. Although the maximum speed of the WMATA system (75 MPH) is higher than that of MARTA (70 MPH), the average speed of MARTA is higher than WMATA. Table 1-12 lists the timetable data for both systems; namely, the headway and number of cars per train for both systems during various operating periods. These were the data used for the studies.

Table 1-13 shows the annual car-miles and the car-miles per hour normally scheduled for peak operation for both systems. These numbers when multiplied by the KWHPCM yield the traction component of energy consumption and demand.

Table 1-14 lists the principal structure of the electric bills. The electric power service to the WMATA rail system is provided by two utilities: the Potomac Electric Power Company (PEPCO), and the Virginia Electric Power Company (VEPCO). The PEPCO service to Metrorail is under three jurisdictions: District of Columbia (DC), Maryland (MD), and Virginia (VA). VEPCO provides power to WMATA under the VA jurisdiction.

WMATA is considered a separate customer class (RT rate) by PEPCO in all three jurisdictions. The service supplied by VEPCO is part of a government rate with just an energy charge.

Electric service to MARTA is provided by the Georgia Power Company (GPC) under a modified industrial rate (ET rate). Presently, MARTA is not classified separately. However, its unique load and customer characteristics are recognized by GPC.

Both MARTA and WMATA rail systems rely on automatic train control (ATC) to drive the trains.

Energy audits were conducted on both rail systems by examining and analyzing the metering records of the electric utilities serving the authorities. Regression analyses were conducted to determine the KWHPCM based on daily energy consumption and daily car-miles. The results are shown for both systems in Table

6

1-15. Also included in the table is a prediction using the Energy Management Model (EMM).

All of the subsequent estimates of traction energy consumption reduction were made using the EMM.

#### **1.2. TECHNICAL STRATEGIES**

#### 1.2.1. Vehicle Weight Reduction

The base rail transit system is used to illustrate the example of vehicle weight reduction. The empty weight of the vehicle was reduced by 10%. All other system characteristics remained the same including the initial acceleration rate and the propulsion system.

Table 1-16 shows the energy analysis of the vehicle weight reduction strategy. Because of the decreased empty weight of the vehicle, the run time has decreased (peak period from 13.85 min to 13.79 min).

Table 1-17 shows the power bill analysis using the new fleet of reduced weight vehicles.

The net effect for vehicle weight reduction under the postulated circumstances is marginal (less than 1% change in the power bill).

There are three basic causes for this marginal behaviour:

- 1. Because of the lower weight vehicle and under the circumstances postulated (no change in the propulsion system), acceleration on the motor curve is higher causing more high speed running and higher performance. This counteracts the reduced energy effect of lower weight.
- 2. Vehicle weight affects the braking and train resistance energy end uses. The effect on train resistance is small since it does not influence the aerodynamic portion. Because of regeneration, the weight influence in the braking energy end use is also small. Weight has no affect on the auxiliary power and propulsion system losses. Thus, the weight influence on energy consumption is small, so that a change in weight produces a much smaller change in energy consumption.

3. Because of the change in train performance (run time) receptivity of braking energy is also changed. This effect could be either positive or negative.

#### 1.2.2. Vehicle Streamlining

Vehicle streamlining was also tested on the base rail transit system using simulation. The aerodynamic factor of the front end of the train was reduced from the standard Davis equation value of (.0024) to .00226, a reduction of 6%.

Table 1-18 shows the energy analysis of the effects of improved vehicle streamlining. Table 1-19 shows the power bill analysis. In this case, there is little or no effect on train performance or run time, since the propulsion system or initial accelerating rate remains unchanged.

The overall effect of streamlining is small  $\langle 1\% \rangle$ . The cause for this marginal effect is that the energy end use of the aerodynamic drag portion of train resistance is small. Thus small changes in this end use have a very small effect on system energy.

#### 1.2.3. Propulsion System Efficiency

One energy end use of a moving train is the propulsion system losses caused in the conversion process of line electrical power to rail mechanical power and visaversa during regeneration. Domestic rail transit service is in trains propelled by DC motors, either using cam-controlled resistor switching or chopper control of these motors. It is interesting to observe the effect of cam-control vs. chopper control on the same system without the effect of regeneration.

Two vehicle fleets were simulated. The base fleet was provided with camcontrol. The propulsion system provided the same performance as the chopper. A traction energy summary of this base system is provided in Table 1-20. Table 1-21 presents a power bill analysis of the base system, similar to Table 1-9, where the power bill has been set to unit value. This cam-control base system is used for further analysis in applying the energy conservation strategies in the following sections of this chapter.

To make the comparison of cam-control vs. chopper propulsion without regeneration, the chopper propulsion system regeneration was turned off. The energy analysis is presented in Table 1-22. The power bill analysis, using the cam-control system as the base is presented in Table 1-23. Observation of these tables shows that the cam-control is slightly more energy cost-effective than the chopper without regeneration. The difference is approximately 1% in the power bill.

Cam-control losses occur during acceleration in the resistors. Chopper losses occur for both acceleration and constant speed running. Thus, chopper control tends to be more efficient for small interstation distances, while the cam-control tends to be more efficient for large interstation distances. In the case of the base transit system, the cam-control wins out, but only marginally.

#### 1.2.4. Regeneration

Regeneration is the conversion of mechanical power during braking into electrical power, which may be used by other trains on the system, stored aboard the train (flywheel), stored in devices off-board the train or sold to the electric utility.

Regeneration with natural receptivity refers to the condition where only other trains on the system use the regenerated power. This case is the norm for all rail transit systems which use regeneration.

Regeneration with assured receptivity has not progressed beyond experiment, anywhere in the world. Assured receptivity means that some positive action is taken in the form of additional equipment to capture regenerated power, which would otherwise be lost under conditions of natural receptivity. This positive action can take the form of energy storage systems both on-board and off-board the trains, or regenerative substations, by which power can either be delivered back to the electric utility or used to power other portions of the transit system. The electric utility may give credit for the regenerated power, which it receives.

In the discussion of regeneration in the next few sections, the cam-control vehicle fleet is used as the base operation. It was described in the preceding section. Various comparisons are made using natural receptivity and the on-board storage and regenerative substation approach to assured receptivity. The results obtained in the WMATA study are also presented and discussed.

Regeneration does not change the schedule performance of trains, unless additional weight must be added such as is the case with on-board energy storage.

#### 1.2.4.1. Regeneration with Natural Receptivity

Two cases are of interest. The first is a system where all cars can regenerate power. This condition applies at MARTA, MIAMI, BALTIMORE and BART, and most probably, in all new systems in the future. The second case relates to older systems and WMATA, which are in the process of adding regeneration to new cars, but the old ones remain as cam-control.

1.2.4.1.1 Case 1: All Cars Regenerate

The proper comparison is the all chopper car base fleet (with regeneration) to the cam-control base fleet.

Table 1-24 shows the energy analysis of the comparison. Table 1-25 provides the power bill analysis of the chopper (with regeneration) vs. the cam-control fleet.

Because of the better regeneration receptivity during peak operation, savings become larger as the demand portion of the bill increases. Substantial power cost savings are possible. The MARTA study concluded that 14% of a total power bill of \$4.8M (1984) was saved because regeneration was selected.

#### 1.2.4.1.2 Case 2: Some Cars Regenerate

The proper comparison is a fleet of some chopper cars mixed with cam-control cars against the cam-control base fleet. It is further assumed that the chopper cars with regeneration are used whenever possible, to save energy.

Out of the 102 cars required for peak service, it is assumed that 36 cars have chopper propulsion. These cars can be used as 6 six-car trains running together in the same consist, or as part of mixed consists. As mixed consist, there would be 2 trains with 3 chopper cars and 15 trains with 2 chopper cars, with an average of 2.12 chopper cars per train.

During off-peak periods, all chopper cars are used. Table 1-26 shows the energy analysis of the comparison of the scenario of running with the chopper cars in separate trains versus the base case of all cam-control trains. The power bill analysis for the same scenario is shown in Table 1-27.

Table 1-28 shows the energy analysis of the comparison of the scenario of running the chopper cars in mixed consists versus the base case of all cam-control trains. Table 1-29 presents the power bill analysis for this scenario.

The results show that running the chopper-cars in mixed consists is better from the point of view of energy cost savings than running them in separate consists. Since the on-board auxiliary loads are fed first during regenerative braking, with mixed consists, there is a larger fraction of regenerated power being accepted by the regenerating train. This condition increases the natural receptivity of the mixed consist over the separate consist scenario.

The rule can be generalized. When the fleet consists of mixed chopper and cam-control cars which can be trained, use the maximum number of chopper cars with the minimum number of cars per train in mixed consist. Under most circumstances this will provide the best energy savings.

A comparison of cost differences between cam-control and chopper cars was possible on the WMATA cars, because both types of cars were ordered simultaneously in 1982. This cost difference was \$25,000/car (chopper > cam-control).

#### 1.2.4.2. Regeneration with Assured Receptivity - On-Board Storage

The base fleet was modified so that all of the cars consisted of on-board storage devices. These devices increased the empty weight of the cars by 10%; however, because the propulsion system was not changed, the cars lost performance capability.

Table 1-30 shows the energy analysis comparison of the energy storage car fleet with the base cam-control fleet. Table 1-31 presents the power bill analysis for the same scenario.

The results again show substantial energy cost savings. There are two other effects which must be considered here. The increased weight of the cars reduced their performance causing both an increase of energy use (weight) and a decrease of energy use (performance reduction).

#### 1.2.4.3. Regeneration with Assured Receptivity - Regenerative Substations

It was assumed for this case, that the base transit system had inverter substations, which could feed power back to the electric utility. It was further assumed that the utility gave full credit for this power (meters could rotate in both directions).

Table 1-32 provides the energy analysis of the comparison of the assured receptivity (regenerative substations) with the base cam-control operation. The power bill analysis is shown in Table 1-33.

This scenario has by far the largest energy cost savings. However, the assumption that the utility will give full credity or that the full regenerated energy could be used to power support functions may not be the best. Anything less than this assumption results in diminished savings.

12

#### 1.2.4.4. Assured vs. Natural Receptivity

1.2.4.4.1 Base Transit System

A comparison of assured vs. natural receptivity is shown in Figure 1-12.

Regeneration with assured receptivity, using inverter substations, certainly leads in the energy savings category.

#### 1.2.4.4.2 WMATA Case Study

During the WMATA study, assured receptivity was investigated using regenerative substations on on-board storage as alternative means for assuring that regenerated power would be used.

During the WMATA study, assured receptivity was investigated using regenerative substations and on-board energy storage as alternative means of assuring that regenerated power would be used. In the case of on-board storage, a flywheel was increased by 10%. A comparison of the 1981 \$ savings among natural receptivity and the assured receptivity conditions of regenerative substations and on-board storage is shown in Figure 1-13. As compared to the natural receptivity case of 17% savings, the use of regenerative substations increases the savings to 20% and the use of on-board storage shows a 17% savings, the same as for natural receptivity. The reason for the small increase in savings for regenerative substations is that the WMATA rail system under natural conditions is already highly receptive, and that regenerative substations compete with natural receptivity.

13

### **1.3. OPERATIONAL STRATEGIES**

#### 1.3.1. Performance Modification

Performance modification strategies are those that reduce the normal train performance (run time increase) in order to reduce energy consumption. If performance is reduced too much, it will be necessary to add another train thus adding additional operating cost. The strategies to be considered are acceleration reduction, braking reduction, top speed reduction, coasting and optimum performance modification. The latter strategy represents the best energy trajectory per fixed schedule time increase. The effect of performance modification strategies depends upon whether a system is regenerative.

#### 1.3.1.1. General

An illustration of the speed profiles and the power profile for both cam-control and chopper control (with regeneration) are shown for the base transit system in the several figures which follow:

Table 1-34

| Length of Run (miles)  |       | 1.0   |             |       | 1.5     |             |
|------------------------|-------|-------|-------------|-------|---------|-------------|
| Type Profile           | Speed | Power | Power/Regen | Speed | Power   | Power/Regen |
| Strategy               |       |       | FIGURE      | *     |         |             |
| Minimum Time           | 1-14A | 1-14B | 1-14C       | 1-15A | 1-158   | 1-15C       |
| Acceleration Reduction | 1-16A | 1-16B | 1 - 16C     | 1-17▲ | 1-178   | 1-17C       |
| Deceleration Reduction | 1-18A | 1-18B | 1 - 18C     | 1-19A | 1 - 198 | 1-190       |
| Speed Reduction        | 1-20A | 1-208 | 1-200       | 1-21A | 1-218   | 1-21C       |
| Coasting               | 1-22A | 1-228 | 1-220       | 1-23A | 1-23B   | 1-23C       |

Table 1-35 summarizes the result of all of the runs depicted in Figures 1-14 (A, B, C) through Figures 1-23 (A, B, C).

The area under speed profiles must remain the same for a fixed run length,

since the area is just the distance. The area under the power profile curves is just the energy.

#### 1.3.1.2. Acceleration Reduction

The base transit system with chopper control was used to illustrate the effect of acceleration reduction on energy. The acceleration rate was reduced from 3.0 to 2.5 mphps.

The energy analysis of the acceleration reduction strategy is shown in Table 1-36A. The power bill analysis is presented in Table 1-36B.

The major energy effect of acceleration reduction occurs when the rate is reduced enough so that the train does not reach its former top speed within the interstation distance. This occurs for short station spacings.

#### 1.3.1.3. Braking Reduction

For the purpose of illustrating the result of braking reduction on energy, the base transit system braking rate was reduced from 3.0 to 2.5 mphps. The result is shown in the energy analysis of Table 1-37A. The power bill analysis of this scenario is presented in Table 1-37B.

As in the case of acceleration reduction, a large effect on energy is realized when the braking rate is reduced enough so that the train is prevented from reaching its former top speed within the interstation distance. A second effect is the increased natural receptivity caused by the rate decrease. Less power is regenerated but over longer periods of time. Thus there is more of a chance that other trains on the system will use it.

15

#### 1.3.1.4. Speed Reduction

The base transit system was used to illustrate the reduced energy and increased running time effect of the speed reduction strategy. This is one of the energy conservation strategies which is seriously considered by transit management, and, in fact is used on a regular basis. This strategy is discussed using the chopper control propulsion as the base system (regeneration) and the cam-control propulsion as the base system (no regeneration).

#### 1.3.1.4.1 Speed Reduction with Regenerative Systems

The following tables show the energy and power bill analysis for the chopper control propulsion (with regeneration) on the base transit system for increasing values of run time (decreasing values of maximum speed)

|                                  | Table                               | 1-38            |                     |
|----------------------------------|-------------------------------------|-----------------|---------------------|
| Increased Run Time*<br>(minutes) | Maximum Speed <del>*</del><br>(mph) | Energy Analysis | Power Bill Analysis |
| +.25                             | 62.4                                | 1-39A           | 1-39B               |
| +.50                             | 58.0                                | 1-40A           | 1-40B               |
| +.75                             | 54.8                                | 1-41A           | 1-41B               |
| +1.00                            | 52.1                                | 1-42A           | 1-42B               |
| +1.25                            | 49.9                                | 1-43A           | 1-43B               |

\* Normal run time is 13.85 min and normal maximum speed is 70 mph.

The results are summarized in Figure 1-24.

#### 1.3.1.4.2 Speed Reduction with Non-Regenerative Systems

The following tables show the energy and power bill analysis for the camcontrol propulsion with no regeneration on the base transit system for increasing values of run time (decreasing values of maximum speed)

## Table 1-44

| Increased Run Time*<br>(minutes) | Maximum Speed<br>(mph) | Energy Analysis | Power Bill Analysis |
|----------------------------------|------------------------|-----------------|---------------------|
| +.25                             | 62.4                   | 1-45A           | 1-45B               |
| +.50                             | 58.0                   | 1 <b>-46</b> A  | 1-46B               |
| +.75                             | 54.8                   | 1-47A           | 1-478               |
| +1.00                            | 52.1                   | 1-48A           | 1-48B               |
| +1.25                            | 49.9                   | 1 <b>-49</b> A  | 1-49B               |

\* Normal run time is 13.85 min and normal maximum speed is 70 mph.

The results are summarized in Figure 1-25.

## 1.3.1.5. Coasting

The base transit system was used to show the reduced energy and increased running time effect of the coasting strategy. This strategy is another that is seriously considered by transit management.

To effect coasting, acceleration occurs in the normal speed maintaining practice until a maximum (coast) speed is reached. Power is removed from the train and it is allowed to drift until the lower speed of a speed band error is reached. At this time, power is reapplied again and the cycle is repeated. For reasonable speed error bands (> 3 MPH), there is usually one cycle per interstation run. This strategy is discussed using two speed error bands (3 mph, 5 mph) and using the chopper control propulsion as the base system (regeneration) and the cam-control propulsion as the base system (no regeneration).

## 1.3.1.5.1 Coasting with Regenerative Systems

The following tables show the energy and power bill analysis for the chopper control propulsion (regeneration) on the base transit system for increasing values of run time (decreasing values of coast speed) at two speed error bands:

| Increased Run Time*<br>(minutes) | Coast Speed<br>(mph) | Energy Analysis | Power Bill Analysis |
|----------------------------------|----------------------|-----------------|---------------------|
| Case 1: Speed Error              | Band = 3 mph         |                 |                     |
| +.25                             | 63.8                 | 1-51A           | 1-51B               |
| +.50                             | 59.4                 | 1-52A           | 1-52B               |
| +.75                             | 56.0                 | 1-53A           | 1-53B               |
| +1.00                            | 53.4                 | 1-54A           | 1-54B               |
| +1.25                            | 51.2                 | 1-55A           | 1-55B               |
| Case 2: Speed Error              | Band = 5 mph         |                 |                     |
| +.25                             | <b>64.</b> 0         | 1-56A           | 1-56B               |
| +.50                             | 60.0                 | 1-57A           | 1-57B               |
| +.75                             | 57.0                 | 1-58A           | 1-58B               |
| +1.00                            | 54.5                 | 1-59A           | 1-59B               |
| +1.25                            | 52.2                 | 1-60A           | 1-60 <b>B</b>       |

\* Normal run time is 13.85 minutes

.

The results are summarized in Figures 1-26 (3 mph band) and 1-27 (mph band).

# 1.3.1.5.2 Coasting with Non-Regenerative Systems

The following tables show the energy and power bill analysis for the camcontrol propulsion (no regeneration) on the base transit system for increasing values of run time (decreasing values of coast speed at two speed error bands):

# TABLE 1-61

| Increased Run Time*<br>(minutes) | Coast Speed<br>(mph) | Energy Analysis | Power Bill Analysis |
|----------------------------------|----------------------|-----------------|---------------------|
| Case 1: Speed Error              | Band = 3 mph         |                 |                     |
| +.25                             | 63.8                 | 1 <b>-62A</b>   | 1- <b>62B</b>       |
| +.50                             | 59.4                 | 1-63A           | 1-63B               |
| +.75                             | 56.0                 | 1-64A           | 1-64B               |
| +1.00                            | 53.4                 | 1-65A           | 1-65B               |
| +1.25                            | 51.2                 | 1-66A           | 1-66B               |
| Case 2: Speed Error              | Band = 5 mph         |                 |                     |
| +.25                             | 64.0                 | 1-67A           | 1-67B               |
| +.50                             | 60.0                 | 1-68A           | 1-68 <b>B</b>       |
| +.75                             | 57.0                 | 1-69A           | 1-69B               |
| +1.00                            | 54.5                 | 1-70A           | 1-70B               |
| +1.25                            | 52.2                 | 1-71A           | 1-71B               |

\* Normal run time is 13.85 minutes.

The results are summarized in Figures 1-28 (3 mph band) and 1-29 (5 mph band).

#### 1.3.1.6. Optimum Performance Modification

Optimum performance modification is a future development for rail transit (just as assured receptivity is in regeneration).

1.3.1.6.1 General

Low energy consumption and minimum running time are conflicting objectives in a transit system. Transit cars are generally used to their maximum capability so that over given running profiles, the minimum running time is achieved. Usage of full capability does not result in minimum energy consumption.

Figure 1-30 shows a two dimensional objective space for the two conflicting objectives, running time and energy. The accessible region is the area in the running time vs. energy consumption plane which can be realized by a train with a fixed passenger load factor between two stations. Any point in this plane is accessible to the train as it moves between the stations.

The border of the accessible region is the non-inferior curve. It represents the extremum of energy consumption for a fixed running time which is greater than the minimum running time.

The problem of finding the optimum performance modification strategy is to find those strategies which lie near the lower portion of the non-inferior curve, so that for a given small increase in running time, a maximum energy saving is possible.

Here the optimization of the trajectory of an individual train is considered. The physical and performance characteristics of the train and its tracks are specified. The principle concern is that total energy E and total running time T be as small as possible.

1.3.1.6.2 Problem Description

The problem is to minimize:

J = E

where E is the total energy, subject to the constraints on the speed and propulsion system.

The train must meet the speed limits along the route,  $o \le v(x) \le v_{max}(x)$ 

where x is the position along the route.  $x_{n} \leq x \leq x_{r}$ 

and where  $x_{p}^{}$ ,  $x_{f}^{}$  are the positions of the beginning and end of the route. The quantity  $v_{max}^{}(x)$  is the speed limit at position x.

Propulsion system models can relate the electric power,  $P_e$ , at the third rail shoe of the vehicle to the applied force, u, of the propulsion system at the wheels and the speed of the train, v. This relation has the form,

 $P_e = g(u,v)$ .

The applied force at the wheel, u, has a maximum and minimum value depending on the speed of the train, which is expressed in the form,  $u_{min}(v) \le u \le u_{max}(v)$ .

Figure 1-31 shows the equation of motion and describes its components. The position of the train along the route is related to its speed by the equation: v = dx/dt.

The curve resistance, C, and the grade resistance, G, are functions of the position of the train and the train resistance terms  $T_{RR}$  and  $T_{RA}$  are functions of the speed (v) of the train.

The total running time, T, can be expressed as the quantity

$$T = \int_{x_0}^{x_f} \frac{dx}{v(x)}$$

while the total energy consumed is  $E = \int [P_{q}(t) + P_{e}(t)]dt ,$ 

where,  $P_{a}(t)$ , is the power drawn by the auxiliaries (such as heating and air conditioning units) which is generally assumed to be constant in time.

It is desired to make T and E as small as possible. This problem was solved using two approaches. In the first approach, Monte Carlo techniques are used to generate all feasible trajectories in the E-T plane and only those are selected which have minimum E for fixed T. The second approach is a multiobjective optimization technique which minimizes the quantity,

J = E.

1.3.1.6.3 Monte Carlo Algorithm

A Monte Carlo Simulation was done for the problem of the form described in the previous section, namely,

Subject to: T < T a (prespecified)  $\alpha \le v \le \beta (prespecified)$ 

Here  $\propto$  and  $\beta$  are the minimum and maximum speeds generated by the propulsion system, i.e., speeds corresponding to minimum and maximum applied force that can be delivered through the propulsion system at the wheels.

The Monte Carlo procedure generates random vectors v distributed on two-way negative exponential distribution with mean  $R_1 \propto + R_2 \beta \langle R_1 + R_2 = 1 \rangle$  and variance  $R_3$ .

The quantities  $R_1$ ,  $R_2$  and  $R_3$  are randomly generated using a Random Number Generator, and these are the same for a set of speeds.

Each  $v_i$  randomly generated was checked for the three constraints.  $v_i$  was set to the constraint each time it violated a constraint. Energy was calculated for the vector v and T. Energy was retained if it did not violate the time constraint, and energy was less than the previously stored values. In this way, the lower most bottom portion of the accessible region was traced.

Appropriate choice of  $R_1$ ,  $R_2$  and  $R_3$  ranges have provided fairly efficient runs of Monte Carlo. Overall, as long as  $R_1 \propto + R_2 \beta$  is tilted towards  $\beta$ , and  $R_3$  is around 20, it provides good results.

## Description of Random Number Generator.

The Random Number Generator used for the purpose was system routine RAN(IDUM) which generates random number uniformly distributed between 0 and 1. Figure 1-32 provides the probability density function f(x) and probability distribution function F(x) for RAN(IDUM).

For the purpose of simulation, it was better to use negative exponential distribution as uniform random numbers provide large changes more often, and thus leading to a higher probability of sub-optimal results. Negative exponential distribution, on the other hand, provides a tapering in the density function. Figure 1-32 provides the probability density and probability distribution function for negative exponential distribution.

Now, in order to generate negative exponential distributed random numbers, it is necessary to use  $F^{-1}(x)$  where x is uniformly distributed random number. For negative exponential distribution,

F(0) = 0

$$F(\infty) = 1$$
  
$$F(x) = -e^{\mu x}/\mu$$

Hence, if random number selected from a uniform distribution is y, then:

$$y = \log x/\mu$$
 or  
 $x = -\mu \log \mu y$ .

1.3.1.6.4 The Trajectory Optimization Algorithm

The purpose of this algorithm is to minimize J = E, subject to all the constraints of the system, and  $T = T_1$ , where  $T_1$  is a specific travel time assigned to route.

The steepest descent method is used in the minimization procedure because of its simplicity in programming and because for this specific problem, it converges in a reasonable amount of time. The algorithm is summarized below.

1. Generate a feasible trajectory to serve as an initial guess.

2. Discretize with respect to distance (divide the distance to be covered into appropriate intervals).

3. Calculate  $\delta J_i$  for i = 1, 2, . . ., n-1.

Here J = E

$$E = \frac{x_1 - x_0}{v_0} P(v_0, u_0) + \frac{x_1 - x_{i-1}}{v_i} P(v_i, u_i) + \frac{x_n - x_{n-1}}{v_n} P(v_n, u_n)$$

$$T = \frac{x_1 - x_0}{v_0} + \frac{x_1 - 1}{v_1} + \frac{x_{i+1} - x_{i-1}}{v_i} + \frac{x_n - x_{n-1}}{v_n}$$

Subject to  $T = T_1$  where  $T_1$  is a specific travel time assigned so that the solution of the problem generates a point on the convex portion as shown in Figure 1-33. Thus,

$$\frac{\partial E}{\partial v_{i}} = \frac{1}{2} \left( \frac{x_{i+1} - x_{i-1}}{v_{i}} - \frac{\partial P(v_{i}, u_{i})}{\partial v_{i}} - \frac{x_{i+1} - x_{i-1}}{v_{i}^{2}} P(v_{i}, u_{i}) + \frac{x_{i} - x_{i-2}}{v_{i-1}} \frac{\partial P(v_{i-1}, u_{i-1})}{\partial v_{i}} + \frac{x_{i+2} - x_{i}}{\partial v_{i}} - \frac{\partial P(v_{i+1}, u_{i+1})}{\partial v_{i}} \right)$$

because 
$$u_{i-1}^{i}$$
,  $u_i^{i}$ ,  $u_{i+1}^{i}$  are functions of  $v_i^{i}$ ,

$$u_1 = M_{Ea_1} + G + C + T_{RR} + T_{RA}$$
  
i = 1, 2, ..., n-1

and

$$a_i = v_i \frac{v_{i+1} - v_{i-1}}{x_{i+1} - x_{i-1}}$$

$$\frac{\partial P}{\partial v_{i}} (v_{i}, u_{i}) = \frac{\partial P}{\partial v_{i}} \Big|_{u_{i}} + \frac{\partial P}{\partial u_{i}} \Big|_{v_{i}} \frac{\partial u_{i}}{\partial v_{i}}$$
const. const.
$$\frac{\partial P}{\partial v_{i}} (v_{i-1}, u_{i-1}) = \frac{\partial P}{\partial v_{i}} \Big|_{u_{i-1}} + \frac{\partial P}{\partial u_{i-1}} \Big|_{v_{i-1}} \frac{\partial u_{i-1}}{\partial v_{i}}$$
const. const.
$$\frac{\partial P}{\partial v_{i}} (v_{i+1}, u_{i+1}) = \frac{\partial P}{\partial v_{i}} \Big|_{u_{i+1}} + \frac{\partial P}{\partial u_{i+1}} \Big|_{v_{i+1}} \frac{\partial u_{i+1}}{\partial v_{i}}$$
const. const.

and

4. Determine C<sup>j</sup> such that

$$C^{j} = T(v^{j}) / T,$$

5. Calculate  $v^{j-1/2}$  such that

$$v^{j-1/2} = C^{j}v^{j}$$

6. Calculate  $\delta J_i = \partial E / \partial v_i^{j-1/2}$ 

7. Calculate new  $v_i^j$  by taking a small step in the direction of the gradient, i.e.,

$$v_i^j = v_i^{j-1/2} - \alpha \delta J_i$$

where  $v_i^j$  is the velocity, i, in j<sup>th</sup> iteration and  $\alpha$  is a constant which gives suitable step which minimizes the objective function J.

The step size  $\alpha$  has been calculated using the quadratic approximation for the objective function described in the next section.

8. The gradient projection method is used to test all the constraints, i.e.,

- Verify if  $v_j^j$  abides by the speed restriction. If not, set  $v_i^j$  equal to the speed restriction.
- Calculate  $a_i$  and  $\beta_i$  velocities corresponding to the minimum and maximum tractive force.

If  $v_i^j \leq a_i$  set  $v_i^j = a_i$ If  $v_i^j > \beta_j$  set  $v_i^j = \beta_i$ 

9. Test for convergence using the following criterion:  $\left\| \delta J \right\| = \Sigma \left\{ \delta J \right\}^2 \le \in$ 

and

$$|C^{J}-1| \leq \delta$$

where  $\in$  and  $\delta$  have a prefixed value. If process has converged, stop, otherwise return to 4.

The algorithm for discretization and minimization is summarized in a flow chart shown in Figure 1-34.

1.3.1.6.5 Algorithm for Selecting Optimal Step Size

Consider approximating the function J(a) by a function  $\mu(a)$  which has an easily determined minimum point. The simplest 1- variable function possessing a minimum is the quadratic:

$$\mu(a) = a + ba + ca^2$$

the minimum of which occurs where

$$\langle d\mu \rangle / da \rangle = 0 \implies b + 2ca = 0$$
  
or  $a = \langle -b / 2c \rangle$ 

The constants b and c for the approximating quadratic can be determined by sampling the function at three different  $\alpha$  values, e.g., 0, t and 2t where t is the preselected trial step and evaluating the functions at these three  $\alpha$  values at:

| a = 0         | f = a<br>1              |
|---------------|-------------------------|
| <i>a</i> = t  | $f_2 = a + bt + ct^2$   |
| <i>a</i> = 2t | $f_3 = a + 2bt + 4ct^2$ |

The above equations give

a = 
$$f_1$$
  
b =  $(4f_2 - 3f_1 - f_3) / 2t$   
c =  $(f_3 + f_1 - 2f_2) / 2t^2$ 

therefore,

$$a* = (-b/2c) \simeq (4f_2 - 3f_1 - f_3) / (4f_2 - 2f_3 - 2f_1)$$

Also, for  $a^*$  to correspond a minimum it must satisfy  $(d^2 \mu / da^2) \mid_{a^*} > 0 \implies C > 0$ 

For C > 0 we should have

$$f_3 + f_1 > 2f_2$$

•

This means that the value of  $f_2$  must be below the line connecting  $f_1$  and  $f_3$ .

The logic for the quadratic interpolation described above is given in the flow diagram shown in Figure 1-35.

1.3.1.6.6 WMATA Case Study

The WMATA Red Line running from Dupont Circle to Silver Spring was selected for the optimization purpose.

Using the actual motor and brake curve, the total run of 9.81 miles has been optimized using Monte Carlo and Steepest Descent. The results are summarized in Tables 1-72 and 1-73, respectively.

1.3.1.7. Coasting vs. Speed Reduction

#### 1.3.1.7.1 On Regenerative Systems

Figure 1-36 shows a comparison of coasting and speed reduction with a vehicle fleet using the chopper propulsion with regeneration. Speed reduction saves the least energy per unit run time increase. As the coasting speed error band increases, the energy savings increase until a point is reached where no more physical coasting can be done within the longest station spacing on the system.

#### 1.3.1.7.2 On Non-Regenerative Systems

Figure 1-37 shows a comparison of coasting and speed reduction strategies with a vehicle fleet using cam-control propulsion without regeneration. Again speed reduction saves the least energy per unit increase in run time.

#### 1.3.1.8. Performance Modification Predictions on WMATA and MARTA

Several performance modification strategies were simulated on the WMATA and MARTA rail systems.

The results of speed reduction and anticipatory coasting on the Red line and Blue/Orange lines of WMATA are plotted in Figure 1-38. The graphs show the decrease in energy consumption at the train and do not include the effects of power distribution system losses. Figure 1-39 shows the results of speed reduction and anticipatory coasting on the NS and EW lines of MARTA. The plots reflect the conditions of 100% receptivity upon regeneration. Again, power distribution losses are not included.

Several performance modification strategies were evaluated on the Red line of WMATA. The results are presented in Figure 1-40. Power distribution losses are not included.

•

In all cases, coasting is a better strategy than speed reduction in terms of energy saved for fixed schedule time increase. However, for the speed reduction strategy, only the top speed of the train was reduced. At schedule time increases of 2-3%, which limit increases in one way trip time to less than one minute, traction energy savings on WMATA ranged from 12-16%. On the Red line of WMATA, application of optimum performance reduction can result in energy consumption decreases of 17-20% with a 1% increase in schedule time. These decreases are estimated at the train rather than the meters.

Using the anticipatory coasting results in Figures 1-38 to 1-40 as a guide, energy cost savings were determined using sawtooth coasting. Power distribution losses were considered in these estimates. In all cases, the schedule time increase was limited to less than one minute. The results are detailed in Table 1-74. Coasting is predicted to save 5% of the power bill on WMATA and 6% of the power bill on MARTA. The one minute schedule time increase could be made up at turnaround; thus, the capacity of the system would be unaffected.

At the time, the cost to modify the cars was estimated at \$32K (1981 \$) at WMATA and \$200K (1985 \$) at MARTA. These low initial costs mean immediate payback if the strategy is applied.

#### 1.3.2. Train Operation Strategies

## 1.3.2.1. Scheduling for Improved Passenger Load Factor

1.3.2.1.1 Base Transit System

The base transit system was used to illustrate the effect of improving passenger load factor by running shorter trains at higher load factors during the peak operating periods and running shorter trains during selected off-peak periods.

During the peak periods, the number of cars per train was reduced from six to four. This effectively increased the passenger load factor from 50% to 75%. During the daily evening operation, the number of cars per train was reduced from four to two, which effectively increased the passenger load factor from 25% to 37.5%.

The operating timetable for the passenger load factor improvement is shown alongside the original timetable in Table 1-75.

The energy analysis of the passenger load factor effect on energy is shown in Table 1-76A. The power bill analysis is shown in Table 1-76B.

In practice, more careful attention would be payed to scheduling but this analysis conveys the intention.

## 1.3.2.1.2 WMATA and MARTA Results

The original timetables used in the WMATA and MARTA studies together with car-miles/hr during the peak period and annual car-miles are listed in Tables 1-12 and 1-13, respectively. During the course of the studies, only one new scheduling strategy was suggested for WMATA operations. This strategy was the reduction of train consist size during off-peak operation. During midday on weekdays, alternate 4 and 6 car trains, instead of all 5 car trains, would be run and on evenings, Saturday and Sunday, alternate 2 and 4 car trains would be run instead of 6 car trains. The

annual savings were 1.178M, 1.069M and 1.570M car-miles on the Red, Blue and Orange lines respectively. As presented in Table 1-13 this amounted to 5% in energy cost savings.

On the MARTA rail system, several scheduling strategies were analyzed, each one successively increasing the passenger load factor by reducing car-miles. At the lowest level of passenger load factor improvement, the principal changes in the schedule were:

- Alternate trains on the EW line would run from Hightower to Candler Park, where they would turn back during weekday peak and midday. This schedule would be used instead of all trains running from Hightower to Avondale.
- 2. Four car trains would be used instead of six car trains on the run from Lakewood to Brookhaven on the NS line during peak and midday, weekday operation. All other service remains the same.

These strategies will reduce the annual car-mi on the NS line by 344K and on the EW line by 489K. In addition, since the scheduling reduces the car-mi/hr during the peak periods from 940 to 790 on the EW line and from 1427 to 1162 on the NS line, there is a savings in power demand as well. The demand and energy savings are detailed in Table 1-77. Application of this strategy reduces the electric bill by 7%.

## 1.3.2.2. Scheduling to Improve Regeneration Receptivity on MARTA

Regeneration receptivity is a measure of the ability for the trains on the system to use the power being regenerated by trains on the system. Consider a two track rail line such as the MARTA EW or NS line. The positions of the trains along the lines at any instant of time are determined by the headway and offset. The headway is the time between trains moving in any given direction, while the offset is the difference in time to within one headway of a train leaving one terminal and a train departing from the opposite terminal. For example, if the trains leave a terminal at 7:00 a.m., 7:05 a.m., 7:10 a.m., etc., and the schedule for trains leaving the opposite terminal is 6:58 a.m., 7:03 a.m., 7:08 a.m., etc., then the headway is 5

minutes and the offset is 3 minutes. As defined here, the offset can vary from zero to one headway. Under ideal conditions, a two track system operating at constant headway, with identical trains and train movement, is cyclic. Thus, train positions, speeds and power are repeated every headway in time and no offset has the same effect on power flow as one headway of offset.

To study the effect of scheduling on regeneration receptivity, the energy use per car-mile was estimated as a function of offset over the period of one headway. The higher the energy consumption per car-mile the less the regeneration receptivity.

Regeneration receptivity is difficult to define quantitatively because the condition of a 100% receptive system does not exist. In this study, receptivity is defined as the ratio (%) of energy saved as a result of regeneration to the maximum energy capable of being delivered by the trains to the third rail. It can only be determined through simulation, because the 100% receptive condition cannot be realized in actual operation. Table 1-78 shows the estimate of system receptivity under conditions of normal operation during 1983-1984. One would generally expect the receptivity to be high during the peak periods and low during non-peak periods. However, because regeneration receptivity depends on both offset and headway, this is not always the case.

Using the EMM, the schedule offset was varied in one-minute steps for both operating periods selected (AM peak and evening). The results are summarized in graphical form in Figure 1-41. During the peak period, maximum variations [(max-min)/average] in energy consumption of 7.2% and 2.7% were observed to occur on the NS and EW lines, respectively. During the evening operating period, a maximum variation of 9.9% and 9.2% was observed to occur on the NS and EW lines, respectively.

The energy variation as a function of schedule offset can be translated into

energy \$. Table 1-79 provides the details of this translation. The difference between the maximum and minimum annual energy cost as a result of schedule offset is estimated at \$106K, or 2.6% of the electric bill.

Since scheduling trains without taking the offset energy effects into account would be expected to lie somewhere between the maximum and minimum, most probably half-way, taking energy effects of offset scheduling into account might save \$53K per year. There are other scheduling constraints which may either enhance or diminish this estimated cost savings.

#### 1.3.3. Support Energy Reduction

#### 1.3.3.1. WMATA Case Study

Opportunities for support energy cost reduction at WMATA were identified in the lighting and escalator loads.

1.3.3.1.1 Lighting Load Reduction

Several recommendations were made by the General Manager's Lighting Task Force on lighting energy conservation opportunities.

One recommendation was to replace the indirect fluorescent lighting with direct mercury vapor lighting in both side and center platform underground stations. The estimated reduction in power was 82KW/side platform station, and 39KW/center platform station.

The peak power demand reduction and annual energy savings on incorporating these lighting changes are shown in Table 1-80.

There are two aspects to the lighting improvement costs which were used as the basis for the lighting energy cost reduction estimates. The capital cost for the improvement was \$33,000 per underground station, and \$28,000 for surface station. In addition, because of less labor and materials required in bulb replacement, there is an annual cost savings of \$2,064 for side platform stations, and \$1,216 for center platform stations. Above ground stations savngs are estimated at \$521.

Based on these cost figures with 11 above ground stations and 23 underground stations at the time, of which 14 of the underground stations were center platform and 9 stations were side platform, the capital cost was estimated at \$1,076,000, and the cost savings in addition to energy is \$41,331.

The General Manager's Committee on Lighting recommended that the indirect fluorescent lighting at the passenger stations be replaced with direct mercury vapor lighting. The energy cost savings is estimated at \$675,000/year (4-5% of the overall power cost) with an additional savings in replacement lamps estimated at \$41,000/year, or a total annual savings of \$716,000. The estimated capital cost is \$1,067,000 which would be payed back in 1 1/2 years.

1.3.3.1.2 Escalator Load Reduction

A strategy for reducing escalator energy consumption would be to turn off all escalators under 16 ft. height of rise and the third escalator in areas where three escalators service the station from one entrance during off-peak periods.

Table 1-81 presents the results of this strategy. Since escalators are turned off during the non-peak periods, there is no effect on peak power demand reduction. The effect on support energy is very small (1%).

The annual energy cost savings achieved by turning off all escalators with less than 16 ft. height of rise, and the third escalator in areas where three are serving the station from one entrance, in off-peak periods, was \$32,000 (< 1% of total power costs).

Unless this strategy is used for egress control, turning off "down" escalators during peak periods, was not recommended because heavily loaded down escalators can regenerate power.

#### 1.3.3.2. MARTA Case Study

Because of the nature of the ratchet on the billing demand at MARTA [i.e., the billing demand remains at 95% of the maximum monthly demand obtained during the summer months (June-September)], an opportunity for effective load management exists. A true load managing strategy would be used during the weekday AM and PM peak operating periods, in anticipation of reducing a high power demand. Although traction load reduction will reduce power demand on a continuous basis, it is support load reduction which can be used as part of true load management strategy. For every 1000 KW of support load which is shed during the periods of highest demand during the summer months, annual savings of \$122K are possible. The chosen load reduction strategy need only be used during the summer months.

1.3.3.2.1 Installed Support Power Tabulation

The last survey of installed support load on the MARTA rail system was conducted several years ago. This survey forms the basis of the analysis.

The installed support loads identified in the survey were divided into the general categories of VENTILATION, HEATING, LIGHTING, AIR CONDITIONING, ESCALATORS & ELEVATORS, TRAIN CONTROL & COMMUNICATIONS, FARE COLLECTION, and MISCELLANEOUS. The survey covered all of the EW line and the downtown portion of the NS line. The installed support loads are summarized by category in Table 1-82.

Because of the nature of the billing demand ratchet, it is clear that to be most effective, the load must be shed during the summer months. Since even one operating period of high power demand in which the load were not shed, could negate the load managing strategy, load shedding must be effected with equipment which is easily turned off and on and is reliable. It is also important that safety, security, comfort and convenience of passengers not be compromised. At the outset, only two categories of load might satisfy the above mentioned conditions: LIGHTING and AIR CONDITIONING. The remaining load categories do not meet the conditions mentioned. The LIGHTING and AIR CONDITIONING represent 2000 KW and 6000 KW of surveyed installed load, respectively.

Reduction of lighting had been considered by MARTA staff as a method of reducing energy cost. It cannot be considered a load management strategy in the sense discussed, since

- 1. Any lighting which can be turned off without affecting passenger safety and security in structures not exposed to daylight should be permanently off.
- 2. For outside facilities which receive adequate natural lighting during the day, the lights should be turned off during daylight hours if the cost to do so is less than the cost to keep them lit.

During the summertime, daylight hours span the peak operating periods, so that turning off lights will naturally reduce peak demand. Because of the nature of the installed lighting loads, it is not easy to turn them off and on, and negligence could jeopardize safety and security.

The only remaining load category which satisfies the load managing strategy conditions is AIR CONDITIONING. Not all air conditioning would qualify (e.g., air conditioning in the central control facility or other vital equipment enclosures).

Since the chillers would operate during the summer months, it is natural to think of chiller plant load shedding as a potential strategy. By using the chillers to cool to lower, but comfortable temperatures during the hours just before the AM and PM peak operating periods, the chiller plants could be unloaded during the peak periods to keep the temperature just below the maximum for passenger comfort. In utility terms, this form of load management is known as peak shaving and valley filling. Three criteria must be satisfied before the strategy can be used.

1. The chillers can easily be loaded and unloaded.

- 2. The cost for loading and unloading must not exceed the cost of the savings.
- 3. The chiller load must be part of the peak load.

Further study of these requirements was recommended.

| TABLE 1-1VEHICLE CHARACTERISTICS             |        |
|----------------------------------------------|--------|
| Empty Weight (tons)                          | 36.0   |
| Crush Load Weight (tons)                     | 52.5   |
| Vehicle Length (ft)                          | 75.0   |
| Cross Sectional Area (sq. ft.)               | 80.0   |
| Measured Flange Coefficient<br>(lbs/ton/mph) | 0.071  |
| Number of Axles (All Powered)                | 4      |
| Auxiliary Power (kW)                         | 30     |
| Wheel Diameter (inches)                      | 28     |
| Lead Vehicle Air Drag Coefficient            |        |
| $(lbs/ton/mph^2)$                            | .0024  |
| Trail Vehicle Air Drag Coefficient           |        |
| (lbs/ton/mph <sup>2</sup> )                  | .00034 |

## TABLE 1-2VEHICLE PROPULSION AND BRAKING SYSTEM CHARACTERISTICS

Motors per vehicle - 4 Motor characteristic - (W) Type 1462 Chopper Control Initial accelerating rate 3 MPHPS Wheel diameter 28 inch Gear ratio 5.414 to 1 Maximum speed - 70 MPH Line voltage (V) (nominal, maximum, minimum) - 750, 860, 600 Field strengths available in power 1.00, 0.7, 0.5, 0.4 Field strengths available in brake 1.00

#### Motor Control Philosophy

Load weighing device aboard vehicle automatically sets the propulsion control so that initial accelerating rate is 3 MPHPS in acceleration, and that dynamic plus friction braking provides a constant rate of 3 MPHPS throughout all speed ranges. Dynamic braking provides as much of the braking effort being supplemented by friction braking when:

- enough braking effort cannot be provided to maintain the 3 MPHPS braking rate.
- the line voltage is too high to accept regenerative braking.
- regenerative braking is turned off.

## Propulsion

- Motors are connected in two series/two parallel.
- To increase speed, the control sets motor amps to maximum possible acceleration rate not to exceed 3 MPHPS.
- A 60% field shunt (field strength = 40%) is brought in in three steps when request for tractive effort exceeds availability at 100% field.

#### Braking Control Philosophy

- Motors are connected in two series/two parallel.
- Note that a resistor is needed to limit line voltage at high speed.
- Friction braking is used to supplement dynamic braking effort and keep the total braking effort at 3.0 MPHPS.

| SERVICE           | TIME PERIOD      | CARS/TRAIN | HEADWAY(MIN) |
|-------------------|------------------|------------|--------------|
| Weekday           |                  |            |              |
| Morning           | 12:00 am-6:00 am | NO SERV    | VICE         |
| Peak              | 6:00 am-9:00 am  | 6          | 2            |
| Midday            | 9:00 am-3:00 pm  | 4          | 4            |
| Peak              | 3:00 pm-6:00 pm  | 6          | 2            |
| Evening           | 6:00 pm-12:00 pm | 4          | 8            |
| Sat., Sun. & Hol. |                  |            |              |
| Morning           | 12:00 am-6:00 am | NO SER     | VICE         |
| Day               | 6:00 am-6:00 pm  | 4          | 8            |
| Evening           | 6:00 pm-12:00 am | 2          | 8            |

Trains leave on the hour from both terminals.

TABLE 1-4 TRAIN PERFORMANCE AND ENERGY SUMMARY FOR NORMAL OPERATION

.

|           |                  | RUN TIM   | KWHPCM    |          |        |  |
|-----------|------------------|-----------|-----------|----------|--------|--|
| PERIOD    | TIME             | EASTBOUND | WESTBOUND | MINIMUM* | NORMAL |  |
| WEEKDAY   |                  |           |           |          |        |  |
| MORNING   | 12:00AM - 6:00AM | NS        | NS        |          |        |  |
| AM PEAK   | 6:00AM - 9:00AM  | 13.85     | 13.83     | 4.82     | 6.31   |  |
| MIDDAY    | 9:00AM - 3:00PM  | 13.77     | 13.76     | 4.60     | 5.96   |  |
| PM PEAK   | 3:00PM - 6:00PM  | 13.85     | 13.83     | 4.82     | 6.31   |  |
| EVENING   | 5:00PM - 12:00AM | 13.77     | 13.76     | 4.60     | 6.28   |  |
| SAT & SUN |                  |           |           |          |        |  |
| MORNING   | 12:00AM - 6:00AM | NS        | NS        |          |        |  |
| DAY       | 6:00AM - 6:00PM  | 13.77     | 13.76     | 4.60     | 6.28   |  |
| EVENING   | 6:00PM - 12:00AM | 13.76     | 13.76     | 4.79     | 5.73   |  |

NS - NO SERVICE \* 100% REGENERATION RECEPTIVITY \*\* NATURAL RECEPTIVITY

# TABLE 1-5 NORMAL OPERATION CHOPPER(BASE) ESTIMATE OF TURNAROUND AND CAR STORAGE POWER FOR BASE TRANSIT SYSTEM

| NAME OF PERIOD  | HEADWAY | CARS PER N | IN TURNARO | UND TIME | RUN       | TINE      | SCHEDULE    | NEN O OF | TOTAL. | CARS     | CARS   | TURNAROUN  | STORAGE    | TOTAL      |
|-----------------|---------|------------|------------|----------|-----------|-----------|-------------|----------|--------|----------|--------|------------|------------|------------|
|                 | NINUTES | TRAIN      | WEST       | EAST     | EASTBOUND | WESTBOUND | SLACK (NIN) | TRAINS   | CARS   | REQUIRED | STORED | POWER (KW) | POWER (KW) | POWER (KW) |
| PEAK            | 2       | 6          | 2          | 2        | 13.85     | 13.03     | 0.32        | 17       | 102    | 102      | 0      | 569        | 0          | 569        |
| MIDDAY          | 4       | 4          | 2          | 3        | 13.77     | 13.76     | 2.47        | 9        | 102    | 36       | 66     | 254        | 1980       | 2234       |
| EVENING         | 8       | 4          | 2          | 2        | 13.77     | 13.76     | 6.47        | 5        | 102    | 20       | 82     | 187        | 2460       | 2647       |
| SATESUM EVENING | 8       | 2          | 2          | 3        | 13.76     | 13.76     | 6.48        | 5        | 102    | 10       | 92     | 94         | 2760       | 2854       |
| NO SERVICE      |         | 0          |            |          |           |           |             |          | 102    | 0        | 102    | 0          | 3060       | 3060       |

NOTES: 30 KN/CAR AUXILIARY POWER

.

#### TABLE 1-6

#### NORMAL OPERATION CHOPPER(BASE) ENERGY ANALYSIS

|           |                |       |      |           |      |         | RUNNING  | TPATNS  |      | NAROUND<br>STORAGE | тот      | <b>A</b> 1 |       |
|-----------|----------------|-------|------|-----------|------|---------|----------|---------|------|--------------------|----------|------------|-------|
| PERIOD    | TIME           | HOURS | CM/i | HR KWHPCM | CN   | і к     |          | +       |      |                    | ₩Н К₩́Р  | -          |       |
| WEEKDAY   |                |       | -    |           |      |         |          |         |      |                    |          |            |       |
| MORNING   | 12:00AM - 6:00 | AM    | 6    | NS        |      |         |          |         | 3060 | 18360              | 18360    |            |       |
| AM PEAK   | 6:00AM - 9:00  | АМ    | Э    | 2877.90   | 5.48 | 8633.70 | 47313    | 8 15771 | 569  | 1706               | 49019    | 16340      |       |
| MIDDAY    | 9:00AM - 3:00  | PM    | 6    | 959.25    | 5.49 | 5755.50 | 31598    | l       | 2234 | 13405              | 45002    |            |       |
| PM PEAK   | 3:00PM - 6:00  | PM    | Э    | 2877.90   | 5.48 | 8633.70 | 47313    | 3       | 569  | 1706               | 49019    |            |       |
| EVENING   | 6:00PM - 12:00 | AM    | 6    | 479.63    | 5.84 | 2877.75 | 16806    | 5       | 2647 | 15882              | 32688    |            | 32688 |
|           | 0              |       |      |           |      |         |          |         |      |                    |          |            |       |
| TOTAL     |                |       | 24   |           | 5.52 | 25901   | 143029   | )       |      | 32700              | 175729   |            |       |
| SAT & SUN |                |       |      |           |      |         |          |         |      |                    |          |            |       |
| MORNING   | 12:00AM - 6:00 | ۸M    | 6    | NS        |      |         |          |         | 3060 | 18360              | 18360    |            |       |
| DAY       | 6:00AM - 6:00  | PM    | 12   | 479.63    | 5.84 | 5755.50 | 33612    | 2       | 2647 | 31765              | 65377    |            |       |
| EVENING   | 6:00PM - 12:00 | AM    | 6    | 239.63    | 5.57 | 1437.75 | 8008     | l –     | 2854 | 17122              | 25130    |            |       |
| TOTAL     |                |       | 24   |           | 5.79 | 7193.25 | 41620    | )       |      | 48886              | 90507    |            |       |
| WEEKLY    |                |       |      |           | 5.55 | 143890  | 798386   | 15771   |      | 261271             | 1059657  | 16340      |       |
| ANNUAL    |                |       |      |           | 5.55 | 7482267 | 41516088 | 189251  |      | 13586087           | 55102175 | 196076     |       |

|                                |         |         |         |         | SPRING M | ið auturni |         |         |         |         |          |         |       |
|--------------------------------|---------|---------|---------|---------|----------|------------|---------|---------|---------|---------|----------|---------|-------|
|                                | STATION | STATION | STATION | STATION | STATION  | STATION    | STATION | STATION | STATION | STATION |          |         |       |
| SUPPORT LOAD FUNCTION          |         |         | C       | Ð       | E        | F          | 6       | N       | I       | 3       | Haintnee | Central | TOTAL |
| Ventilation                    |         |         |         | 200     | 200      | 200        | 200     |         |         |         | 200      | 100     | 1100  |
| Heating                        |         |         |         |         |          |            |         |         |         |         |          | 100     | 100   |
| Air Conditioning               |         |         |         |         |          |            |         |         |         |         |          |         | 0     |
| Lighting                       | 100     | 100     | 50      | 100     | 100      | 100        | 100     | 50      | 50      | 100     | 100      | 50      | 1000  |
| Escalators & Elevators         |         |         |         | 300     | 300      | 300        | 300     |         |         |         |          |         | 1200  |
| Train Control & Communications | 100     | 100     | 100     | 100     | 100      | 100        | 100     | 100     | 100     | 100     | I        | 500     | 1500  |
| Fare Collection                | 50      | 50      | 50      | 100     | 100      | 100        | 100     | 50      | 50      | 50      | )        |         | 700   |
| Niscellaneous                  | 50      | 50      | 50      | 150     | 150      | 150        | 150     | 50      | 50      | 50      | 400      | 100     | 1400  |
| TOTAL                          | 300     | 200     | 250     | 950     | 950      | 950        | 950     | 250     | 250     | 300     | 700      | 850     | 7000  |

----

STATION STATION STATION STATION STATION STATION STATION STATION STATION SUPPORT LOAD FUNCTION J Maintace Central A C D E F H I TOTAL Ventilation Heating Air Conditioning Lighting Escalators & Elevators Train Control & Computications Fare Collection Niscellaneous TOTAL 

NINTER

|                                | STATION | BTATION | STATION | <b>BIATION</b> | SUMMER<br>BTATION | BTATION | STATION | STATION | BTATION | BTATION | ł        |         |       |
|--------------------------------|---------|---------|---------|----------------|-------------------|---------|---------|---------|---------|---------|----------|---------|-------|
| SUPPORT LOAD FUNCTION          | A       |         | C       | þ              | E                 | F       | 6       | н       | I       | 3       | Naistnce | Central | TOTAL |
| Ventilation                    | 50      | 50      | 50      | 200            | 200               | 200     | 200     | 50      | 50      | 50      | 200      | 100     | 1400  |
| Heating                        |         |         |         |                |                   |         |         |         |         |         |          | 50      | 50    |
| Air Conditioning               |         |         |         | 500            | 500               | 500     | 500     |         |         |         | 50       | 300     | 2350  |
| Lighting                       | 100     | 100     | 50      | 100            | 100               | 100     | 100     | 50      | 50      | 100     | 100      | 50      | 1000  |
| Escalators & Elevators         |         |         |         | 300            | 300               | 300     | 300     |         |         |         |          |         | 1200  |
| Train Control & Communications | 100     | 100     | 100     | 100            | 100               | 100     | 100     | 100     | 100     | 100     |          | 500     | 1500  |
| Fare Collection                | 50      | 50      | 50      | 100            | 100               | 100     | 100     | 50      | 50      | 50      |          |         | 700   |
| Niscellaneous                  | 50      | 50      | 50      | 150            | 150               | 150     | 150     | 50      | 50      | 50      | 400      | 100     | 1400  |
| TOTAL                          | 350     | 350     | 300     | 1450           | 1450              | 1450    | 1450    | 300     | 300     | 350     | 750      | 1100    | 9600  |

|         |        | SUPPOR | T POWER<br>ENERGY | TRACTIO | N POWER<br>ENERGY | TOTAL  | POWER<br>ENERGY |
|---------|--------|--------|-------------------|---------|-------------------|--------|-----------------|
| PERIOD  | MONTHS | POWER  | USE               | POWER   | USE               | POWER  | USE             |
| SPRING  | 3      | 7000   | 15330000          | 16340   | 13775544          | 23340  | 29105544        |
| SUMMER  | 3      | 9600   | 21024000          | 16340   | 13775544          | 25940  | 34799544        |
| AUTUMN  | 3      | 7000   | 15330000          | 16340   | 13775544          | 23340  | 29105544        |
| WINTER  | 3      | 9700   | 21243000          | 16340   | 13775544          | 26040  | 35018544        |
|         |        |        |                   |         |                   |        |                 |
| ANNUAL  | 12     | 99900  | 72927000          | 196080  | 55102175          | 295980 | 128029175       |
| PERCENT |        | 0.34   | 0.57              | 0.66    | 0.43              | 1.00   | 1.00            |

## TABLE 1-8 SUMMARY NORMAL POWER AND ENERGY USE

POWER - KW ENERGY - KWH

# TABLE 1-9

# NORMAL OPERATION CHOPPER(BASE) POWER BILL ANALYSIS

| PORTION OF                                                            | DEMAND<br>Normal         | 0.00    | 0.25<br>RATE (P | 0.50<br>POWER BILL | 0.75<br>UNITS) | 1.00    |
|-----------------------------------------------------------------------|--------------------------|---------|-----------------|--------------------|----------------|---------|
| DEMAND COMPONENT<br>TRACTION (MN)                                     | 196.08                   | 0.00000 | 0.00084         | 0.00149            | 0.00253        | 0.00338 |
| ENERGY COMPONENT<br>TRACTION (MKWH)<br>SUPPORT (MKWH)<br>TOTAL (MKWH) | 55.10<br>72.93<br>128.03 | 0.00781 | 0.00586         | 0.00391            | 0.00195        | 0.00000 |

•

TABLE 1-10 VEHICLE, PROPULSION AND BRAKING CHARACTERISTICS

|                                         | WMATA   | MARTA   |
|-----------------------------------------|---------|---------|
| VEHICLE PHYSICAL CHARACTERISTICS        |         |         |
| Empty Weight(tons)                      | 36.0    | 38.0    |
| Crush Load Weight(tons)+                | 52.5    | 58.5    |
| Length(ft)                              | 75.0    | 75.O    |
| Cross Sectional Area(sq ft)             | 85.0    | 116.0   |
| Flange Coefficient(lbs/ton/mph)         | 0.071   | 0.045   |
| Average Auxiliary Power(kw)             | 30.0    | 35.0    |
| Lead Vehicle Air Drag(lbs/ton/mph/mph)  | 0.0024  | 0.0024  |
| Trail Vehicle Air Drag(lbs/ton/mph/mph) | 0.00034 | 0.00034 |

۰.

| PROPULSION AND BRAKING CHARACTERISTICS<br>Motors<br>Control | DC Series/Field Shunt<br>Cam Resistor Switching<br>Chopper(Regeneration) | DC Separately Excited<br>Chopper(Regeneration) |
|-------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|
| Normal Accelerating Rate(mphps)                             | 3.0                                                                      | 2.6                                            |
| Maximum Speed(mph)                                          | 75.0                                                                     | 70.0                                           |
| Normal Braking Rate(mphps)                                  | 3.0                                                                      | Tapered**                                      |
| Line Voltage(Nominal, Max, Min)                             | 755, 900, 600                                                            | <b>750, 860, 600</b>                           |

- WMATA based on 220 150 lb passengers/car MARTA based on 273 - 150 lb passengers/car
- \*\* Brake taper:
  - 2.0 mphps 50 mph < v < 70 mph 3.0 mphps 20 mph < v < 50 mph 2.0 mphps 0 mph < v < 20 mph

| TABLE 1-1 | 11 | ROUTE | AND | OPERATING | CHARACTERISTICS | OF | STUDY |
|-----------|----|-------|-----|-----------|-----------------|----|-------|
|           |    |       |     |           |                 |    |       |

|       |             |                                  |              | AVERAGE   |              |            |
|-------|-------------|----------------------------------|--------------|-----------|--------------|------------|
|       |             |                                  |              | NUMBER OF | INTERSTATION | AVERAGE    |
|       |             |                                  | DISTANCE(mi) | STATIONS  | SPACING(mi)  | SPEED(mph) |
| WMATA |             |                                  |              |           |              |            |
|       | RED LINE    | Dupont Circle to Silver Spring   | 9.89         | 11        | 0.99         | 31.4       |
|       | BLUE LINE   | National Airport to Addison Road | 15.87        | 21        | 0.79         | 33.3       |
|       | ORANGE LINE | Ballston to New Carrollton       | 16.57        | 22        | 0.79         | 27.7       |
| MARTA |             |                                  |              |           |              |            |
|       | NS LINE     | Lakewood to Brookhaven           | 13.25        | 13        | 1.10         | 35.0       |
|       | EW LINE     | Hightower to Avondale            | 11.75        | 13        | O.98         | 34.0       |

|                       | HEADWAY<br>(MIN) | CARS/TRAIN |
|-----------------------|------------------|------------|
| WMATA                 |                  |            |
| RED LINE              |                  |            |
| WEEKDAY PEAK          | 5                | 6&8        |
| WEEKDAY OFF-PEAK      | 10               | 6          |
| SATURDAY              | 10               | 6          |
| SUNDAY                | 10               | 6          |
| BLUE & ORANGE LINES** |                  |            |
| WEEKDAY PEAK          | 6                | 6          |
| WEEKDAY OFF-PEAK      | 12               | 6          |
| SATURDAY              | 12               | 6          |
| SUNDAY                | 12               | 6          |
| MARTA                 |                  |            |
| NS LINE               |                  |            |
| WEEKDAY PEAK***       | 6                | 6          |
| WEEKDAY MIDDAY ***    | 6                | 4          |
| WEEKDAY EVENING       | 10               | 4          |
| SATURDAY              | 10               | 2 2        |
| SUNDAY                | 15               | 2          |
| EW LINE               |                  |            |
| WEEKDAY PEAK          | 6                | 4          |
| WEEKDAY MIDDAY        | 6                | 4          |
| WEEKDAY EVENING       | 10               | 4          |
| SATURDAY              | 10               | 2          |
| SUNDAY                | 15               | 2          |

\* During peak periods, six 6-car trains and five 8-car trains operate.

\*\* Headway refers to route between Rossyln and DG Junction.

\*\*\* On weekdays during peak and midday periods, half of the trains run from Lakewood to Lenox while the other half run from Lenox to Brookhaven. The headway refers to route from Lakewood to Lenox.

TABLE 1-13 ANNUAL AND HOURLY CAR-MILES

.

|             |       | ANNUAL CAP | R-MI   | CAR-MI/HR |
|-------------|-------|------------|--------|-----------|
|             |       | MILLIONS   | 5      |           |
|             | PEAK  | OFF-PEAK   | TOTAL  | PEAK      |
| WMATA(1980) |       |            |        |           |
| RED LINE    | 2.467 | 3.057      | 5.524  | 1644      |
| BLUE LINE   | 2.477 | 3.083      | 5.560  | 1470      |
| ORANGE LINE | 3.309 | 4.111      | 7.420  | 1988      |
| TOTAL       | 8.253 | 10.251     | 18.504 | 5102      |
| MARTA(1985) |       |            |        |           |
| N-S LINE    | 3.172 | 1.336      | 4.507  | 1057      |
| E-W LINE    | 2.815 | 0.908      | 3.724  | 938       |
| TOTAL       | 5.987 | 2.244      | 8.231  | 1995      |

## TABLE 1-14 ELECTRIC BILL ANALYSIS

|                          | WMATA (1981)= | MARTA (1984)* |
|--------------------------|---------------|---------------|
| Annual Energy Cost (\$M) | 15.7          | 4.1           |
| Demand Related           | 46%           | 50%           |
| Epengy Related           | 54%           | 50%           |
| Traction Related         | 70%           | 40%           |
| Support Related          | 30%           | 60%           |
| Cost/kWH                 | \$0.0561      | \$0.0435      |
| Estimated Annual Demand  | 734.100 kW    | 179,800kw     |
| Estimated Annual Energy  | 271000 MWh    | 951000 MWh    |

| BILLING | FACTORS |  |
|---------|---------|--|
|---------|---------|--|

| WMATA+ |                                  |          |                                  |                                                    |                               |
|--------|----------------------------------|----------|----------------------------------|----------------------------------------------------|-------------------------------|
|        | PEPCO<br>PEPCO<br>PEPCO<br>VEPCO | MD<br>VA | \$11.70/kW<br>9.85/kW<br>7.85/kW | \$0.028/kWh<br>0.024/kWh<br>0.022/kWh<br>0.061/kWh | 30 min.<br>30 min.<br>30 min. |
| MARTA  | GPC*                             |          | 11.62/kW                         | 0.0227/kWH                                         | 60 min.                       |

DEMAND ENERGY

DEMAND INTERVAL

WMATA costs and rates in 1981 dollars
 MARTA costs and rates in 1984 dollars

| TABLE 1-15       | PREDICTED VS A | CTUAL ENERGY | CONSUMPTION | (KWHPCM)   |
|------------------|----------------|--------------|-------------|------------|
|                  |                | ACTUAL       | PREDICTED   | DIFFERENCE |
| WMATA (1980)     |                |              |             |            |
| RED LIN          | ε              | 6.87         | 6.63        | - 4%       |
| BLUE/OR          | ANGE LINE      | 5.73         | 6.16        | +7%        |
| MARTA (1983&1984 | )              |              |             |            |
| 1983 OP          | ERATING PERIOD | 5.01         | 4.54        | - 9%       |
| 1984 DP          | ERATING PERIOD | 4.17         | 4.33        | +4%        |
| ALL              |                | 4.69         | 4.46        | -5%        |

# TABLE 1-16 TEN PERCENT VEHICLE WEIGHT REDUCTION(CHOPPER) ENERGY ANALYSIS

|           |                  |       |         |        |         | -         |         | TUR  | NARDUND  |          |         |          |         |       |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|-------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFF  | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CM      | KWH       | KN PEAK | KN   | KWH      | KNH      | KN PEAK | KWH      | KW PEAK | KWH   | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |       |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0     |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2879.40 | 5.65   | 8638.20 | 48806     | 16269   | 580  | 1739     | 50545    | 16848   | 49019    | 16340   | -1526 | -509    |
| HIDDAY    | 9:00AN - 3:00PN  | 6     | 959.40  | 5.25   | 5756.40 | 30221     |         | 2237 | 13424    | 43646    |         | 45002    |         | 1357  |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2879.40 | 5.65   | 8638.20 | 48806     |         | 580  | 1739     | 50545    |         | 49019    |         | -1526 |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.70  | 5.48   | 2878.20 | 15773     |         | 2649 | 15892    | 31665    |         | 3268B    |         | 1024  |         |
| TOTAL     |                  | 24    |         | 5.54   | 25911   | 143605    |         |      | 32794    | 176399   |         | 175729   |         | -671  |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |       |         |
| NORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0     |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.70  | 5.48   | 5756.40 | 31545     |         | 2649 | 31784    | 63329    |         | 65377    |         | 2047  |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.93  | 5.24   | 1439.55 | 7543      |         | 2854 | 17126    | 24669    |         | 25130    |         | 461   |         |
| TOTAL     |                  | 24    |         | 5.43   | 7195.95 | 39088     |         |      | 48911    | 87999    |         | 90507    |         | 2508  |         |
| WEEKLY    |                  |       |         | 5.53   | 143947  | 796203    | 16269   |      | 261792   | 1057995  | 16848   | 1059657  | 16340   | 1662  | -509    |
| ANNUAL.   |                  |       |         | 5.53   | 7485239 | 41402562  | 195223  |      | 13613184 | 55015746 | 202179  | 55102175 | 196076  | 86429 | -6102   |

#### TABLE 1-17 TEN PERCENT VEHICLE WEIGHT REDUCTION(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ≖=>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS | 0.50<br>0.50<br>(POWER BIL     | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00            |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|---------------------------------------------|-----------------------|-------------------------|--------------------------------|--------------------------|-------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99,90<br>295.98  | 0.00000      | 0.00084                | 0.00169                   | 0.00253                | 0.00338 | -6.10<br>0.00<br>-6.10                      | 0.000                 | -0.005                  | -0.010                         | -0.015                   | -0.021                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55-10<br>72-93<br>178-03   | 0.00781      | 0.00586                | 0.00391                   | 0 00195                | 0.0000  | 0.09<br>0.00<br>0.09<br>FRACTION<br>PERCENT | 0.001<br>0.001<br>0.1 | 0.001<br>~0.005<br>~0.5 | . 000<br>- 0 . 0 10<br>- 1 . 0 | .000<br>-0.015<br>-1.5   | 0.000<br>-0.021<br>-2.1 |

# TABLE 1-10 VEHICLE STREAMLINING(CHOPPER) ENERGY ANALYSIS

|           |                  |       |         |        |         |           |         | TUR  | NAROUND  |          |         |          |         |        |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|--------|---------|
|           |                  |       |         |        |         | RUNNING 1 | RAINS   | ÷ 1  | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFFI  | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CN      | KNH       | KH PEAK | KN   | KNH      | KWH      | KN PEAK | KWH      | KU PEAK | KWH    | KU PENK |
| NEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |        |         |
| NORN1NG   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0      |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2878.20 | 5.47   | 8634.60 | 47231     | 15744   | 569  | 1706     | 48938    | 16313   | 49019    | 16340   | 81     | 27      |
| NIDDAY    | 7:00AH - 3:00PH  | 6     | 959.25  | 5.47   | 5755.50 | 31483     |         | 2234 | 13406    | 44889    |         | 45002    |         | 113    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2878.20 | 5.47   | 8634.60 | 47231     |         | 569  | 1704     | 48938    |         | 49019    |         | 81     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.63  | 5.82   | 2877.75 | 16749     |         | 2647 | 15083    | 32632    |         | 32688    |         | 57     |         |
| TOTAL     |                  | 24    |         | 5.51   | 25902   | 142694    |         |      | 32702    | 175396   |         | 175729   |         | 232    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |        |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0      |         |
| DAY       | 6100AN - 6100PH  | 12    | 479.63  | 5.82   | 5755.50 | 33497     |         | 2647 | 31766    | 65263    |         | 65377    |         | 113    |         |
| EVENING   | 6:00PH - 12:00AN | 6     | 239.63  | 5.52   | 1437.75 | 7936      |         | 2854 | 17122    | 25058    |         | 25130    |         | 72     |         |
| TOTAL     |                  | 24    |         | 5.76   | 7193.25 | 41433     |         |      | 40000    | 90321    |         | 90507    |         | 185    |         |
| WEEKLY    |                  |       |         | 5.53   | 143899  | 796335    | 15744   |      | 261288   | 1057623  | 16313   | 1059657  | 16340   | 2034   | 27      |
| ANNUAL.   |                  |       |         | 5,53   | 7482735 | 41409412  | 188925  |      | 13586974 | 54996388 | 195751  | 55102175 | 196076  | 105787 | 326     |

| TABI         | LE 1-1 | 19            |
|--------------|--------|---------------|
| VEHICLE STRE | EAMLIN | NING(CHOPPER) |
| POWER        | BILL   | ANALYSIS      |

| PORTION OF<br>POWER BILL ==><br>Demand component<br>Traction(mw)<br>Support(mw)<br>Total(mw) | DEMAND<br>ENERGY<br>NORMAL<br>196.08<br>99.90<br>295.98 | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(F<br>0.00084 | 0.50<br>0.50<br>POWER BILL<br>0.00169 | 0.75<br>0.25<br>UNITS)<br>0.00253 |         | DEMAND<br>ENERGY<br>SAVINGS<br>0.33<br>0.00<br>0.33 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------|-----------------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TDTAL(MKWH)                           | 55.10<br>72.93<br>128.03                                | 0.00781                 | 0.00586                           | 0.00391                               | 0.00195                           | 0.00000 | 0.11<br>0.00<br>0.11<br>FRACTION<br>PERCENT         | 0.001<br>0.001<br>0.1 | 0.001<br>0.001<br>0.1    | .000<br>0.001<br>0.1      | . 000<br>0. 001<br>0. 1  | 0 000<br>0 00 1<br>0 1 |

.

# TABLE 1-20 NORMAL OPERATION CAM-CONTROL(BASE) ENERGY AMALYSIS

|           |                  |       | •       |        |         |           |         |      |                    |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|--------------------|----------|---------|
|           |                  |       |         |        |         | RUNNING 1 |         |      | HAROUND<br>STORAGE | TOT      | A       |
|           |                  |       |         |        |         |           |         |      |                    |          |         |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CM      | KNH       | KW PEAK | KN   | KWH                | KMH      | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |                    |          |         |
| NORWING   | 12:00AN - 5:00AN | 6     | NS      |        |         |           |         | 3060 | 18360              | 18360    |         |
| AH PEAK   | 6:00AN - 9:00AN  | 3     | 2877.90 | 9.02   | 8633.70 | 77876     | 25959   | 569  | 1706               | 79582    | 26527   |
| MIÐDAY    | 9:00AN - 3:00PH  | 6     | 959.25  | 8.63   | 5755.50 | 49670     |         | 2234 | 13405              | 63075    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2877.90 | 9.02   | 8633.70 | 77876     |         | 569  | 1706               | 79582    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 479.63  | 8.61   | 2977.75 | 24777     |         | 2647 | 15882              | 40660    |         |
| TOTAL     |                  | 24    |         | 8.89   | 25901   | 230199    |         |      | 32700              | 262899   |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |                    |          |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360              | 18360    |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.63  | 8.61   | 5755.50 | 49555     |         | 2647 | 31765              | 81319    |         |
| EVENING   | 6:00PN - 12:00AH | 6     | 239.63  | 8.54   | 1437.75 | 12278     |         | 2854 | 17122              | 29400    |         |
| TOTAL     |                  | 24    |         | 8.40   | 7193.25 | 61833     |         |      | 48886              | 110719   |         |
| WEEKLY    |                  |       |         | 8.86   | 143890  | 1274663   | 25959   |      | 261271             | 1535934  | 26527   |
| ANNUAL    |                  |       |         | 8.86   | 7482267 | 66282485  | 311504  |      | 13586087           | 79868572 | 318329  |

#### TABLE 1-21 Normal Operation CAM-Control(Base) Power Bill Analysis

| PORTION OF<br>POWER BILL ##>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) | 1.00<br>0.00 |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|--------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>Total(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                   | 0.00179                | 0.00239      |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                   | 0.00164                | 0.00000      |

,

|                 |                  |       |         |              | EM      | ERGY ANALY | SIS     |       |          |          |         |          |         |         |         |
|-----------------|------------------|-------|---------|--------------|---------|------------|---------|-------|----------|----------|---------|----------|---------|---------|---------|
|                 |                  |       |         |              |         |            |         | TUR   | IAROUND  |          |         |          |         |         |         |
|                 |                  |       |         |              |         | RUNNING T  | RAINS   | i k t | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFF    | ERENCE  |
| PERIOD          | TINE             | HOURS | CH/HR   | KIHPCN       | CN      | KUNI       | KN PEAK | KN    | KNH      | KWH      | KH PEAK | KINH     | KH PEAK | KNH     | KW PEAK |
| NEEKDAY         |                  |       |         |              |         |            |         |       |          |          |         |          |         |         |         |
| NORNING         | 12:00AN - 6:00AN | 6     | NS      |              |         |            |         | 3060  | 18340    | 18360    |         | 18360    |         | 0       |         |
| AN PEAK         | HA0019 - HA0014  | 2     | 2977.90 | 9.17         | 8633.70 | 79171      | 26390   | 569   | 1706     | 80877    | 26959   | 79582    | 26527   | -1295   | -432    |
| NIDDAY          | 9:00M - 3:00PH   | 6     | 959.25  | 8.70         | 5755.50 | 50073      |         | 2234  | 13405    | 63477    |         | 63075    |         | -403    |         |
| PH PEAK         | 3:00PM - 6:00PM  | 3     | 2877.90 | 9.17         | 8633.70 | 79171      |         | 569   | 1706     | 80877    |         | 79582    |         | -1295   |         |
| EVENING         | 6:00PH - 12:00AH | 6     | 479.63  | 8.67         | 2877.75 | 24950      |         | 2647  | 15882    | 40832    |         | 40660    |         | -173    |         |
| TOTAL           |                  | 24    |         | 7.01         | 25901   | 233365     |         |       | 32700    | 266065   |         | 262899   |         | -3146   |         |
| SAT & SUN       |                  |       |         |              |         |            |         |       |          |          |         |          |         |         |         |
| <b>NORN ENG</b> | 12:00AN - 6:00AN | 6     | NS      |              |         |            |         | 3060  | 18360    | 18360    |         | 18340    |         | 0       |         |
| BAY             | 6:00AH - 6:00PH  | 12    | 479.43  | 8.67         | 5755.50 | 49900      |         | 2647  | 31765    | 81665    |         | 81319    |         | -345    |         |
| EVENING         | 6:00PH - 12:00M  | 6     | 239.43  | 8.54         | 1437.75 | 12307      |         | 2854  | 17122    | 29429    |         | 29400    |         | -29     |         |
| TOTAL           |                  | 24    |         | 8.45         | 7193.25 | 62207      |         |       | 49684    | 111094   |         | 110719   |         | -374    |         |
| MEEKLY          |                  |       |         | <b>B.</b> 97 | 143890  | 1291240    | 26390   |       | 261271   | 1552511  | 26959   | 1535934  | 26527   | -16576  | -432    |
| AMIRIAL         |                  |       |         | 0.97         | 7482267 | 67144462   | 316684  |       | 13586087 | 80730549 | 323310  | 79868572 | 318329  | -861976 | -5180   |

#### TABLE 1-22 CHOPPER VS CAN-CONTROL NO REGENERATION ENERGY ANALYSIS

•

#### TABLE 1-23 CHDPPER VS CAM-CONTROL NO REGENERATION POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL>                                          | DEMAND<br>ENERGY<br>NORMAL | 0.00    | 0.25<br>0.75<br>RATE(P<br>0.00060 | 0.50<br>0.50<br>OWER BILL<br>0.00120 | 0.75<br>0.25<br>UNITS)<br>0.00179 |         | DEMAND<br>ENERGY<br>SAVINGS                  | 0.00<br>1.00            | 0.25<br>0.75<br>SAVINGS(          | 0.50<br>0.50<br>POWER BIL         | 0.75<br>0,25<br>L UNITS) | 1.00<br>0.00              |
|--------------------------------------------------------------------|----------------------------|---------|-----------------------------------|--------------------------------------|-----------------------------------|---------|----------------------------------------------|-------------------------|-----------------------------------|-----------------------------------|--------------------------|---------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318,33<br>99,90<br>418,23  | 0.00000 | 0.00080                           | 0.00120                              | 0.00110                           | 0.00100 | -5.18<br>0.00<br>-5.18                       | 0.000                   | -0.003                            | -0.006                            | -0.00 <b>9</b>           | -0.012                    |
| ENERGY COMPONENT<br>TRACTIONIMEWH)<br>SUPPORT(MEWH)<br>TUDALIMEWHP | 79-87<br>72-93<br>152-80   | 0.00654 | 0.00491                           | 0.00327                              | <u>0</u> 00164                    | 0 00000 | 0 85<br>0 (0)<br>0 86<br>FRACTION<br>PERCENT | 0-006<br>-0-006<br>-0-6 | - (J. 004<br>- (J. 007<br>- (J. 7 | - 0 - 003<br>- 0 - 009<br>- 0 - 9 | -0-001<br>-0.011<br>-1.1 | 0.000<br>• 0.012<br>• 1.2 |

| TABLE 1-24                            |
|---------------------------------------|
| CHOPPER (REGENERATION) VS CAN-CONTROL |
| ENERGY ANALYSIS                       |

|           |                  |       |         |        |                  |           |         | TURI | NAROUND  |          |         |          |         |          |               |
|-----------|------------------|-------|---------|--------|------------------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------------|
|           |                  |       |         |        |                  | RUNNING T | RAINS   | k S  | STORAGE  | TOT      | AL      | NORMA    | L TOTAL | DIFF     | ERENCE        |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCN | CM               | KWH       | KN PEAK | KW   | KWH      | KNH      | KH PEAK | KNH      | KW PEAK | KWH      | KH PEAK       |
| NEEKDAY   |                  |       |         |        |                  |           |         |      |          |          |         |          |         |          |               |
| MÖRWING   | 12:00AN - 6:00AN | 6     | NS      |        |                  |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |               |
| an peak   | 6:00AH - 9:00AH  | 3     | 2877.90 | 5.48   | 8633.70          | 47313     | 15771   | 569  | 1706     | 49019    | 16340   | 79582    | 26527   | 20292    | 101 <b>89</b> |
| NIDDAY    | 9:00AH - 3:00PH  | 6     | 959.25  | 5.49   | 5755.50          | 31598     |         | 2234 | 13405    | 45002    |         | 63075    |         | 18072    |               |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2877.90 | 5.48   | 8633.70          | 47313     |         | 569  | 1706     | 49019    |         | 79582    |         | 30563    |               |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.63  | 5.84   | 2877.75          | 16806     |         | 2647 | 15882    | 32688    |         | 40660    |         | 7971     |               |
| TOTAL     |                  | 24    |         | 5.52   | <b>2590</b> 1    | 143029    |         |      | 32700    | 175729   |         | 262899   |         | 87170    |               |
| SAT & SUN |                  |       |         |        |                  |           |         |      |          |          |         |          |         |          |               |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |                  |           |         | 3060 | 18360    | 18360    |         | 18340    |         | 0        |               |
| DAY       | 6100AN - 6100PN  | 12    | 479.63  | 5.84   | 5755.50          | 33612     |         | 2647 | 31765    | 65377    |         | 81319    |         | 15943    |               |
| EVENING   | 6:00PH - 12:00AN | 6     | 239.63  | 5.57   | 1437.75          | 8008      |         | 2054 | 17122    | 25130    |         | 29400    |         | 4270     |               |
| TOTAL     |                  | 24    |         | 5.79   | 7193.25          | 41620     |         |      | 49886    | 90507    |         | 110719   |         | 20213    |               |
| WEEKLY    |                  |       |         | 5.55   | 143890           | 798386    | 15771   |      | 261271   | 1059657  | 16340   | 1535934  | 26527   | 476277   | 10188         |
| ANNUAL    |                  |       |         | 5.55   | 7 <b>48</b> 2267 | 41516088  | 189251  |      | 13586087 | 55102175 | 196076  | 79868572 | 318329  | 24766397 | 122253        |

| TABLE 1-25                           |  |
|--------------------------------------|--|
| CHOPPER(REGENERATION) VS CAM-CONTROL |  |
| POWER BILL ANALYSIS                  |  |

| PORTION OF<br>POWER BILL ==> | DEMAND<br>ENERGY              | 0.00    | 0.25<br>0.75 | 0.50<br>0.50 | 0.75<br>0.25 |                           | DEMAND<br>ENERGY | 0.00  | 0.25<br>0.75 | 0.50<br>0.50 | 0.75<br>0.25 | 1.00<br>0.00 |
|------------------------------|-------------------------------|---------|--------------|--------------|--------------|---------------------------|------------------|-------|--------------|--------------|--------------|--------------|
|                              | NORMAL RATE(POWER BILL UNITS) |         |              | SAVINGS      |              | SAVINGS(POWER BILL UNITS) |                  |       |              |              |              |              |
| DEMAND COMPONENT             |                               | 0.00000 | 0.00060      | 0.00120      | 0.00179      | 0.00239                   |                  |       |              |              |              |              |
| TRACTION(MW)                 | 318.33                        |         |              |              |              |                           | 122.25           |       |              |              |              |              |
| SUPPORT(MW)                  | 99.90                         |         |              |              |              |                           | 0.00             |       |              |              |              |              |
| TOTAL(MW)                    | 418.23                        |         |              |              |              |                           | 122.25           | 0.000 | 0.073        | 0.146        | 0.219        | 0.292        |
| ENERGY COMPONENT             |                               | 0.00654 | 0.00491      | 0.00327      | 0.00164      | 0.00000                   |                  |       |              |              |              |              |
| TRACTION(MKWH)               | 79.87                         |         |              |              |              |                           | 24.77            |       |              |              |              |              |
| SUPPORT(MKWH)                | 72.93                         |         |              |              |              |                           | 0.00             |       |              |              |              |              |
| TOTAL(MKWH)                  | 152.80                        |         |              |              |              |                           | 24.77            | 0.162 | 0.122        | 0.081        | 0.041        | 0.000        |
|                              |                               |         |              |              |              |                           | FRACTION         | 0.162 | 0.195        | 0.227        | 0.260        | 0.292        |
|                              |                               |         |              |              |              |                           | PERCENT          | 16.2  | 19.5         | 22.7         | 26.0         | 29.2         |

| ENERGY ANALYSIS |                  |       |         |        |         |           |         |          |          |          |         |          |         |          |         |
|-----------------|------------------|-------|---------|--------|---------|-----------|---------|----------|----------|----------|---------|----------|---------|----------|---------|
|                 | TURNAROUNO       |       |         |        |         |           |         |          |          |          |         |          |         |          |         |
|                 |                  |       |         |        |         | RUNNING T | RAINS   | <b>i</b> | STORAGE  | TOT      | AL.     | NORM     | L TOTAL | DIFF     | ERENCE  |
| PERIOD          | TINE             | HOURS | CH/HR   | KNHPCH | CN      | KWH       | KN PEAK | KN       | KNH      | KNH      | KN PEAK | KNH      | KN PEAK | KWH      | KN PEAK |
| NEEKDAY         |                  |       |         |        |         |           |         |          |          |          |         |          |         |          |         |
| MORNING         | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060     | 18360    | 18360    |         | 18360    |         | 0        |         |
| AN PEAK         | 6100AN - 9100AN  | 3     | 3013.55 | 7.87   | 9040.65 | 71150     | 23717   | 569      | 1706     | 72856    | 24285   | 79582    | 26527   | 6726     | 2242    |
| M1DDAY          | 9:00AH - 3:00PH  | 6     | 959.25  | 5.49   | 5755.50 | 31598     |         | 2234     | 13405    | 45002    |         | 63075    |         | 18072    |         |
| PN PEAK         | 3:00PH - 6:00PH  | 3     | 3013.55 | 7.87   | 9040.65 | 71150     |         | 569      | 1706     | 72856    |         | 79582    |         | 6726     |         |
| EVEN1NG         | 6100PH - 12100AH | 6     | 479.63  | 5.84   | 2877.75 | 16806     |         | 2647     | 15882    | 32688    |         | 40660    |         | 7971     |         |
| TOTAL           |                  | 24    |         | 7.14   | 26715   | 190704    |         |          | 32700    | 223403   |         | 262899   |         | 39496    |         |
| SAT & SUN       |                  |       |         |        |         |           |         |          |          |          |         |          |         |          |         |
| HORNING         | 12:00AN - 6:00AN | 6     | NS      |        | •       |           |         | 3040     | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY             | 6:00AN - 6:00PN  | 12    | 479.63  | 5.84   | 5755.50 | 33612     |         | 2647     | 31765    | 65377    |         | 81319    |         | 15943    |         |
| EVENING         | 6:00PH - 12:00AN | 6     | 239.43  | 5.57   | 1437.75 | 8008      |         | 2854     | 17122    | 25130    |         | 29400    |         | 4270     |         |
| TOTAL           |                  | 24    |         | 5.79   | 7193.25 | 41620     |         |          | 49884    | 90507    |         | 110719   |         | 20213    |         |
| MEEKLY          |                  |       |         | 7.01   | 147959  | 1036759   | 23717   |          | 261271   | 1298030  | 24285   | 1535934  | 26527   | 237904   | 2242    |
| ANNUAL          |                  |       |         | 7.01   | 769388t | 53911453  | 284600  |          | 13586087 | 67497539 | 291425  | 79868572 | 318329  | 12371033 | 26904   |

TABLE 1-26 CHOPPER(1/4 FLEET) VS CAN-CONTROL SEPARATE TRAINS

#### TABLE 1-27 CHOPPER(1/4 FLEET) VS CAM-CONTROL SEPARATE TRAINS POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(f | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|-----------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|-----------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>Total(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                    | 0.00179                | 0.00239 | 26.90<br>0.00<br>26.90                        | 0.000                 | 0.016                    | 0.032                     | 0.048                    | 0.064                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                    | 0.00164                | 0.00000 | 12.37<br>0.00<br>12.37<br>FRACTION<br>PERCENT | 0.081<br>0.081<br>8.1 | 0.061<br>0.077<br>7.7    | 0.040<br>0.073<br>7.3     | 0.020<br>0.068<br>6.8    | 0.000<br>0.064<br>6.4 |

.

# TABLE 1-28 CHOPPER(1/4 FLEET) VS CAN-CONTROL NIXED CONSISTS ENERGY ANALYSIS

|                  | i i i i i i i i i i i i i i i i i i i |       |         |        |         |           | I UK    | RINKUURU |                |               |         |          |         |          |         |
|------------------|---------------------------------------|-------|---------|--------|---------|-----------|---------|----------|----------------|---------------|---------|----------|---------|----------|---------|
|                  |                                       |       |         |        |         | RUNNING T | RAINS   | k i      | STORAGE        | TOT           | AL.     | NORMA    | L TOTAL | DIFF     | ERENCE  |
| PERIOD           | TINE                                  | HOURS | CM/HR   | KWHPCM | CN      | KMH       | KN PEAK | KN       | KWH            | KWH           | KN PEAK | KNH      | KW PEAK | KWH      | KW PEAK |
| NEEKDAY          |                                       |       |         |        |         |           |         |          |                |               |         |          |         |          |         |
| MORNING          | 12:00AH - 6:00AH                      | 6     | NS      |        |         |           |         | 3090     | 1 <b>B</b> 360 | 18360         |         | 18340    |         | 0        |         |
| an peak          | 6:00AH - 9:00AH                       | 3     | 3013.55 | 7.75   | 9040.65 | 70065     | 23355   | 569      | 1706           | 71771         | 23924   | 79582    | 26527   | 7811     | 2604    |
| ni dday          | 9:00AN - 3:00PN                       | 6     | 959.25  | 5.49   | 5755.50 | 31598     |         | 2234     | 13405          | 45002         |         | 63075    |         | 18072    |         |
| PH PEAK          | 3:00PH - 6:00PH                       | 3     | 3013.55 | 7.75   | 9040.65 | 70065     |         | 569      | 1706           | 71771         |         | 79582    |         | 7811     |         |
| EVENING          | 6:00PN - 12:00AH                      | 6     | 479.63  | 5.B4   | 2877.75 | 16806     |         | 2647     | 15882          | 32688         |         | 40660    |         | 7971     |         |
| TOTAL            |                                       | 24    |         | 7.06   | 26715   | 188534    |         |          | 32700          | 221234        |         | 262899   |         | 41666    |         |
| SAT & SUN        |                                       |       |         |        |         |           |         |          |                |               |         |          |         |          |         |
| <b>NORN I NG</b> | 12:00AH - 6:00AH                      | 6     | NS      |        |         |           |         | 3060     | 18360          | 18360         |         | 18360    |         | 0        |         |
| DAY              | 6:00AN - 6:00PH                       | 12    | 479.63  | 5.84   | 5755.50 | 33612     |         | 2647     | 31765          | 65377         |         | 81319    |         | 15943    |         |
| EVENING          | 6:00PH - 12:00AH                      | 6     | 239.63  | 5.57   | 1437.75 | 8008      |         | 2854     | 17122          | 25130         |         | 29400    |         | 4270     |         |
| TOTAL            |                                       | 24    |         | 5.79   | 7193.25 | 41620     |         |          | 49886          | <b>905</b> 07 |         | 110719   |         | 20213    |         |
| WEEKLY           |                                       |       |         | 6.93   | 147959  | 1025910   | 23355   |          | 261271         | 1287181       | 23924   | 1535934  | 26527   | 248753   | 2604    |
| ANNUAL           |                                       |       |         | 6.93   | 7693881 | 53347316  | 280260  |          | 13586087       | 66933403      | 287086  | 79868572 | 318329  | 12935169 | 31244   |

#### TABLE 1-29 CHOPPER(1/4 FLEET) VS CAM-CONTROL MIXED CONSISTS POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>POWER BILL | -       | 0.00    | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00                  | 0.25<br>0.75<br>SAVINGS ( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|---------|---------|-----------------------------------------------|-----------------------|---------------------------|---------------------------|--------------------------|-----------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>Total(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                    | 0.00179 | 0.00239 | 31.24<br>0.00<br>31.24                        | 0.000                 | 0.019                     | 0.037                     | 0.056                    | 0.075                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                    | 0.00164 | 0.00000 | 12.94<br>0.00<br>12.94<br>FRACTION<br>PERCENT | 0.085<br>0.085<br>8.5 | 0.063<br>0.082<br>8.2     | 0.042<br>0.080<br>8.0     | 0.021<br>0.077<br>7.7    | 0.000<br>0.075<br>7.5 |

с С

|         | TABLI    | E 1-3 | 0   |       |         |  |
|---------|----------|-------|-----|-------|---------|--|
| ASSURED | RECEPTIV | LTY - | ON  | BOARD | STORAGE |  |
|         | ENERGY   | ANAL  | YSI | \$    |         |  |

.

| TURNAR DUND |                  |       |               |        |         |           |         |      |          |          |         |          |         |          |         |
|-------------|------------------|-------|---------------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------|
|             |                  |       |               |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL      | NORMA    | L TOTAL | DIFF     | ERENCE  |
| PERIOD      | TINE             | HOURS | CH/HR         | KNHPCH | CN      | KWH       | KN PEAK | KW   | KWH      | KNH      | KU PEAK | KNN      | KN PEAK | KWH      | KU PEAK |
| WEEKDAY     |                  |       |               |        |         |           |         |      |          |          |         |          |         |          | •       |
| NDRNING     | 12:00AN - 6:00AN | 6     | NS            |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| AH PEAK     | 6:00AH - 9:00AH  | 3     | 2876.10       | 6.31   | 8628.30 | 54445     | 18148   | 572  | 1717     | 56162    | 10721   | 79582    | 26527   | 23421    | 7807    |
| NIDDAY      | 9:00AM - 3:00PM  | 6     | <b>958.95</b> | 6.10   | 5753.70 | 35098     |         | 2231 | 13383    | 48481    |         | 63075    |         | 14594    |         |
| PH PEAK     | 3:00PH - 6:00PH  | 3     | 2876.10       | 6.31   | 8628.30 | 54445     |         | 572  | 1717     | 56162    |         | 79582    |         | 23421    |         |
| EVENING     | 6:00PH - 12:00AN | 6     | 479.48        | 4.08   | 2876.85 | 17491     |         | 2645 | 15872    | 33363    |         | 40660    |         | 7297     |         |
| TOTAL       |                  | 24    |               | 6.24   | 25887   | 161478    |         |      | 32689    | 194167   |         | 262899   |         | 68732    |         |
| SAT & SUN   |                  |       |               |        |         |           |         |      |          |          |         |          |         |          |         |
| NORNING     | 12:00AN - 6:00AN | 6     | NS            |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY         | 6:00AN - 5:00PN  | 12    | 479.48        | 6.08   | 5753.70 | 34982     |         | 2645 | 31743    | 66725    |         | 81319    |         | 14594    |         |
| EVENING     | 6:00PH - 12:00AH | 6     | 239.70        | 6.14   | 1438.20 | 8831      |         | 2652 | 17109    | 25940    |         | 29400    |         | 3460     |         |
| TOTAL       |                  | 24    |               | 6.09   | 7191.90 | 43813     |         |      | 48852    | 92665    |         | 110719   |         | 18054    |         |
| NEEKLY      |                  |       |               | 6.22   | 143820  | 895016    | 18148   |      | 261149   | 1156164  | 18721   | 1535934  | 26527   | 379770   | 7807    |
| ANNUAL      |                  |       |               | 6.22   | 7478617 | 46540827  | 217778  |      | 13579722 | 60120549 | 224647  | 79868572 | 318329  | 19748023 | 93682   |

۰.

# TABLE 1-31ASSURED RECEPTIVITY - ON BOARD STORAGEPOWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(F | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|-----------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                    | 0.00179                | 0.00239 | 93,68<br>0,00<br>93,68                        | 0.000                  | 0.056                    | 0.112                     | 0.168                    | 0.224                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>Support(MKWH)<br>Total(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                    | 0.00164                | 0.00000 | 19.75<br>0.00<br>19.75<br>FRACTION<br>PERCENT | 0.129<br>0.129<br>12.9 | 0.097<br>0.153<br>15.3   | 0.065<br>0.177<br>17.7    | 0.032<br>0.200<br>20.0   | 0.000<br>0.224<br>22.4 |

54

.

|           |                  |       |         | ASSURE |         | TABLE 1-3<br>IVITY - RE<br>WERGY ANAL | GENERATIV | E SUBSTATI | IONS   |        |             |        |          |       |         |
|-----------|------------------|-------|---------|--------|---------|---------------------------------------|-----------|------------|--------|--------|-------------|--------|----------|-------|---------|
|           |                  |       |         |        |         |                                       |           | TURN       | ARDUND |        |             |        |          |       |         |
|           |                  |       |         |        |         | RUMNENG 1                             | TRAINS    | 1 S        | Torage | TO:    | T <b>al</b> | NORIM  | NL TOTAL | DIFF  | FERENCE |
| PERIOD    | TINE             | HOURS | CH/HR   | KHHPCH | CH      | KNH                                   | KW PEAK   | KW         | KWH    | KWH    | KW PEAK     | KMH    | KW PEAK  | KNH   | KN PEAK |
| HEEKDAY   |                  |       |         |        |         |                                       |           |            |        |        |             |        |          |       |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                                       |           | 3060       | 18360  | 18360  |             | 18360  |          | 0     |         |
| AN PEAK   | 6:00AM - 9:00AM  | 3     | 2877.90 | 5.21   | 8633.70 | 44982                                 | 14994     | 569        | 1706   | 46688  | 15563       | 79582  | 26527    | 32894 | 10965   |
| NIDDAY    | 9:00AN - 3:00PH  | 6     | 959.25  | 5.31   | 5755.50 | 30562                                 |           | 2234       | 13405  | 43966  |             | 63075  |          | 19108 |         |
| PH PEAK   | 3:00PH - 6:00PN  | 3     | 2877.90 | 5.21   | 8633.70 | 44982                                 |           | 569        | 1706   | 46688  |             | 79582  |          | 32894 |         |
| EVENING   | 6:00PH - 12:00AH | 6     |         | 5.29   | 2077.75 | 15223                                 |           | 2647       | 15882  | 31106  |             | 40660  |          | 9554  |         |
| TOTAL     |                  | 24    |         | 5.24   | 25901   | 135748                                |           |            | 32700  | 168448 |             | 262899 |          | 94451 |         |
| SAT & SUN |                  |       |         |        |         |                                       |           |            |        |        |             |        |          |       |         |
| NORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                                       |           | 3060       | 18360  | 18360  |             | 18360  |          | 0     |         |
| DAY       | 6:00AN - 6:00PH  | 12    |         | 5.29   | 5755.50 | 30447                                 |           | 2647       | 31765  | 62211  |             | 81319  |          | 19108 |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239,63  | 5.03   |         | 7232                                  |           | 2854       | 17122  | 24353  |             | 29400  |          | 5047  |         |
| TOTAL     |                  | 74    |         | 5 74   | 7101 25 | 17470                                 |           |            | 40004  | DISIS  |             | 110710 |          | 94155 |         |

| TOTAL            | <br>121 00111 | 24 | 237,03 |              | 7193.25            |                    |                 | 2034 | 48886                      | 86565                       |                 | 110719              |                 | 24155              |                 |
|------------------|---------------|----|--------|--------------|--------------------|--------------------|-----------------|------|----------------------------|-----------------------------|-----------------|---------------------|-----------------|--------------------|-----------------|
| WEEKLY<br>Annual |               |    |        | 5.24<br>5.24 | 14 3890<br>7482267 | 754098<br>39213082 | 14994<br>179926 | 1    | 261271<br>1 <b>3586097</b> | 101 <b>5369</b><br>52799169 | 15563<br>186752 | 1535934<br>79868572 | 26527<br>318329 | 520565<br>27069403 | 10965<br>131578 |

|         | TABLE 1-33                             |  |
|---------|----------------------------------------|--|
| ASSURED | RECEPTIVITY - REGENERATIVE SUBSTATIONS |  |
|         | POWER BILL ANALYSIS                    |  |

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW) | DEMAND<br>ENERGY<br>NORMAL<br>318.33<br>99.90 | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(P<br>0.00060 | 0.50<br>0.50<br>OWER BILL<br>0.00120 | 0.75<br>0.25<br>UNITS)<br>0.00179 | 1.00 D<br>0.00 E<br>0.00239 |                                               | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>Power Bil |                        | 1.00                   |
|---------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|-----------------------------------|--------------------------------------|-----------------------------------|-----------------------------|-----------------------------------------------|------------------------|--------------------------|---------------------------|------------------------|------------------------|
| TOTAL(MW)                                                                       | 418.23                                        |                         |                                   |                                      |                                   |                             | 131.58                                        | 0.000                  | 0.079                    | 0.157                     | 0.236                  | 0.315                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH)              | 79.87<br>72.93<br>152.80                      | 0.00654                 | 0.00491                           | 0.00327                              | 0.00164                           |                             | 27.07<br>0.00<br>27.07<br>FRACTION<br>PERCENT | 0.177<br>0.177<br>17.7 | 0.133<br>0.212<br>21.2   | 0.089<br>0.246<br>24.6    | 0.044<br>0.280<br>28.0 | 0.000<br>0.315<br>31.5 |

S S

# TABLE 1-35

# DEFINITION OF LEVEL-TANGENT TRACK RUNS FOR PERFORMANCE MODIFICATION 2/17/86

| TPS    | CL.      | т         | ST       | P         | REMARKS   | TIME | КЖНРСМ |
|--------|----------|-----------|----------|-----------|-----------|------|--------|
| CAM-CC | ONTROL S | TATION SP | ACING *  | 1.0 MILE  |           |      |        |
| 001    | FOI      | CAM       | EO1      | R1E1      | MIN TIME  | 1.28 | 7.71   |
| 002    | FO2      | CAM       | EO1      | R1E2      | SPEED RED | 1.32 | 7.01   |
| 003    | F03      | CAM       | EO1      | R1E3      | ACCEL RED | 1.32 | 7.74   |
| 004    | FO4      | CAM       | EO1      | R1E4      | DECEL RED | 1.32 | 7.62   |
| 005    | F05      | CAM       | EO1      | R1E5      | COASTING  | 1.32 | 6.00   |
| CHOPPE | ER-CONTR | DL STATI  | ON SPAC  | ING * 1.0 | MILE      |      |        |
| 101    | FO1      | CHO       | E01      | C1E1      | MIN TIME  | 1.28 | 4.31   |
| 102    | F02      | CHO       | EO1      | C1E2      | SPEED RED | 1.32 | 4.08   |
| 103    | FO3      | СНО       | EQ1      | C1E3      | ACCEL RED | 1.32 | 4.27   |
| 104    | FO4      | CHO       | EO1      | C1E4      | DECEL RED | 1.32 | 4,19   |
| 105    | F05      | СНО       | EO1      | C1E5      | COASTING  | 1.32 | 3.16   |
| CAM-CO | NTROL S  | TATION SP | ACING =  | 1.5 MILE  |           |      |        |
| OF 1   | GO 1     | CAM       | FO1      | R1F1      | MIN TIME  | 1.71 | 6.16   |
| OF 2   | GO2      | CAM       | FO1      | R1F2      | SPEED RED | 1.76 | 5.91   |
| OF 3   | GO3      | CAM       | FO1      | R1F3      | ACCEL RED | 1.76 | 6.21   |
| OF 4   | GO4      | CAM       | FO1      | R1F4      | DECEL RED | 1.76 | 6.08   |
| OF5    | G05      | CAM       | FO1      | R1F5      | COASTING  | 1.76 | 4.66   |
| СНОРРЕ | R-CONTRI | DL STATI  | ON SPACE | [NG - 1.5 | MILE      |      |        |
| 1F 1   | GO 1     | сно       | FO1      | C1F1      | MIN TIME  | 1.71 | 3.89   |
| 1F2    | GO2      | СНО       | FO2      | C1F2      | SPEED RED | 1.76 | 3.83   |
| 1F3    | GO3      | СНО       | FO3      | C1F3      | ACCEL RED | t.76 | 3.91   |
| 1F4    | GO4      | CHO       | FO4      | C1F4      | DÉCEL RED | 1.76 | 3.77   |
| 1F5    | GO5      | CHO       | F05      | C1F5      | COASTING  | 1.76 | 2.77   |
|        |          |           |          |           |           |      |        |

.

|           |                  |       |         | ACC    |         | N REDUCTIO<br>NERGY ANAL | N(2.5 MPHP<br>YSIS | S) (Chopp | PER)    |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|--------------------------|--------------------|-----------|---------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        | -       |                          |                    |           | AROUND  |          |         |          |         |         |         |
|           |                  |       |         |        |         | RUNNING T                | RAINS              | - k 2     | STORAGE | TOT      | AL.     | NORMA    | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCH | CH      | KWH                      | kn peak            | KN        | KWH     | KNH      | KN PEAK | KWH      | KW PEAK | KWH     | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |                          |                    |           |         |          |         |          |         |         |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                          |                    | 3040      | 18360   | 18360    |         | 18360    |         | 0       |         |
| AN PEAK   | 6:00AH - 9:00AH  | 3     | 2874.90 | 5.04   | 8624.70 | 43468                    | 14489              | 524       | 1571    | 45040    | 15013   | 49019    | 16340   | 3979    | 1326    |
| MIDDAY    | 9:00AN - 3:00PN  | 6     |         | 4.60   | _       |                          |                    | 2219      | 13311   |          |         | 45002    |         | 5257    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2874.90 | 5.04   |         |                          |                    | 524       | 1571    |          |         | 49019    |         | 3979    |         |
| EVENING   | 6:00PH - 12:00AH | 6     |         | 5.29   | 2873.25 | 15199                    |                    | 2639      | 15836   |          |         | J2688    |         | 1653    |         |
| TOTAL     |                  | 24    |         | 4.97   | 25869   |                          |                    |           | 32289   |          |         | 175729   |         | 14869   |         |
| SAT & SUN |                  |       |         |        |         |                          |                    |           |         |          |         |          |         |         |         |
| NORWING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                          |                    | 2090      | 19360   | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AN - 6:00PH  | 12    | 478,88  | 5.29   | 5746.50 | 30399                    |                    | 2639      | 31671   | 62070    |         | 65377    |         | 3307    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.40  | 5,47   | 1436.40 | 7857                     |                    | 2850      | 17097   | 24954    |         | 25130    |         | 175     |         |
| TOTAL     |                  | 24    |         | 5.33   | 7182.90 | 38256                    |                    |           | 48768   | 87024    |         | 90507    |         | 3482    |         |
| NEEKLY    |                  |       |         | 5.01   | 143712  | 719364                   | 14489              |           | 258983  | 978347   | 15013   | 1059657  | 16340   | 81310   | 1326    |
| ANNUAL    |                  |       |         | 5.01   |         | 37406929                 | 173874             |           |         | 50874051 |         | 55102175 | 196076  | 4228124 | 15917   |

TABLE 1-J6A

TABLE 1-36B

#### ACCELERATION REDUCTION(2.5 MPHPS)(CHOPPER) Power Bill Analysis

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW) | DEMAND<br>ENERGY<br>NORMAL<br>196.08<br>99.90<br>295.98 | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P<br>0.00084 | 0.50<br>0.50<br>DWER BILL<br>0.00169 |         |         | DEMAND<br>ENERGY<br>SAVINGS<br>15.92<br>0.00<br>15.92 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS(<br>0.013 | 0.50<br>0.50<br>POWER BILL<br>0.027 | 0.75<br>0.25<br>UNITS)<br>0.040 | 1.00<br>0.00          |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------|-----------------------------------|--------------------------------------|---------|---------|-------------------------------------------------------|-----------------------|-----------------------------------|-------------------------------------|---------------------------------|-----------------------|
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH)                           | 55.10<br>72.93<br>128.03                                | 0.00781      | 0.00586                           | 0.00391                              | 0.00195 | 0.00000 | 4.23<br>0.00<br>4.23<br>FRACTION<br>PERCENT           | 0.033<br>0.033<br>3.3 | 0.025<br>0.038<br>3.8             | 0.017<br>0.043<br>4.3               | 0.008<br>0.049<br>4.9           | 0.000<br>0.054<br>5.4 |

# TABLE 1-37A BRAKING REDUCTION (2.5 MPMPS) (CHOPPER) ENERGY AMALYSIS

· .

|                 |                  |       |         |        |                  |           |         | TUR        | NAROUND  |          |         |          |         |         |         |
|-----------------|------------------|-------|---------|--------|------------------|-----------|---------|------------|----------|----------|---------|----------|---------|---------|---------|
|                 |                  |       |         |        |                  | RUNNING T | RAINS   | <b>£</b> ! | STORAGE  | TOT      | NL.     | NORMA    | L TOTAL | DIFFE   | ERENCE  |
| PERIOD          | TINE             | HOURS | CN/HR   | KWHPCH | CM               | KNH       | KN PEAK | KN         | KMH      | KWH      | KH PEAK | KNH      | KW PEAK | KNH     | KN PEAK |
| WEEKDAY         |                  |       |         |        |                  |           |         |            |          |          |         |          |         |         |         |
| <b>NORN ENG</b> | 12:00AN - 6:00AN | 6     | NS      |        |                  |           |         | 2040       | 18360    | 18340    |         | 18360    |         | 0       |         |
| AN PEAK         | 6:00AH - 9:00AH  | 3     | 2976.10 | 5.07   | 8628.30          | 43745     | 14582   | 518        | 1553     | 45298    | 15099   | 49019    | 16340   | 3721    | 1240    |
| NIDDAY          | 9:00AN - 3:00PN  | 6     | 958.65  | 5.56   | 5751.90          | 31981     |         | 2217       | 13302    | 45283    |         | 45002    |         | -280    |         |
| PH PEAK         | 3:00PH - 6:00PH  | 3     | 2876.10 | 5.07   | 8628.30          | 43745     |         | 518        | 1553     | 45298    |         | 49019    |         | 3721    |         |
| EVENING         | 6100PH - 12:00AN | 6     | 479.33  | 6.11   | 2875.95          | 17572     |         | 2639       | 15831    | 33403    |         | 32688    |         | -715    |         |
| TOTAL           |                  | 24    |         | 5.29   | 25884            | 137044    |         |            | 32238    | 169282   |         | 175729   |         | 6447    |         |
| SAT & SUN       |                  |       |         |        |                  |           |         |            |          |          |         |          |         |         |         |
| MORNING         | 12:00AH - 6:00AH | 6     | NS      |        |                  |           |         | 3090       | 10340    | 18360    |         | 18360    |         | 0       |         |
| DAY             | 6:00AN - 6:00PN  | 12    | 479.33  | 6.11   | 5751.90          | 35144     |         | 2639       | 31662    | 66806    |         | 65377    |         | -1429   |         |
| EVENING         | 6:00PH - 12:00AH | 6     | 239.40  | 5.97   | 1436.40          | 8575      |         | 2849       | 17096    | 25671    |         | 25130    |         | -541    |         |
| TOTAL           |                  | 24    |         | 6.08   | 71 <b>89.</b> 30 | 43719     |         |            | 48758    | 92477    |         | 90507    |         | -1970   |         |
| NEEKLY          |                  |       |         | 5.37   | 143799           | 772657    | 14582   |            | 258705   | 1031362  | 15099   | 1059657  | 16340   | 28295   | 1240    |
| ANNUAL.         |                  |       |         | 5.37   | 7477540          | 40178150  | 174982  |            | 13452660 | 53630810 | 181192  | 55102175 | 196076  | 1471365 | 14884   |

TABLE 1-37B BRAKING REDUCTION(2.5 MPHPS)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) | 1.00 D<br>0.00 E |                                                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1,00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|------------------|-------------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|-----------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                   | 0.00253                | 0.00338          | 14.88<br>0.00<br>14.88                          | 0.000                 | 0.013                    | 0.025                     | 0.038                    | 0.050                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                | 0.00391                   | 0.00195                | •                | 1 . 47<br>0 . 00<br>1 . 47<br>RACTION<br>ERCENT | 0.011<br>0.011<br>1.1 | 0.009<br>0.021<br>2.1    | 0.006<br>0.031<br>3.1     | 0.003<br>0.041<br>4.1    | 0.000<br>0.050<br>5.0 |

| TABLE 1-39A                           |              |  |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|--|
| SPEED REDUCTION(MIN RUN TIME + .25 MI | N) (CHOPPER) |  |  |  |  |  |  |  |  |  |  |  |
| ENERGY ANALYSIS                       |              |  |  |  |  |  |  |  |  |  |  |  |

|           |                  |       |         |        |         |           |         | TUR  | NAROUND  |          |         |          |          |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|----------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL      | NORMA    | NL TOTAL | DIFF    | ERENCE  |
| PERIOD    | TIME             | HOURS | CH/HR   | KNHPCH | CH      | KWH       | KN PEAK | KN   | KWH      | KWH      | KU PEAK | KWH      | KN PEAK  | KNH     | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |          |         |         |
| NDRN I NG | 12:00AN - 6:00AN | 6     | #S      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |          | 0       |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2874.90 | 5.29   | 8624.70 | 45625     | 15208   | 524  | 157L     | 47196    | 15732   | 49019    | 16340    | 1823    | 608     |
| MIDDAY    | 9:00AN - 3:00PM  | 6     | 958.50  | 4.81   | 5751.00 | 27662     |         | 2218 | 13307    | 40970    |         | 45002    |          | 4033    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2874.90 | 5.29   | 8624.70 | 45625     |         | 524  | 1571     | 47196    |         | 49019    |          | 1823    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.25  | 5.32   | 2875.50 | 15298     |         | 2639 | 15834    | 31131    |         | 32688    |          | 1557    |         |
| TOTAL     |                  | 24    |         | 5.19   | 25876   | 134209    |         |      | 32284    | 166493   |         | 175729   |          | 9236    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |          |         |         |
| MORNENG   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |          | 0       |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.25  | 5.32   | 5751.00 | 30595     |         | 2639 | 31667    | 62263    |         | 65377    |          | 3114    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.40  | 5.18   | 1436.40 | 7441      |         | 2850 | 17097    | 24538    |         | 25130    |          | 592     |         |
| TOTAL     |                  | 24    |         | 5.29   | 7187.40 | 38036     |         |      | 48765    | 86801    |         | 90507    |          | 3706    |         |
| WEEKLY    |                  |       |         | 5,20   | 143754  | 747118    | 15208   |      | 258949   | 1006067  | 15732   | 1059657  | 16340    | 53590   | 608     |
| ANNUAL    |                  |       |         | 5.20   |         | 38850148  | 182499  |      | 13465343 | 52315490 |         | 55102175 | 196076   | 2786684 | 7292    |

TABLE 1-39B SPEED REDUCTION(MIN RUN TIME + .25 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(P  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVINGS( | POWER BIL | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169   | 0.00253 | 0.00338 |          |       |          |           |          |       |
| TRACTION(MW)     | 196.08 |         |         |           |         |         | 7.29     |       |          |           |          |       |
| SUPPORT (MW)     | 99.90  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MW)        | 295.98 |         |         |           |         |         | 7.29     | 0.000 | 0.006    | 0.012     | 0.018    | 0.025 |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391   | 0.00195 | 0.00000 |          |       |          |           |          |       |
| TRACTION(MKWH)   | 55.10  |         |         |           |         |         | 2.79     |       |          |           |          |       |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MKWH)      | 128.03 |         |         |           |         |         | 2.79     | 0.022 | 0.016    | 0.011     | 0.005    | 0.000 |
|                  |        |         |         |           |         | I       | FRACTION | 0.022 | 0.022    | 0.023     | 0.024    | 0.025 |
| _                |        |         |         |           |         | 1       | PERCENT  | 2.2   | 2.2      | 2.3       | 2.4      | 2.5   |

| TABLE 1-40A                    |                   |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------|-------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| SPEED REDUCTION(NEN RUN TIME + | .5 NEN) (CHOPPER) |  |  |  |  |  |  |  |  |  |  |  |  |
| ENERGY ANALYSIS                |                   |  |  |  |  |  |  |  |  |  |  |  |  |

|           |                  |       |         |        |         |           |         | TUR        | MAROLIND |                  |         |          |          |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------------|----------|------------------|---------|----------|----------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | <b>b</b> 1 | storage  | TOT              | AL.     | NORMA    | IL TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCN | CN      | KMH       | KH PEAK | KW         | KWH      | KMH              | KU PEAK | KNH      | KU PEAK  | KNH     | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |            |          |                  |         |          |          |         |         |
| MORNING   | 12:00AH ~ 6:00AH | 6     | NS      |        |         |           |         | 3060       | 18340    | 18360            |         | 18360    |          | 0       |         |
| AN PEAK   | 6:00AH ~ 9:00AH  | 3     | 2877.30 | 5.11   | 8631.90 | 44109     | 14703   | 478        | 1434     | 45543            | 15181   | 49019    | 16340    | 3476    | 1159    |
| NIDDAY    | 9:00AM ~ 3:00PN  | 6     | 959.25  | 5.19   | 5755.50 | 29871     |         | 2201       | 13208    | 43079            |         | 45002    |          | 1923    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2877.30 | 5.11   | 8631.90 | 44109     |         | 478        | 1434     | 45543            |         | 49019    |          | 3476    |         |
| EVENING   | 6:00PN - 12:00AM | 6     | 479.63  | 5.60   | 2977.75 | 16115     |         | 2631       | 15784    | 31900            |         | 32688    |          | 789     |         |
| TOTAL     |                  | 24    |         | 5.10   | 25897   | 134204    |         |            | 31860    | 166044           |         | 175729   |          | 9664    |         |
| SAT & SUN |                  |       |         |        | •       |           |         |            |          |                  |         |          |          |         |         |
| NORWING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060       | 18360    | 18390            |         | 18360    |          | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.63  | 5.6    | 5755.50 | 32231     |         | 2631       | 31568    | 63799            |         | 65377    |          | 1578    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.85  | 5.43   | 1439.10 | 7914      |         | 2944       | 17073    | 24987            |         | 25130    |          | 243     |         |
| TOTAL     |                  | 24    |         | 5.57   | 7194.60 | 40045     |         |            | 48641    | 88497            |         | 90507    |          | 1820    |         |
| NEEKLY    |                  |       |         | 5.22   | 143874  | 751113    | 14703   |            | 256583   | 1007695          | 15191   | 1059657  | 16340    | 51962   | 1159    |
| ANNUAL    |                  |       |         | 5.22   | 7481471 | 39057852  | 176436  |            | 13342304 | 524001 <b>58</b> | 182171  | 55102175 | 196076   | 2702017 | 13905   |

|       | TABLE 1-4     | 408      |   |     |               |
|-------|---------------|----------|---|-----|---------------|
| SPEED | REDUCTION(MIN | RUN TIME | + | . 5 | MIN)(CHOPPER) |
|       | POWER BILL    | ANALYSIS |   |     |               |

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND                                | 0.00  | 0.25     | 0.50               | 0.75     | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|---------------------------------------|-------|----------|--------------------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY                                | 1.00  | 0.75     | 0.50               | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(F  | OWER BILL | UNITS)  |         | SAVINGS                               |       | SAVINGS( | POWER BIL          | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169   | 0.00253 | 0.00338 |                                       |       |          |                    |          |       |
| TRACTION(MW)     | 196.08 |         |         |           |         |         | 13.91                                 |       |          |                    |          |       |
| SUPPORT(MW)      | 99.90  |         |         |           |         |         | 0.00                                  |       |          |                    |          |       |
| TOTAL(MW)        | 295.98 |         |         |           |         |         | 13.91                                 | 0.000 | 0.012    | 0.023              | 0.035    | 0.047 |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391   | 0.00195 | 0.00000 |                                       |       |          |                    |          |       |
| TRACTION(MKWH)   | 55.10  |         |         |           |         |         | 2.70                                  |       |          |                    |          |       |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | $\mathbf{O}$ , $\mathbf{O}\mathbf{O}$ |       |          |                    |          |       |
| TOTAL (MKWH)     | 128.03 |         |         |           |         |         | 2.70                                  | 0.021 | 0.016    | $O \rightarrow 14$ | 0.005    | 0.000 |
|                  |        |         |         |           |         |         | FRACTION                              | 0.021 | 0.028    | 0.034              | 0.041    | 0 047 |
|                  |        |         |         |           |         |         | PERCENT                               | 2.1   | 2.8      | 34                 | 4.1      | 4 7   |

- -

.

|           |                  |       |         |        |         | ENENG)          | ANALYSIS |              |         |          |         |          |          |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------------|----------|--------------|---------|----------|---------|----------|----------|---------|---------|
|           |                  |       |         |        |         |                 |          | TUR          | NAROUND |          |         |          |          |         |         |
|           |                  |       |         |        |         | RUNNENG 1       | RAINS    | - <b>k</b> ( | STORAGE | TOT      | AL.     | NORMA    | NL TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KHHPCH | CH      | KNH             | KW PEAK  | KN           | KWH     | KWH      | KN PEAK | KNH      | KW PEAK  | KWH     | KH PEAK |
| NEEKDAY   |                  |       |         |        |         |                 |          |              |         |          |         |          |          |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                 |          | 3060         | 18360   | 18360    |         | 18360    |          | 0       |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2877.00 | 4.67   | 8631.00 | 40307           | 13436    | 433          | 1299    | 41605    | 13868   | 49019    | 16340    | 7414    | 2471    |
| MIDDAY    | 9:00AH - 3:00PH  | 6     | 959.25  | 5.36   | 5755.50 | 30849           |          | 2186         | 13118   | 43968    |         | 45002    |          | 1034    |         |
| PN PEAK   | 3:00PN - 6:00PM  | 3     | 2877.00 | 4.67   | B631.00 | 40307           |          | 433          | 1299    | 41605    |         | 49019    |          | 7414    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.63  | 5.73   | 2877.75 | 16490           |          | 2623         | 15739   | 32229    |         | 32688    |          | 460     |         |
| TOTAL     |                  | 24    |         | 4.94   | 25895   | L27 <b>95</b> 3 |          |              | 31455   | 159408   |         | 175729   |          | 16321   |         |
| SAT & SUN |                  |       |         |        |         |                 |          |              |         |          |         |          |          |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |                 |          | 3060         | 1B360   | 18360    |         | 18360    |          | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.63  | 5.73   | 5755.50 | 32979           |          | 2623         |         | 64457    |         | 65377    |          | 919     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.85  | 5.63   | 1439.10 |                 |          | 2842         | 17051   |          |         | 25130    |          | -23     |         |
| TOTAL     |                  | 24    |         |        | 7194.60 | +               |          |              | 48529   |          |         | 90507    |          | 897     |         |
| NEEKLY    |                  |       |         | 5.02   | 143865  | 721925          | 13436    |              | 254333  | 976258   | 13868   | 1059657  | 16340    | 83399   | 2471    |
| ANNUAL    |                  |       |         | 5.02   |         | 37540097        | 161227   |              |         | 50765402 |         | 55102175 | 196076   | 4336773 | 29654   |

#### TABLE 1-41A SPEED REDUCTION(NIN RUN TIME + .75 MIN)(CHOPPER) ENFRGY ANALYSIS

.

|       | TABLE 1-4     | 18   |      |   |     |               |
|-------|---------------|------|------|---|-----|---------------|
| SPEED | REDUCTION(MIN | RUN  | TIME | + | .75 | MIN)(CHOPPER) |
|       | POWER BILL    | ANAL | YSIS |   |     |               |

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P | 0.50<br>0.50<br>DWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1,00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                   | 0.00253                | 0.00338 | 29.65<br>0.00<br>29.65                      | 0.000                 | 0.025                    | 0.050                     | 0.075                    | 0.100                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                | 0.00391                   | 0.00195                | 0.00000 | 4.34<br>0.00<br>4.34<br>FRACTION<br>PERCENT | 0.034<br>0.034<br>3.4 | 0.025<br>0.050<br>5.0    | 0.017<br>0.067<br>6.7     | 0.008<br>0.084<br>8.4    | 0.000<br>0.100<br>10.0 |

# TABLE 1-42A SPEED REDUCTION (NINIMUM RUN TIME + 1.NIN) (CHOPPER) ENERGY ANALYSIS

|           | TURNAROLINO      |       |         |        |         |           |         |      |                    |                |         |          |          |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|--------------------|----------------|---------|----------|----------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | nakuunu<br>Storage | TOT            | A1      |          |          | 8155    | COLNEC  |
|           |                  |       |         |        |         | -         |         |      |                    |                |         |          | IL TOTAL | Atte    | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KWHPCN | CM      | KMH       | KN PEAK | KW   | KWH                | KWH            | KU PEAK | KWH      | KU PEAK  | KNH     | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |                    |                |         |          |          |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 2090 | 18360              | 18360          |         | 18360    |          | Û       |         |
| AN PEAK   | 4100AN - 9:00AN  | 3     | 2879.70 | 4.53   | 8639.10 | 39135     | 13045   | 387  | 1161               | 40296          | 13432   | 49019    | 16340    | 8723    | 2908    |
| MIDDAY    | 9:00AN - 3:00PN  | 6     | 958.95  | 4.99   | 5753.70 | 28711     |         | 2171 | 13025              | 41736          |         | 45002    |          | 3267    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 2     | 2879.70 | 4.53   | 8639.10 | 39135     |         | 387  | 1161               | 40296          |         | 49019    |          | 8723    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.48  | 5.37   | 2876.85 | 15449     |         | 2615 | 15692              | 31141          |         | 32688    |          | 1547    |         |
| TOTAL     |                  | 24    |         | 4.73   | 25909   | 122430    |         |      | 31039              | 153469         |         | 175729   |          | 22260   |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |                    |                |         |          |          |         |         |
| MORN1NG   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18340              | 18360          |         | 18360    |          | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.48  | 5.37   | 5753.70 | 30897     |         | 2615 | 31385              | 62282          |         | 65377    |          | 3095    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.78  | 5.19   | 1438.65 | 7467      |         | 2838 | 17027              | 24494          |         | 25130    |          | 636     |         |
| TOTAL     |                  | 24    |         | 5.33   | 7192.35 | 38364     |         |      | 48412              | B6776          |         | 90507    |          | 3731    |         |
| NEEKLY    |                  |       |         | 4.79   | 143928  | 688877    | 13045   |      | 252020             | <b>9408</b> 97 | 13432   | 1059657  | 16340    | 118760  | 2908    |
| MINUAL    |                  |       |         | 4.79   | -       | 35821624  | 156540  |      |                    | 48926654       |         | 55102175 | 196076   | 6175521 | 34892   |

TABLE 1-42B SPEED REDUCTION(MINIMUM RUN TIME + 1.MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT                   | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(1<br>0.00084 | 0.50<br>0.50<br>OWER BILL<br>0.00169 | 0.75<br>0.25<br>UNITS)<br>0.00253 |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAV1NGS( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|-----------------------------------|--------------------------------------|-----------------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)                           | 196.08<br>99.90<br>295.98  |              |                                   | 0.00.00                              | 0.00233                           | 0.00338 | 34.89<br>0.00<br>34.89                      | 0.000                 | 0.029                    | 0.059                     | 0.0 <b>88</b>            | O. 118                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                           | 0.00391                              | 0.00195                           | 0.00000 | 6.18<br>0.00<br>6.18<br>FRACTION<br>PERCENT | 0.048<br>0.048<br>4.8 | 0.036<br>0.066<br>6.6    | 0.024<br>0.083<br>8.3     | 0.012<br>0.100<br>10.0   | 0.000<br>0.118<br>11.8 |

# TABLE 1-43A SPEED REDUCTION (HIN RUN TINE + 1.25HIN) (CHOPPER) ENERGY ANALYSIS

•

|           |                  |       |                |        |                 | Class and a set |         |            |         |          |         |         |          |         |         |
|-----------|------------------|-------|----------------|--------|-----------------|-----------------|---------|------------|---------|----------|---------|---------|----------|---------|---------|
|           |                  |       |                |        |                 |                 |         | TUR        | NAROUND |          |         |         |          |         |         |
|           |                  |       |                |        |                 | RUNNING T       | RAINS   | <b>k</b> ( | STORAGE | TOT      | AL.     | NORM    | NL TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR          | KNHPCH | CH              | KNH             | KH PEAK | KW         | KWH     | KNH      | KW PEAK | KNH     | KN PEAK  | KNH     | KN PEAK |
| WEEKDAY   |                  |       |                |        |                 |                 |         |            |         |          |         |         |          |         |         |
| HORNING   | 12:00AM - 6:00AM | 6     | NS             |        |                 |                 |         | 3090       | 18360   | 18360    |         | 18360   |          | 0       |         |
| AH PEAK   | 6:00AN - 9:00AN  | 3     | 2874.30        | 5.04   | 8622.90         | 43459           | 14486   | 342        | 1026    | 44485    | 14828   | 49019   | 16340    | 4534    | 1511    |
| NIDDAY    | 9:00AN - 3:00PH  | 6     | <b>958.8</b> 0 | 4.65   | 5752.80         | 26751           |         | 2156       | 12935   | 39685    |         | 45002   |          | 5317    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2874.30        | 5.04   | 8622.90         | 43459           |         | 342        | 1026    | 44485    |         | 49019   |          | 4534    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.40         | 5.01   | 2876.40         | 14411           |         | 2608       | 15647   | 30058    |         | 32688   |          | 2630    |         |
| TOTAL     |                  | 24    |                | 4.95   | 25875           | 128080          |         |            | 30634   | 158714   |         | 175729  |          | 17014   |         |
| SAT L SUN |                  |       |                |        |                 |                 |         |            |         |          |         |         |          |         |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NG             |        |                 |                 |         | 3060       | 18360   | 18360    |         | 18360   |          | 0       |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.40         | 5.01   | 5752.80         | 26822           |         | 2608       | 31295   | 60116    |         | 65377   |          | 5260    |         |
| EVENING   | 6:00PH - 12:00AM | 6     | 239.78         | 4.96   | 1438.65         | 7136            |         | 2834       | 17004   | 24139    |         | 25130   |          | 990     |         |
| TOTAL     |                  | 24    |                | 5.00   | 7191.45         |                 |         |            | 48299   |          |         | 90507   |          | 6251    |         |
| WEEKLY    |                  |       |                | 4.95   | 1437 <b>5</b> 8 | 712315          | 14486   |            | 249768  | 962083   | 14828   | 1059657 | 16340    | 97574   | 1511    |
| ANNUAL    |                  |       |                | 4.95   | -               | 37040382        | 173838  |            |         | 50028318 |         | 5102175 | 196076   | 5073857 | 18135   |

TABLE 1-43B SPEED REDUCTION(MIN RUN TIME + 1.25MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT                   | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P<br>0.00084 | 0.50<br>0.50<br>OWER BILL<br>0.00169 | 0.75<br>0.25<br>UNITS)<br>0.00253 |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|-----------------------------------|--------------------------------------|-----------------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|-----------------------|
| TRACTION(MW)<br>Support(MW)<br>Total(MW)                           | 196.08<br>99.90<br>295.98  |              |                                   |                                      |                                   | I       | 18.13<br>0.00<br>18.13                      | 0.000                 | 0.015                    | 0.031                     | 0.046                    | 0.061                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                           | 0.00391                              | 0.00195                           | 0.00000 | 5.07<br>0.00<br>5.07<br>FRACTION<br>PERCENT | 0.040<br>0.040<br>4.0 | 0.030<br>0.045<br>4.5    | 0.020<br>0.050<br>5.0     | 0.010<br>0.056<br>5.6    | 0.000<br>0.061<br>6.1 |

| TABLE 1-45A                                        |
|----------------------------------------------------|
| SPEED REDUCTION (NIN TIME + .25 NIN) (CAN-CONTROL) |
| ENERGY ANALYSIS                                    |

.

|           |                  |       |         |        |         | ENENGY A  | MALYSIS |            |         |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------------|---------|----------|---------|----------|---------|---------|---------|
|           | TURNAPOLNO       |       |         |        |         |           |         |            |         |          |         |          |         |         |         |
|           |                  |       |         |        |         | RUNNING T | RAIN5   | <b>k</b> 1 | STORAGE | TOT      | 'AL     | NORIM    | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CN      | KNH       | KN PEAK | KW         | KNH     | KNH      | KN PEAK | KNH      | KH PEAK | KWH     | KW PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |            |         |          |         |          |         |         |         |
| NORNING   | 12:00AM - 6:00AM | 6     | NS      |        |         |           |         | 3060       | 18360   | 18360    |         | 18360    |         | 0       |         |
| AH PEAK   | 6100AH - 9100AH  | 3     | 2074.90 | 8.50   | 8624.70 | 74000     | 24667   | 524        | 1571    | 75571    | 25190   | 80100    | 26700   | 4529    | 1510    |
| MIDDAY    | 9:00AH - 3:00PH  | 6     | 958.50  | 7.80   | 5751.00 | 44858     |         | 2218       | 13307   | 58165    |         | 63075    |         | 4909    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2874.90 | 8.58   | 8624.70 | 74000     |         | 524        | 1571    | 75571    |         | 80100    |         | 4529    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.25  | 7.77   | 2875.50 | 22343     |         | 2639       | 15834   | 38176    |         | 40660    |         | 2483    |         |
| TOTAL     |                  | 24    |         | 8.32   | 25874   | 215200    |         |            | 32284   | 247484   |         | 263935   |         | 16451   |         |
| SAT & SUN |                  |       |         |        |         |           |         |            |         |          |         |          |         |         |         |
| NORWING   | 12:00AN - 6:00AN | 6     | NG      |        |         |           |         | 3060       | 18360   | 18340    |         | 18360    |         | 0       |         |
| BAY       | 6100AN - 6100PN  | 12    | 479.25  | 7.77   | 5751.00 | 44685     |         | 2639       | 31667   | 76353    |         | 81319    |         | 4967    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.40  | 7.67   | 1436.40 | 11017     |         | 2850       | 17097   | 28114    |         | 29400    |         | 1285    |         |
| TOTAL     |                  | 24    |         | 7.75   | 7187.40 | 55702     |         |            | 48765   | 104467   |         | 110719   |         | 6252    |         |
| MEEKLY    |                  |       |         | 8.26   | 143754  | 1187406   | 24667   |            | 258949  | 1446355  | 25190   | 1541114  | 26700   | 94759   | 1510    |
| ANNUAL    |                  |       |         | 8.24   | 7475224 | 61745130  | 296000  |            |         | 75210473 |         | 80137944 | 320402  | 4927471 | 1BL16   |

|       | TABLE 1-4     | 58         |                   |
|-------|---------------|------------|-------------------|
| SPEED | REDUCTION(MIN | TIME + .25 | MIN)(CAM-CONTROL) |
| -     | POWER BILL    |            |                   |

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P | ••••    | 0.75<br>0.25<br>UNITS) | 0.00    | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------|------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|-----------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>Total(MW)       | 320.40<br>99.90<br>420.30  | 0.00000      | 0.00059                | 0.00119 | 0.00178                | 0.00238 | 18.12<br>0.00<br>18.12                      | 0.000                 | 0.011                    | 0.022                     | 0.032                    | 0.043                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 80.14<br>72.93<br>153.07   | 0.00653      | 0.00490<br>,           | 0.00327 | 0.00163                | 0.00000 | 4.93<br>0.00<br>4.93<br>FRACTION<br>PERCENT | 0.032<br>0.032<br>3.2 | 0.024<br>0.035<br>3.5    | 0.016<br>0.038<br>3.8     | 0.008<br>0.040<br>4.0    | 0.000<br>0.043<br>4.3 |

# TABLE 1-46A SPEED REDUCTION (NIN RUN TIME + .5 HIN) (CAN-CONTROL) ENERGY ANALYSIS

|           | TURMAROUND       |       |         |        |         |           |         |         |          |          |         |          |         |              |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|---------|----------|----------|---------|----------|---------|--------------|---------|
|           |                  |       |         |        |         | RUMNING T | RAINS   | - E - 1 | STORAGE  | TOT      | N.      | NORMA    | L TOTAL | DIFF         | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CM      | KNH       | KW PEAK | KW      | KWH      | KNH      | KW PEAK | KWH      | KN PEAK | KWH          | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |         |          |          |         |          |         |              |         |
| NORNENG   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 2090    | 18360    | 18360    |         | 18360    |         | 0            |         |
| AN PEAK   | 6:00AH - 9:00AH  | 3     | 2877.30 | 8.06   | 8631.90 | 69573     | 23191   | 478     | 1434     | 71007    | 23669   | 80100    | 26700   | 7094         | 3031    |
| MIDBAY    | 9:00AN - 3:00PN  | 6     | 959.25  | 7.45   | 5755.50 | 42878     |         | 2201    | 13208    | 56087    |         | 63075    |         | 6988         |         |
| PN PEAK   | 3:00PN - 6:00PN  | 3     | 2877.30 | 8.06   | 8631.90 | 69573     |         | 478     | 1434     | 71007    |         | 80100    |         | 9094         |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 479.63  | 7.43   | 2877.75 | 21382     |         | 2631    | 15784    | 37166    |         | 40660    |         | 3494         |         |
| TOTAL     |                  | 24    |         | 7.85   | 25897   | 203406    |         |         | 31860    | 235266   |         | 263935   |         | 28669        |         |
| SAT & SUN |                  |       |         |        |         |           |         |         |          |          |         |          |         |              |         |
| HORMING   | 12:00AN - 6:00AN | 6     | N5      |        |         |           |         | 3090    | 18360    | 18340    |         | 18360    |         | 0            |         |
| DAY       | 6:00M - 6:00PH   | 12    | 479.63  | 7.43   | 5755.50 | 42763     |         | 2631    | 31568    | 74332    |         | 81319    |         | <b>698</b> 8 |         |
| EVENING   | 6:00PM - 12:00AM | 6     | 239.85  | 7.33   | 1439.10 | 10549     |         | 2846    | 17073    | 27622    |         | 29400    |         | 1778         |         |
| TOTAL     |                  | 24    |         | 7.41   | 7194.60 | 53312     |         |         | 48641    | 101953   |         | 110719   |         | 8766         |         |
| MEEKLY    |                  |       |         | 7.81   | 143874  | 1123656   | 23191   |         | 256583   | 1380239  | 23669   | 1541114  | 26700   | 160876       | 3031    |
| ANNUAL    |                  |       |         | 7.81   | 7481471 | 58430105  | 278292  |         | 13342306 | 71772411 | 294027  | 80137944 | 320402  | 8365533      | 36374   |

TABLE 1-468 SPEED REDUCTION(MIN RUN TIME + .5 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P<br>0.00059 | 0.50<br>0.50<br>OWER BILL<br>0.00119 |         |         |                                             | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS() | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) | 1.00<br>0.00          |
|--------------------------------------------------------------------|----------------------------|--------------|-----------------------------------|--------------------------------------|---------|---------|---------------------------------------------|-----------------------|---------------------------|----------------------------|------------------------|-----------------------|
| DEMAND COMPONENT<br>TRACTIDN(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 320.40<br>99.90<br>420.30  | 0.00000      | 0.00000                           | 0.00000                              |         |         | 36.37<br>0.00<br>36.37                      | 0.000                 | 0.022                     | 0.043                      | 0.065                  | 0.087                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 80.14<br>72.93<br>153.07   | 0.00653      | 0.00490                           | 0.00327                              | Q.00163 | 0.00000 | 8.37<br>0.00<br>8.37<br>FRACTION<br>PERCENT | 0.055<br>0.055<br>5.5 | 0.041<br>0.063<br>6.3     | 0.027<br>0.071<br>7.1      | 0.014<br>0.079<br>7.9  | 0.000<br>0.087<br>8.7 |

### TABLE 1-47A SPEED REDUCTION(HIN RUN TIME +.75 HIN)(CAM-CONTROL) ENERGY ANALYSIS

.

TURNAROUND RUNNING TRAINS & STORAGE TOTAL NORMAL TOTAL DIFFERENCE CH/HR KINNPCN CH KWH KW PEAK KH KNH KU PEAK KW PEAK PERIOD TINE HOURS KUH KWH KU PEAK KNH **WEEKDAY** MORNING 12:00AH - 6:00AH NS. 3060 18360 18360 18340 4 Ô 12170 AN PEAK 6:00AN - 9:00AN 3 2877.00 7.72 8631.00 66921 22210 433 1299 67930 22643 00100 26700 4057 7.45 5755.50 42878 55997 63075 HIDDAY 9:00AH - 3:00PH 6 959.25 2186 13118 7078 PH PEAK 3:00PH - 6:00PH 3 2877.00 7.72 8631.00 66631 433 1299 67930 80100 12170 EVENING 6:00PH - 12:00AH 479.63 7.43 2877.75 21382 2623 15739 40660 3539 6 37121 24 TOTAL 25895 197523 31455 228978 263935 34957 7.63 SAT & SUN HORNENG 12:00AN - 6:00AN 6 MS 2070 18360 18360 18360 0 12 479.63 31478 DAY 6:00AN - 6:00PN 7.43 5755.50 42763 2623 74242 81319 7078 EVENING 4:00PH - 12:00AN 4 239.85 7.33 1439.10 10549 2842 17051 27599 29400 1801 24 53312 46527 TOTAL 7.41 7194.60 101841 110719 8879 NEEKLY 143865 1094238 22210 254333 1348571 22643 1541114 7.61 26700 192544 4057 ANNUAL. 7.61 7481003 56900372 266525 13225304 70125678 271720 B0137944 320402 10012266 48682

#### TABLE 1-478 SPEED REDUCTION(MIN RUN TIME +.75 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(P  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVINGS( | POWER BIL | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00059 | 0.00119   | 0.00178 | 0.00238 |          |       |          |           |          |       |
| TRACTION(MW)     | 320.40 |         |         |           |         |         | 48.68    |       |          |           |          |       |
| SUPPORT ( MW )   | 99.90  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MW)        | 420.30 |         |         |           |         |         | 48.68    | 0.000 | 0.029    | 0.058     | 0.087    | 0.116 |
| ENERGY COMPONENT |        | 0.00653 | 0.00490 | 0.00327   | 0.00163 | 0.00000 |          |       |          |           |          |       |
| TRACTION(MKWH)   | 80.14  |         |         |           |         |         | 10.01    |       |          |           |          |       |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MKWH)      | 153.07 |         |         |           |         |         | 10.01    | 0.065 | 0.049    | 0.033     | 0.016    | 0.000 |
|                  |        |         |         |           |         |         | FRACTION | 0.065 | 0.078    | 0.091     | 0.103    | 0.116 |
|                  |        |         |         |           |         |         | PERCENT  | 6.5   | 7.8      | 9.1       | 10.3     | 11.6  |

# TABLE 1-48A SPEED REDUCTION (HIN RUN TINE + 1 HIN) (CAH-CONTROL) ENERGY ANALYSIS

|           | TURNAROUND       |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | ł l  | STORAGE  | TOT      | NL.     | NORNA    | L TOTAL | DIFFE    | RENCE   |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCH | CN      | KNH       | KN PEAK | KM   | KNH      | KWH      | KH PEAK | KNH      | KN PEAK | KWN      | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| MDRN I NG | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| AH PEAK   | 6:00AN - 9:00AN  | 3     | 2879.70 | 7.16   | 8639.10 | 61856     | 20619   | 387  | 1161     | 63017    | 21006   | B0100    | 26700   | 17083    | 5694    |
| NIDDAY    | 9:00AN - 3:00PN  | 6     | 958.95  | 6.94   | 5753.70 | 39931     |         | 2171 | 13025    | 52955    |         | 63075    |         | 10119    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2879.70 | 7.16   | 8639.10 | 61856     |         | 387  | 1161     | 63017    |         | B0100    |         | 17083    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.48  | 6.92   | 2876.85 | 19908     |         | 2615 | 15692    | 35600    |         | 40660    |         | 5060     |         |
| TOTAL     |                  | 24    |         | 7.08   | 25909   | 183550    |         |      | 31039    | 214590   |         | 263935   |         | 49345    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6100AN - 6100PN  | 12    | 479.48  | 6.92   | 5753.70 | 37016     |         | 2615 | 31385    | 71200    |         | 61319    |         | 10119    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239,78  | 6.78   | 1438.65 | 9754      |         | 2838 | 17027    | 26781    |         | 29400    |         | 2619     |         |
| TOTAL     |                  | 24    |         | 6.89   | 7192.35 | 49570     |         |      | 48412    | 97982    |         | 110719   |         | 12738    |         |
| WEEKLY    |                  |       |         | 7.07   | 143920  | 1016891   | 20619   |      | 252020   | 1268911  | 21006   | 1541114  | 26700   | 272203   | 5694    |
| ANNUAL    |                  |       |         | 7.07   | 7484279 | 52878346  | 247424  |      | 13105030 | 65983375 | 252068  | 80137944 | 320402  | 14154569 | 68334   |

#### TABLE 1-48B SPEED REDUCTION(MIN RUN TIME + 1 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL  ≠≖>                                      | DEMAND<br>ENERGY<br>NORMAL | 0.00    | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>PDWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|---------|------------------------|---------------------------|------------------------|---------|-----------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 320.40<br>99.90<br>420.30  | 0.0000  | 0.00059                | 0.00119                   | 0.00178                | 0.00238 | 68.33<br>0.00<br>68.33                        | 0.000                 | 0.041                    | 0.081                     | 0.122                    | 0.163                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 80,14<br>72,93<br>153 07   | 0.00653 | 0.00490                | 0.00327                   | 0.00163                | 0.0000  | 14.15<br>0.00<br>14.15<br>Fraction<br>Percent | 0.092<br>0.092<br>9.2 | 0.069<br>0.110<br>11.0   | 0.046<br>0.128<br>12.8    | 0.023<br>0.145<br>14.5   | 0.000<br>0.163<br>16.3 |

# TABLE 1-49A SPEED REDUCTION (NIN RUN TIME + 1.25 NIN) (CAN-CONTROL) ENERGY ANALYSIS

THOMADOLINA

|                  |                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 | RUNNING T                                                                                                                                                                                                                                                                                                                                                                     | RAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - E (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NORMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DIFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TINE             | HOURS                                                                                         | CH/HR                                                                                                                                                                    | KWHPCH                                                                                                                                                                                                    | CH                                                                                                                                                                                                                                                              | KWH                                                                                                                                                                                                                                                                                                                                                                           | KU PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KN PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KN PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KN PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12:00AN - 6:00AN | 6                                                                                             | NS                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6100AH - 9100AH  | 3                                                                                             | 2874.30                                                                                                                                                                  | 7.30                                                                                                                                                                                                      | 8622.90                                                                                                                                                                                                                                                         | 62947                                                                                                                                                                                                                                                                                                                                                                         | 20982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9100AN - 3100PN  | 6                                                                                             | 958.80                                                                                                                                                                   | 6.95                                                                                                                                                                                                      | 5752.80                                                                                                                                                                                                                                                         | 39982                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3:00PN - 6:00PN  | 3                                                                                             | 2874.30                                                                                                                                                                  | 7.30                                                                                                                                                                                                      | 8622.90                                                                                                                                                                                                                                                         | 62947                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6100PH - 12100AH | 6                                                                                             | 479.40                                                                                                                                                                   | 4.93                                                                                                                                                                                                      | 2876.40                                                                                                                                                                                                                                                         | 19933                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | - 24                                                                                          |                                                                                                                                                                          | 7.18                                                                                                                                                                                                      | 25875                                                                                                                                                                                                                                                           | 185010                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 216444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 263935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                               |                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12:00AH - 6:00AH | 6                                                                                             | NS                                                                                                                                                                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6:00AN - 6:00PN  | 12                                                                                            | 479.40                                                                                                                                                                   | 6.93                                                                                                                                                                                                      | 5752.80                                                                                                                                                                                                                                                         | 39867                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6:00PH - 12:00AH | 6                                                                                             | 239.78                                                                                                                                                                   | 6.87                                                                                                                                                                                                      | 1438.65                                                                                                                                                                                                                                                         | 9884                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 24                                                                                            |                                                                                                                                                                          | å <b>.</b> 92                                                                                                                                                                                             | 7191.45                                                                                                                                                                                                                                                         | 49750                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                                                                                               |                                                                                                                                                                          | 7.15                                                                                                                                                                                                      | 143758                                                                                                                                                                                                                                                          | 1028550                                                                                                                                                                                                                                                                                                                                                                       | 20982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 249768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 127831B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1541114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 262797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  |                                                                                               |                                                                                                                                                                          | 7.15                                                                                                                                                                                                      | 7475411                                                                                                                                                                                                                                                         | 53484580                                                                                                                                                                                                                                                                                                                                                                      | 251789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12987936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66472516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 255893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320402 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3665428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | 12100AN - 6100AN<br>6100AN - 9100AN<br>9100AN - 3100PN<br>3100PN - 6100PN<br>6100PH - 12100AN | 12:00AN - 6:00AN 6<br>6:00AN - 7:00AN 3<br>7:00AN - 7:00AN 3<br>7:00AN - 3:00PN 6<br>3:00PN - 6:00PN 3<br>6:00PM - 12:00AN 6<br>6:00AN - 6:00PN 12<br>6:00PM - 12:00AN 6 | 12100AN - 6100AN 6 NS<br>6100AN - 7100AN 3 2874.30<br>7100AN - 3100PN 6 758.80<br>3100PN - 6100PN 3 2874.30<br>6100PN - 12100AN 6 479.40<br>24<br>12100AN - 6100PN 12 479.40<br>6100PN - 12100AN 6 239.78 | 12:00AN - 6:00AN 6 NS<br>6:00AN - 9:00AN 3 2874.30 7.30<br>9:00AN - 3:00PN 6 958.80 6.95<br>3:00PN - 6:00PN 3 2874.30 7.30<br>6:00PN - 12:00AN 6 479.40 6.93<br>24 7.18<br>12:00AN - 6:00PN 12 479.40 6.93<br>6:00PN - 12:00AN 6 239.78 6.87<br>24 6.92<br>7.15 | 121 00AN - 61 00AN 6 NS<br>61 00AN - 91 00AN 3 2874.30 7.30 8622.90<br>91 00AN - 31 00PN 6 958.80 6.95 5752.80<br>31 00PN - 61 00PN 3 2874.30 7.30 8622.90<br>61 00PN - 121 00AN 6 479.40 6.93 2876.40<br>24 7.18 25875<br>121 00AN - 61 00PN 12 479.40 6.93 5752.80<br>61 00PN - 121 00AN 6 NS<br>61 00PN - 122 00AN 6 239.78 6.87 1438.65<br>24 6.92 7191.45<br>7.15 143758 | TIME         HOURS         CN/HR         KIMPCH         CH         KIMH           121 00AN         - 61 00AM         6         NS         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | TINE         HOURS         CN/HR         KNMPCH         CH         KNH         KW PEAK           12:00AN         - 6:00AM         6         NS         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | TIME         HOURS         CH/HR         KMMPCH         CH         RUMMING TRAINS         &            12:00AN         - 6:00AM         6         NS         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040         3040 | TINE         HOURS         CH/HR         KIMPCH         CH         KIM         KU         PEAK         KM         KU           12: 00AH         - 6: 00AH         6         NS         3060         18360           6: 00AH         - 9: 00AH         3         2874.30         7.30         8622.90         62947         20982         342         1026           9: 00AH         - 3: 00PH         6         958.80         6.95         5752.80         39982         2156         12935           3: 00PH         - 6: 00PH         3         2874.30         7.30         8622.90         62947         342         1026           6: 00PH         - 12: 00AH         6         479.40         6.93         2875.40         19933         2608         15647           - 24         - 7.18         25875         185810         3060         18360           12: 00AH         - 6: 00PH         12         479.40         6.93         5752.80         39867         2608         31295           6: 00PH         - 12: 00AH         6         239.78         6.87         1438.65         9884         2834         17004           24         - 472         7191.45         49750 | TIME         HOURS         CH/HR         KMMPCH         CH         KMH         KW         PEAK         KM         KMH         K | TIME         HOURS         CH/HR         KMMPCH         CH         KMH         KM PEAK         KM         KMH         < | TIME         HOURS         CH/HR         KNMPCH         CH         KNH         KW         FEAK         KNH         KNH | TINE         HOURS         CN/HR         KMMPCN         CH         KMH         KM         KMH         KM         KM | TIME         HOURS         CM/HR         KNMPCH         CH         KMH         KN         KNH         K |

TABLE 1-498 SPEED REDUCTION(MIN RUN TIME + 1.25 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.0 <b>0</b><br>0.00   |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|-----------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 320.40<br>99.90<br>420.30  | 0.00000      | 0.00059                | 0.00119                   | 0.00178                | 0.00238 | 64.51<br>0.00<br>64.51                        | 0.000                  | 0.038                    | 0.077                     | 0.115                    | 0.153                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 80.14<br>72.93<br>153.07   | 0.00653      | 0.00490                | 0.00327                   | 0.00163                |         | 13.67<br>0.00<br>13.67<br>FRACTION<br>PERCENT | 0.089<br>0.089<br>0.80 | 0.067<br>0.105<br>10.5   | 0.045<br>0.121<br>12.1    | 0.022<br>0.137<br>13.7   | 0.000<br>0.153<br>15.3 |

| TABLE 1-51A<br>COASTING(3 MPH BAND)(NIN RUN TIME + .25 MIN)(CHOPPE)<br>ENERGY ANALYSIS | 1) |
|----------------------------------------------------------------------------------------|----|
| TI IPMAR (I IND                                                                        |    |

|           |                  |       |         |        |         |           |         | I URI      |          |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------------|----------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | 'RAINS  | <b>t</b> 1 | storage  | TOT      | AL.     | NDRMA    | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCH | CN      | KNH       | KW PEAK | KW         | KWH      | KNH      | KN PEAK | KWH      | KN PEAK | KWH     | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| NORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060       | 18360    | 18360    |         | 18360    |         | 0       |         |
| AH PEAK   | 6:00AH - 9:00AH  | 3     | 2877.30 | 4.27   | 8631.90 | 36828     | 12286   | 523        | 1569     | 38427    | 12809   | 49019    | 16340   | 10592   | 3531    |
| NIDDAY    | 9:00AN - 3:00PN  | 6     | 950.65  | 4.57   | 5751.90 | 26286     |         | 2218       | 13307    | 39594    |         | 45002    |         | 5409    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 2     | 2877.30 | 4.27   | 8631.90 | 36828     |         | 523        | 1569     | 38427    |         | 49019    |         | 10592   |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 479.33  | 5.08   | 2875.95 | 14610     |         | 2639       | 15834    | 30444    |         | 32688    |         | 2245    |         |
| TOTAL     |                  | 24    |         | 4.43   | 25892   | 114612    |         |            | 32279    | 146871   |         | 175729   |         | 29838   |         |
| SAT & SUN |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060       | 18360    | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.33  | 5.08   | 5751.90 | 29220     |         | 2639       | 31667    | 60687    |         | 65377    |         | 4490    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70  | 5.18   | 1438.20 | 7450      |         | 2850       | 17097    | 24547    |         | 25130    |         | 583     |         |
| TOTAL     |                  | 24    |         | 5.10   | 7190.10 | 36670     |         |            | 48765    | 85434    |         | 90507    |         | 5072    |         |
| WEEKLY    |                  |       |         | 4.49   | 143838  | 646401    | 12286   |            | 258922   | 905323   | 12809   | 1059657  | 16340   | 154334  | 3531    |
| ANNUAL    |                  |       |         | 4.49   | 7479599 | 33612864  | 147433  |            | 13463939 | 47076803 | 153708  | 55102175 | 196076  | 8025372 | 42369   |

| TABLE 1-51B                         |                   |
|-------------------------------------|-------------------|
| COASTING(3 MPH BAND)(MIN RUN TIME + | .25 MIN)(CHOPPER) |
| POWER BILL ANALYSIS                 |                   |

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT                   | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(P<br>0.00084 | 0.50<br>0.50<br>OWER BILL<br>0.00169 | 0.75<br>0.25<br>UNITS)<br>0.00253 |         | DEMAND<br>ENERGY<br>SAVINGS | 0.00         | 0.25<br>0.75<br>SAVINGS ( | 0.50<br>0.50<br>Power Bil | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00  |
|--------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------------|--------------------------------------|-----------------------------------|---------|-----------------------------|--------------|---------------------------|---------------------------|--------------------------|---------------|
| TRACTION(MW)<br>Support(MW)<br>Total(MW)                           | 196.08<br>99.90<br>295.98  |                         |                                   |                                      |                                   |         | 42.37<br>0.00<br>42.37      | 0.000        | 0.036                     | 0.072                     | 0.107                    | 0.143         |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781                 | 0.00586                           | 0.00391                              | 0.00195                           | 0.00000 | 8.03<br>0.00<br>8.03        | 0.063        | 0.047                     | 0.031                     | 0.016                    | 0.000         |
|                                                                    |                            |                         |                                   |                                      |                                   |         | FRACTION                    | 0.063<br>6.3 | 0.083<br>8.3              | 0.103<br>10.3             | 0.123                    | 0.143<br>14.3 |

.

|             |     | TABLE 1-52A                             |  |
|-------------|-----|-----------------------------------------|--|
| COASTING (3 | hph | BAND) (NIN RUN TINE + .5 NIN) (CHOPPER) |  |
|             |     | ENERGY ANALYSIS                         |  |

|           |                  |       |         |        |         |           |         | TUR  | MARQUNO  |                |         |          |         |              |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------------|---------|----------|---------|--------------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT            | AL.     | NORMA    | L TOTAL | DIFF         | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCN | CH      | KWH       | KN PEAK | KN   | KMN      | KNH            | KN PEAK | KNH      | KN PEAK | KNH          | KU PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |          |                |         |          |         |              |         |
| NORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 2040 | 18360    | 18360          |         | 18360    |         | 0            |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2874.60 | 4.14   | 8623.80 | 35703     | 11901   | 478  | 1434     | 37136          | 12379   | 49019    | 16340   | 11893        | 3961    |
| NIDDAY    | 9:00AN - 3:00PN  | 6     | 956.70  | 4.63   | 5740.20 | 26577     |         | 2202 | 13212    | 39789          |         | 45002    |         | 5213         |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2874.60 | 4.14   | 8623.90 | 35703     |         | 478  | 1434     | 37136          |         | 49019    |         | 11893        |         |
| EVENING   | 6100PH - 12:00AH | 6     | 478.35  | 5.01   | 2870.10 | 14379     |         | 2631 | 15786    | 30145          |         | 32688    |         | 2523         |         |
| TOTAL     |                  | 24    |         | 4.35   | 25858   | 112361    |         |      | 31865    | 144227         |         | 175729   |         | 31502        |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |                |         |          |         |              |         |
| MORNING   | 12:00M - 6:00M   | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360          |         | 18360    |         | 0            |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 478.35  | 5.01   | 5740.20 | 28758     |         | 2631 | 31572    | <b>70330</b>   |         | 65377    |         | 5046         |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.55  | 4.95   | 1437.30 | 7115      |         | 2846 | 17073    | 24189          |         | 25130    |         | 942          |         |
| TOTAL     |                  | 24    |         | 5.00   | 7177.50 | 35873     |         |      | 48645    | 84518          |         | 90507    |         | <b>598</b> 9 |         |
| WEEKLY    |                  |       |         | 4.41   | 143645  | 633553    | 11901   |      | 256617   | <b>89</b> 0170 | 12379   | 1059657  | 16340   | 169487       | 3961    |
| ANNUAL    |                  |       |         | 4.41   | 7469514 | 32944758  | 142810  |      | 13344084 | 46298942       | 148545  | 55102175 | 196076  | 8813333      | 47531   |

| TABLE 1-52B                       |   |                  |
|-----------------------------------|---|------------------|
| COASTING(3 MPH BAND)(MIN RUN TIME | + | .5 MIN)(CHOPPER) |
| POWER BILL ANALYSIS               |   |                  |

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL     | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(F | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|--------------------------------|--------------|------------------------|----------------------------|------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99.90<br>295.98      | 0.00000      | 0.00084                | 0.00169                    | 0.00253                | 0.00338 | 47.53<br>0.00<br>47.53                      | 0.000                 | 0.040                    | 0.080                     | 0.120                    | 0.161                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55 : 10<br>72 : 93<br>128 : 03 | 0.00781      | 0.00586                | 0.00391                    | 0.00195                | 0.00000 | 8.81<br>0.00<br>8.81<br>FRACTION<br>PERCENT | 0.069<br>0.069<br>6.9 | 0 052<br>0 092<br>9 2    | 0.034<br>0 115<br>11.5    | 0.017<br>0.138<br>13.8   | 0.000<br>0.161<br>16.1 |

|             |     | TABLE 1    | -53A  |      |   |     |                |
|-------------|-----|------------|-------|------|---|-----|----------------|
| COASTING (3 | MPH | BAND) (NIN | RUN   | TINE | ŧ | .75 | HIN) (CHOPPER) |
|             |     | ENERGY A   | NAL Y | SIS  |   |     |                |

|           |                  |       |         |        |         |           |         | TURI       | NARQUND  |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------------|----------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | <b>i</b> 1 | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCH | CM      | KWH       | KW PEAK | KN         | KWH      | KNH      | KN PEAK | KNH      | KN PEAK | KMH     | KW PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| NORNING   | 12:00AM - 6:00AM | 6     | NS      |        |         |           |         | 3090       | 18360    | 18360    |         | 18360    |         | 0       |         |
| an peak   | 6:00AH - 9:00AH  | 3     | 2879.40 | 4.08   | 8638.20 | 35244     | 11748   | 432        | 1296     | 36540    | 12180   | 49019    | 16340   | 12479   | 4160    |
| HIDDAY    | 9:00AN - 3:00PH  | 6     | 958.80  | 4.43   | 5752.80 | 25485     |         | 2185       | 13111    | 38596    |         | 45002    |         | 6406    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2879.40 | 4.08   | 8638.20 | 35244     |         | 432        | 1296     | 36540    |         | 49019    |         | 12479   |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.40  | 4.77   | 2876.40 | 13720     |         | 2623       | 15736    | 29456    |         | 32688    |         | 3232    |         |
| TOTAL     |                  | 24    |         | 4.23   | 25906   | 109693    |         |            | 31439    | 141132   |         | 175729   |         | 34597   |         |
| SAT & SUN |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060       | 18360    | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.40  | 4.77   | 5752.80 | 27441     |         | 2623       | 31471    | 58912    |         | 65377    |         | 6465    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70  | 4.84   | 1438.20 | 6961      |         | 2841       | 17049    | 24010    |         | 25130    |         | 1120    |         |
| TOTAL     |                  | 24    |         | 4.78   | 7191.00 | 34402     |         |            | 48520    | 82922    |         | 90507    |         | 7585    |         |
| NEEKLY    |                  |       |         | 4.29   | 143910  | 617269    | 11748   |            | 254234   | 871503   | 12180   | 1059657  | 16340   | 189155  | 4160    |
| ANNUAL.   |                  |       |         | 4.29   | 7483320 | 32097973  | 140975  |            | 13220158 | 45318130 | 146159  | 55102175 | 196076  | 9784045 | 49917   |

TABLE 1-53B CDASTING(3 MPH BAND)(MIN RUN TIME + .75 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |   |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|----------|-------|---|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |   |
|                  | NORMAL |         | RATE(F  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVINGS( | POWER BIL | L UNITS) |       |   |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169   | 0.00253 | 0.00338 |          |       |          |           |          |       |   |
| TRACTION(MW)     | 196.08 |         |         |           |         |         | 49.92    |       |          |           |          |       |   |
| SUPPORT (MW)     | 99.90  |         |         |           |         |         | 0.00     |       |          |           |          |       |   |
| TOTAL(MW)        | 295.98 |         |         |           |         |         | 49.92    | 0.000 | 0.042    | 0.084     | 0.126    | 0.169 |   |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391   | 0.00195 | 0.00000 |          |       |          |           |          |       |   |
| TRACTION(MKWH)   | 55.10  |         |         |           |         |         | 9.78     |       |          |           |          |       |   |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | 0.00     |       |          |           |          |       |   |
| TOTAL(MKWH)      | 128.03 |         |         |           |         |         | 9.78     | 0.076 | 0.057    | 0.038     | 0.019    | 0.000 |   |
|                  |        |         |         |           |         |         | FRACTION | 0.076 | 0.099    | 0.123     | 0.146    | 0.169 | • |
|                  |        |         |         |           |         |         | PERCENT  | 7.6   | 9.9      | 12.3      | 14.6     | 16.9  |   |
|                  |        |         |         |           |         |         |          |       |          |           |          |       |   |

|             |     | TABLE 1-54A                            |
|-------------|-----|----------------------------------------|
| COASTING (3 | NPH | BAND) (MIN RUN TIME + 1 MIN) (CHOPPER) |
|             |     | ENERGY ANALYSIS                        |

|           |                  |       |         |        |         |           |         | TUR  | ARDUND   |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUNNENG T | RAINS   | Ł !  | STORAGE  | TOT      | AL      | NORM     | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CN      | KNH       | KW PEAK | KN   | KNN      | KMH      | K# PEAK | KNH      | KH PEAK | KNH     | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |         |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 10360    |         | 0       |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2876.70 | 4.42   | 8630.10 | 38145     | 12715   | 387  | 1161     | 39306    | 13102   | 49019    | 16340   | 9713    | 3238    |
| MIDDAY    | 9:00AM - 3:00PM  | 6     | 958.50  | 4.21   | 5751.00 | 24212     |         | 2170 | 13019    | 37231    |         | 45002    |         | 7771    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2876.70 | 4.42   | 8630.10 | 38145     |         | 387  | 1161     | 39306    |         | 49019    |         | 9713    |         |
| EVENING   | 6100PH - 12:00AM | 6     | 479.25  | 4.59   | 2875.50 | 13199     |         | 2615 | 15690    | 28989    |         | 32688    |         | 3800    |         |
| TOTAL     |                  | 24    |         | 4.39   | 25887   | 113700    |         |      | 31031    | 144731   |         | 175729   |         | 30997   |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AN - 6:00PH  | 12    | 479.25  | 4.59   | 5751.00 | 26397     |         | 2615 | 31379    | 57776    |         | 65377    |         | 7600    |         |
| EVENING   | 6100PH - 12:00AH | 6     | 239.70  | 3.83   | 1438.20 | 5508      |         | 2838 | 17024    | 22535    |         | 25130    |         | 2595    |         |
| TOTAL     |                  | 24    |         | 4,44   | 7189.20 | 31905     |         |      | 48406    | 80311    |         | 90507    |         | 10196   |         |
| WEEKLY    |                  |       |         | 4.40   | 143812  | 632312    | 12715   |      | 251967   | 884279   | 13102   | 1059657  | 16340   | 175378  | 3238    |
| ANNUAL    |                  |       |         | 4.40   | 7478219 | 32880249  | 152580  |      | 13102268 | 45982518 | 157224  | 55102175 | 196076  | 9119657 | 39652   |

TABLE 1-54B COASTING(3 MPH BAND)(MIN RUN TIME + 1 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(F | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>TGTAL(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                    | 0.00253                | 0.00338 |                                             | 0.000                 | 0.033                    | 0.066                     | 0.098                    | 0.131                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                | 0.00391                    | 0.00195                | 0.00000 | 9.12<br>0.00<br>9.12<br>FRACTION<br>PERCENT | 0.071<br>0.071<br>7.1 | 0.053<br>0.086<br>8.6    | 0.036<br>0.101<br>10.1    | 0.018<br>0.116<br>11.6   | 0.000<br>0.131<br>13.1 |

.

|            |     | TAULE      | 1-224 | A    |   |      |                |
|------------|-----|------------|-------|------|---|------|----------------|
| COASTING(3 | MPH | BAND) (HIN | RUN   | TINE | ŧ | 1.25 | HIN) (CHOPPER) |
|            |     | ENERGY     | ANAL  | YSIS |   |      |                |

TURNARDUND RUNNING TRAINS & STORAGE TOTAL NORMAL TOTAL DIFFERENCE PERIOD TINE HOURS CH/HR KNHPCH CH KNH KN PEAK KH KWH KMH KN PEAK KINH KN PEAK KNH KH PEAK **HEEKDAY** NS 0 NORNING 12:00AN - 6:00AH 6 3060 18360 18360 18360 AN PEAK 31363 341 32387 10796 16340 16633 5544 6:00AH - 9:00AH 3 2880.00 3.63 8640.00 10454 1023 49019 H10DAY 9:00AH - 3:00PH 6 958.20 3.97 5749.20 22824 2154 12926 35750 45002 9252 PH PEAK 3:00PH - 6:00PH 3 2880.00 3.63 8640.00 31363 341 1023 32387 49019 16633 EVENING 6:00PM - 12:00AM 4.32 2874.60 32688 4627 6 479.10 12418 2607 15643 28061 24 30615 175729 TOTAL 3.78 25904 97969 128584 47145 SAT & SUN NORNING 12:00AH - 6:00AH NS 3060 18360 18390 18360 0 6 DAY 6:00AN - 6:00PN 12 479.10 4.32 5749.20 24837 2607 31286 56122 65377 9254 EVENING 6:00PH - 12:00AN 6 239.70 4.17 1438.20 5997 2834 17003 23000 25130 2130 TOTAL 24 4.29 7187.40 30834 48289 79122 90507 11384 **WEEKLY** 3.83 143894 551513 10454 249654 801166 10796 1059657 16340 258491 5544 ANNUAL 3.83 7482478 28678658 125453 12981992 41660651 129546 55102175 196076 13441524 66530

> TABLE 1-55B COASTING(3 MPH BAND)(MIN RUN TIME + 1.25 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0,50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(P  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVING5( | POWER BIL | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169   | 0.00253 | 0.00338 |          |       |          |           | - ,      |       |
| TRACTION(MW)     | 196.08 |         |         |           |         |         | 66.53    |       |          |           |          |       |
| SUPPORT(MW)      | 99.90  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MW)        | 295.98 |         |         |           |         |         | 66.53    | 0.000 | 0.056    | 0.112     | 0.169    | 0.225 |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391   | 0.00195 | 0.00000 |          |       |          |           |          |       |
| TRACTION(MKWH)   | 55.10  |         |         |           |         |         | 13.44    |       |          |           |          |       |
| SUPPORT (MKWH)   | 72.93  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MKWH)      | 128.03 |         |         |           |         |         | 13.44    | 0.105 | 0.079    | 0.052     | 0.026    | 0.000 |
|                  |        |         |         |           |         |         | FRACTION | 0.105 | 0.135    | 0.165     | 0.195    | 0.225 |
|                  |        |         |         |           |         |         | PERCENT  | 10.5  | 13.5     | 16.5      | 19.5     | 22.5  |

# TABLE 1-36A COASTING(5 NPH BAND)(NIN RUN TIME + .25 NIN)(CHOPPER) ENERGY ANALYSIS

.

|           |                  |       |         |        |         |           |         | TUR          | NARDUND        |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|--------------|----------------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | - <b>k</b> ( | <b>STORAGE</b> | TOT      | AL      | NORM     | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KWHPCH | CM      | KNH       | KW PEAK | KW           | KNH            | KNH      | KN PEAK | KNH      | KH PEAK | KWH     | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |              |                |          |         |          |         |         |         |
| NORNENG   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060         | 18360          | 18360    |         | 18360    |         | 0       |         |
| AH PEAK   | 6:00AM - 9:00AM  | 2     | 2877.00 | 4.37   | 8631.00 | 37717     | 12572   | 523          | 1569           | 39286    | 13095   | 49019    | 16340   | 9733    | 3244    |
| MIDDAY    | 9:00AH - 3:00PH  | 6     | 959,25  | 4.50   | 5755.50 | 25900     |         | 2217         | 13300          | 39200    |         | 45002    |         | 5802    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2877.00 | 4.37   | 8631.00 | 37717     |         | 523          | 1569           | 39286    |         | 49019    |         | 9733    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.63  | 5.06   | 2877.75 | 14561     |         | 2638         | 15830          | 30392    |         | 32688    |         | 2297    |         |
| TOTAL     |                  | 24    |         | 4.40   | 25895   | 115896    |         |              | 32268          | 148164   |         | 175729   |         | 27565   |         |
| SAT & SUN |                  |       |         |        |         |           |         |              |                |          |         |          |         |         |         |
| MORNING   | 12:00AM - 6:00AM | 6     | NS      |        |         |           |         | 3060         | 18360          | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AM - 6:00PH  | 12    | 479.63  | 5.06   | 5755.50 | 29123     |         | 2638         | 31660          | 60783    |         | 65377    |         | 4594    |         |
| EVENING   | 6100PH - 12:00AH | 6     | 239.78  | 4.61   | 1438.65 | 6632      |         | 2849         | 17094          | 23726    |         | 25130    |         | 1404    |         |
| TOTAL     |                  | 24    |         | 4.97   | 7194.15 | 33735     |         |              | 48754          | 84509    |         | 90507    |         | 5998    |         |
| WEEKLY    |                  |       |         | 4.53   | 143865  | 650991    | 12572   |              | 258844         | 909837   | 13095   | 1059657  | 16340   | 149820  | 3244    |
| ANNUAL    |                  |       |         | 4.53   | 7480957 | 33851508  | 150870  |              | 13460008       | 47311516 | 157145  | 55102175 | 196076  | 7790659 | 38932   |

TABLE 1-56B COASTING(5 MPH BAND)(MIN RUN TIME + .25 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(f | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                 | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>PDWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>Support(MW)<br>Total(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                    | 0.00253                | 0.00338 | 38.93<br>0.00<br>38.93                      | 0.000                 | 0.033                    | 0.066                     | 0.099                    | 0.132                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55.10<br>72.93<br>128.03   | 0.00781      | 0.00586                | 0.00391                    | 0.00195                | 0.00000 | 7.79<br>0.00<br>7.79<br>FRACTION<br>PERCENT | 0.061<br>0.061<br>6.1 | 0.046<br>0.079<br>7.9    | 0.030<br>0.096<br>9.6     | 0.015<br>0.114<br>11.4   | 0.000<br>0.132<br>13.2 |

# TABLE 1-57A COASTING(5 MPH BAND)(MIN RUN TIME + .5 MIN)(CHOPPER) EWERGY AMALYSIS

THOMADOMAD

|           |                  |       |         |        |         |           |         | IUK  | nakuuru |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|---------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUMNING T | RAINS   | Ł    | STORAGE | TOT      | AL.     | NORNA    | L TOTAL | DIFF    | ERENCE  |
| PER10D    | TIME             | HOURS | CM/HR   | KWHPCN | CN      | KWH       | KN PEAK | KW   | KWH     | KWH      | KH PEAK | KNA      | KN PEAK | KWH     | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |         |          |         |          |         |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360   | 18360    |         | 18360    |         | 0       |         |
| AN PEAK   | 6:00AH - 9:00AH  | 3     | 2877.00 | 4.05   | 8631.00 | 34956     | 11652   | 477  | 1431    | 36387    | 12129   | 49019    | L6340   | 12633   | 4211    |
| HIDDAY    | 9100AH - 3:00PH  | 6     | 960.15  | 4.46   | 5760.90 | 25694     |         | 2200 | 13201   | 38895    |         | 45002    |         | 6107    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2877.00 | 4.05   | 8631.00 | 34956     |         | 477  | 1431    | 36387    |         | 49019    |         | 12633   |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 480.08  | 4.87   | 2680.45 | 14028     |         | 2630 | 15781   | 29808    |         | 32688    |         | 2880    |         |
| TOTAL     |                  | 24    |         | 4.23   | 25903   | 109633    |         |      | 31844   | 141476   |         | 175729   |         | 34253   |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |         |          |         |          |         |         |         |
| HORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060 | 18360   | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 480.08  | 4.87   | 5760.90 | 28056     |         | 2630 | 31561   | 59617    |         | 65377    |         | 5760    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70  | 4.84   | 1438.20 | 6961      |         | 2845 | 17070   | 24031    |         | 25130    |         | 1099    |         |
| TOTAL     |                  | 24    |         | 4.86   | 7199.10 | 35016     |         |      | 48632   | 83648    |         | 90507    |         | 6859    |         |
| WEEKLY    |                  |       |         | 4.30   | 143915  | 618195    | 11652   |      | 256482  | 874677   | 12129   | 1059657  | 16340   | 184980  | 4211    |
| ANNUAL    |                  |       |         | 4.30   |         | 32146164  | 139822  |      |         | 45483228 |         | 55102175 | 196076  | 9618947 | 50530   |

TABLE 1-57B CDASTING(5 MPH BAND)(MIN RUN TIME + .5 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(P  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVING5( | POWER BIL | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169   | 0.00253 | 0.00338 |          |       |          |           |          |       |
| TRACTION(MW)     | 196.08 |         |         |           |         |         | 50.53    |       |          |           |          |       |
| SUPPORT(MW)      | 99.90  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MW)        | 295.98 |         |         |           |         |         | 50.53    | 0.000 | 0.043    | 0.085     | 0.128    | 0.171 |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391   | 0.00195 | 0.00000 |          |       |          |           |          |       |
| TRACTION(MKWH)   | 55.10  |         |         |           |         |         | 9.62     |       |          |           |          |       |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MKWH)      | 128.03 |         |         |           |         |         | 9.62     | 0.075 | 0.056    | 0.038     | 0.019    | 0.000 |
|                  |        |         |         |           |         |         | FRACTION | 0.075 | 0.099    | 0.123     | 0.147    | 0.171 |
|                  |        |         |         |           |         |         | PERCENT  | 7.5   | 9.9      | 12.3      | 14.7     | 17.1  |

# TABLE 1-58A COASTING(5 NPH BAND)(NIN RUM TINE + .75 NPH)(CHOPPER) ENERGY ANALYSIS

.

.

|           |                  |       |         |        |         |           |         | 11100 |          |          |         |               |          |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|-------|----------|----------|---------|---------------|----------|----------|---------|
|           |                  |       |         |        |         |           | ***     |       | NAROUND  |          | ••      |               |          |          |         |
|           |                  |       |         |        |         | RUMMING T |         | k i   | storage  | TOT      | ML.     | NORTH         | NL TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CN/HR   | KNHPCN | CN      | KMH       | KN PEAK | KN    | KWH      | KNH      | kw peak | KNH           | KN PEAK  | KNH      | KN PENK |
| WEEKDAY   |                  |       |         |        |         |           |         |       |          |          |         |               |          |          |         |
| NORNING   | 12:00AM - 6:00AM | 6     | NS      |        |         |           |         | 3060  | 18360    | 18360    |         | 18360         |          | 0        |         |
| an peak   | 6:00AM - 9:00AM  | 2     | 2874.30 | 3.52   | 8622.90 | 20222     | 10118   | 432   | 1296     | 31649    | 10550   | 49019         | 16340    | 17370    | 5790    |
| NIDDAY    | 9:00AN - 3:00PN  | 6     | 958.65  | 4.55   | 5751.90 | 26171     |         | 2105  | 13111    | 39282    |         | 45002         |          | 5720     |         |
| PH PEAK   | 3:00PN - 6:00PN  | 2     | 2074.30 | 3.52   | 8622.90 | 30353     |         | 432   | 1296     | 31649    |         | 49019         |          | 17370    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.33  | 4.84   | 2875.95 | 13920     |         | 2623  | 15736    | 29655    |         | 32688         |          | 2022     |         |
| TOTAL     |                  | 24    |         | 3.90   | 25874   | 100795    |         |       | 31439    | 132235   |         | 175729        |          | 43494    |         |
| SAT & SUN |                  |       |         |        |         |           |         |       |          |          |         |               |          |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | #5      |        |         |           |         | 3060  | 18360    | 18360    |         | 18360         |          | 0        |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.33  | 4.84   | 5751.90 | 27839     |         | 2623  | 31471    | 59310    |         | 65377         |          | 6066     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.85  | 5.06   | 1439.10 | 7282      |         | 2842  | 17051    | 24332    |         | 25130         |          | 798      |         |
| TOTAL     |                  | 24    |         | 4.88   | 7191.00 | 35121     |         |       | 48522    | B3643    |         | <b>905</b> 07 |          | 6864     |         |
| NEEKLY    |                  |       |         | 3.99   | 143750  | 574222    | 10118   |       | 254237   | 828459   | 10550   | 1059657       | 16340    | 231198   | 5790    |
| ANNUAL    |                  |       |         | 3.99   | 7475013 | 29859538  | 121410  |       | 13220345 | 43079883 | 126594  | 55102175      | 196076   | 12022292 | 69482   |

| TABLE 1-588                       |   |                   |
|-----------------------------------|---|-------------------|
| COASTING(5 MPH BAND)(MIN RUN TIME | + | .75 MPH)(CHOPPER) |
| POWER BILL ANALYSIS               |   |                   |

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50       | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75     | 1.00  |
|------------------|--------|---------|---------|------------|---------|---------|----------|-------|----------|-----------|----------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50       | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25     | 0.00  |
|                  | NORMAL |         | RATE(F  | POWER BILL | UNITS)  |         | SAVINGS  |       | SAVINGS( | POWER BIL | L UNITS) |       |
| DEMAND COMPONENT |        | 0.00000 | 0.00084 | 0.00169    | 0.00253 | 0.00338 |          |       |          | _         |          |       |
| TRACTION(MW)     | 196.08 |         |         |            |         |         | 69,48    |       |          |           |          |       |
| SUPPORT(MW)      | 99.90  |         |         |            |         |         | 0.00     |       |          |           |          |       |
| TOTAL (MW)       | 295.98 |         |         |            |         |         | 59.48    | 0.000 | 0.059    | 0.117     | 0.176    | 0.235 |
| ENERGY COMPONENT |        | 0.00781 | 0.00586 | 0.00391    | 0.00195 | 0.00000 |          |       |          |           |          |       |
| TRACTION(MKWH)   | 55.10  |         |         |            |         |         | 12.02    |       |          |           |          |       |
| SUPPORT (MKWH)   | 72.93  |         |         |            |         |         | 0.00     |       |          |           |          |       |
| TOTAL(MKWH)      | 128.03 |         |         |            |         |         | 12.02    | 0.094 | 0.070    | 0.047     | 0.023    | 0.000 |
|                  |        |         |         |            |         |         | FRACTION | 0.094 | 0.129    | 0.164     | 0.200    | 0.235 |
|                  |        |         |         |            |         |         | PERCENT  | 9.4   | 12.9     | 16.4      | 20.0     | 23.5  |

.

|                  |                                                                                                                                      |                                                                                                                                                           | LUAS                                                                                                                                                                                                                                                                                                                                                        | airmeio mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                      |                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GY ANALYSIS                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         | TURNA                                                                                                                                                                                                                                                                                                                                                                                                            | ROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RUNNING 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRAINS                                                                                                                                                                                                                                                                                                                                  | £ 51                                                                                                                                                                                                                                                                                                                                                                                                             | ORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NL TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TINE             | HOURS                                                                                                                                | CN/NR                                                                                                                                                     | KWHPCN                                                                                                                                                                                                                                                                                                                                                      | CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KN PEAK                                                                                                                                                                                                                                                                                                                                 | KN                                                                                                                                                                                                                                                                                                                                                                                                               | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KN PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KN PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | KNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KW PEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12:00AM - 6:00AM | 6                                                                                                                                    | NS                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         | 3060                                                                                                                                                                                                                                                                                                                                                                                                             | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6:00AN - 9:00AN  | 2                                                                                                                                    | 2074.30                                                                                                                                                   | 3.85                                                                                                                                                                                                                                                                                                                                                        | 8622.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L1066                                                                                                                                                                                                                                                                                                                                   | 387                                                                                                                                                                                                                                                                                                                                                                                                              | 1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9:00AH - 3:00PH  | 6                                                                                                                                    | 959.25                                                                                                                                                    | 4.58                                                                                                                                                                                                                                                                                                                                                        | 5755.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | 2171                                                                                                                                                                                                                                                                                                                                                                                                             | 13025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3:00PM - 6:00PM  | 3                                                                                                                                    | 2874.30                                                                                                                                                   | 3.85                                                                                                                                                                                                                                                                                                                                                        | 8622.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | 387                                                                                                                                                                                                                                                                                                                                                                                                              | 1161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6:00PN - 12:00AN | 6                                                                                                                                    | 479.63                                                                                                                                                    | 4.87                                                                                                                                                                                                                                                                                                                                                        | 2877.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | 2615                                                                                                                                                                                                                                                                                                                                                                                                             | 15692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 24                                                                                                                                   |                                                                                                                                                           | 4,13                                                                                                                                                                                                                                                                                                                                                        | 25879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  | 31039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12:00AN - 6:00AN | 6                                                                                                                                    | NS                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                         | 3060                                                                                                                                                                                                                                                                                                                                                                                                             | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6100AN - 6100PN  | 12                                                                                                                                   | 479.63                                                                                                                                                    | 4.87                                                                                                                                                                                                                                                                                                                                                        | 5755.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | 2615                                                                                                                                                                                                                                                                                                                                                                                                             | 31385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 65377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6:00PH - 12:00AH | 6                                                                                                                                    | 239.63                                                                                                                                                    | 5.03                                                                                                                                                                                                                                                                                                                                                        | 1437.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                         | 2838                                                                                                                                                                                                                                                                                                                                                                                                             | 17030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 12:00AN - 6:00AN<br>6:00AN - 9:00AN<br>9:00AN - 3:00PN<br>3:00PN - 6:00PN<br>6:00PN - 12:00AN<br>12:00AN - 6:00AN<br>6:00AN - 6:00PN | 12:00AM - 6:00AN 6<br>6:00AH - 9:00AN 3<br>9:00AM - 3:00PM 6<br>3:00PM - 6:00PM 3<br>6:00PM - 12:00AN 6<br>24<br>12:00AM - 6:00AM 6<br>6:00AM - 6:00PM 12 | 12:00AM - 6:00AN       6       NS         6:00AM - 9:00AN       3       2874.30         9:00AN - 3:00PN       6       959.25         3:00PM - 6:00PN       3       2874.30         6:00PN - 12:00AN       6       479.63         12:00AN - 6:00AN       6       NS         6:100AN - 6:00AN       6       NS         12:00AN - 6:00AN       12       479.63 | TIME         HOURS         CH/HR         KMHPCH           12:00AN         6:00AN         6         NS           \$100AN         - 6:00AN         3         2874.30         3.85           9:00AM         - 3:00PM         6         959.25         4.58           3:00PN         - 6:00PN         3         2874.30         3.85           6:00PN         - 3:2874.30         3.85         4.59           6:00PN         - 6:00PN         3         2874.30         3.85           6:00PN         - 6:00PN         3         2874.30         3.85           6:00PN         - 6:00PN         3         2874.30         3.85           6:00PN         - 6:00AN         6         479.63         4.87           12:00AN         - 6:00AN         6         NS         4.87 | TIME         HOURS         CH/HR         KMMPCH         CM           12:00AN         - 6:00AN         6         NS         -         -         -         -         -         -         -         -         -         -         -         -         -         CM         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | ENER<br>TIME HOURS EN/HR KWHPCN EN KWH<br>12:00AN - 6:00AN 6 NS<br>6:00AN - 9:00AN 3 2874.30 3.85 8622.90 33198<br>9:00AN - 3:00PN 6 959.25 4.58 5755.50 26360<br>3:00PN - 6:00PN 3 2874.30 3.85 8622.90 33198<br>6:00PN - 6:00PN 6 479.63 4.87 2877.75 14015<br>24 4.13 25879 106771<br>12:00AN - 6:00AN 6 NS<br>6:100AN - 6:00AN 6 NS | ENERSY ANALYSIS<br>TIME HOURS EN/HR KWHPCN EN KWH KW PEAK<br>12:00AN - 6:00AN 6 NS<br>6:00AN - 9:00AN 3 2874.30 3.85 8622.90 33198 11066<br>9:00AN - 3:00PN 6 959.25 4.58 5735.50 26360<br>3:00PN - 6:00PN 3 2874.30 3.85 8622.90 33198<br>6:00PN - 6:00PN 6 479.63 4.87 2877.75 14015<br>24 4.13 25879 106771<br>12:00AN - 6:00AN 6 NS<br>6:00PN - 6:00AN 6 NS<br>12:00AN - 6:00AN 12 479.63 4.87 5755.50 28029 | ENERGY ANALYSIS           TURN/         RUNNING TRAINS         L         SI           TIME         HOURS         CH/HR         KWHPCN         CH         KWH         KW PEAK         KN           12:00AN - 6:00AN         6         NS         3060         3060           6:00AN - 9:00AN         3         2874.30         3.85         8622.90         33198         11066         387           9:00AN - 3:00PN         6         959.25         4.58         5755.50         26360         2171           3:00PN - 6:00PN         3         2874.30         3.85         8622.90         33198         387           6:00PN - 6:00PN         3         2874.30         3.85         8622.90         33198         387           6:00PN - 6:00PN         3         2874.30         3.85         8622.90         33198         387           6:00PN - 12:00AN         6         479.63         4.87         2877.75         14015         2615           12:00AN - 6:00AH         6         NS         3060         3060         3060           6:00AH - 6:00AH         12         479.63         4.87         5755.50         28029         2615 <td>ENERGY ANALYSIS           TURNAROUND         TURNAROUND           TIME         HOURS         CH/HR         KMHPCH         CM         KMH         KM PEAK         KM         KMH           12:00AN         - 6:00AN         6         NS         3060         18360           6:00AN         - 9:00AM         3         2874.30         3.85         8622.90         33198         11066         387         1161           9:00AM         - 3:00PM         6         959.25         4.58         5755.50         26360         2171         13025           3:00PM         - 6:00PM         3         2874.30         3.85         8622.90         33198         13066         387         1161           6:00PM         - 3:00PM         6         959.25         4.58         5755.50         26360         2171         13025           3:00PM         - 6:00PM         3         2874.30         3.85         8622.90         33198         387         1161           6:00PM         - 12:00AM         6         479.63         4.87         2877.75         14015         2615         15692           24         - 4.13         25879         106771         3060</td> <td>TINE         HOURS         CH/HR         KNHPCN         CH         KNH         KN         PEAK         KN         KNH         KNH           12:00AN         - 6:00AN         6         NS         3060         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         <td< td=""><td>ENERSY ANALYSIS           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KW         KWH         KW         PEAK         Storage         TOTAL         KWH         Storage         3060         18360         11453         3060         18360         307         1161         343359         11453         310379         131037         131037         131037         131037         131037         131037         131037</td><td>ENERGY ANALYSIS           TURNARDUND           TIME         HDURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KM         KMH         KM         KMH         KM         KMH         KM         KM         KMH         KM         STORAGE         TOTAL</td><td>ENERGY ANALYSIS           TIRE         HOURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KMH         KM         State         State</td><td>ENERGY ANALYSIS           TURNARDUND           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KWH         <th< td=""></th<></td></td<></td> | ENERGY ANALYSIS           TURNAROUND         TURNAROUND           TIME         HOURS         CH/HR         KMHPCH         CM         KMH         KM PEAK         KM         KMH           12:00AN         - 6:00AN         6         NS         3060         18360           6:00AN         - 9:00AM         3         2874.30         3.85         8622.90         33198         11066         387         1161           9:00AM         - 3:00PM         6         959.25         4.58         5755.50         26360         2171         13025           3:00PM         - 6:00PM         3         2874.30         3.85         8622.90         33198         13066         387         1161           6:00PM         - 3:00PM         6         959.25         4.58         5755.50         26360         2171         13025           3:00PM         - 6:00PM         3         2874.30         3.85         8622.90         33198         387         1161           6:00PM         - 12:00AM         6         479.63         4.87         2877.75         14015         2615         15692           24         - 4.13         25879         106771         3060 | TINE         HOURS         CH/HR         KNHPCN         CH         KNH         KN         PEAK         KN         KNH         KNH           12:00AN         - 6:00AN         6         NS         3060         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360         18360 <td< td=""><td>ENERSY ANALYSIS           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KW         KWH         KW         PEAK         Storage         TOTAL         KWH         Storage         3060         18360         11453         3060         18360         307         1161         343359         11453         310379         131037         131037         131037         131037         131037         131037         131037</td><td>ENERGY ANALYSIS           TURNARDUND           TIME         HDURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KM         KMH         KM         KMH         KM         KMH         KM         KM         KMH         KM         STORAGE         TOTAL</td><td>ENERGY ANALYSIS           TIRE         HOURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KMH         KM         State         State</td><td>ENERGY ANALYSIS           TURNARDUND           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KWH         <th< td=""></th<></td></td<> | ENERSY ANALYSIS           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KW         KWH         KW         PEAK         Storage         TOTAL         KWH         Storage         3060         18360         11453         3060         18360         307         1161         343359         11453         310379         131037         131037         131037         131037         131037         131037         131037 | ENERGY ANALYSIS           TURNARDUND           TIME         HDURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KM         KMH         KM         KMH         KM         KMH         KM         KM         KMH         KM         STORAGE         TOTAL | ENERGY ANALYSIS           TIRE         HOURS         CH/HR         KMHPCH         CH         KMH         KM         PEAK         KMH         KM         State         State | ENERGY ANALYSIS           TURNARDUND           TIME         HOURS         CH/HR         KWHPCH         CH         KWH         KW PEAK         KWH         KWH <th< td=""></th<> |

11066

132793

35261

4.90 7193.25

4.20 143782 604378

4.20 7476651 31427664

| (ANLE 1-DYA |     |              |          |   |   |                |  |  |  |  |  |
|-------------|-----|--------------|----------|---|---|----------------|--|--|--|--|--|
| COASTING (5 | MPH | BAND) (NIN F | RUN TIME | ŧ | 1 | HIN) (CHOPPER) |  |  |  |  |  |
|             |     | FNERGY A     | NAL YSTS |   |   |                |  |  |  |  |  |

----

.

TOTAL

HEEKLY

ANNUAL

24

TABLE 1-59B COASTING(5 MPH BAND)(MIN RUN TIME + 1 MIN)(CHOPPER) POWER BILL ANALYSIS

48415

252025 856403

13105310 44532974

83676

90507

11453 1059657

137437 55102175

| PORTION OF<br>POWER BILL ==> | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE (P | 0.50<br>0.50<br>DOWER BILL | 0.75<br>0.25<br>UNITS) | 1.00<br>0.00 | DEMAND<br>ENERGY<br>SAVINGS | 0.00<br>1.00 | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00 |
|------------------------------|----------------------------|--------------|-------------------------|----------------------------|------------------------|--------------|-----------------------------|--------------|--------------------------|---------------------------|--------------------------|--------------|
| DEMAND COMPONENT             |                            | 0.00000      | 0.00084                 | 0.00169                    | 0.00253                | 0.00338      |                             |              |                          |                           |                          |              |
| TRACTION(MW)                 | 196.08                     |              |                         |                            |                        |              | 58.64                       |              |                          |                           |                          |              |
| SUPPORT(MW)                  | 99.90                      |              |                         |                            |                        |              | 0.00                        |              |                          |                           |                          |              |
| TOTAL(MW)                    | 295.98                     |              |                         |                            |                        |              | 58.64                       | 0.000        | 0.050                    | 0.099                     | 0.149                    | 0.198        |
| ENERGY COMPONENT             |                            | 0.00781      | 0.00586                 | 0.00391                    | 0.00195                | 0.00000      |                             |              |                          |                           |                          |              |
| TRACTION(MKWH)               | 55.10                      |              |                         |                            |                        |              | 10.57                       |              |                          |                           |                          |              |
| SUPPORT(MKWH)                | 72.93                      |              |                         |                            |                        |              | 0.00                        |              |                          |                           |                          |              |
| TOTAL (MKWH)                 | 108-03                     |              |                         |                            |                        |              | 10 57                       | 0.083        | 0.062                    | 0.041                     | 0.021                    | 0.000        |
|                              |                            |              |                         |                            |                        |              | <b>FRACTION</b>             | 0.083        | 0.111                    | 0.140                     | 0.169                    | 0.198        |
|                              |                            |              |                         |                            |                        |              | PERCENT                     | 8.3          | 11.1                     | 14.0                      | 16.9                     | 19.8         |

77

4887

58640

**6831** 

16340 203254

|             |     | TABLE 1-60A                               |
|-------------|-----|-------------------------------------------|
| COASTING (5 | NPH | BAND) (NIN RUN TIME + 1.25 MIN) (CHOPPER) |
|             |     | ENERGY ANALYSIS                           |

|           |                  |       |         |        |         |           |         | TUR  | NAROUND  |          |         |          |          |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|----------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL      | NORMA    | NL TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CM      | KWH       | KN PEAK | KN   | KIM      | KWH      | KW PEAK | KNH      | KU PEAK  | KWH      | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |          |          |         |
| NORN1N6   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |          | 0        |         |
| AH PEAK   | 6:00AM - 9:00AM  | 3     | 2877.00 | 3.90   | 8621.00 | 33661     | 11220   | 341  | 1023     | 34684    | 11561   | 49019    | 16340    | 14335    | 4778    |
| NIDDAY    | 9:00AN - 3:00PN  | 6     | 958.95  | 3.89   | 5753.70 | 22382     |         | 2156 | 12935    | 35317    |         | 45002    |          | 9686     |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2977.00 | 3.90   | 8631.00 | 33661     |         | 341  | 1023     | 34684    |         | 49019    |          | 14335    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.48  | 4.24   | 2876.85 | 12198     |         | 2608 | 15647    | 27845    |         | 32688    |          | 4843     |         |
| TOTAL     |                  | 24    |         | 3.94   | 25893   | 101902    |         |      | 30629    | 132530   |         | 175729   |          | 43198    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |          |          |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |          | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.48  | 4.24   | 5753.70 | 24396     |         | 2608 | 31295    | 55690    |         | 65377    |          | 7686     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.55  | 4.22   | 1437.30 | 6065      |         | 2834 | 17004    | 23072    |         | 25130    |          | 2058     |         |
| TOTAL     |                  | 24    |         | 4.24   | 7191.00 | 30461     |         |      | 48301    | 78762    |         | 90507    |          | 11744    |         |
| WEEKLY    |                  |       |         | 3.97   | 143845  | 570430    | 11220   |      | 249746   | 820176   | 11561   | 1059657  | 16340    | 239481   | 4778    |
| ANNUAL    |                  |       |         | 3.97   | 7479927 | 29662353  | 134644  |      | 12986813 | 42649166 | 130737  | 55102175 | 196076   | 12453009 | 57340   |

TABLE 1-60B COASTING(5 MPH BAND)(MIN RUN TIME + 1.25 MIN)(CHOPPER) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS} |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | O.50<br>O.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|-----------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                   | 0.00253                | 0.00338 | 57.34<br>0.00<br>57.34                        | 0.000                 | 0.048                    | 0.097                     | 0. 145                   | 0.194                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55,10<br>72,93<br>128,03   | 0.00781      | 0.00586                | 0.00391                   | 0.00195                | 0.00000 | 12.45<br>0.00<br>12.45<br>FRACTION<br>PERCENT | 0.097<br>0.097<br>9.7 | 0.073<br>0.121<br>12.1   | 0.049<br>0.145<br>14.5    | 0.024<br>0.170<br>17.0   | 0.000<br>0.194<br>19.4 |

# TABLE 1-62A COASTING(3 MPH BAND)(NIN RUN TIME + .25 NIN)(CAN-CONTROL) ENERGY ANALYSIS

|           |                  |       |         |        |         |           |         | TUR          | NAROUND |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|--------------|---------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | - <b>k</b> ( | STORAGE | TOT      | AL.     | NORMA    | l total | DIFF     | ERENCE  |
| PERIOD    | TIME             | HOURS | CN/HR   | KNHPCM | CN      | KWH       | KN PEAK | KN           | KNH     | KMH      | KN PEAK | KNH      | KN PEAK | KNH      | KH PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |              |         |          |         |          |         |          |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060         | 18360   | 18360    |         | 18360    |         | 0        |         |
| AN PEAK   | 6100AH - 9100AH  | 2     | 2877.30 | 7.52   | 8631.90 | 64912     | 21637   | 523          | 1569    | 66481    | 22160   | 79582    | 26527   | 13102    | 4367    |
| MIDDAY    | 9:00AH - 3:00PH  | 6     | 958.65  | 7.51   | 5751.90 | 43197     |         | 2218         | 13307   | 56504    |         | 63075    |         | 6570     |         |
| PH PEAK   | 3:00PH - 6:00PH  | 2     | 2877.30 | 7.52   | 8631.90 | 64912     |         | 523          | 1569    | 66481    |         | 79582    |         | 13102    |         |
| EVENING   | 6:00PH - 12:00AN | 6     | 479.33  | 7.49   | 2875.95 | 21541     |         | 2639         | 15834   | 37375    |         | 40660    |         | 3285     |         |
| TOTAL     |                  | 24    |         | 7.51   | 25892   |           |         |              | 32279   | 226840   |         | 262899   |         | 36059    |         |
| SAT & SUN |                  |       |         |        |         |           |         |              |         |          |         |          |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060         | 18360   | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.33  | 7.49   | 5751.90 | 43082     |         | 2639         | 31667   | 74749    |         | B1319    |         | 6570     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70  | 7.49   | 1438.20 | 10772     |         | 2850         | 17097   | 27869    |         | 29400    |         | 1531     |         |
| TOTAL     |                  | 24    |         | 7.49   | 7190.10 |           |         |              | 48765   | 102619   |         | 110719   |         | 8101     |         |
| WEEKLY    |                  |       |         | 7.51   | 143838  | 1080515   | 21637   |              | 258922  | 1339437  | 22160   | 1535934  | 26527   | 196497   | 4367    |
| ANNUAL    |                  |       |         | 7.51   |         | 56186767  | 259648  |              |         | 69650706 |         | 79868572 |         | 10217866 | 52407   |

TABLE 1-628 CDASTING(3 MPH BAND)(MIN RUN TIME + .25 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

79

| PORTION OF       | DEMAND           | 0.00    | 0.25           | 0.50<br>0.50 | 0.75    |         | DEMAND            | 0.00  | 0.25<br>0.75 | 0.50<br>0.50 | 0.75  | 1.00<br>0.00 |
|------------------|------------------|---------|----------------|--------------|---------|---------|-------------------|-------|--------------|--------------|-------|--------------|
| POWER BILL ==>   | ENERGY<br>Normal | 1.00    | O.75<br>Rate(f | POWER BILL   |         | 0.00    | ENERGY<br>SAVINGS | 1.00  |              | POWER BIL    |       | 0.00         |
| DEMAND COMPONENT |                  | 0.00000 | 0.00060        | 0.00120      | 0.00179 | 0.00239 |                   |       |              |              |       |              |
| TRACTION(MW)     | 318.33           |         |                |              |         |         | 52.41             |       |              |              |       |              |
| SUPPORT (NW)     | 99.90            |         |                |              |         |         | 0.00              |       |              |              |       |              |
| TOTAL(MW)        | 418.23           |         |                |              |         |         | 52.41             | 0.000 | 0.031        | 0.063        | 0.094 | 0.125        |
| ENERGY COMPONENT |                  | 0.00654 | 0.00491        | 0.00327      | 0.00164 | 0.00000 |                   |       |              |              |       |              |
| TRACTION(MKWH)   | 79.87            |         |                |              |         |         | 10.22             |       |              |              |       |              |
| SUPPORT(MKWH)    | 72.93            |         |                |              |         |         | 0.00              |       |              |              |       |              |
| TDTAL(MKWH)      | 152.80           |         |                |              |         |         | 10.22             | 0.067 | 0.050        | 0.033        | 0.017 | 0.000        |
|                  |                  |         |                |              |         |         | FRACTION          | 0.067 | 0.081        | 0.096        | 0.111 | 0.125        |
|                  |                  |         |                |              |         |         | PERCENT           | 6.7   | 8.1          | 9.6          | 11.1  | 12.5         |

.

|           |                  |       |         |        |                   | CARLENAL MAR | 101 L 0 1 0 |              |          |          |         |               |         |          |         |
|-----------|------------------|-------|---------|--------|-------------------|--------------|-------------|--------------|----------|----------|---------|---------------|---------|----------|---------|
|           |                  |       |         |        |                   |              |             | TUR          | MARQUND  |          |         |               |         |          |         |
|           |                  |       |         |        |                   | RUNNING T    | RAINS       | - <b>k</b> ( | STORAGE  | TOT      | AL.     | NORM          | L TOTAL | DLFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KWHPCN | CN                | KWH          | KU PEAK     | KN           | KNH      | KWH      | KH PEAK | Killi         | KN PEAK | KNH      | KN PENK |
| HEEKDAY   |                  |       |         |        |                   |              |             |              |          |          |         |               |         |          |         |
| HORNING   | 12:00AN - 6:00AN | 6     | NS      |        |                   |              |             | 3060         | 18360    | 18340    |         | 18360         |         | 0        |         |
| AN PEAK   | 6:00AH - 9:00AH  | 2     | 2874.60 | 7.40   | 8623.80           | 63816        | 21272       | 478          | 1434     | 65250    | 21750   | 79582         | 26527   | 14333    | 4778    |
| NIDDAY    | 9:00AN - 3:00PH  | 6     | 956.70  | 7.06   | 5740.20           | 40526        |             | 2202         | 13212    | 53738    |         | 63075         |         | 9337     |         |
| PH PENK   | 3:00PN - 6:00PN  | 2     | 2074.60 | 7.40   | 8623.80           | 63816        |             | 479          | 1434     | 65250    |         | <b>7958</b> 2 |         | 14333    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 478.35  | 7.04   | 2070.10           | 20206        |             | 2631         | 15786    | 35992    |         | 40660         |         | 4660     |         |
| TOTAL     |                  | 24    |         | 7.28   | 25858             | 188364       |             |              | 31865    | 220229   |         | 262899        |         | 42670    |         |
| SAT & BUN |                  |       |         |        |                   |              |             |              |          |          |         |               |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |                   |              |             | 3060         | 18360    | 18360    |         | 18360         |         | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 478.35  | 7.04   | 5740.20           | 40411        |             | 2631         | 31572    | 71983    |         | B1319         |         | 9336     |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.55  | 7.03   | 1437.30           | 10104        |             | 2846         | 17073    | 27177    |         | 29400         |         | 2223     |         |
| TOTAL     |                  | 24    |         | 7.04   | 7177 <b>. 5</b> 0 | 50515        |             |              | 48645    | 79160    |         | 110719        |         | 11559    |         |
| WEEKLY    |                  |       |         | 7.26   | 143645            | 1042848      | 21272       |              | 256617   | 1299465  | 21750   | 1535934       | 26527   | 236469   | 4778    |
| ANNUAL    |                  |       |         | 7.26   | 7469514           | 54228108     | 255264      |              | 13344084 | 67572192 | 260999  | 79868572      | 318329  | 12296380 | 57330   |
|           |                  |       |         |        |                   |              |             |              | -        |          |         |               |         |          |         |

| TABLE L-63A                                              |  |
|----------------------------------------------------------|--|
| COASTING(3 NPH BAND)(HIN RUN TINE + .5 HIN)(CAH-CONTROL) |  |
| ENERGY ANALYSIS                                          |  |

.

|            | TABLE 1-638                                   |  |
|------------|-----------------------------------------------|--|
| COASTING(3 | MPH BAND)(MIN RUN TIME + .5 MIN)(CAM-CONTROL) |  |
|            | POWER BILL ANALYSIS                           |  |

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|-----------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                    | 0.00179                | 0.00239 | 57.33<br>0.00<br>57.33                        | 0.000                 | 0.034                    | 0.069                     | 0.103                    | 0, 137                 |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79,87<br>72,93<br>152,80   | 0.00654      | 0.00491                | 0.00327                    | 0.00164                | 0.00000 | 12.30<br>0.00<br>12.30<br>FRACTION<br>PERCENT | 0.080<br>0.080<br>8.0 | 0.060<br>0.095<br>9.5    | 0.040<br>0.109<br>10.9    | 0.020<br>0.123<br>12.3   | 0.000<br>0.137<br>13.7 |

+ car

# TABLE 1-64A COASTING(3 NPH BAND)(HIN RUN TIME + .75 MIN)(CAN-CONTROL)

ENERGY ANALYSIS

-

|           |                  |       |                |        |         |           |         | TUD  | NAROUND  |          |         |          |         |          |         |
|-----------|------------------|-------|----------------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |                |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL      | NORMA    | L TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CM/HR          | KWHPCH | CM      | KWH       | KH PEAK | KN   | KWH      | KWH      | KN PEAK | KWH      | KW PEAK | KWH      | KW PEAK |
| WEEKDAY   |                  |       |                |        |         |           |         |      |          |          |         |          |         |          |         |
| MORNENG   | 12:00AH - 6:00AH | 6     | NS             |        |         |           |         | 2070 | 18360    | 18360    |         | 18360    |         | 0        |         |
| AN PEAK   | 6:00AN - 9:00AN  | 3     | 2879.40        | 6.66   | 8638.20 | 57530     | 19177   | 432  | 1296     | 58826    | 19609   | 79582    | 26527   | 20756    | 6919    |
| MIDDAY    | 9:00AH - 3:00PH  | 6     | <b>758.8</b> 0 | 6.13   | 5752.80 | 35265     |         | 2185 | 13111    | 48376    |         | 63075    |         | 14699    |         |
| PN PEAK   | 3:00PM - 6:00PM  | 2     | 2879.40        | 6.66   | 8638.20 | 57530     |         | 432  | 1296     | 58826    |         | 79582    |         | 20756    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.40         | 6.12   | 2876.40 | 17604     |         | 2623 | 15736    | 33339    |         | 40660    |         | 7321     |         |
| TOTAL     |                  | 24    |                | 6.48   | 25906   | 167929    |         |      | 31439    | 199368   |         | 262899   |         | 63531    |         |
| SAT & SUN |                  |       |                |        |         |           |         |      |          |          |         |          |         |          |         |
| NORNING   | 12:00AH - 6:00AH | 6     | N5             |        |         |           |         | 3060 | 18360    | 18360    |         | 18390    |         | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.40         | 6.12   | 5752.80 | 35207     |         | 2623 | 31471    | 66678    |         | 81319    |         | 14641    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70         | 6.45   | 1438.20 | 9276      |         | 2841 | 17049    | 26325    |         | 29400    |         | 3075     |         |
| TOTAL     |                  | 24    |                | 6.19   | 7191.00 | 44484     |         |      | 48520    | 93003    |         | 110719   |         | 17716    |         |
| WEEKLY    |                  |       |                | 6.45   | 143910  | 928612    | 19177   |      | 254234   | 1182846  | 19609   | 1535934  | 26527   | 353088   | 6919    |
| ANNUAL    |                  |       |                | 6.45   |         | 48287841  | 230122  |      | 13220158 | 61507999 | 235306  | 79868572 | 318329  | 18360573 | 83024   |

.

TABLE 1-648 COASTING(3 MPH BAND)(MIN RUN TIME + .75 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL =⇒><br>DEMAND COMPONENT                   | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(P<br>0.00060 | 0.50<br>0.50<br>POWER BILL<br>0.00120 | 0.75<br>0.25<br>UNITS)<br>0.00179 |         | DEMAND<br>ENERGY<br>SAVINGS<br>83.02          | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BILI | 0,75<br>0.25<br>_ UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------------|---------------------------------------|-----------------------------------|---------|-----------------------------------------------|------------------------|--------------------------|----------------------------|--------------------------|------------------------|
| TRACTION(MW)<br>SUPPDRT(MW)<br>TOTAL(MW)                           | 318.33<br>99.90<br>418.23  |                         |                                   |                                       |                                   |         | 0.00<br>83.02                                 | 0.000                  | 0.050                    | 0.099                      | 0.149                    | 0.199                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654                 | 0.00491                           | 0.00327                               | 0.00164                           | 0.00000 | 18.36<br>0.00<br>18.36<br>FRACTION<br>PERCENT | 0.120<br>0.120<br>12.0 | 0.090<br>0.140<br>14.0   | 0.060<br>0.159<br>15.9     | 0.030<br>0.179<br>17.9   | 0.000<br>0.199<br>19.9 |

# TABLE 1-65A COASTING(3 MPH BAND)(MIN RUN TIME + 1.0 MIN)(CAN-CONTROL) ENERGY ANALYSIS

|           |                  |       |           |        |         |           |         | TUR      | NAROUND |          |         |          |          |        |         |
|-----------|------------------|-------|-----------|--------|---------|-----------|---------|----------|---------|----------|---------|----------|----------|--------|---------|
|           |                  |       |           |        |         | RUNNING T | RAINS   | <b>1</b> | STORAGE | TOT      | AL.     | NORMA    | IL TOTAL | DIFF   | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR     | KWHPCH | CN      | KWH       | KN PEAK | KN       | KNH     | KWH      | KU PEAK | KMH      | KW PEAK  | KNH    | KN PEAK |
| WEEKDAY   |                  |       |           |        |         |           |         |          |         |          |         |          |          |        |         |
| MORNING   | 12:00AN - 6:00AM | 6     | NS        |        |         |           |         | 3060     | 18360   | 18340    |         | 18360    |          | 0      |         |
| AM PEAK   | 6:00AN - 9:00AN  | 2     | 2876.70   | 6.71   | 8630.10 | 57908     | 19303   | 387      | 1161    |          | 19690   | 79582    | 26527    | 20513  | 6838    |
| HIDDAY    | 9:00AN - 3:00PM  | 6     | 958.50    | 6.06   | 5751.00 | 34851     |         | 2170     | 13019   | 47870    |         | 63075    |          | 15204  |         |
| PH PEAK   | 3:00PH - 6:00PH  | 2     | 2876.70   | 6.71   | 8630.10 | 57908     |         | 387      | 1161    | 59069    |         | 79582    |          | 20513  |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.25    | 6.04   | 2875.50 | 17368     |         | 2615     | 15690   |          |         | 40660    |          | 7602   |         |
| TOTAL     |                  | 24    |           | 6.49   | 25867   | 168035    |         |          | 31031   | 199066   |         | 262899   |          | 63833  |         |
| SAT & SUN |                  |       |           |        |         |           |         |          |         |          |         |          |          |        |         |
| MORN I NG | 12:00AN - 6:00AN | 6     | <b>MS</b> |        |         |           |         | 3060     | 18360   | 18360    |         | 18360    |          | 0      |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.25    | 6.04   | 5751.00 | 34736     |         | 2615     |         |          |         | 81319    |          | 15204  |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70    | 5.28   | 1438.20 |           |         | 2638     | 17026   |          |         | 29400    |          | 4780   |         |
| TOTAL     |                  | 24    |           | 5.89   | 7189.20 |           |         |          | 48406   | 90735    |         | 110719   |          | 19984  |         |
| WEEKLY    |                  |       |           | 6.43   | 143812  | 924835    | 19303   |          | 251967  | 1176801  | 19690   | 1535934  | 26527    | 359133 | 6838    |
| ANNUAL    |                  |       |           | 6.43   |         | 48091398  | 231632  |          |         | 61193667 |         | 79868572 |          |        | 82054   |

TABLE 1-65B CDASTING(3 MPH BAND)(MIN RUN TIME + 1.0 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00    | 0.25<br>0.75<br>Rate(F | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|---------|------------------------|----------------------------|------------------------|---------|-----------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318.33<br>99.90<br>418.23  | 0.00000 | 0.00060                | 0.00120                    | 0.00179                | 0.00239 | 82.05<br>0.00<br>82.05                        | 0.000                  | 0.049                    | 0.098                     | 0.147                    | 0.196                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654 | 0.00491                | 0.00327                    | 0.00164                | 0.00000 | 18.67<br>0.00<br>18.67<br>FRACTION<br>PERCENT | 0.122<br>0.122<br>12.2 | 0.092<br>0.141<br>14.1   | 0.061<br>0.159<br>15.9    | 0.031<br>0.178<br>17.8   | 0.000<br>0.196<br>19.6 |

# TABLE 1-66A CDASTING(3 NPH BAND)(HIN RUN TINE + 1.25 HIN)(CAM-CONTROL) ENERGY ANALYSIS

|           |                  |       |         |        |         |           |         | TURI | ARDUND   |          |         |                |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------------|---------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL      | NORMA          | L TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KWHPCH | CM      | KWH       | KN PEAK | KN   | KNH      | KMH      | KW PEAK | KWH            | KN PEAK | KWH      | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |                |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060 | 18360    | 19360    |         | 18360          |         | 0        |         |
| AH PEAK   | 6:00AH - 7:00AH  | 3     | 2880.00 | 6.00   | 8640.00 | 51840     | 17280   | 341  | 1023     | 52863    | 17621   | 79582          | 26527   | 26719    | 8706    |
| MIDDAY    | 9:00AN - 3:00PN  | 6     | 958.20  | 6.04   | 5749.20 | 34725     |         | 2154 | 12926    | 47651    |         | 63075          |         | 15424    |         |
| Ph peak   | 3:00PH - 6:00PH  | 3     | 2880.00 | 6.00   | 8640.00 | 51840     |         | 341  | 1023     | 52863    |         | 79 <b>58</b> 2 |         | 26719    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.10  | 6.03   | 2874.60 | 17334     |         | 2607 | 15643    | 32977    |         | 40660          |         | 7683     |         |
| TOTAL     |                  | 24    |         | 6.01   | 25904   | 155739    |         |      | 30615    | 186354   |         | 262899         |         | 76545    |         |
| SAT E SUN |                  |       |         |        |         |           |         |      |          |          |         |                |         |          |         |
| MDRN ING  | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360          |         | 0        |         |
| DAY       | 6100AH = 6100PH  | 12    | 479.10  | 6.03   | 5749,20 | 34660     |         | 2607 | 31206    | 68963    |         | 81319          |         | 15366    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.70  | 5.76   | 1438.20 | 8284      |         | 2834 | 17003    | 25287    |         | 29400          |         | 4113     |         |
| TOTAL     |                  | 24    |         | 5.98   | 7187.40 | 42952     |         |      | 48289    | 91240    |         | 110719         |         | 19479    |         |
| WEEKLY    |                  |       |         | 6.01   | 143894  | 864598    | 17280   |      | 249654   | 1114252  | 17621   | 1535934        | 26527   | 421682   | 8906    |
| ANNUAL    |                  |       |         | 6.01   | 7482478 | 44959119  | 207360  |      | 12981992 | 57941112 | 211453  | 79868572       | 318329  | 21927461 | 106876  |

TABLE 1-66B COASTING(3 MPH BAND)(MIN RUN TIME + 1.25 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ≖≖>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(p | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|-----------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318.33<br>99.90<br>418.23  | 0.00000      | 0.00060                | 0.00120                   | 0.00179                | 0.00239 |                                               | 0.000                  | 0.064                    | 0. 128                    | 0. 192                   | 0.256                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                   | 0.00164                | o.00000 | 21.93<br>0.00<br>21.93<br>FRACTION<br>PERCENT | 0.144<br>0.144<br>14.4 | 0.108<br>0.172<br>17.2   | 0.072<br>0.200<br>20.0    | 0.036<br>0.228<br>22.8   | 0.000<br>0.256<br>25.6 |

...

83

-

|                | TABLE 1-67A                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|----------------|----------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| CDASTING(5 MPH | BAND) (HIN RUN TIME + .25 HIN) (CAN-CONTROL) |  |  |  |  |  |  |  |  |  |  |  |  |
|                | ENERGY ANALYSIS                              |  |  |  |  |  |  |  |  |  |  |  |  |

|           |                  |       |         |        |         |           |         | TUR        | Nardund  |          |         |          |         |         |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------------|----------|----------|---------|----------|---------|---------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | <b>k</b> ( | STORAGE  | TOT      | AL      | NDRMA    | L TOTAL | DIFF    | ERENCE  |
| PERIOD    | TINE             | HOURS | CM/HR   | KWHPCH | CN      | KWH       | KW PEAK | KN         | KNH      | KWH      | KW PEAK | KWH      | KN PEAK | KNH     | KN PEAK |
| NEEKDAY   |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060       | 18360    | 18360    |         | 18360    |         | 0       |         |
| AN PEAK   | 6:00AH - 9:00AH  | 2     | 2877.00 | 7.70   | B631.00 | 66459     | 22153   | 523        | 1569     | 68027    | 22676   | 79582    | 26527   | 11555   | 3852    |
| MIDDAY    | 9:00AN - 3:00PN  | 6     | 959.25  | 7.38   | 5755.50 | 42476     |         | 2217       | 13300    | 55776    |         | 63075    |         | 7299    |         |
| PN PEAK   | 3:00PH - 6:00PH  | 3     | 2877.00 | 7.70   | 8631.00 | 66459     |         | 523        | 1569     | 68027    |         | 79582    |         | 11555   |         |
| EVENING   | 6:00PN - 12:00AM | 6     | 479.63  | 7.36   | 2877.75 | 21180     |         | 2638       | 15830    | 37010    |         | 40660    |         | 3649    |         |
| TOTAL     |                  | 24    |         | 7.59   | 25895   | 196573    |         |            | 32268    | 228841   |         | 262899   |         | 34058   |         |
| SAT & SUN |                  |       |         |        |         |           |         |            |          |          |         |          |         |         |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060       | 18360    | 18360    |         | 18360    |         | 0       |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.63  | 7.36   | 5755.50 | 42360     |         | 2638       | 31660    | 74021    |         | 81319    |         | 7299    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.78  | 7.11   | 1438.65 | 10229     |         | 2849       | 17094    | 27323    |         | 29400    |         | 2077    |         |
| TOTAL.    |                  | 24    |         | 7.31   | 7194.15 | 52589     |         |            | 48754    | 101343   |         | 110719   |         | 9376    |         |
| MEEKLY    |                  |       |         | 7.56   | 143865  | 1088045   | 22153   |            | 258846   | 1346891  | 22676   | 1535934  | 26527   | 189043  | 3852    |
| ANNUAL    |                  |       |         | 7.56   | 7480957 | 56578325  | 265835  |            | 13460008 | 70038333 | 272110  | 79868572 | 318329  | 7830240 | 46220   |

TABLE 1-67B COASTING(5 MPH BAND)(MIN RUN TIME + .25 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT<br>TRACTION(MW)   | DEMAND<br>ENERGY<br>NORMAL<br>318.33 | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(P<br>0.00060 | 0.50<br>0.50<br>OWER BILL<br>0.00120 | 0.75<br>0.25<br>UNITS)<br>0.00179 |         | DEMAND<br>ENERGY<br>SAVINGS<br>46.22        | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|--------------------------------------|-------------------------|-----------------------------------|--------------------------------------|-----------------------------------|---------|---------------------------------------------|-----------------------|--------------------------|---------------------------|--------------------------|------------------------|
| SUPPORT(MW)<br>TOTAL(MW)                                           | 99.90<br>418.23                      |                         |                                   |                                      |                                   |         | 0.00<br>46.22                               | 0.000                 | 0.028                    | 0.055                     | 0.083                    | 0.111                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80             | 0.00654                 | 0.00491                           | 0.00327                              | 0.00164                           | 0.00000 | 9.83<br>0.00<br>9.83<br>FRACTION<br>PERCENT | 0.064<br>0.064<br>6.4 | 0.048<br>0.076<br>7.6    | 0.032<br>0.087<br>8.7     | 0.016<br>0.099<br>9.9    | 0.000<br>0.111<br>11.1 |

# TABLE 1-68A CDASTING(5 NPH BAND)(HIN RUN TIME + .5 HIN)(CAN-CONTROL)

ENERGY ANALYSIS

|           |                  |       |         |        |         | PUCUDI U  | MICIOIO |       |          |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|-------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         |           |         | TUR   | NARDUND  |          |         |          |         |          |         |
|           |                  |       |         |        |         | RUNNING T | RAINS   | - Ł ( | STORAGE  | TOT      | AL.     | NORHA    | L TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KNHPCH | CM      | KWH       | KN PEAK | KN    | KWH      | KWH      | KU PEAK | KWH      | KN PEAK | KWH      | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |       |          |          |         |          |         |          |         |
| HORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060  | 18360    | 18360    |         | 18360    |         | 0        |         |
| AN PEAK   | 6:00AH - 9:00AH  | 2     | 2877.00 | 6.92   | 8631.00 | 59727     | 19909   | 477   | 1431     | 61158    | 20386   | 79582    | 26527   | 18425    | 6142    |
| MIDDAY    | 9:00AN - 3:00PM  | 6     | 960.15  | 6.60   | 5760.90 | 38022     |         | 2200  | 13201    | 51223    |         | 63075    |         | 11851    |         |
| PH PEAK   | 3:00PN - 6:00PN  | 3     | 2077.00 | 6.92   | 8631.00 | 59727     |         | 477   | 1431     | 61158    |         | 79582    |         | 18425    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 480.08  | 6.59   | 2880.45 | 18982     |         | 2630  | 15781    | 34763    |         | 40660    |         | 5897     |         |
| TOTAL     |                  | 24    |         | 6.91   | 25903   | 176457    |         |       | 31844    | 208301   |         | 262899   |         | 54598    |         |
| SAT & SUN |                  |       |         |        |         |           |         |       |          |          |         |          |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060  | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 480.08  | 6.59   | 5760.90 | 37964     |         | 2630  | 31561    | 69526    |         | B1319    |         | 11794    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.70  | 6.92   | 1438.20 | 9952      |         | 2845  | 17070    | 27023    |         | 29400    |         | 2377     |         |
| TOTAL     |                  | 24    |         | 6.66   | 7199.10 | 47917     |         |       | 48632    | 96548    |         | 110719   |         | 14171    |         |
| WEEKLY    |                  |       |         | 6.80   | 143915  | 978119    | 19909   |       | 256482   | 1234601  | 20386   | 1535934  | 26527   | 301333   | 6142    |
| ANNUAL.   |                  |       |         | 6.80   | 7483577 | 50862192  | 238906  |       | 13337064 | 64199256 | 244630  | 79868572 | 318329  | 15669316 | 73699   |

TABLE 1-688 COASTING(5 MPH BAND)(MIN RUN TIME + .5 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

-

| PORTION OF<br>POWER BILL ==>                        | DEMAND<br>Energy<br>Normal | 0.00<br>1.00 | 0.25<br>0.75<br>PATE(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25 |         | DEMAND<br>ENERGY<br>SAVINGS  | 0.00<br>1.00           | 0.25<br>0.75           | 0.50<br>0.50<br>POWER BIL | 0.75                   | 1.00<br>0.00           |
|-----------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|--------------|---------|------------------------------|------------------------|------------------------|---------------------------|------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)                    | 318.33                     | 0.00000      | 0.00060                | 0.00120                   | 0.00179      | 0.00239 |                              |                        | 3411463(               | FOWER BIL                 | C UNITS)               |                        |
| SUPPORT(MW)<br>Total(MW)                            | 99.90<br>418.23            |              |                        |                           |              |         | 0.00<br>73.70                | 0.000                  | 0.044                  | 0.088                     | 0.132                  | 0.176                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH) | 79.87<br>72.93             | 0.00654      | 0.00491                | 0.00327                   | 0.00164      | 0.00000 | 15.67<br>0.00                |                        |                        |                           |                        |                        |
| TOTAL(MKWH)                                         | 152.80                     |              |                        |                           |              |         | 15.67<br>FRACTION<br>PERCENT | 0.103<br>0.103<br>10.3 | 0.077<br>0.121<br>12.1 | 0.051<br>0.139<br>13.9    | 0.026<br>0.158<br>15.8 | 0.000<br>0.176<br>17.6 |

| TABLE 1-69A                                               |   |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------|---|--|--|--|--|--|--|--|--|--|--|
| COASTING(5 MPH BAND)(HIN RUN TIME + .75 HIN)(CAN-CONTROL) |   |  |  |  |  |  |  |  |  |  |  |
| ENERGY ANALYSIS                                           | • |  |  |  |  |  |  |  |  |  |  |

|           |                  |       |         |        |         |           |         | TUR  | NARDUND  |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   | k !  | STORAGE  | TOT      | AL      | NDRMA    | L TOTAL | DIFFI    | ERENCE  |
| PERIOD    | TIME             | HOURS | CH/HR   | KNHPCH | CN      | KWH       | KN PEAK | KN   | KWH      | KMH      | KW PEAK | KNH      | KN PEAK | KNH      | KW PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| ah peak   | 6:00AN - 9:00AN  | 3     | 2874.30 | 6.37   | B622.90 | 54928     | 18309   | 432  | 1296     | 56224    | 18741   | 79582    | 26527   | 23359    | 7786    |
| NIDDAY    | 9:00AN - 3:00PM  | 6     | 958.65  | 6.34   | 5751.90 | 36467     |         | 2185 | 13111    | 49578    |         | 63075    |         | 13496    |         |
| Ph PEAK   | 3:00PH - 6:00PH  | 3     | 2874.30 | 6.37   | 8622.90 | 54928     |         | 432  | 1296     | 56224    |         | 79582    |         | 23359    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.33  | 6.32   | 2875.95 | 18176     |         | 2623 | 15736    | 33912    |         | 40660    |         | 6748     |         |
| TOTAL     |                  | 24    |         | 6.36   | 25874   | 164499    |         |      | 31439    | 195938   |         | 262899   |         | 66961    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6:00AN - 6:00PH  | 12    | 479.33  | 6.32   | 5751.90 | 36352     |         | 2623 | 31471    | 67823    |         | 81319    |         | 13496    |         |
| EVENING   | 6:00PN - 12:00AN | 6     | 239.85  | 6.48   | 1439.10 | 9325      |         | 2842 | 17051    | 26376    |         | 29400    |         | 3024     |         |
| TOTAL     |                  | 24    |         | 6.35   | 7191.00 | 45677     |         |      | 48522    | 94199    |         | 110719   |         | 16520    |         |
| WEEKLY    |                  |       |         | 6.36   | 143750  | 913849    | 18309   |      | 254237   | 1168086  | 18741   | 1535934  | 26527   | 367848   | 7786    |
| ANNUAL    |                  |       |         | 6.36   | 7475013 | 47520134  | 219711  |      | 13220345 | 60740479 | 224895  | 79868572 | 318329  | 19128093 | 93434   |

TABLE 1-69B COASTING(5 MPH BAND)(MIN RUN TIME + .75 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>Rate(P | 0.50<br>0.50<br>OWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00           | 0.25<br>0.75<br>SAVINGS( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|---------------------------|------------------------|---------|-----------------------------------------------|------------------------|--------------------------|---------------------------|--------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 318,33<br>99,90<br>418,23  | 0.00000      | 0.00060                | 0.00120                   | 0.00179                | 0.00239 | 93.43<br>0.00<br>93.43                        | 0.000                  | 0.056                    | 0.112                     | 0.168                    | 0.223                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654      | 0.00491                | 0.00327                   | 0.00164                | 0.00000 | 19.13<br>0.00<br>19.13<br>FRACTION<br>PERCENT | 0.125<br>0.125<br>12.5 | 0.094<br>0.150<br>15.0   | 0.063<br>0.174<br>17.4    | 0.031<br>0.199<br>19.9   | 0.000<br>0.223<br>22.3 |

# TABLE 1-70A COASTING(5 HPH BAND)(HIN RUN TINE + 1 HIN)(CAN-CONTROL) ENERGY ANALYSIS

|           |                  |       |         |        |         |           |         | Tile | AROUND   |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         | RUNNING T | RAINS   |      | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFFE    | RENCE   |
| PERIOD    | TIME             | HOURS | CN/HR   | KWHPCH | CM      | KNH       | KN PEAK | KW   | KNH      | KWH      | KU PEAK | KWH      | KN PEAK | KNR      | KN PEAK |
| WEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| AN PEAK   | 6:00AH - 9:00AH  | 3     | 2874.30 | 9.33   | 8622.90 | 54583     | 18194   | 387  | 1161     | 55744    | 18591   | 79582    | 26527   | 23838    | 7946    |
| N1DDAY    | 9:00AN - 3:00PH  | 6     | 959.25  | 6.36   | 5755.50 | 36605     |         | 2171 | 13025    | 49630    |         | 63075    |         | 13445    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 2874.30 | 6.33   | 8622.90 | 54583     |         | 387  | 1161     | 55744    |         | 79582    |         | 23838    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479.63  | 6.34   | 2877.75 | 18245     |         | 2615 | 15692    | 33937    |         | 40660    |         | 6722     |         |
| TOTAL     |                  | 24    |         | 6.34   | 25879   | 164016    |         |      | 31039    | 195055   |         | 262899   |         | 67844    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |         |          |         |
| NORNING   | 12:00AN - 6:00AM | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6:00AH - 6:00PH  | 12    | 479.63  | 6.34   | 5755.50 | 36490     |         | 2615 | 31385    | 67975    |         | 81319    |         | 13445    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.63  | 6.48   | 1437.75 | 9317      |         | 2838 | 17030    | 26346    |         | 29400    |         | 3054     |         |
| TOTAL     |                  | 24    |         | 6.37   | 7193.25 | 45806     |         |      | 48415    | 94221    |         | 110719   |         | 16498    |         |
| WEEKLY    |                  |       |         | 6.34   | 143792  | 911692    | 18194   |      | 252025   | 1163717  | 18581   | 1535934  | 26527   | 372217   | 7946    |
| ANNUAL    |                  |       |         | 6.34   | 7476651 | 47407991  | 218332  |      | 13105310 | 60513301 | 222976  | 79868572 | 318329  | 19355271 | 95354   |

TABLE 1-70B COASTING(5 MPH BAND)(MIN RUN TIME + 1 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==><br>DEMAND COMPONENT                   | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00<br>0.00000 | 0.25<br>0.75<br>RATE(P<br>0.00060 | 0.50<br>0.50<br>DWER BILL<br>0.00120 | 0.75<br>0.25<br>UNITS)<br>0.00179 |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00                   | 0.25<br>0.75<br>SAVINGS ( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25<br>L UNITS) | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------------|--------------------------------------|-----------------------------------|---------|-----------------------------------------------|------------------------|---------------------------|---------------------------|--------------------------|------------------------|
| TRACTION(MW)<br>SUPPORT(MW)<br>TOTAL(MW)                           | 318.33<br>99.90<br>418.23  |                         |                                   |                                      |                                   |         | 95.35<br>0.00<br>95.35                        | 0.000                  | 0.057                     | 0.114                     | 0.171                    | 0.228                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 79.87<br>72.93<br>152.80   | 0.00654                 | 0.00491                           | 0.00327                              | 0.00164                           | 0.00000 | 19.36<br>0.00<br>19.36<br>FRACTION<br>PERCENT | 0.127<br>0.127<br>12.7 | 0.095<br>0.152<br>15.2    | 0.063<br>0.177<br>17.7    | 0.032<br>0.203<br>20.3   | 0.000<br>0.228<br>22.8 |

# TABLE 1-71A COASTING(5 MPH BAND)(NIN RUN TIME + 1.25 MIN)(CAM-CONTROL) ENERGY ANALYSIS

.

|           |                  |       |         |        |         | PUPUAL U  | 1916 I 919 |              |          |          |         |          |         |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|------------|--------------|----------|----------|---------|----------|---------|----------|---------|
|           |                  |       |         |        |         |           |            | TURI         | NARDUND  |          |         |          |         |          |         |
|           |                  |       |         |        |         | RUNNING T | RAINS      | - <b>k</b> ! | STORAGE  | TOT      | AL.     | NORMA    | L TOTAL | DIFF     | ERENCE  |
| PER10D    | TINE             | HOURS | CH/HR   | KWHPCN | CH      | KWH       | KW PEAK    | KW           | KWH      | KWH      | KW PEAK | KWH      | KN PEAK | KWH      | KW PEAK |
| WEEKDAY   |                  |       |         |        |         |           |            |              |          |          |         |          |         |          |         |
| MORNING   | 12:00AH - 6:00AH | 6     | NS      |        |         |           |            | 3060         | 18360    | 18360    |         | 18390    |         | 0        |         |
| AN PEAK   | 6:00AH - 9:00AN  | 3     | 2877.00 | 6.07   | 8631.00 | 52390     | 17463      | 341          | 1023     | 53413    | 17804   | 79582    | 26527   | 26169    | 8723    |
| NIDDAY    | 9:00AN - 3:00PH  | 6     | 958.95  | 5.85   | 5753.70 | 33626     |            | 2156         | 12935    | 46594    |         | 63075    |         | 16491    |         |
| PH PEAK   | 3:00PH - 6:00PH  | 2     | 2877.00 | 6.07   | 8631.00 | 52390     |            | 341          | 1023     | 53413    |         | 79582    |         | 26169    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 479,48  | 5.83   | 2876.85 | 16772     |            | 2608         | 15647    | 32419    |         | 40660    |         | 8240     |         |
| TOTAL     |                  | 24    |         | 5.99   | 25893   | 155212    |            |              | 30629    | 185840   |         | 262899   |         | 77059    |         |
| SAT & SUN |                  |       |         |        |         |           |            |              |          |          |         |          |         |          |         |
| MORNING   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |            | 3060         | 18360    | 18360    |         | 18360    |         | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 479.48  | 5.83   | 5753.70 | 33544     |            | 2608         | 31295    |          |         | B1319    |         | 16481    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.55  | 5.78   | 1437.30 | 8308      |            | 2834         | 17006    | 25314    |         | 29400    |         | 4086     |         |
| TOTAL     |                  | 24    |         | 5.82   | 7191.00 | 41852     |            |              | 48301    | 90153    |         | 110719   |         | 20567    |         |
| MEEKLY    |                  |       |         | 5.98   | 143845  | 859761    | 17463      |              | 249746   | 1109507  | 17804   | 1535934  | 26527   | 426427   | 8723    |
| ANNUAL    |                  |       |         | 5.98   | 7479927 | 44707568  | 209561     |              | 12986813 | 57694381 | 213654  | 79868572 |         | 22174191 | 104676  |

TABLE 1-71B COASTING(5 MPH BAND)(MIN RUN TIME + 1.25 MIN)(CAM-CONTROL) POWER BILL ANALYSIS

| PORTION OF       | DEMAND | 0.00    | 0.25    | 0.50      | 0.75    | 1.00    | DEMAND   | 0.00  | 0.25     | 0.50      | 0.75  | 1.00  |
|------------------|--------|---------|---------|-----------|---------|---------|----------|-------|----------|-----------|-------|-------|
| POWER BILL ==>   | ENERGY | 1.00    | 0.75    | 0.50      | 0.25    | 0.00    | ENERGY   | 1.00  | 0.75     | 0.50      | 0.25  | 0.00  |
|                  | NORMAL |         | RATE(P  | OWER BILL | UNITS)  |         | SAVINGS  |       | SAVINGS( | POWER BIL |       | 0.00  |
| DEMAND COMPONENT |        | 0.00000 | 0.00060 | 0.00120   | 0.00179 | 0.00239 | I        |       |          |           |       |       |
| TRACTION(MW)     | 318.33 |         |         |           |         |         | 104.68   |       |          |           |       |       |
| SUPPORT(MW)      | 99.90  |         |         |           |         |         | 0.00     |       |          |           |       |       |
| TOTAL(MW)        | 418.23 |         |         |           |         |         | 104.68   | 0.000 | 0.063    | 0.125     | 0.188 | 0.250 |
| ENERGY COMPONENT |        | 0.00654 | 0.00491 | 0.00327   | 0.00164 | 0.00000 |          |       |          |           |       |       |
| TRACTION(MKWH)   | 79.87  |         |         |           |         |         | 22.17    |       |          |           |       |       |
| SUPPORT(MKWH)    | 72.93  |         |         |           |         |         | 0.00     |       |          |           |       |       |
| TOTAL(MKWH)      | 152.80 |         |         |           |         |         | 22.17    | 0.145 | 0.109    | 0.073     | 0.036 | 0.000 |
|                  |        |         |         |           |         |         | FRACTION | 0.145 | 0.171    | 0.198     | 0.224 | 0.250 |
|                  |        |         |         |           |         |         | PERCENT  | 14.5  | 17.1     | 19.8      | 22.4  | 25.0  |

|                                    | Monte           | Carlo Results            | for wiviATA Red Line           |
|------------------------------------|-----------------|--------------------------|--------------------------------|
| Energy Consumption<br>KWH/Car Mile | Time 9<br>(min) | 6 Reduction<br>In Energy | % Increase In Schedule<br>Time |
| 6.60                               | 19.1            |                          |                                |
| 5.50                               | 19.3            | 16.7                     | 1.1                            |
| 5.35                               | 20.0            | 19.0                     | 4.6                            |
| 5.31                               | 19.5            | 19.6                     | 2.1                            |

-

.

TABLE 1-72 Monte Carlo Results for WMATA Red Line

TABLE 1-73 Steepest Descent Results for WMATA Red Line

| Energy Consumption<br>(KWH/Car Mile) | Time<br>(min) | %Reduction<br>in Energy | % Increase in<br>Schedule Time |
|--------------------------------------|---------------|-------------------------|--------------------------------|
| 6.60                                 | 19.1          |                         |                                |
| 5.47                                 | 19.3          | 17.1                    | 0.84                           |
| 5.16                                 | 19.7          | 21.8                    | 2.72                           |
| 4.88                                 | 20.1          | 26.1                    | 4.81                           |

|          | DEMAND<br>RATE | ENERGY<br>Rate | MONTHLY<br>DEMAND<br>SAVINGS<br>(KW) | ANNUAL<br>ENERGY<br>SAVINGS<br>(MWH) | ANNUAL<br>DEMAND<br>SAVINGS<br>(\$) | ANNUAL<br>ENERGY<br>SAVINGS<br>(\$) | ANNUAL<br>TOTAL<br>SAVINGS<br>(\$) | ANNUAL<br>TOTAL<br>SAVINGS<br>(%) |         |     |
|----------|----------------|----------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|---------|-----|
| WMATA    |                |                |                                      |                                      |                                     |                                     |                                    |                                   |         |     |
| PEPCO DC | 11.70          | 0.028          | 2300                                 | 8000                                 | 322920                              | 224000                              | 546920                             |                                   |         |     |
| PEPCO MD | 9.85           | 0.024          | 670                                  | 2400                                 | 79194                               | 57600                               | 136794                             |                                   |         |     |
| PEPCO VA | 7.85           | 0.022          | 150                                  | 600                                  | 14130                               | 13200                               | 27330                              |                                   |         |     |
| VEPCO VA | 0.00           | 0.061          | 0                                    | 100                                  | 0                                   | 6100                                | 6100                               |                                   |         |     |
| TOTAL    |                |                | 3120                                 | 11100                                | 416244                              | 300900                              | 717144                             | 4.6                               | ( 198 1 | \$) |
| MARTA    |                |                |                                      |                                      |                                     |                                     |                                    |                                   |         |     |
| GPC      | 11.62          | 0.0227         | 1113                                 | 4068                                 | 155138                              | 92350                               | 247488                             | 6.0                               | ( 1985  | \$) |

TABLE 1-74 Summary of Coasting Predictions on WMATA and MARTA

#### TABLE 1-75

#### Passenger Load Factor Improvement Operating Timetable Summary

|              |                    | OR         | IGINAL |                  | STR        | ATEGIC  |                          |
|--------------|--------------------|------------|--------|------------------|------------|---------|--------------------------|
| SERVICE      | TIME PERIOD        | CARS/TRAIN |        | . LOAD<br>Dr (%) | CARS/TRAIN | HEADWAY | PASS. LOAD<br>Factor (%) |
| Weekday      |                    |            |        |                  |            |         |                          |
| Mornin       | g 12:00 am-6:00 am | NO SER     | VICE   |                  | NO SERVI   | CE      |                          |
| Peak         | 6:00 am-9:00 am    | 6          | 2      | 50               | 4          | 2       | 75                       |
| Midday       | 9:00 am-3:00 pm    | 4          | 4      | 25               | 4          | 4       | 25                       |
| Peak         | 3:00 pm~6:00 pm    | 6          | 2      | 50               | 4          | 2       | 75                       |
| Evenin       | g 6:00 pm-12:00 p  | m 4        | 8      | 25               | 2          | 8       | 37.5                     |
| Sat., Sun. & | Hol.               |            |        |                  |            |         |                          |
| Mornin       | g 12:00 am-6:00 am | NO SER     | VICE   |                  |            |         |                          |
| Day          | 6:00 am-6:00 pm    | 4          | 8      | 25               | 4          | 8       | 25                       |
| Evenin       | g 6:00 pm-12:00 a  | m 2        | 8      | 25               | 2          | 8       | 25                       |

Trains leave on the hour from both terminals.

### TABLE 1-76A PASSENGER LOAD FACTOR INPROVEMENT ENERGY ANALYSIS

|           |                  |       |         |        | -       |           |         | TUR  | NARDUND  |          |         |          |          |          |         |
|-----------|------------------|-------|---------|--------|---------|-----------|---------|------|----------|----------|---------|----------|----------|----------|---------|
|           |                  |       |         |        |         | RUNNING 1 | IRAINS  | Ł    | STORA6E  | TOT      | AL      | NORM     | NL TOTAL | DIFF     | ERENCE  |
| PERIOD    | TINE             | HOURS | CH/HR   | KWHPCN | CM      | KNH       | KW PEAK | KW   | KNH      | KWH      | KW PEAK | KNN      | KN PEAK  | KWH      | KH PEAK |
| HEEKDAY   |                  |       |         |        |         |           |         |      |          |          |         |          |          |          |         |
| HORNING   | 12:00AM - 6:00AM | 6     | NS      |        |         |           |         | 3060 | 18360    | 18360    |         | 18360    |          | 0        |         |
| AN PEAK   | 6:00AN - 7:00AN  | 3     | 1917.30 | 5.48   | 5751.90 | 31520     | 10507   | 555  | 1666     | 33186    | 11062   | 49019    | 16340    | 15833    | 5278    |
| HIDDAY    | 9:00AH - 3:00PH  | 6     | 959.25  | 5.49   | 5755.50 | 31598     |         | 2234 | 13405    | 45002    |         | 45002    |          | 0        |         |
| PH PEAK   | 3:00PH - 6:00PH  | 3     | 1917.30 | 5,48   | 5751.90 | 31520     |         | 555  | 1466     | 33186    |         | 49019    |          | 15833    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.85  | 5,58   | 1439.10 | 8030      |         | 2647 | 15882    | 23912    |         | 32688    |          | 8776     |         |
| TOTAL     |                  | 24    |         | 5.49   | 18698   | 102669    |         |      | 32619    | 135287   |         | 175729   |          | 40441    |         |
| SAT & SUN |                  |       |         |        |         |           |         |      |          |          |         |          |          |          |         |
| HORNENG   | 12:00AN - 6:00AN | 6     | NS      |        |         |           |         | 2040 | 18360    | 18360    |         | 18360    |          | 0        |         |
| DAY       | 6:00AN - 6:00PN  | 12    | 239.85  | 5.58   | 2878.20 | 16060     |         | 2647 | 31765    | 47825    |         | 65377    |          | 17552    |         |
| EVENING   | 6:00PH - 12:00AH | 6     | 239.63  | 5.57   | 1437.75 | 8008      |         | 2853 | 17118    | 25126    |         | 25130    |          | 4        |         |
| TOTAL     |                  | 24    |         | 5.58   | 4315.95 | 24069     |         |      | 48883    | 72951    |         | 90507    |          | 17555    |         |
| WEEKLY    |                  |       |         | 5.50   | 102124  | 561481    | 10507   |      | 260859   | 822339   | 11062   | 1059657  | 16340    | 237318   | 5278    |
| ANNUAL    |                  |       |         | 5.50   | 5310443 | 29196998  | 126082  |      | 13564652 | 42761650 | 132745  | 55102175 | 196076   | 12340524 | 63331   |

#### TABLE 1-76B PASSENGER LOAD FACTOR IMPROVEMENT POWER BILL ANALYSIS

| PORTION OF<br>POWER BILL ==>                                       | DEMAND<br>ENERGY<br>NORMAL | 0.00<br>1.00 | 0.25<br>0.75<br>RATE(F | 0.50<br>0.50<br>POWER BILL | 0.75<br>0.25<br>UNITS) |         | DEMAND<br>ENERGY<br>SAVINGS                   | 0.00<br>1.00          | 0.25<br>0.75<br>SAVINGS ( | 0.50<br>0.50<br>POWER BIL | 0.75<br>0.25           | 1.00<br>0.00           |
|--------------------------------------------------------------------|----------------------------|--------------|------------------------|----------------------------|------------------------|---------|-----------------------------------------------|-----------------------|---------------------------|---------------------------|------------------------|------------------------|
| DEMAND COMPONENT<br>TRACTIDN(MW)<br>SUPPORT(MW)<br>TOTAL(MW)       | 196.08<br>99.90<br>295.98  | 0.00000      | 0.00084                | 0.00169                    | 0.00253                | 0.00338 | 63.33<br>0.00<br>63.33                        | 0.000                 | 0.053                     | 0. 107                    | 0. 160                 | 0.214                  |
| ENERGY COMPONENT<br>TRACTION(MKWH)<br>SUPPORT(MKWH)<br>TOTAL(MKWH) | 55,10<br>72,93<br>128,03   | 0.00781      | 0.00586                | 0.00391                    | 0.00195                | 0.00000 | 12.34<br>0.00<br>12.34<br>FRACTION<br>PERCENT | 0.096<br>0.096<br>9.6 | 0.072<br>0.126<br>12.6    | 0.048<br>0.155<br>15.5    | 0.024<br>0.185<br>18.5 | 0.000<br>0.214<br>21.4 |

91

TABLE 1-77 Energy Cost Effect of Passenger Load Factor Improvement on WMATA and MARTA

|              | DEMAND<br>RATE | ENERGY<br>RATE | MONTHLY<br>DEMAND<br>SAVINGS<br>(KW) | ANNUAL<br>ENERGY<br>SAVINGS<br>(MWH) | ANNUAL<br>Demand<br>Savings<br>(\$) | ANNUAL<br>ENERGY<br>SAVINGS<br>(\$) | ANNUAL<br>TOTAL<br>SAVINGS<br>(\$) | ANNUAL<br>TOTAL<br>SAVINGS<br>(%) |
|--------------|----------------|----------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-----------------------------------|
| WMATA        |                |                |                                      |                                      |                                     |                                     |                                    |                                   |
| PEPCO DC     | 11.70          | 0.028          | 0                                    | 18500                                | 0                                   | 518000                              | 518000                             |                                   |
| PEPCO MD     | 9.85           | 0.024          | 0                                    | 2800                                 | 0                                   | 67200                               | 67200                              |                                   |
| PEPCO VA     | 7.85           | 0.022          | 0                                    | 2500                                 | 0                                   | 55000                               | 55000                              |                                   |
| VEPCO VA     | 0.00           | 0.061          | 0                                    | 2100                                 | 0                                   | 128100                              | 128100                             |                                   |
| TOTAL        |                |                | 0                                    | 25900                                | 0                                   | 768300                              | 768300                             | 4.9                               |
| MARTA<br>GPC | 11.62          | 0.0227         | 1608                                 | 3071                                 | 224220                              | 69715                               | 293934                             | 7.1                               |

TABLE 1-78 ESTIMATES OF RECEPTIVITY FOR NORMAL OPERATION AT MARTA

|           |               | NAT             | FULL      | NO         | *         |
|-----------|---------------|-----------------|-----------|------------|-----------|
| PERIOD    | DURATION      | RECEP           | RECEP     | REGEN      | RECEP     |
|           | NORTH         | - SOUTH LINE    |           | TION (1983 | L (984)   |
|           |               |                 |           |            | - u 1304) |
| AM PEAK   | 6:45AM-9:15AM | 4.81            | 3.40      | 7.06       | 61        |
| MIDDAY    | 9:15AM-3:45PM | 4.62            | 3.31      | 6.87       | 63        |
|           | 5:45AM-6:45AM |                 |           |            |           |
| PM PEAK   | 3:45PM-6:15PM | 4.84            | 3.27      | 7.15       | 60        |
| EVENING   | 6:15PM-1:15AM | 4.04            | 3.41      | 5.36       | 68        |
| SATURDAY  | 5:45AM-1:15AM | 3.89            | 3.28      | 5.35       | 71        |
| SUNDAY    | 6:15AM-1:15AM | 4.60            | 3.19      | 5.34       | 34        |
|           |               |                 |           |            |           |
|           | EAST          | - WEST LINE 19  | 84 OPERAT | ION        |           |
|           |               | _               |           |            |           |
|           | 6:45AM-9:15AM | 4.22            | · · + -   |            | 70        |
| MIDDAY    | 9:15AM-3:45PM | 4.12            | 3.18      | 6.42       | 71        |
|           | 5:45AM-6:45AM | _               |           |            |           |
| · · · · • | 3:45PM-6:15PM | 4.22            | 3.21      | 6.54       | 70        |
|           | 6:15PM-1:15AM | 4.55            |           | 6.46       | 63        |
| + + -     | 5:45AM-1:15AM | 4.31            |           |            | 64        |
| SUNDAY    | 6:15AM-1:15AM | 4.90            | 3.13      | 6.45       | 47        |
|           |               |                 |           |            |           |
|           |               |                 |           |            |           |
|           | FAST .        | . WEST I THE 40 |           | 7.04       |           |

EAST - WEST LINE 1983 OPERATION

| AM PEAK  | 6:45AM-9:15AM | 4.66 | 3.11 | 6.48 | 54 |
|----------|---------------|------|------|------|----|
| MIDDAY   | 9:15AM-3:45PM | 4.44 | 3,18 | 6.40 | 61 |
|          | 5:45AM+6:45AM |      |      |      |    |
| PM PEAK  | 3:45PM-6:15PM | 4.70 | 3.13 | 6.51 | 54 |
| EVENING  | 6:15PM-1:15AM | 4.55 | 3.45 | 6.45 | 63 |
| SATURDAY | 5:45AM-1:15AM | 4.31 | 3.11 | 6.45 | 64 |
| SUNDAY   | 6:15AM-1:15AM | 4.90 | 3.13 | 6.45 | 47 |

.

### TABLE 1-79 ENERGY COST VARIATION RESULTING FROM OFFSET VARIATION AT MARTA

•

| LINE AND OPERATING PERIOD                                                                                              | KWHPCM+<br>Variation         | CAR-MILES<br>PER MONTH                            | COST+<br>PER MONTH                 |
|------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------------|
| ENE                                                                                                                    | RGY USE COST RANGE           |                                                   |                                    |
| NORTH-SOUTH AM PEAK<br>NORTH-SOUTH EVENING<br>EAST-WEST AM PEAK<br>EAST-WEST EVENING<br>TOTAL SAVINGS/MONTH ENERGY USE | 0.27<br>0.42<br>0.13<br>0.40 | 264326 **<br>111273 ***<br>234580 **<br>75652 *** | 1620<br>1061<br>692<br>687<br>4060 |
| POW                                                                                                                    | VER DEMAND COST RANGE        | CAR-MI/HR                                         |                                    |
| NORTH-SOUTH AM PEAK<br>EAST-WEST AM PEAK<br>Total Variation/Month Demand                                               | 0.27<br>0.13                 | 1057<br>938                                       | 3331<br>1423<br>4754               |
| TOTAL MONTHLY VARIATION                                                                                                |                              |                                                   | 8814                               |
| TOTAL ANNUAL VARIATION                                                                                                 |                              |                                                   | 105768                             |
| ANNUAL POWER BILL                                                                                                      |                              |                                                   | 4140000                            |
| VARIATION AS PERCENT OF POWER                                                                                          | BILL                         |                                                   | 2.6                                |
| ** INCLUDES AM PEAK, PM PEAK<br>*** INCLUDES EVENING, SATURDAY<br>+ COST PER MONTH                                     |                              |                                                   |                                    |

ENERGY USE SAVINGS = KWHPCM + CAR-MILES/MONTH + .0227 POWER DEMAND SAVINGS \* KWHPCM + CAR-MILES/HOUR + 11.62

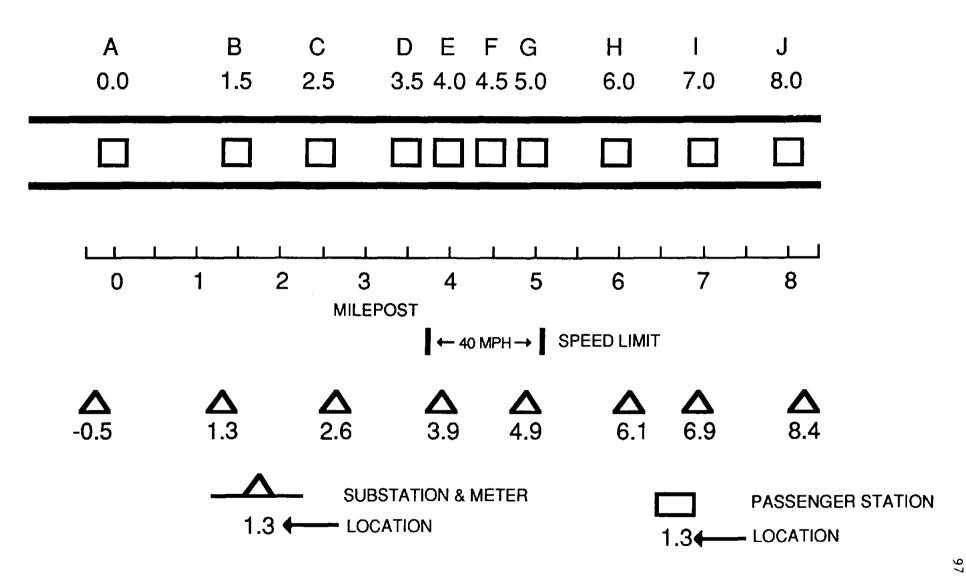
### TABLE 1-80 REDUCTION OF POWER DEMAND AND ENERGY USE BY EMPLOYING DIRECT MERCURY VAPOR LIGHTING IN UNDERGROUND STATIONS

|                                | PEPC | O JURISDI<br>MD | CTIONS<br>VA | VEPCO |
|--------------------------------|------|-----------------|--------------|-------|
| NUMBER OF UNDERGROUND STATIONS |      |                 |              |       |
| Side Platform                  | 6    | 0               | 2            | 5     |
| Center Platform                | 14   | 0               | 0            | 1     |
| PEAK POWER DEMAND SAVINGS      |      |                 |              |       |
| KW                             | 1040 | 0               | 165          | 450   |
| Percent of Support Power       | 12   | 0               | 18           | 24    |
| ANNUAL ENERGY SAVINGS          |      |                 |              |       |
| ММН                            | 9100 | 0               | 1400         | 3900  |
| Percent of Support Energy      | 13   | 0               | 18           | 24    |

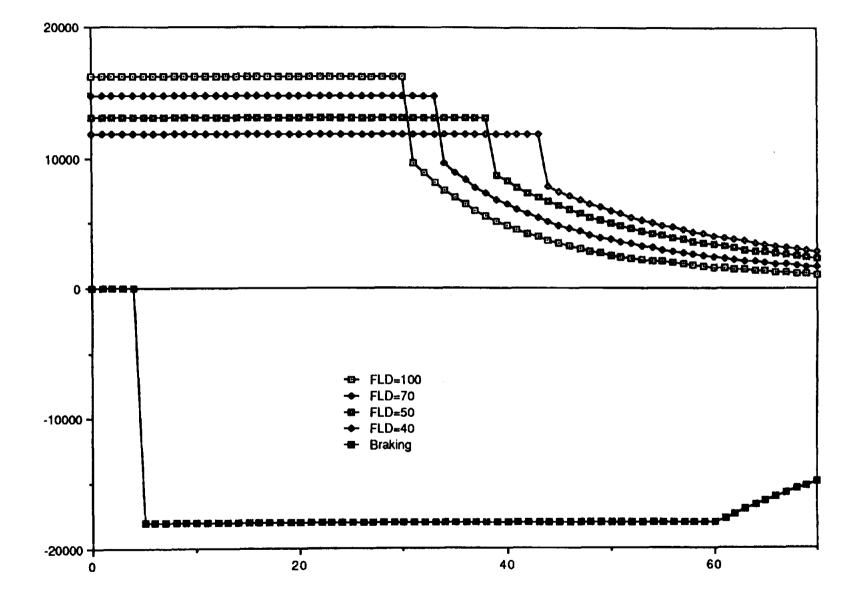
#### TABLE 1-81 ENERGY SAVINGS BY REDUCING ESCALATOR OPERATION DURING NON-PEAK HOURS OF OPERATION

|                                                     | PEPCO JURISDICTIONS |    |     | VEPCO |
|-----------------------------------------------------|---------------------|----|-----|-------|
|                                                     | DC                  | MD | VA  |       |
| Normal Escalator Power (Peak Operation) (KW)        | 540                 | 40 | 130 | 120   |
| Escalator Power Reduction (Non-Peak Operation) (KW) | 185                 | 0  | 28  | 54    |
| Annual Energy Savings                               |                     |    |     |       |
| МWH                                                 | 750                 | 0  | 100 | 200   |
| Percent of Support Energy                           | 1                   |    | 1   | 1     |

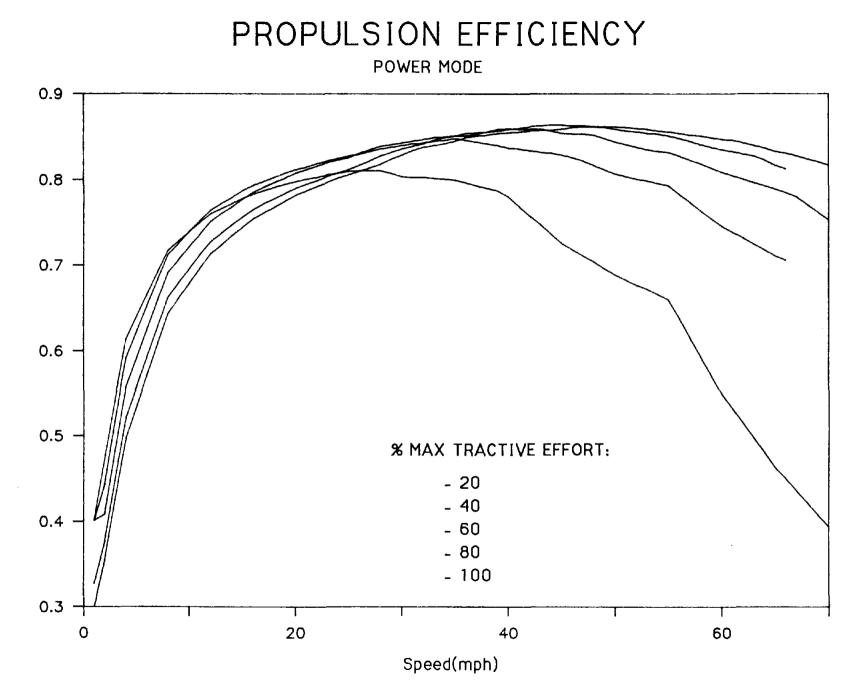
\*Escalators with heights of rise below 16 ft.and the third escalator of a three escalator grouping are turned off during non-peak.


.

### TABLE 1-82 SURVEYED INSTALLED SUPPORT LOAD


| SUPPORT POWER ITEM                         | INSTALLED<br>KW |
|--------------------------------------------|-----------------|
| VENTILATION<br>Ventilation                 | 3160<br>1037    |
| Exhaust Fans                               | 507             |
| Air Handler                                | 416             |
| Mid Tunnel Exhaust                         | 1200            |
| HEATING                                    | 128             |
| Hot Water Heaters                          | 128             |
| Space Heating                              | 0               |
| LIGHTING                                   | 2538            |
| Interior Lighting                          | 1753<br>332     |
| Emergency Lighting<br>Parking Lot Lighting | 453             |
| Parking Lot Lighting                       | -55             |
| ESCALATORS AND ELEVATORS                   | 3400            |
| Escalators                                 | 2128            |
| Elevators                                  | 1272            |
| AIR CONDITIONING                           | 6146            |
| Air Conditioning                           | 275             |
| Chillers                                   | 5871            |
| TRAIN CONTROL & COMMUNICATIONS             | 1641            |
| Train Control                              | 1635            |
| Communications                             | 6               |
| FARE COLLECTION                            | 337             |
| MISCELLANEOUS                              | 2077            |
| Miscellaneous Mechanical                   | 742             |
| Miscellaneous Electrical                   | 28              |
| Air Compressor                             | 80              |
| HVAC<br>Station Power                      | 101<br>1077     |
| Station Power<br>Isplated T/C Room         | 49              |
| ISUICES I/C ROOM                           | ~ 3             |
| TOTAL SUPPORT POWER                        | 19427           |

•


# SYSTEM LAYOUT



## TRACTION CURVES CHOPPER CONTROL



Speed (mph)



Efficiency

FIGURE 1-3

66

**PROPULSION EFFICIENCY** 

BRAKING MODE

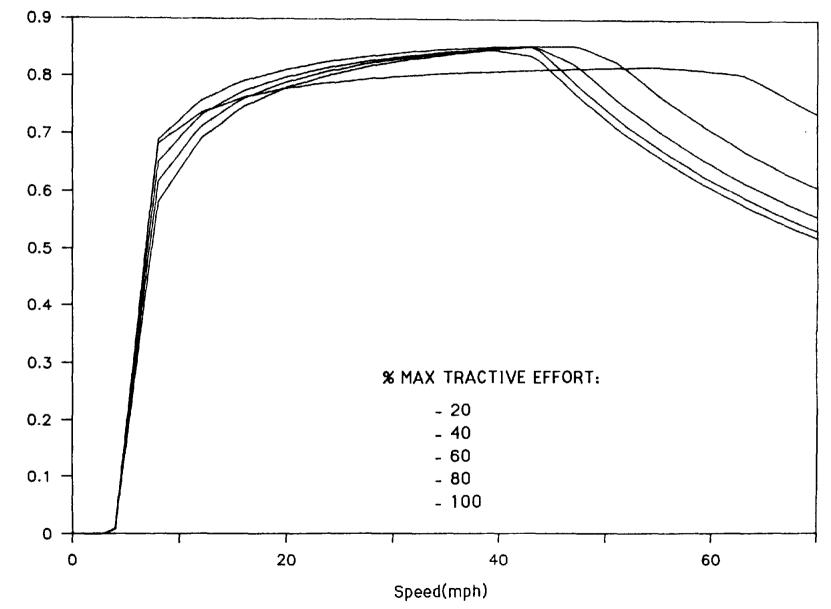
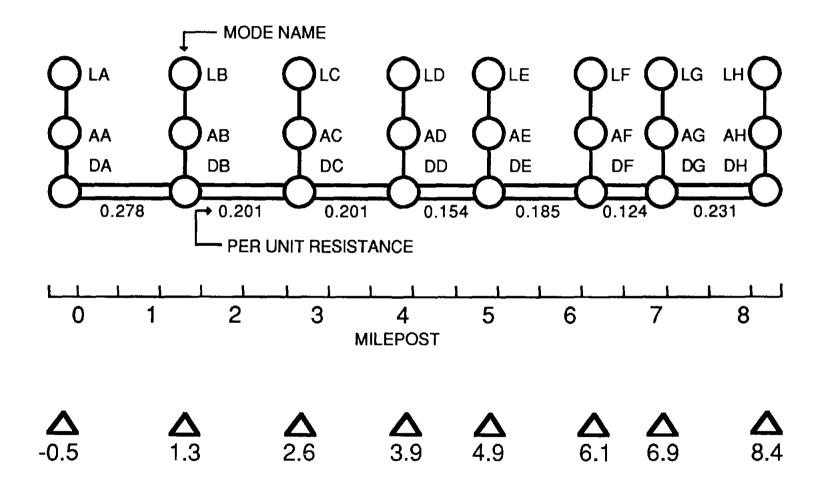
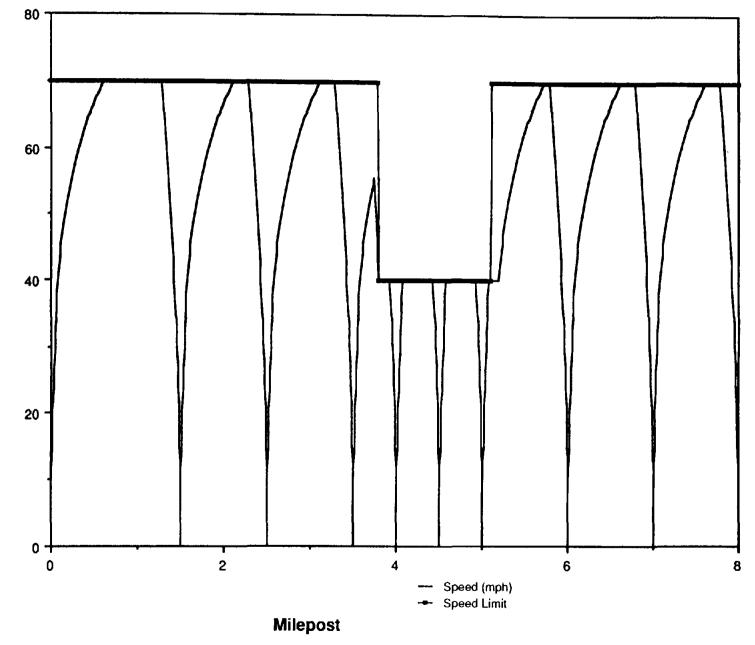





FIGURE 1-4

## POWER DISTRIBUTION NODAL DIAGRAM



## SPEED PROFILE EASTBOUND NORMAL



Speed (mph)

### SPEED PROFILE WESTBOUND NORMAL

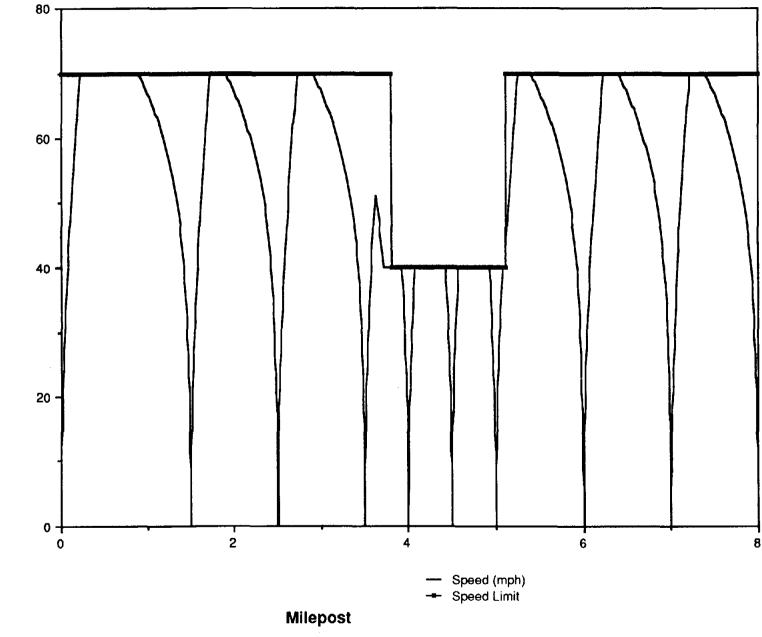
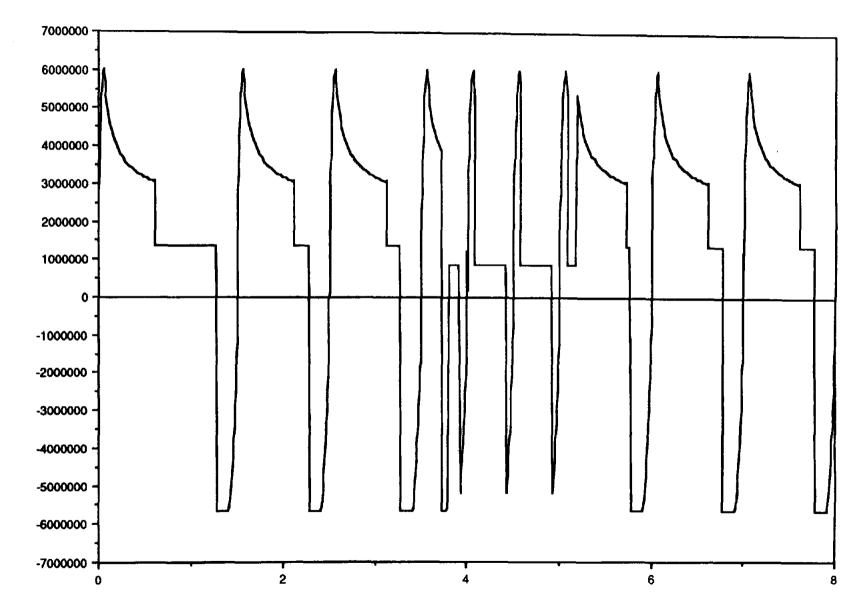
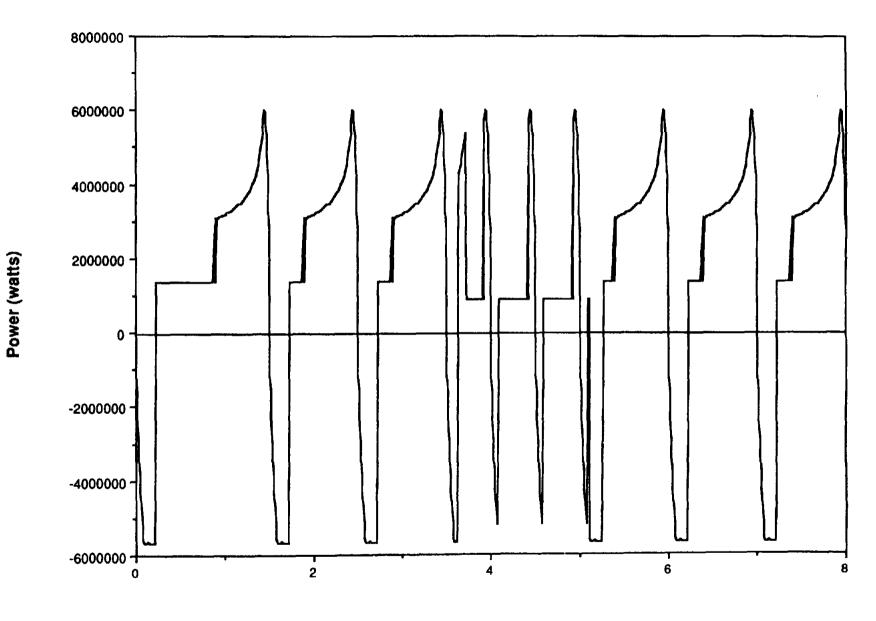



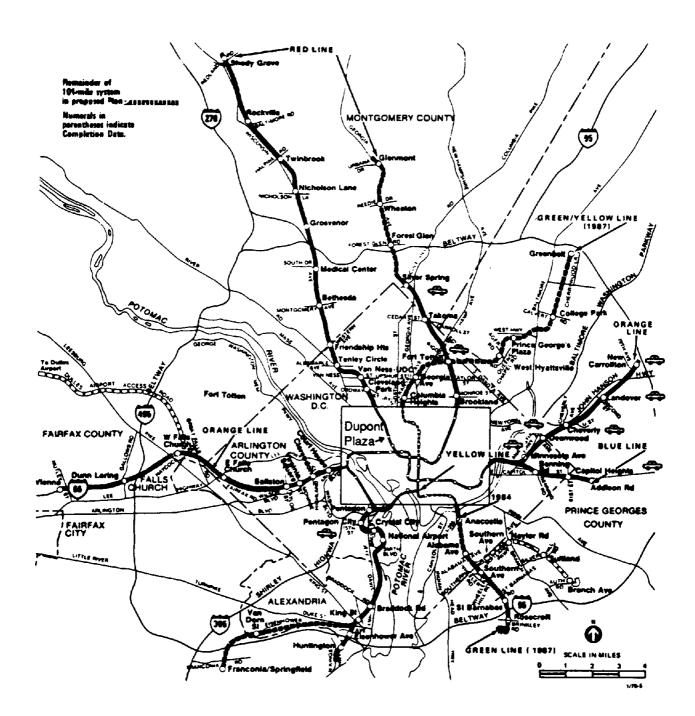

FIGURE 1-7

Speed (mph)

POWER PROFILE EASTBOUND NORMAL



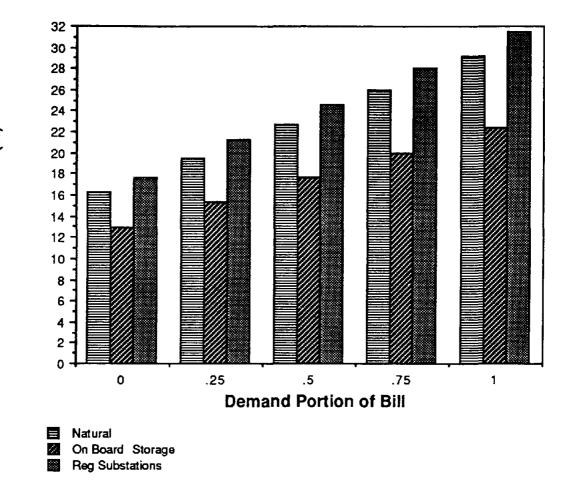

Milepost


FIGURE 1-8

.

## POWER PROFILE WESTBOUND NORMAL




# Regional Rapid Rail Transit System







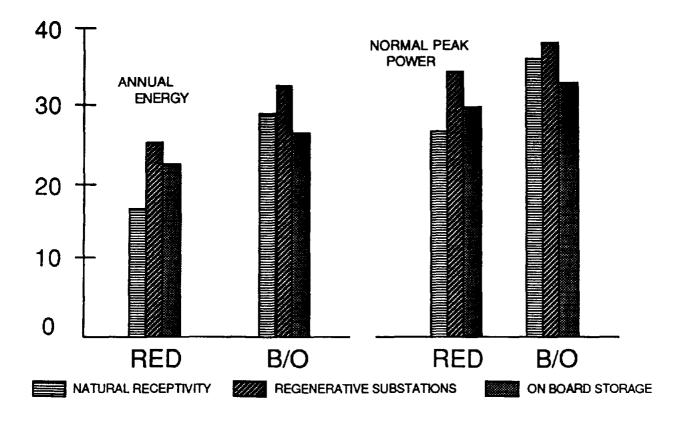
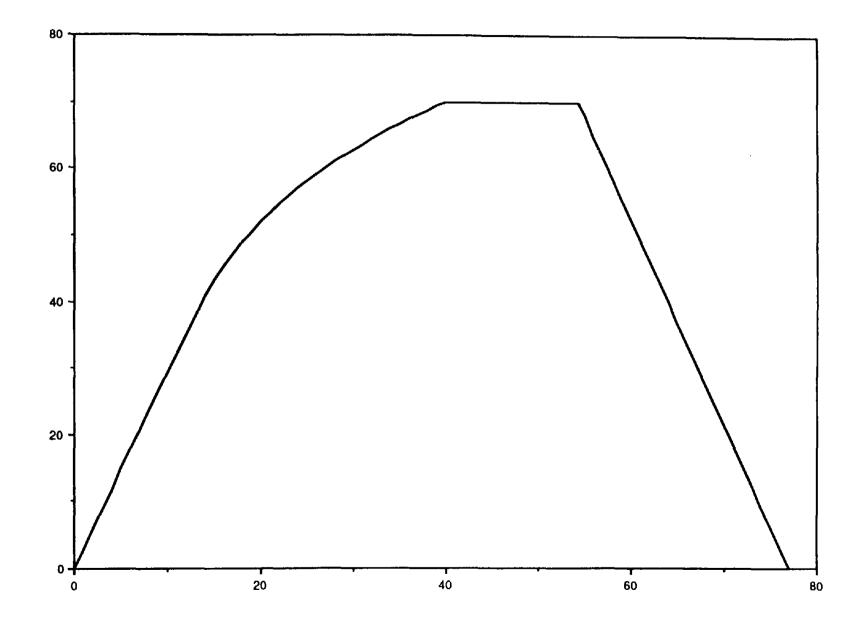
### ASSURED VS NATURAL RECEPTIVITY BASE TRANSIT SYSTEM

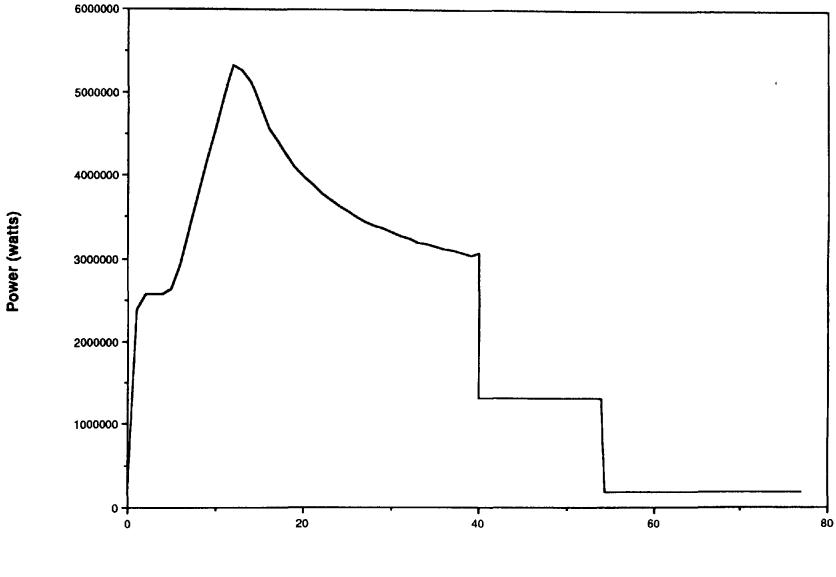


Decreased Cost (%)

FIGURE 1-12

## SUMMARY REGENERATIVE SAVINGS WMATA

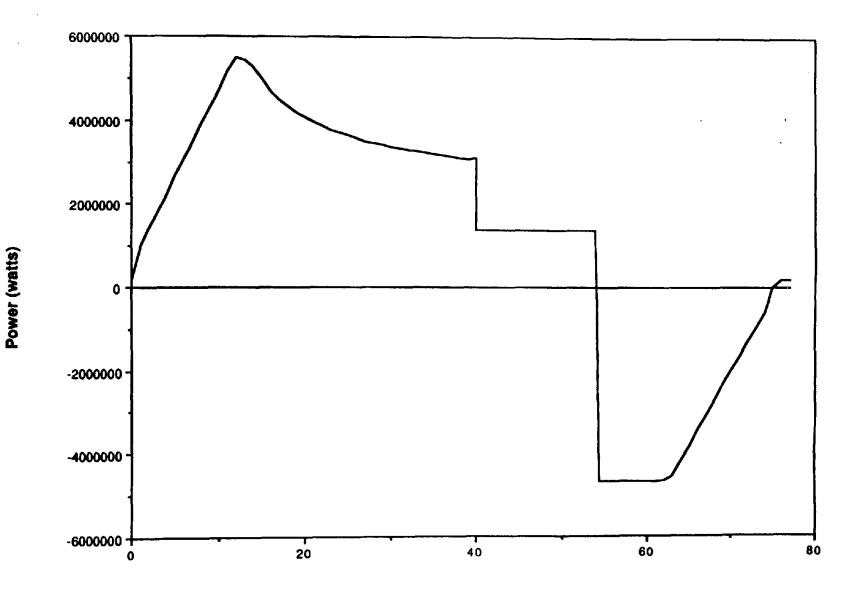





FIGURE 1-13

# SPEED PROFILE

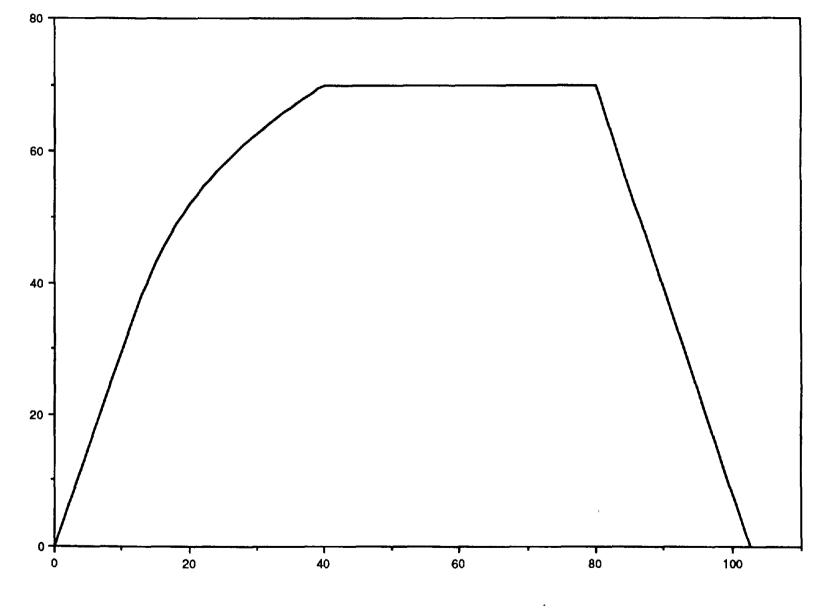


Time (sec) FIGURE 1-14A


# POWER PROFILE

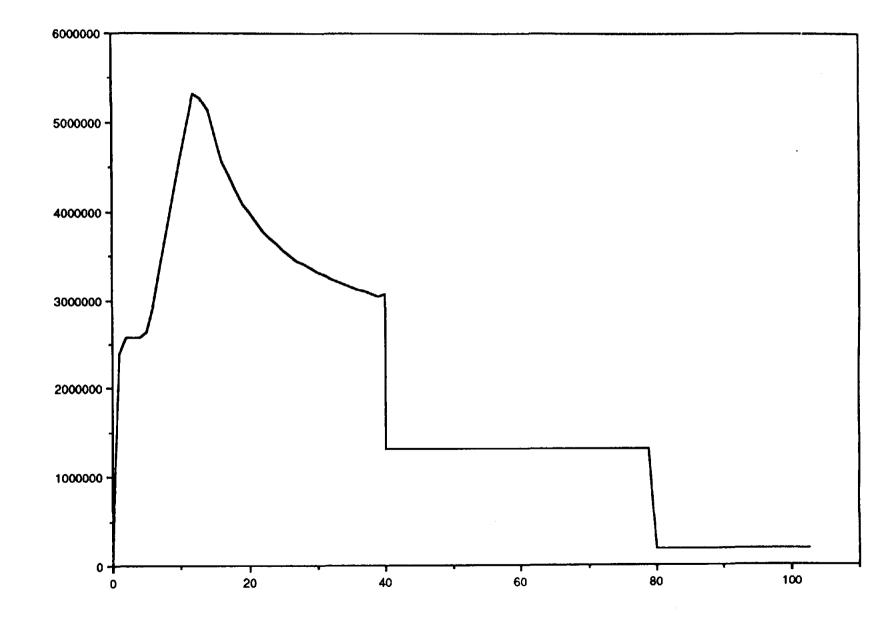


Time (sec)


111

### POWER PROFILE MINIMUM TIME - REGENERATION

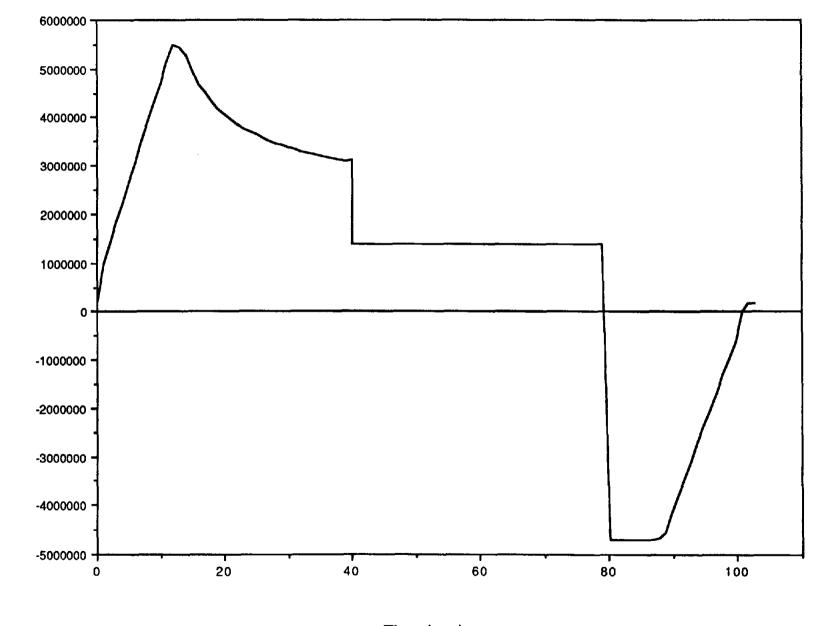



Time (sec)

### SPEED PROFILE MINIMUM TIME - 1.5 MILE RUN



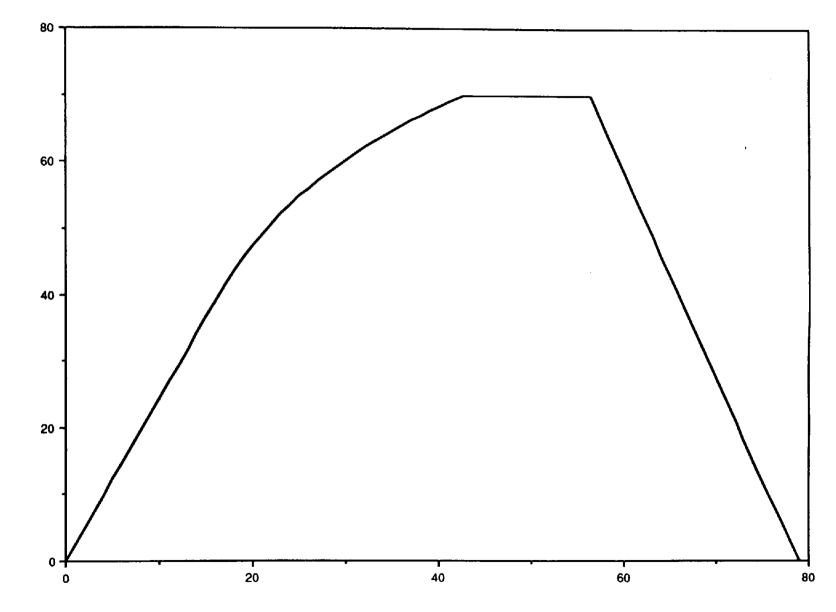
Speed (mph)


### POWER PROFILE MINIMUM TIME - 1.5 MILE RUN



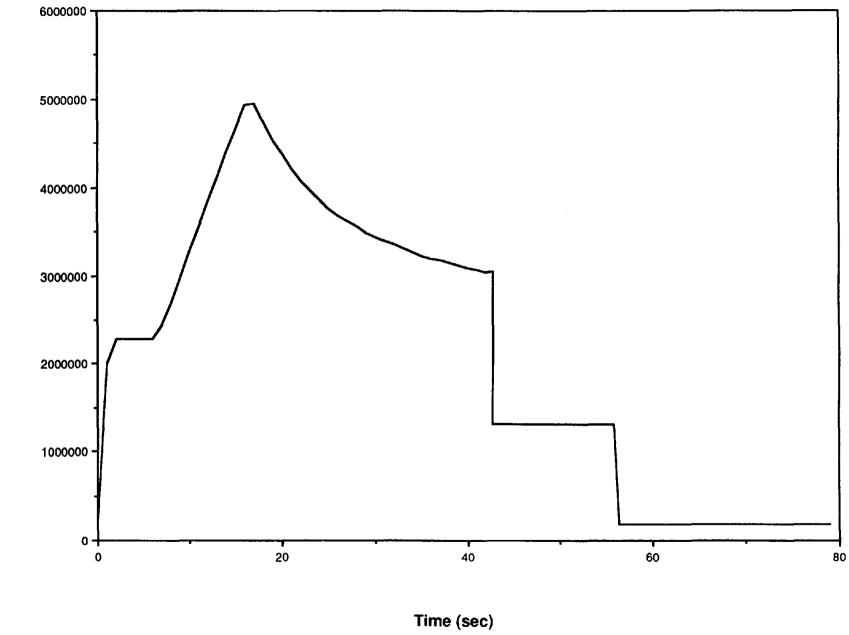
Time (sec)

Power (watts)


## **POWER PROFILE** MIN TIME - 1.5 MILE RUN - REGENERATION



Power (watts)

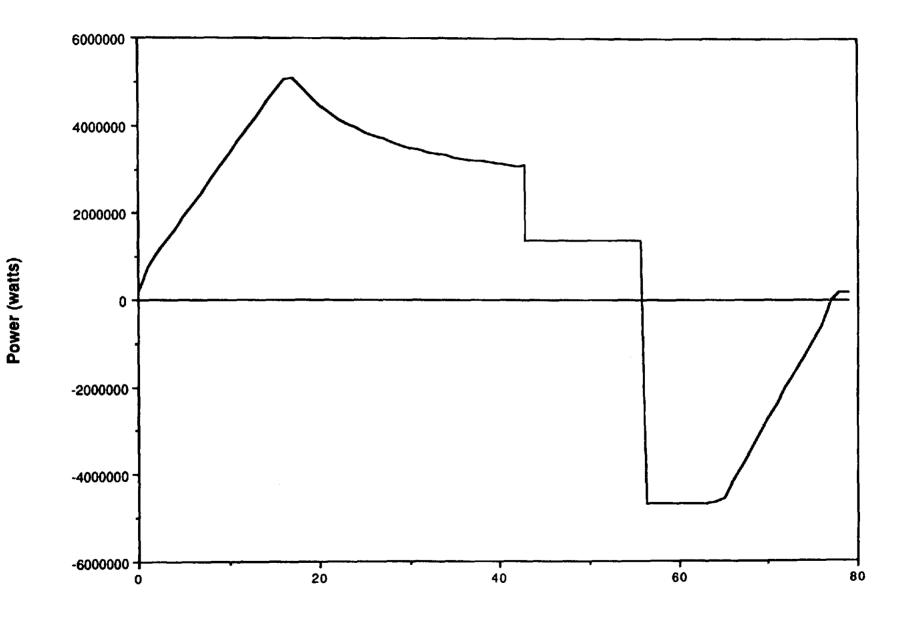

Time (sec) FIGURE 1-15C

## SPEED PROFILE ACCELERATION REDUCTION



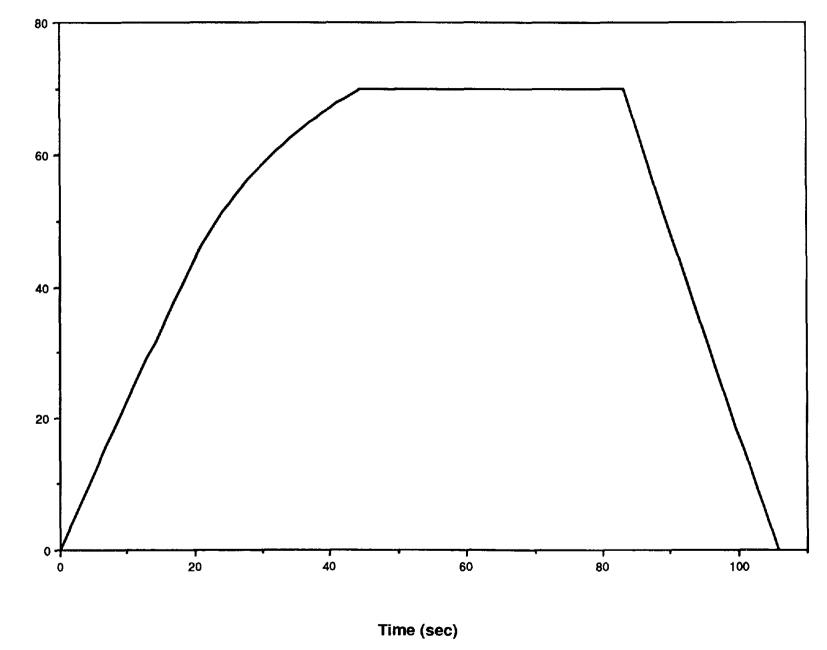
Time (sec) FIGURE 1-16A

## **POWER PROFILE** ACCELERATION REDUCTION



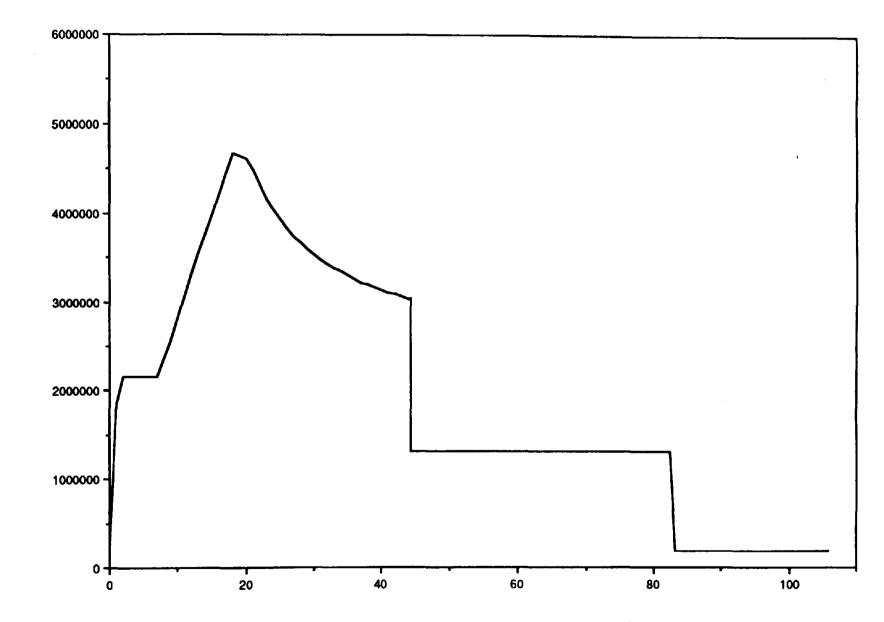

Power (watts)

FIGURE 1-16B


117

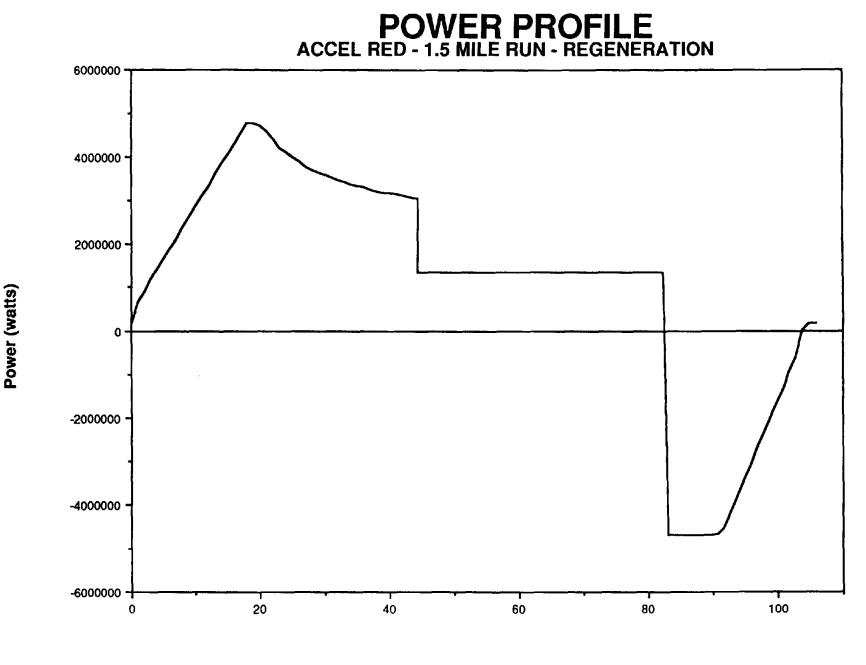
### **POWER PROFILE** ACCELERATION REDUCTION - REGENERATION




Time (sec) FIGURE 1-16C

### SPEED PROFILE ACCELERATION REDUCTION - 1.5 MILE RUN



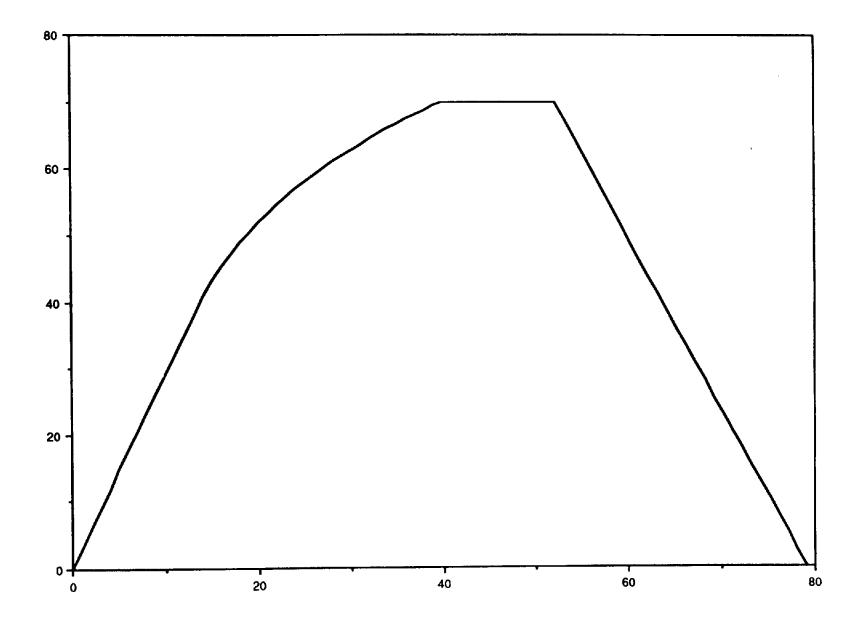

Speed (mph)

## POWER PROFILE ACCELERATION REDUCTION - 1.5 MILE RUN



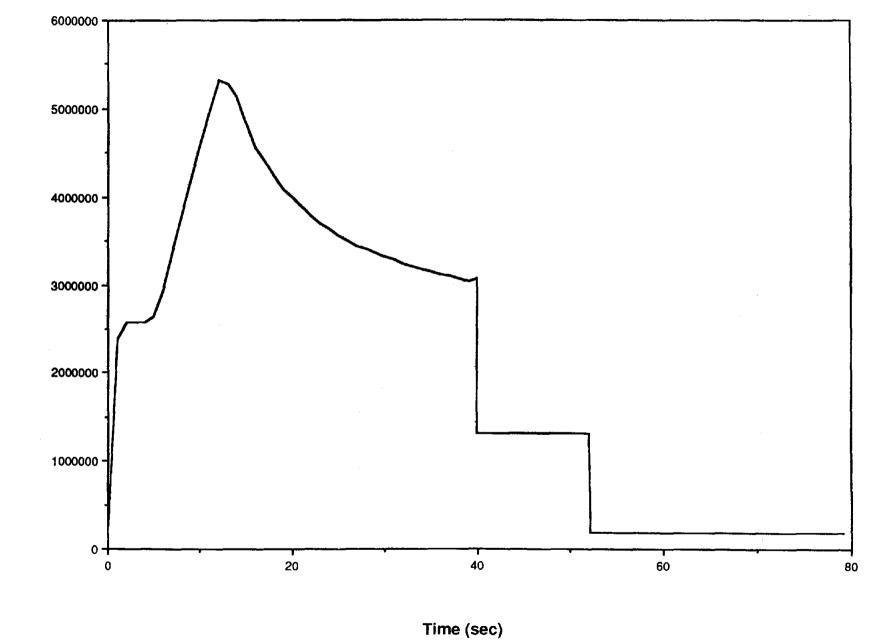
Time (sec)

FIGURE 1-17B




Time (sec) FIGURE 1-17C

121

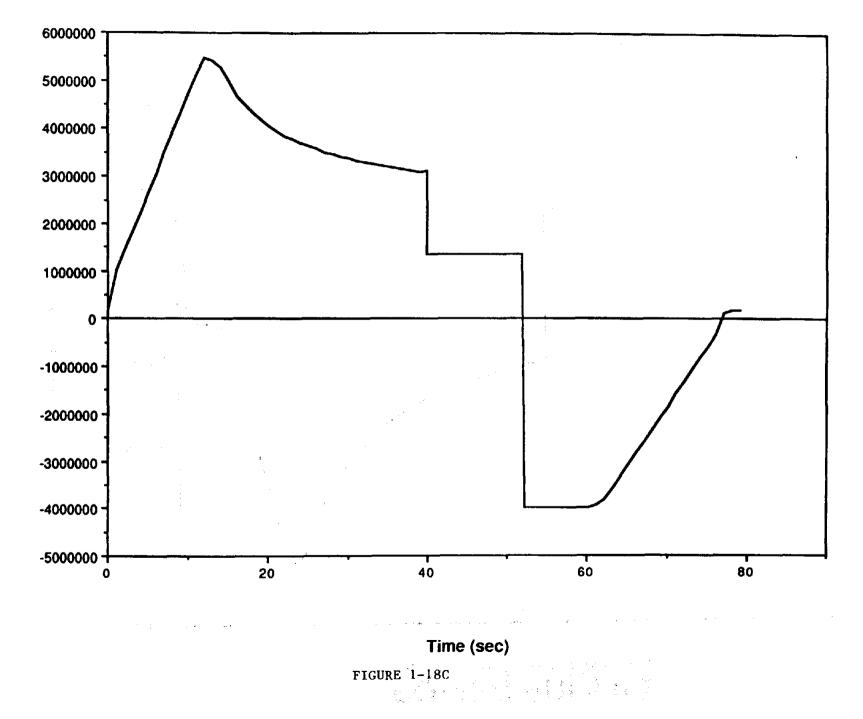

### SPEED PROFILE DECELERATION REDUCTION

٠



**Time (sec)** FIGURE 1-18A

### POWER PROFILE DECELERATION REDUCTION




Power (watts)

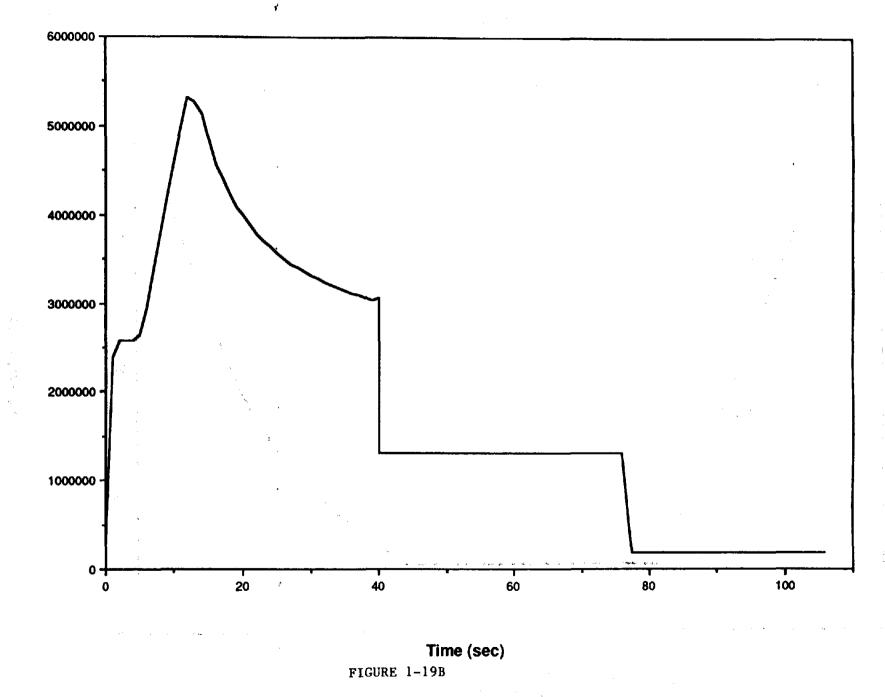
FIGURE 1-18B

123

### POWER PROFILE DECELERATION REDUCTION - REGENERATION



### SPEED PROFILE DECELERATION REDUCTION - 1.5 MILE RUN




Speed (mph)

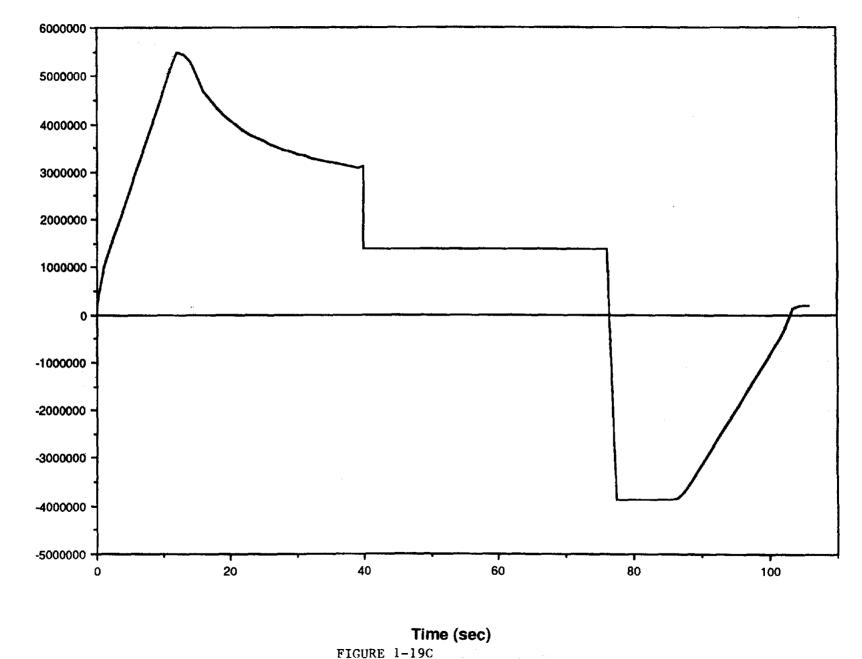
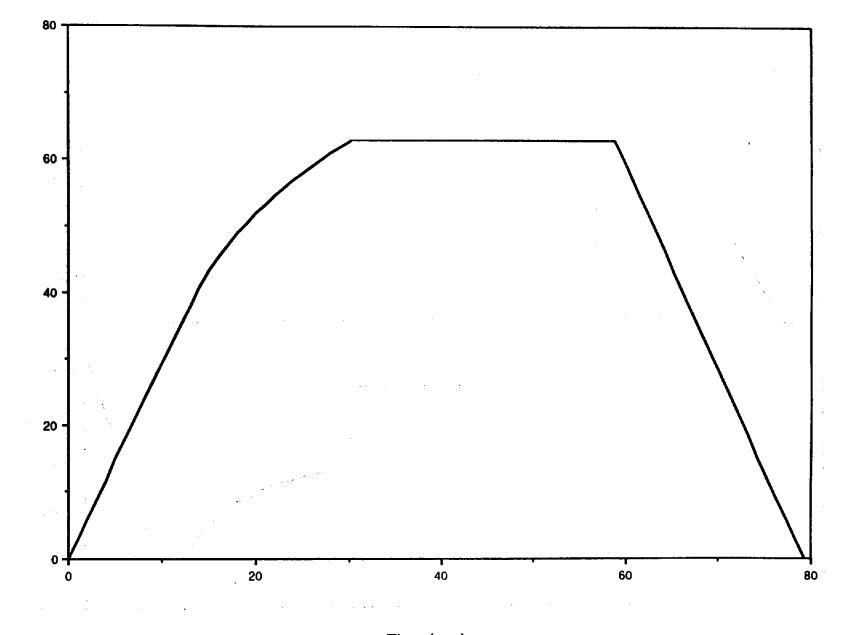

Time (sec)

FIGURE 1-19A

### **POWER PROFILE** DECELERATION REDUCTION - 1.5 MILE RUN




## **POWER PROFILE** DECEL RED - 1.5 MILE RUN - REGENERATION



Power (watts)

## SPEED PROFILE SPEED REDUCTION



Speed (mph)

Time (sec) FIGURE 1-20A

## POWER PROFILE SPEED REDUCTION

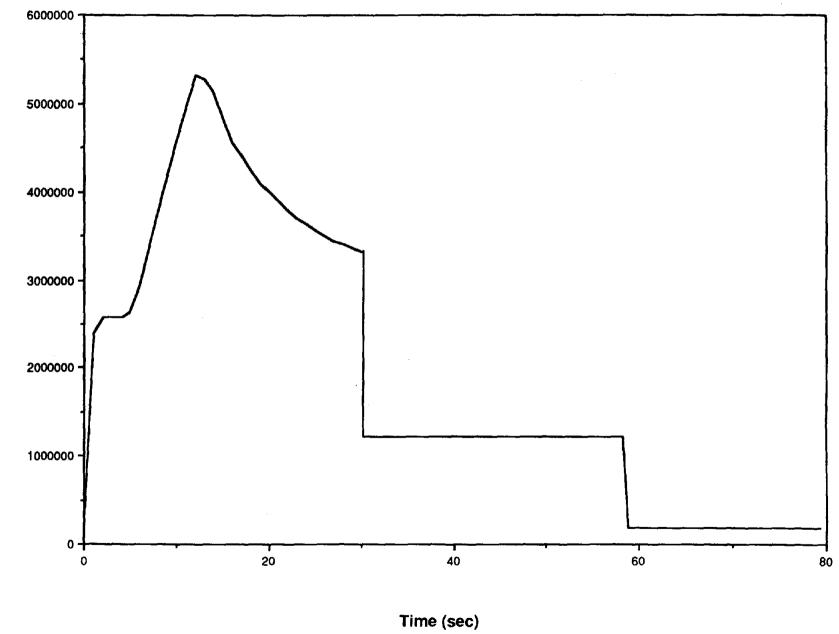
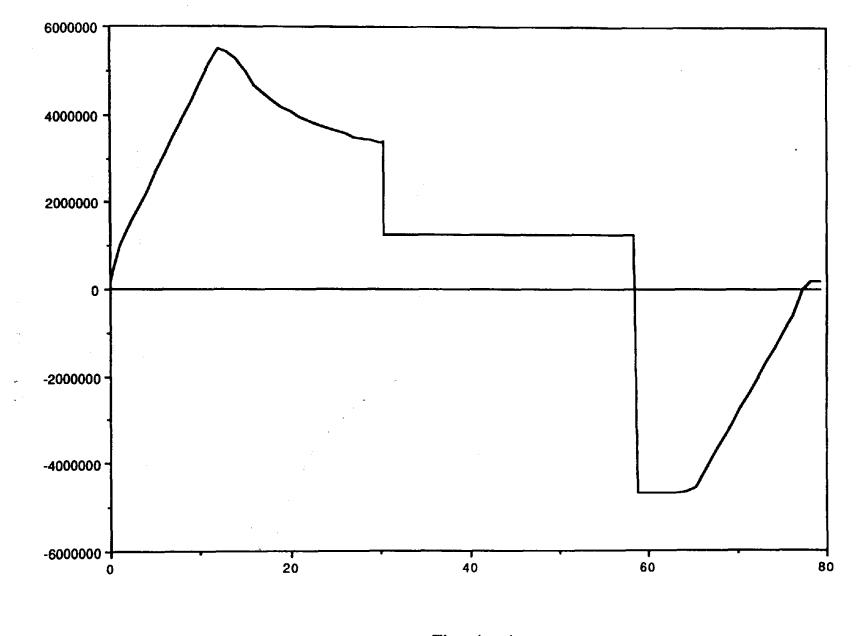
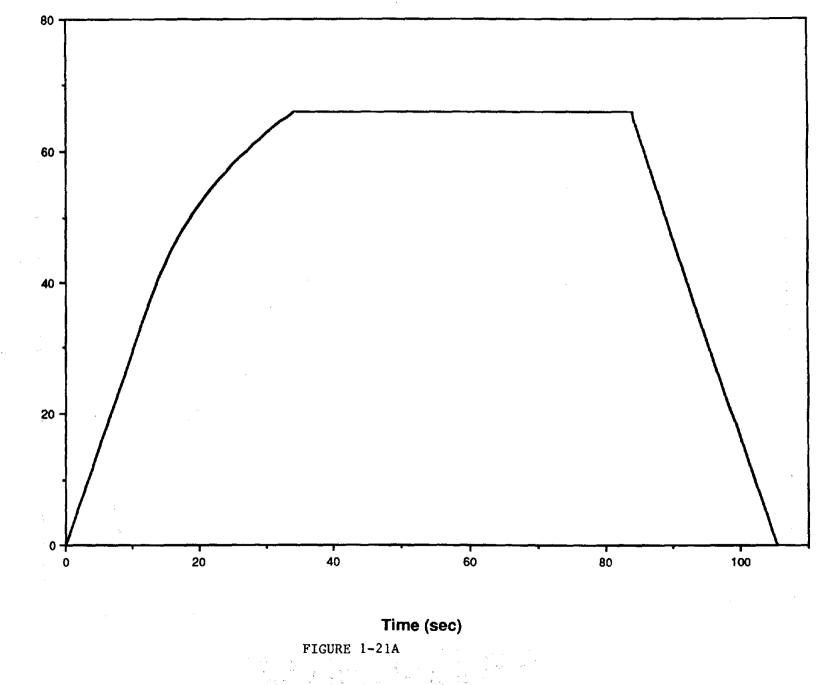



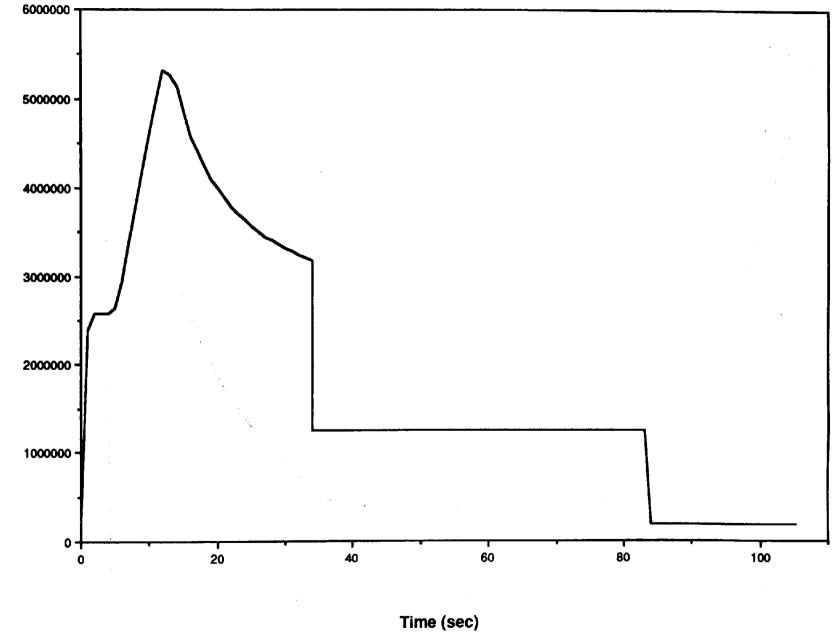

FIGURE 1-20B

Power (watts)


## **POWER PROFILE** SPEED REDUCTION - REGENERATION



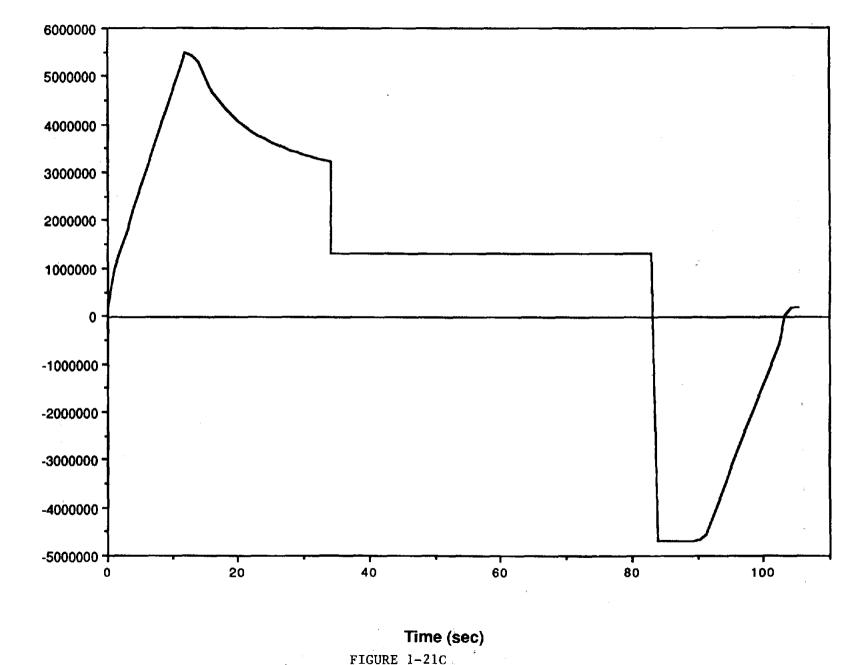
Time (sec) FIGURE 1-20C


Power (watts)

### SPEED PROFILE SPEED REDUCTION - 1.5 MILE RUN



Speed (mph)


### **POWER PROFILE** SPEED REDUCTION - 1.5 MILE RUN

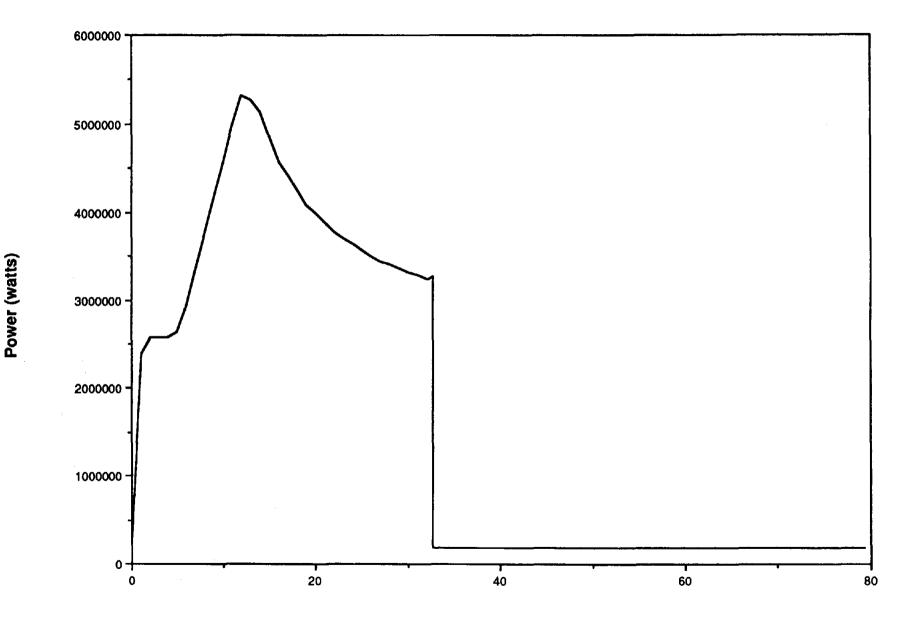


132

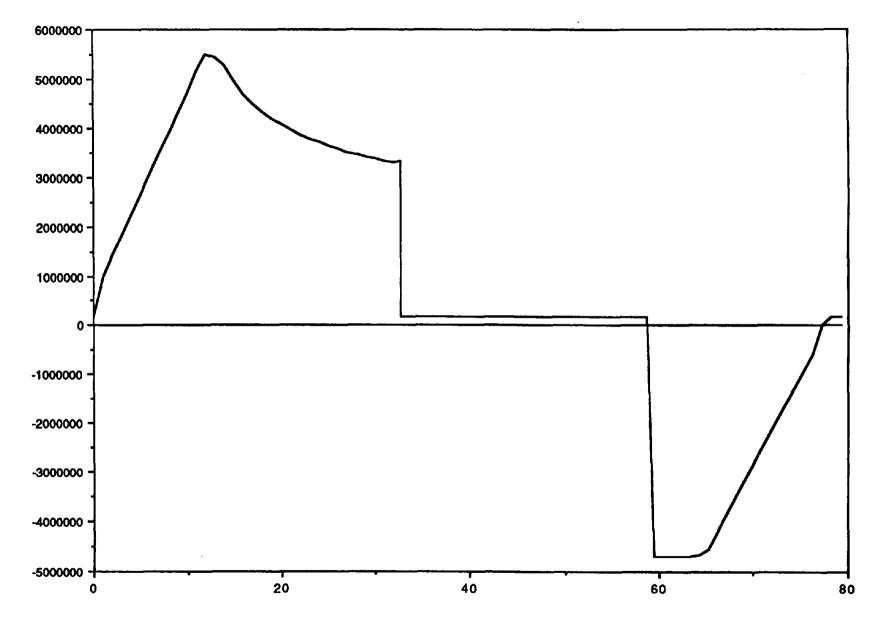
· · .

### **POWER PROFILE** SPEED RED - 1.5 MILE RUN - REGENERATION

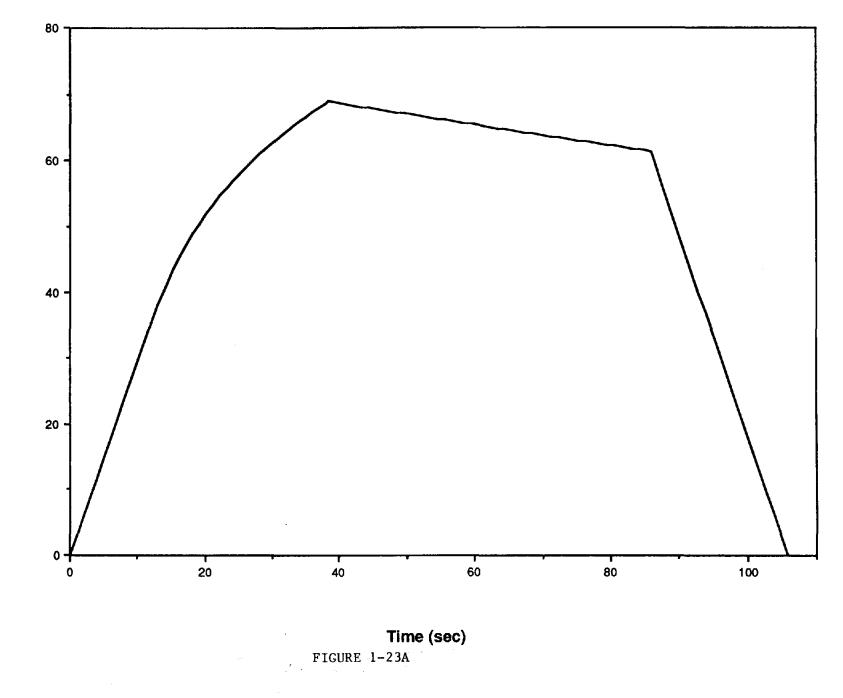



Power (watts)

# SPEED PROFILE




# Speed (mph)


# POWER PROFILE



## **POWER PROFILE** COASTING - REGENERATION



### SPEED PROFILE COASTING - 1.5 MILE RUN



Speed (mph)

### POWER PROFILE COASTING - 1.5 MILE RUN

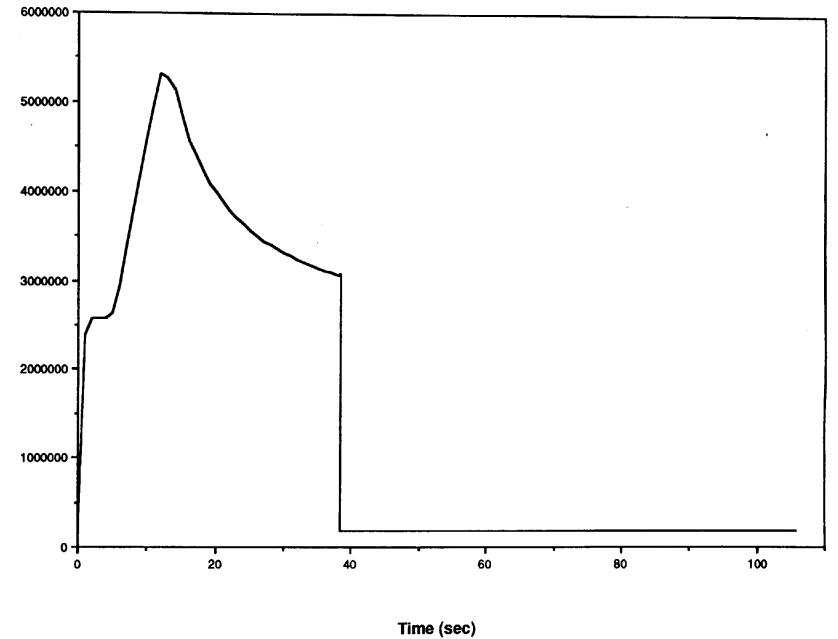
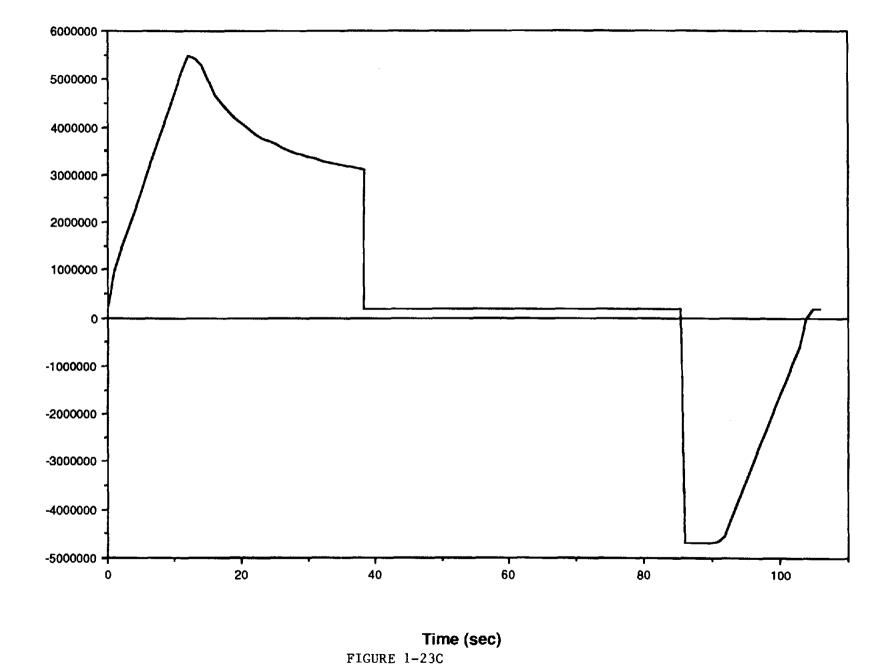




FIGURE 1-23B

### **POWER PROFILE** COASTING - 1.5 MILE RUN - REGENERATION



Power (watts)

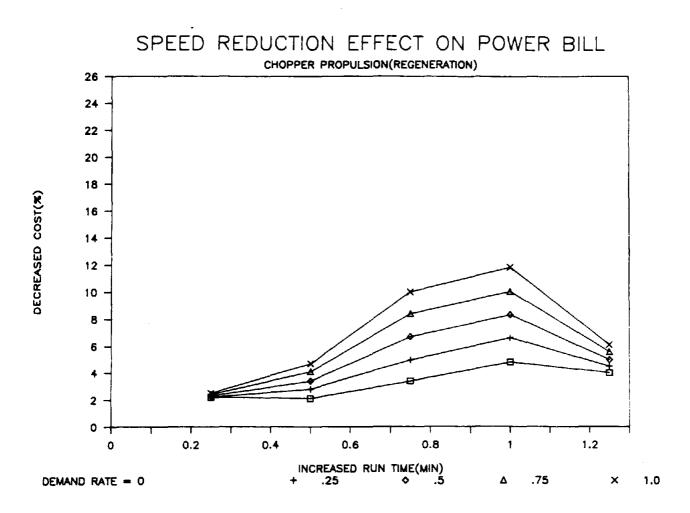



FIGURE 1-24

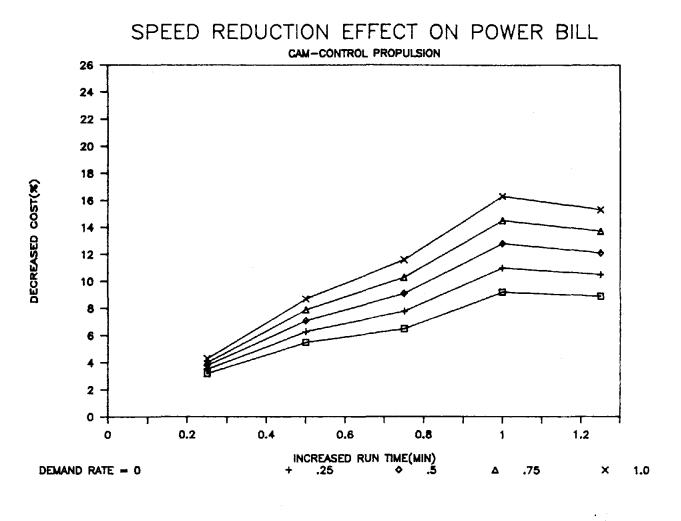



FIGURE 1-25

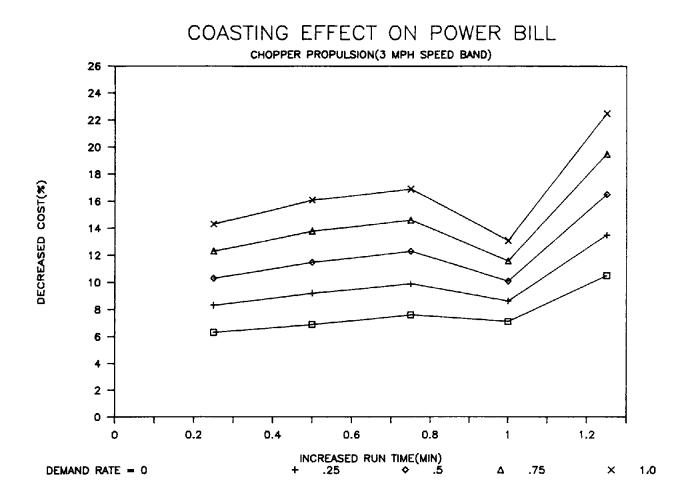



FIGURE 1-26

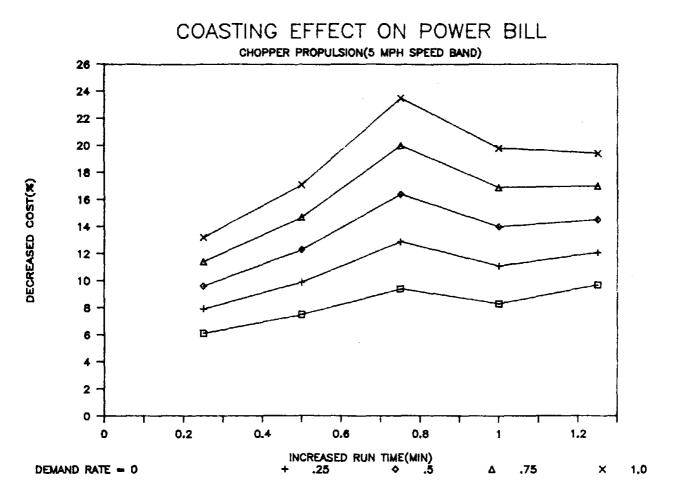



FIGURE 1-27

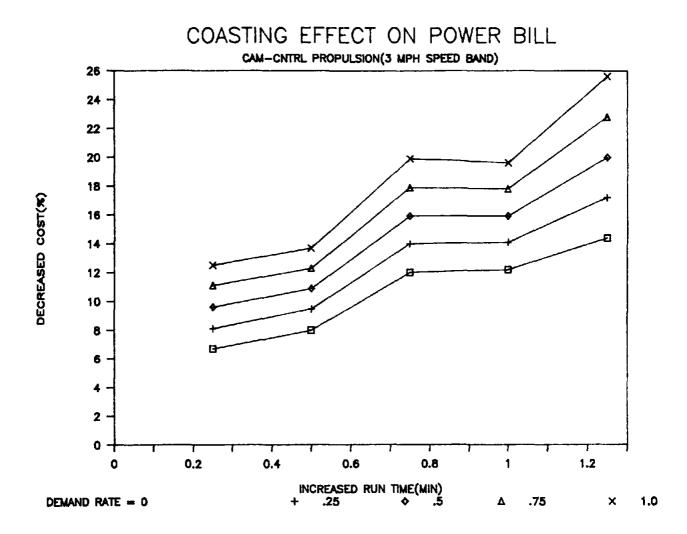



FIGURE 1-28

.

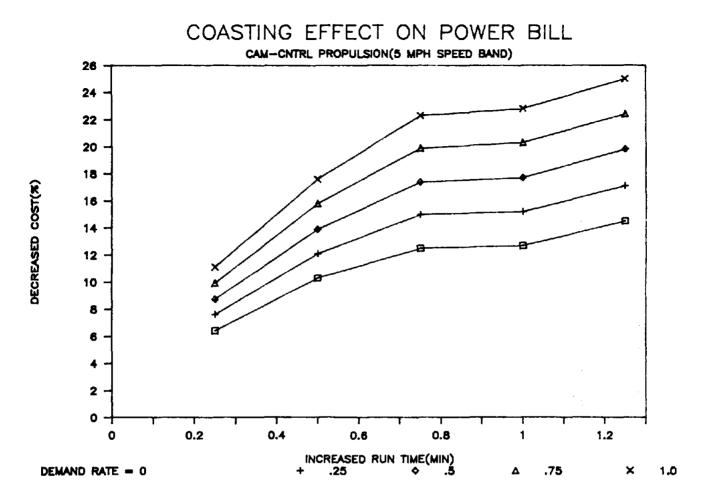
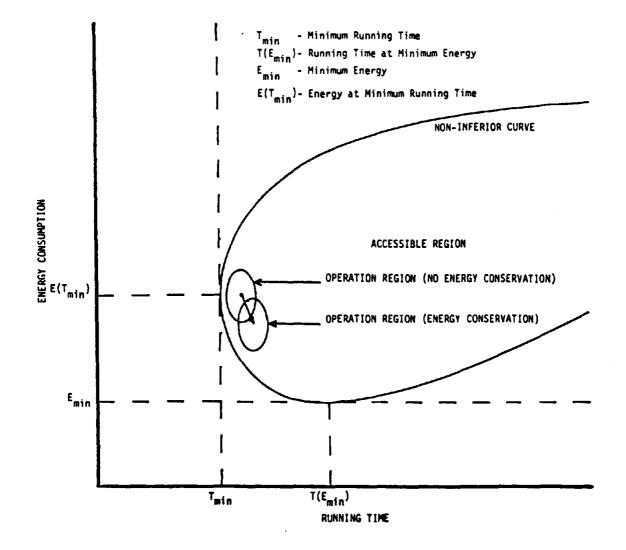
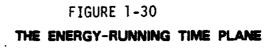
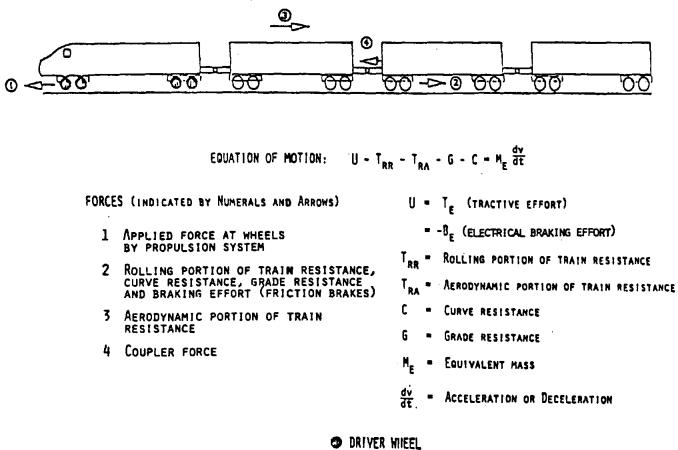






FIGURE 1-29







O NON-DRIVER WHEEL

FIGURE 1-31

DIAGRAM OF FORCES ACTING ON A TRAIN

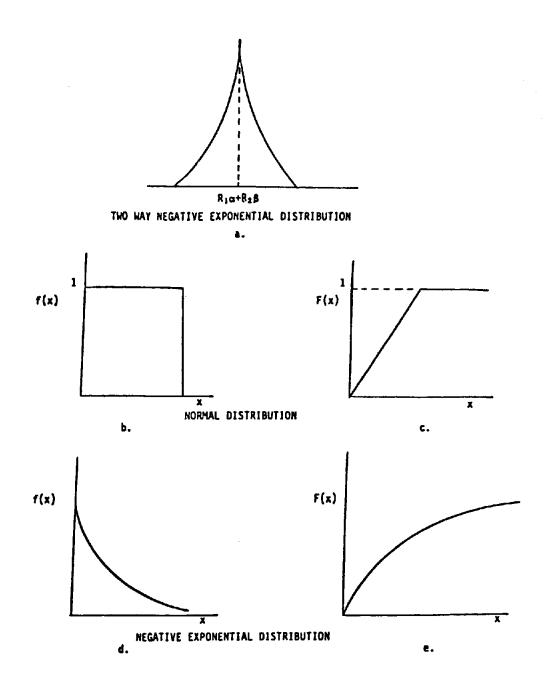
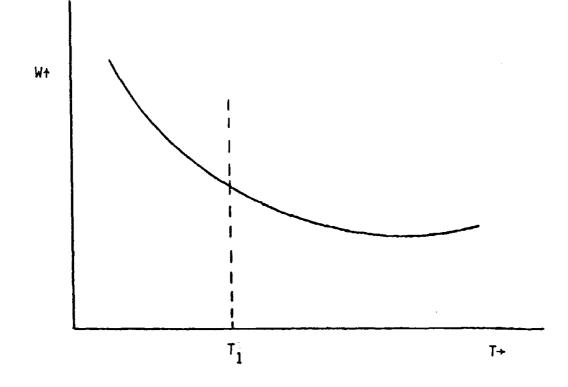
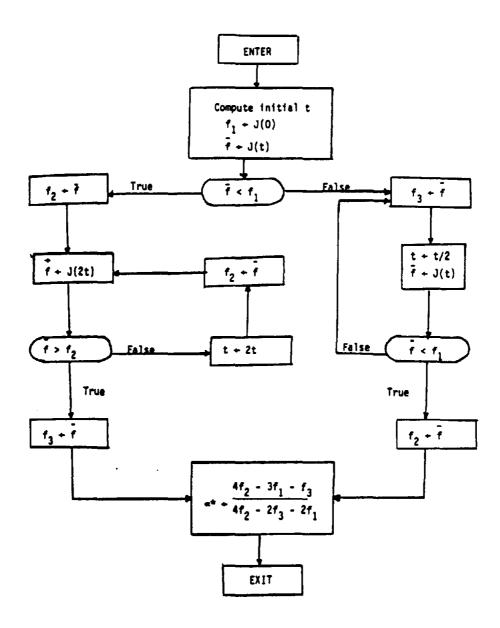





FIGURE 1-32 DISTRIBUTIONS USED IN MONTE CARLO SIMULATION





A POINT ON THE NON-INFERIOR PORTION OF THE CURVE WITH TRAVEL TIME  $T=T_1$ 





ALGORITHM FOR SELECTING OPTIMAL STEP SIZE

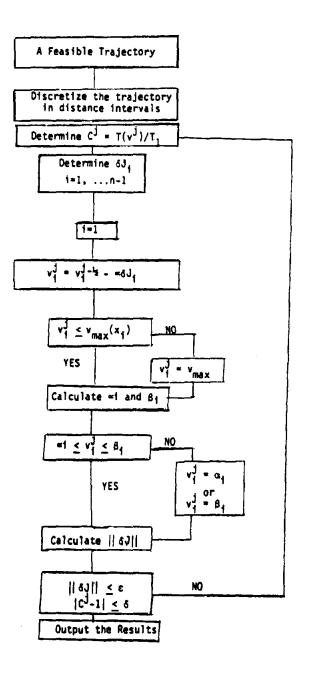



FIGURE 1-35

### DISCRETIZATION AND MINIMIZATION FLOW CHART

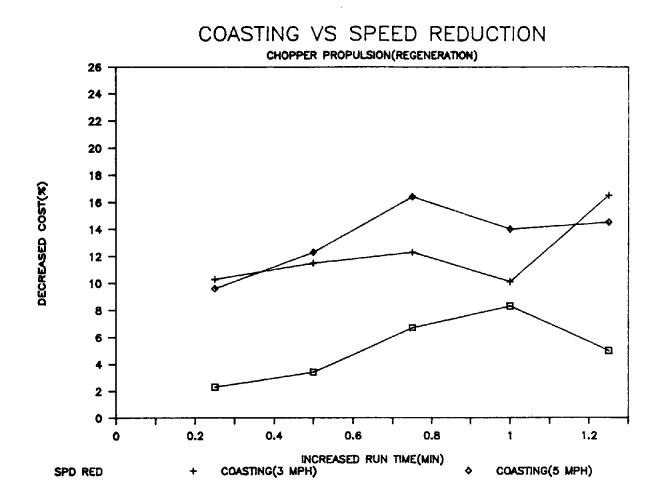



FIGURE 1-36

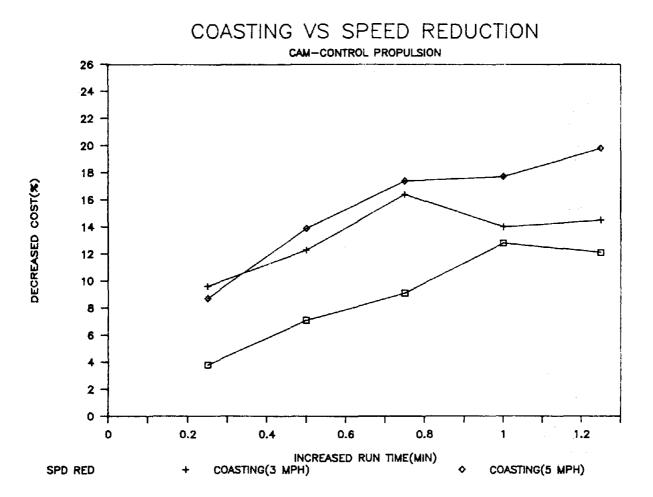



FIGURE 1-37

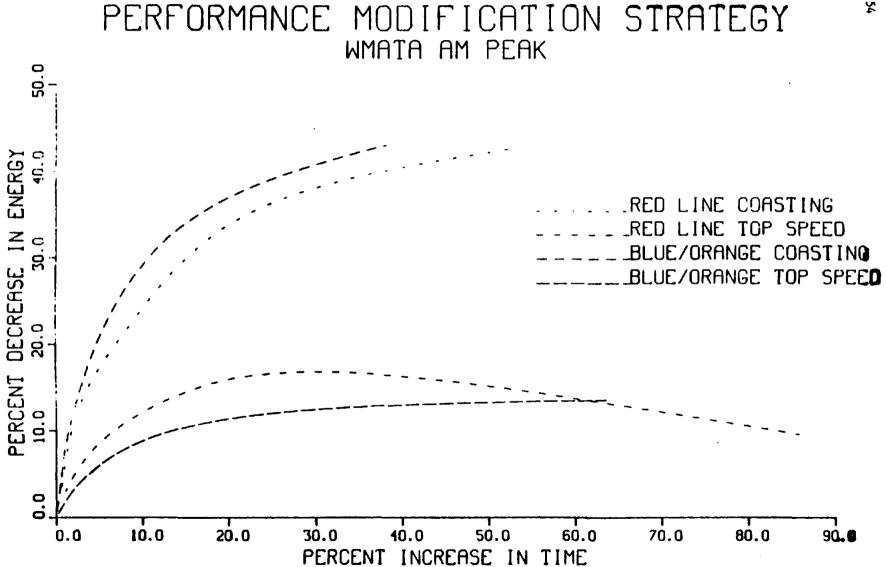



FIGURE 1-38

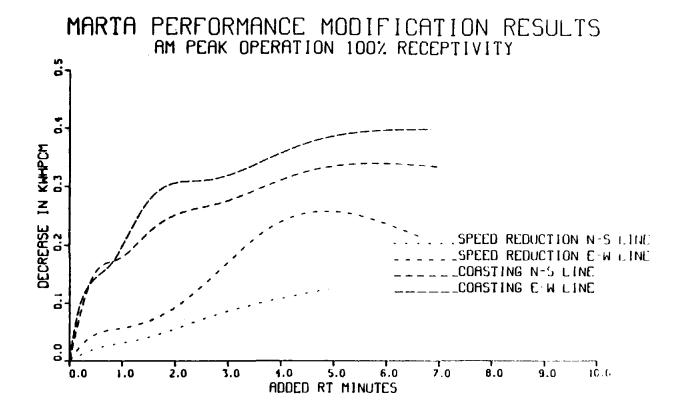
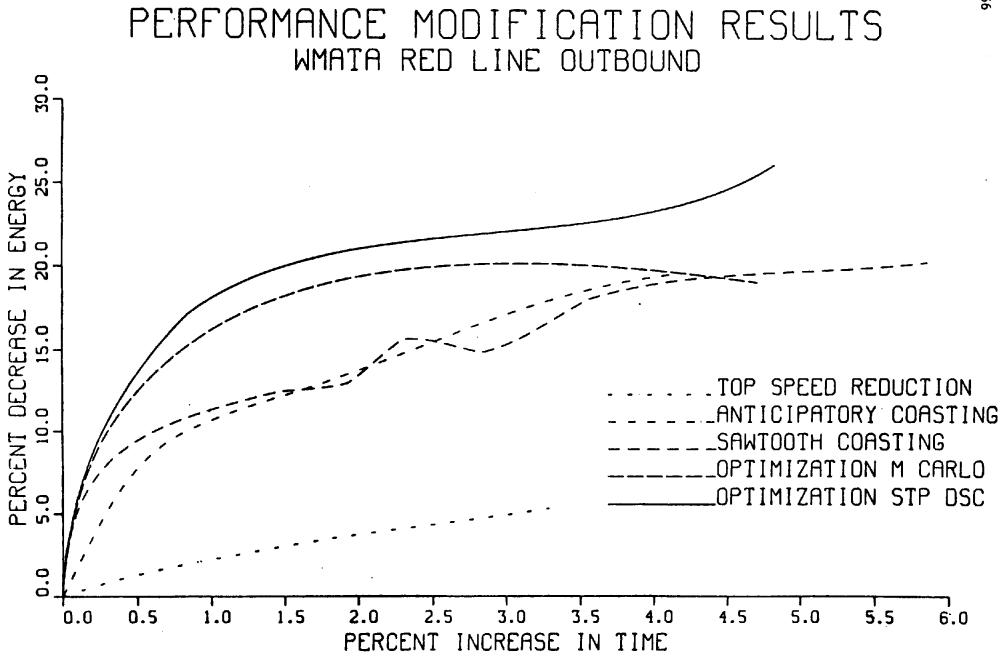
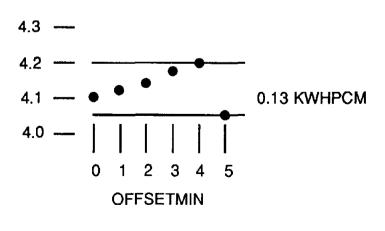
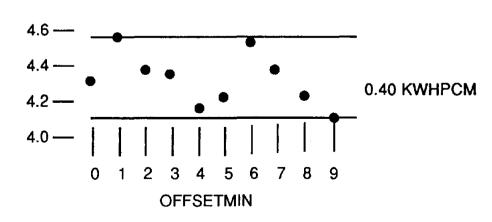



FIGURE 1-39



FIGURE 1-40

**ENERGY VARIATION WITH SCHEDULE OFFSET** 









**EAST - WEST LINE EVENING** 

FIGURE 1-41

### 2. POWER RATE STRUCTURE EVALUATION

### 2.1. INTRODUCTION

The first major task in evaluating the rate structure involves the procurement of necessary data from the utility, the regulatory public service commission and various departments of the transit system itself. The include:

- Applicable utility tariff.
- Annual report of the utility.
- Utility tariffs applicable to governmental or other large customers.
- Utility's franchised service territory and its characteristics.
- Various customer classes, their revenue and load contributions to the system.
- Utility's generation mix and fuel cost characteristics.
- Peaking characteristics of the utility.
- Public Service Commission's (PSC) composition.
- Status of any pending rate proceedings of the utility.
- PSC's decisions in most recent rate proceedings of the utility.
- Transit system's power bills for two years covering the latest 12 months.
- Transit system's operating characteristics and its power requirements.
- Role of mass transit in utility's service territory.
- The transit system's organizational structure regarding utility bill approvals, audit, energy conservation and load management, and the department responsible for negotiations with utility or participation in utility rate proceedings before the Public Service Commission.

The general considerations in evaluating power rate structure for transit systems are substantially the same that arise in setting rates, whether through a regulatory proceeding or by negotiation. These include the necessity to establish a rate structure that assigns class revenue responsibility in accordance with the cost causation associated with each of the identifiable classes of customers. Rates based on cost of providing service are both equitable and economically efficient. Rates charged to a transit system should reflect the unique nature of mass transit, its loads, and the cost of service required to serve such loads. The economic and financial manifestation of the utility's risk associated with these rates for mass transit is comprehensively embodied in the statistical measure of the variance or variability of earnings or the rate of return. To attain this type of rate structure and end result, the following general issues must be carefully evaluated and assessed:

- 1. Determination of a utility's total cost of service and overall revenue requirement.
- 2. Determination of a cost of service allocation method among customer classes.
- 3. Determination of the revenue requirement including fair rate of return.
- 4. Determination of a suitable rate design, or rate structure, that would apply to all customer classes.

As a general proposition, cost of service analysis is a complex process because it involves assignment to customer classes all of the power company's embedded or booked accounting costs, as modified, adjusted, or normalized for ratemaking purposes.

#### 2.2. COST OF SERVICE - BASIC PRINCIPLES

Most of the costs incurred by an electric utility are incurred to provide electric service to all its customers. Total jurisdictional revenue requirements for a utility is the sum of jurisdictional operating expenses and the opportunity to earn the authorized rate of return on the jurisdictional rate base.

Electric utilities provide several different types of services to their customers, and they incur many different types of costs to provide these services. The cost of power production which includes the investment in various generating plants (coal, hydro, nuclear, gas and oil) as well as the cost of fuel and associated operating expenses, which generally constitutes more than half of the utility's total cost, are the costs incurred to serve all jurisdictional customers. Some other costs are incurred to provide service to provide one or more different types of service, but they are not necessary for all types of service which a utility offers. A good example of this cost is the utility's secondary distribution lines at voltage level(s) below the voltage at which generally traction power is provided to a transit system.

For costs incurred to provide a service used by two or more different classes of customers, it is necessary, in accordance with the basic principle of cost allocation, to determine an appropriate distribution of these costs among the classes of customers which utilize the type of service for which costs are incurred. The distribution of these costs should be in proportion to the causes of the cost incurrence.

The development of a class cost-of-service is generally considered to have three stages: functionalization, classification and allocation. Functionalization is simply the identification of the different types of costs which a utility incurs. Classification is the determination of the types of service for which each kind of cost is incurred.

Classification relates each type of functionalized accounting cost to the different types of service which the utility provides. The primary types of service are:

- 1. DEMAND. Supply of the service (KW) whenever it is demanded by the customers. The utility must have a sufficient amount of generating and bulk power transmission capacity to meet the system coincident peak load. In addition, transmission and distribution facilities must be adequate to serve the maximum load of each customer in his local area.
- ENERGY. The utility must generate and deliver electrical energy (kwh) required by the customers. Actual amounts of energy differ with hour of the day, day of the week and time of the year.
- 3. CUSTOMER or BASE. The utility must bring the electric service of DEMAND and ENERGY to the customer's premises, connect each customer to the system and provide metering of usage.

One major problem in classification arises when a single functionalized cost relates both to DEMAND and ENERGY services. Costs for generating capacity, bulk power investments and related operating expenses are incurred both to serve the coincident peak load and to provide energy throughout the year.

Costs which are incurred to meet the coincident peak demand of the system or the localized or class maximum demands (non-coincident peaks) should be related to the DEMAND service. Costs which depend on the number of customers should be classified as CUSTOMER service. Costs which depend on the amount of energy which the utility must apply should be classified as related to ENERGY service.

In the allocation phase, the functionalized and classified costs are distributed to the customer classes based costs caused to serve the consumption and load at production, transmission and distribution levels. There is a great amount of subjective judgement involved in determining the relationship between cost causation and customer service requirements because there is <u>no</u> universally accepted cost allocation methodology. It is not uncommon for a utility to undertake class cost-ofservice analysis using more than one cost allocation methodology to evaluate relative customer class contribution to revenues and costs. (For further discussion on cost allocation methodologies see Sec. 2.5.3.)

#### 2.3. RATE STRUCTURE

The components of the energy use pattern; namely, power facilities, energy consumption and power demand, are influenced by equipment and system design and operating practices which are controllable within limits by transit management. The power rate structure may be a matter of negotiation between the transit authority and the electric utilities. The ability to set a rate structure favorable to the transit system is dependent on both internal and external factors. It is by careful management of the internal ones (i.e., a vigorous energy conservation or load management program) and wise negotiations with knowledge of the external ones that optimum rate structures are secured.

The purpose of this section is to explore the power rate structures of typical U.S. rail transit systems and outline an approach to rate negotiations which can be used by rail transit authorities. Particular case studies which were conducted by the authors and which follow the outlined approach are also summarized.

# 2.4. SURVEY OF POWER RATE STRUCTURES OF U.S. TRANSIT AUTHORITIES

The power rate structures of the following rail transit systems were surveyed during the past few years:

- BART San Fransisco Bay Area Rapid Transit District
- CTA Chicago Transit Authority
- GCRTA Greater Cleveland Regional Transit Authority
- MARTA Metropolitan Atlanta Rapid Transit Authority
- MBTA Massachusetts Bay Transportation Authority (BOSTON)
- MDCTA Miami Dade County Rapid Transit Authority
- NYCTA New York City Transit Authority
- PATCO Port Authority Transit Corporation (Philadelphia-Lindenwold NJ)
- PATH Port Authority Trans Hudson (New York City NJ)
- SEPTA Southeastern Pennsylvania Transportation Authority(Philadelphia)
- WMATA Washington Metropolitan Area Transit Authority

These represent the major rail transit systems in the U.S. who take electric power. A summary of this survey is now presented.

## 2.4.1. Serving Electric Utilities and Jurisdictions

Table 2-1 lists the electric utilities serving the rail transit systems surveyed and the jurisdiction of regulatory control. Of the systems covered in the survey, four are served by more than one electric utility and rates of two are regulated under more than one jurisdiction.

WMATA is particularly complicated since it is served by two utilities, one of

which; namely, the Potomac Electric Power Company (PEPCO) is regulated under three jurisdictions for WMATA service<sup>1</sup> This means that WMATA has four separate rate structures, depending on which utility is providing power and in what state the transit authority receives the power.

SEPTA also deserves special mention. Its principal power source is the Philadelphia Electric Company (PECO). However, it also runs some of its commuter service on an electrified railroad which is owned by the National Railroad Passenger Corporation (AMTRAK). Power to operate these trains is purchased from AMTRAK who in turn buys the power from PECO. In addition, SEPTA sells power purchased from PECO to PATCO for operation of its train within the city of Philadelphia. AMTRAK is also actively evaluating co-generation and alternative power supply sources.

All of the transit authorities surveyed have some form of contract with the electric utility supplying power. Most of these contracts provide for the firm supply of power requirements of the transit system for a fixed period of time (the term varies from month to month to thirty years), thereby assuring an adequate and reliable source of power. In addition, these contracts provide for the basis of a special facilities charge and/or reimbursement provision for construction costs of special facilities in the form of contributions in aid of construction required to meet the design and reliability criteria of rail transit systems.

Nineteen utility rate structures for rail transit were represented in the survey of the rail systems. Eight (including one pending) of the rate structures recognized rail transit operation as a separate customer class and ten considered rail transit electric service as part of the high voltage industrial class with some modifications. The details are presented in Table 2-2. Most utilities and regulatory agencies which

<sup>&</sup>lt;sup>1</sup>Virginia Power Company is negotiating to acquire PEPCO's Northern Virginia service territory. At the consumation of the forthcoming sale, PEPCO's retail rate regulation will be limited to D.C. and Maryland.

regulate and approve rates for rail transit, recognize that these systems have unique load and customer characteristics which distinguish them from industrial class customers in their cost causation on the utility system.

## 2.4.2. Structure of Billing Demand

Determination of billing demand from actual power use varies widely among the utilities which serve rail transit systems. The principal demand time interval aspects of rail transit rate structures are listed by utility/rail transit system in Table 2-3.

The demand interval varies from 15-60 minutes. In general, maximum demand from day to day is more predictable with larger demand intervals.

If the electric utility feeds to the transit system are electrically connected to each other, usually on the DC side of the traction substations, the utility is parallel feeding power to the rail system. Under such circumstances, it is appropriate for the utility to meter demand coincidentally. The voltage fluctuations among these parallel feeds, some of which may be caused by loads from other utility customers, can cause power flows which do not reflect the true demand caused by the rail system. An example of this is demonstrated using the WMATA Red Line:

Noncoincident peak demands together with their times of occurrence are given in Table 2-4 for the meters through which power is supplied to the Red Line. The coincident peak demand is also shown in the table. The noncoincident peak demand is 30% higher than the coincident value.

The noncoincident peak demand is always larger than the coincident peak. The magnitude of the difference between the two is attributed to four major influences:

- 1. The variation in the number of passengers with time (thus influencing train weight) is likely to be more important on a local level, rather than over the whole system.
- 2. Abnormal operation (train delay and subsequent make up operation) is more likely to occur locally rather than globally at any time.

- 3. Several meters, especially those associated with yards, shops and storage tracks, can record peak power at off-peak transit operating times.
- 4. The voltage at which the utility supplies power can vary because of customer loads independent of the transit load.

The effect of voltage variation at the feed points on the altering of noncoincident demand is illustrated in Table 2-5 for the WMATA Red Line operation. The numbers in the table are the results of simulation of actual WMATA operation. In the first case, a normal off-peak operation of the transit system was simulated, with all feed points at nominal voltage. In the second case, the voltage at the New York Avenue feed was increased by one percent relative to the other feed points. (This could happen when another customer's load on the same utility circuit serving the New York Avenue feed is diminished.) The resulting power draw through the New York Avenue feed has increased by 40% while power draws from the adjacent feeds have decreased.

Since it is typical for utilities to guarantee voltage to within  $\pm$  5%, voltage variations, not caused by the transit system itself, can create situations where noncoincident peak demand can bear no relation to coincident demand. Note that practically no change occurred in the coincident demand in this example (Table 2-5).

Since it is the monthly demand combined with the ratchet which determines the demand portion of the electric bill, it is appropriate to discuss typical monthly demands and ratchets which are common to transit. Of the authorities surveyed, two utilities computed a monthly demand which was different from the maximum demand achieved in the month. The Public Service Electric and Gas Company in its service to PATCO and PATH, averages more than one daily maximum demand to obtain the monthly demand. Commonwealth Edison Company, in its service to CTA, averages several of the highest demands to obtain monthly demand.

Billing demand, in most cases is ratcheted. The ratchets are summarized in

Table 2-6. It is difficult to see how any of the demand ratchets are based on cost of service. Demand ratchets tend to be anticonservation. In most cases, load management systems, which are designed to reduce peak demand, will look less effective in the presence of a ratcheted demand. In particular, MARTA has a ratchet in which one should be careful on load control during the summer months (June-September) and careless about load control during the winter months (October-May).

# 2.4.3. Structure of Energy Use Cost

The energy use pattern is measured in terms of kilowatt hour (kwh) consumption. It recognizes the utilization of power production facilities in terms of load factor and cost causation. It primarily consists of the fuel adjustment charge or the charges in cost of fuel burned to produce the kwh. The high volume discount or block energy charges are being replaced by flat, seasonal or time of use energy charges. The power rate structures for transit systems which are based on industrial or modified industrial customer class rates generally cause recovery of a portion of the demand cost through the energy charge. A pure energy charge based on energy cost recovery may vary from less than one third of a cent (\$0.033) to more than \$.6 cents (\$.0600)per kwh for the transit systems surveyed.

# 2.4.4. Seasonal and Time of Use Rates

The Public Utilities Regulatory Policies Act of 1978 (PURPA) mandated that state utility regulatory commissions evaluate and consider implementation of seasonal and time of use rates for electric customers to promote conservation, equity and efficiency. The cost of producing electricity varies by season and time of day based on the load peaking characteristics of the utility which in turn depends on the peaking characteristics of the customer it serves. Principles that rates reflect the cost of providing service by season and time of use are likely to provide the customer with the correct price signal and the result is the most efficient use of the limited energy resources available to the society. Most of the rate structures applicable to rail transit systems reflect seasonal differential in energy charges. Most transit systems who have dirannual load do not have peak loads that coincide with the seasonal load pattern of the utility. The implementation of seasonal rate differentials has generally been a benefit to the transit system. However, because of daily morning and evening peaking characteristics of rail transit systems coupled with the obligation to provide transit service and subsequent lack of opportunity to shift load, application of time of day rates to transit systems is likely to result in higher power cost than under a non-time differentiated power rate structure.

# 2.4.5. Electric Traction Annual Power Cost

Table 2-7 contains a summary of the annual traction power cost of several major rail transit systems. AMTRAK costs have also been included in the table.

# 2.5. REGULATORY CONSIDERATIONS AND RATE MAKING STANDARDS

A modern electric utility must provide the functions of production, transportation and delivery of electricity to a large number of customers. In pricing electric service, the utility is guided by regulatory principles of reasonable, just and non-discriminatory rates.

The first step toward reasonable, just and non-discriminatory pricing of electricity is proper customer classification. The second step is the proper rate structure for the customer classes.

The cost of service study methodology is used to assign proper cost responsibility to customer classes.

#### 2.5.1. Customer Classification

Customer classes of an electric utility should be defined in such a way that only customers of similar customer and load characteristics are grouped together.

Customer characteristics relate primarily to the nature of the customer and have been traditionally recognized by most utilities, as residential, commercial, industrial, railways and street lighting. The important load characteristics which form the basis for customer classification are:

- 1. Size of the load.
- Coincidence factor, which is the ratio of the maximum demand of the class or system as a whole to the sum of the maximum demands of the components of the class or system as a whole.
- 3. Load factor, which is the ratio of the average demand over a designated period of time to the maximum demand occurring in that period. This can refer to customer, class or system.
- 4. Seasonal Time of Use of Power, (Summer/Winter).
- 5. On/Off System Peak Time of Use of Power.
- 6. Voltage level at delivery point.
- 7. Reliability of the Service Required (Firm or Interruptable).
- 8. Full or partial requirements for power.

By reason of the rising cost of producing electricity in recent years, it is common for utilities to place more emphasis on load rather than customer characteristics.

A utility generally provides service to a wide range of customers having different characteristics. These characteristics impose significantly different costs on the utility's system for production, transmission (transportation) and distribution (delivery). The basic regulatory principle states that rates developed for a customer should be such as to recover the costs incurred by the utility for serving that customer, plus a reasonable rate of return. Since the ideal approach of developing rates for each customer is impractical, it is a general practice to group customers with similar characteristics into classes and then determine the cost of service for the properly grouped classes.

# 2.5.2. Rate Design

The second and final step in the rate-making process is the pricing of electric service for each of the customer classes. Under conventional rate regulatory framework, responsibility for pricing the electric service is shared by the utility and a Public Utilities Commission, which has been delegated authority to legislate in the public interest (agency having jurisdiction over rates and conditions of providing electric service).

In addition to setting rates for the customer classes in such a way as to reflect cost of service to the classes, rates are also set to provide an effective instrument for the marketing of the electric service.

Although cost of providing service is the generally accepted standard for establishing rates for customer classes, practicability and non-cost considerations may also play a role. Rate schedules are statements of differential prices over a wide range of requirements of existing and prospective users of electric service. A comprehensive list of rate design considerations are:

- 1. Contribution of the class to the peak demand of the utility.
- 2. Diversity of the peak load of the customer classes.
- 3. Historical development of rate patterns.
- 4. Economic efficiency.
- 5. Long term incremental cost.
- 6. Relative rate of return.
- 7. Relative contribution to system revenue.
- 8. Stability of and ability to meet annual revenue requirements.
- 9. Social goals of the region which the utility serves (employment, humanitarian acts, etc.).
- 10. Conservation of scarce resources.
- 11. Equity or fairness among customers.

- 12. Utility growth considerations.
- 13. Administrative ease.

# 2.5.3. Cost of Service Study Methodology

<u>Coincidental Peak</u>: The Coincidental Peak Method or Peak Responsibility Method allocates peak demand-related costs in accordance with each classes' coincident demand at the time of the system peak. By using each classes' demands calculated from actual metered demands (adjusted for line losses), load research statistics, and billing data, the proportion of the system peak load of each customer class is developed. The capacity costs are then allocated to each rate class on the basis of these derived percentages. The single peak version of this method utilizes each customer classes' contribution to the annual peak as the cost defining characteristic. Off-peak users are assessed on demand costs.

One drawback of the Coincidental Peak Method is that diversity benefits are inequitably distributed among the classes. Although the overall system peak is an important cost consideration to the system, there are also savings to be had from diversity. In large electric systems, the times of the class peaks do not necessarily coincide with each other or the system peak, and this is beneficial to the utility. Another weakness of the Coincident Peak Method is that, even though all users on an electrical system can use the service any time, off-peak users are allocated zero demand costs. An additional limitation of this method is that it does not consider that off-peak demand may conflict with necessary maintenance, resulting in additional capacity to permit maintenance scheduling.

Another drawback of this method is the effect that the change in time of peak may have on the cost responsibility. If the load pattern at the time of system peak is typical, then the shift of load changes the allocation of costs among the classes completely. Therefore, the Peak Responsibility Cost Allocation Method may not meet the criterion of equity. <u>Multiple Peak Responsibility Method</u>: Several forms of peak responsibility demand allocation have been developed that allocate demand on the basis of multiple peaks to recognize customer diversity. One approach is to use various weighted and unweighted constibutions to the monthly maximum coincident demand. This demand allocation method apportions more expenses to consistently high use customers, rather than to those who only peak with the system.

An advantage of the Multiple Peak Responsibility Method is that it overcomes the instability of the single coincident peak approach. The Multiple Peak Responsibility Method can be calculated by constructing a normal distribution of peak demands and by giving each possible demand a probability of occurrence. Then, the weighted average of the probable demand is developed. However, this requires all customer classes to be monitored for a long period to determine what the class peaks are, and what their relationships are to the system peaks. The unavailability of this type of load-research data may be a problem for some utilities. However, it has been suggested that in the absence of such data, a company could use the mean contributions to the system peak demand over several system peak demand days as the basis for assignment.

<u>Non-Coincident Peak Demand Allocation</u>: The Non-Coincident Peak Method (NCP), also called the Sum of the Peak Method, is based on assigning demands to each customer class on the basis of the class' maximum demand, rather than their contribution to the system peak. The various class peaks are summed, regardless of when they occurred, and each class is allocated capacity costs by the ratio of the class peak to the sum of the class peaks.

One problem of the Non-Coincident Method is that the method disregards the economics of electric supply. A production plant system is designed to meet the maximum system coincident and not the non-coincident peak.

Another problem of the NCP Method is that is does not recognize load diversity. Since the Non-Coincident Method apportions demand costs on the basis of the proportion of the class peaks without regard to coincident peaks, the method does not recognize diversity for low and high factor customers. However, operational economics analyst Constantine Bary has postulated that this demand allocation method may meet the requirements of the Second Law of Load Diversity, referred to as the Bary Curve. The Bary Curve is a family of curves which express the relationship between load factor and coincidence factor. Coincidence factor reflects diversity, since it is the reciprocal of the diversity factor. This relationship between a customer's load factor, within a class, and their coincidence with the system peak. The Bary Curve indicates that the diversity factor is unchanging over a wide range of load factors from 30 to 70 percent. Magnitudes of class load factors usually fall within this range, that is, where the diversity factor is unchanged; therefore, the Coincident Peak Method does indirectly recognize diversity.

<u>Average and Excess Demand Methodology</u>: So far, this discussion of production demand allocation methodologies has been limited to cost allocation methodologies that only consider demand. The Average and Excess Demand Method bases capacity allocations on both demand and energy consumption. Two kinds of demand measurements are used to allocate demand in this method. A distinction is made between the cost of facilities to serve the average load and the cost of facilities to serve the excess load. The fraction of capacity equal to the system load factor is then allocated on the basis of the average demands. The excess demand is then allocated on the basis of the difference of the maximum class demands and their average demands.

The Average and Excess Demand Method considers the importance of the customer class load factor. Accordingly, the use of the Average and Excess Method results in a situation where system facilities are allocated in proportion to their relative uses. In addition, the opportunity for diversity is recognized as a linear

relationship which decreases with increasing load factor. The effect is to assign less of the diversity benefits to high load factor customers, and more to the low load factor customers. As the system load factor increases under the Average and Excess Demand Method, the low load factor customer pays proportionately less than under the Non-Coincident Peak Method. Using the Average and Excess Method, a customer operating at a 100 percent load factor receives no diversity benefits, while a customer operating at the system load factor receives benefits equal to those assigned to the group under the NCP Method. Like the Non-Coincident Peak Method, the Average and Excess Method produces some degree of stability, since a small shift in system load patterns does not change the relationships. Proponents of the Average and Excess Method also argue that the method recognizes the differences in the types of production plants and that no customers are given a free ride for offpeak consumption.

One problem with the Average and Excess Method is that the capital costs of the mix of base load, intermediate, and peaking units are not accurately assigned. Like the Non-Coincident Peak Method, the Average and Excess Method does not consider the time element of the system load. Another problem of the Average and Excess Method is the use of the non-coincident peak to assign the excess portion of capacity costs. However, this problem can be alleviated by the use of the coincidental peak.

Average and Excess, Using Coincident Peaks: Like the traditional average and excess methodology, the system average load is allocated on the basis of the average demands of the classes. However, in this methodology, the system excess is allocated on the basis of the class excess, defined as the difference between the class average demand and the class contribution to the system peak (as opposed to the class non-coincident peak, as used in the traditional average and excess allocation). The off-peak classes have no excess demands, while the on-peak customers share in the reduction of excess demand resulting from the average

demand allocation assigned to off-peak classes. The method avoids the problem of the traditional form of average and excess allocation which places an overproportionate burden on the off-peak user. In addition, the average and excess allocation using coincidental peaks "fits" the system's seasonal peak, as well as allocating to all customers some portion of the demand-related costs (since they all use the energy output of these facilities at some time).

#### 2.6. CASE STUDY RESULTS

The principles which have just been discussed have recently been applied to various rail transit systems in their negotiations and interventions, pursuant to rate cases. Each of these cases are summarized in the following material.

#### 2.6.1. Washington Metropolitan Area Transit Authority (WMATA)

In 1976, when Metro rail service began, electric service for D.C. operations was billed bγ the Potomac Electric Power Company (PEPCO) under Commercial/Industrial (C&S) Tariff. Pursuant to a negotiated agreement, PEPCO has developed and implemented a Separate Rapid Transit (RT) tariff for WMATA, based on an actual cost of service study and load data. A similar procedure was followed for WMATA's Metrorail operations in Maryland. By intervention in PEPCO's rate cases before D.C. and Maryland Public Service Commissions, WMATA has been successful in modifying the initial perpetual demand ratchet to a two (2) month billing demand ratchet. WMATA's active participation in PEPCO's rate proceedings has also resulted in less than the average authorized rate increases for Metro. In PEPCO's Virginia Service territory, Metro's negotiated separate RT rate has resulted in virtually no rate increase to Metro in the last two years. WMATA is currently negotiating with the Virginia Power Company for an appropriate rate based on cost of providing service.

Because of WMATA's opposition to time of use rate for Metro in the most recently concluded proceedings, the D.C. Public Service Commission has rejected PEPCO's proposal to charge Metro based on the time of use pricing structure.

WMATA is agressively pursuing load management and energy conservation strategies, e.g. acquisition of chopper control railcars, coasting, top speed reduction, monthly load and bill monitoring, and careful scheduling to supplement its rate intervention work<sup>(3)</sup>.

#### 2.6.2. Chicago Transit Authority (CTA)

Pursuant to a negotiated contract, CTA is served under a contract rate. Through active participation in Commonwealth Edison's rate proceedings, the CTA has been successful in the elimination of the ratcheted billing demand provision, reducing the point of supply charge, and convincing the Illinois Commerce Commission to authorize a less than average rate increase for the CTA, and direct implementation of seasonal differential in the energy component of the tariff.

#### 2.6.3. SOUTHEASTERN PENNSYLVANIA TRANSPORTATION AUTHORITY (SEPTA/AMTRAK)

SEPTA has been trying to establish a separate rate based on cost of providing service to the railroads. In the three rate cases of Philadelphia Electric Company (PECO), the Pennsylvania Public Utility Commission rejected SEPTA's position. In the last base rate proceedings of PECO, the Commission directed PECO to develop a cost of service study and a separate rate for the railroads. In the rate proceeding of PECO, currently pending before the Pennsylvania Public Utilities Commission, PECO has proposed separate rates for SEPTA and AMTRAK based on the results of the Commission-directed cost of service study. In view of the lower cost of providing service to SEPTA and AMTRAK than PECO's industrial customers, PECO is now seeking less than an average rate increase for SEPTA and AMTRAK.

## 2.6.4. Metro - Dade County Miami

Pursuant to a negotiated agreement, Florida Power and Light Company (FPL) has developed and implemented a separate tariff for electric service to Metro. In approving one separate rate classification of Metro, the Florida Public Service Commission specifically relied upon one unique load, customer and cost causation characteristic of electric service to rapid rail transit systems. The tariff contains separately stated demand, energy, and customer charges. It has no billing demand ratchet provision. The ability of this tariff to accurately track demand and energy cost causation is likely to become an issue in the next rate proceedings of FPL.

# TABLE 2-1

# Serving Electric Utilities and Regulatory Jurisdictions

| transi<br>System |                                                  | JURISDICTION                                                                                                             |
|------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| BART             | Pacific Gas and Electric Company                 | California Public<br>Utility Commission                                                                                  |
| CTA              | Commonwealth Edison Company                      | Illinois Commerce Commission                                                                                             |
| GRCTA            | Cleveland Electric Illuminating Company          | Ohio Public Utilities<br>Commission                                                                                      |
| MARTA            | Georgia Power Company                            | Georgia Power Service<br>Commission                                                                                      |
| MBTA             | Boston Edison Company(77%)                       | Massachusetts<br>Department of Public<br>Utilities                                                                       |
|                  | Massachusetts Electric Company(19%)              | Massachusetts<br>Department of Public<br>Utilities                                                                       |
|                  | Braintree Light Department(3%)                   | Massachusetts<br>Department of Public<br>Utilities                                                                       |
|                  | Cambridge Electric Light Company(1%)             | Massachusetts<br>Department of Public<br>Utilities                                                                       |
| HIANI            | Florida Power and Light Company                  | Florida Public<br>Utilities Commission                                                                                   |
| NYCTA            | Power Authority State of New York                | New York Public<br>Service Commission<br>Federal Energy<br>Regulatory Commission<br>Power Authority State<br>of New York |
|                  | Consolidated Edison Company*                     | New York Public<br>Service Commission                                                                                    |
| PATCO            | Public Service Electric and Gas Company<br>(68%) | New Jersey Board of<br>Public Utilities                                                                                  |
|                  | Atlantic City Electric Company(17%)              | New Jersey Board of<br>Public Utilities                                                                                  |
|                  | SEPTA (15%) **                                   |                                                                                                                          |
| PATH             | Public Service Electric and Gas Company          | New Jersey Board of<br>Public Utilities                                                                                  |
| SEPTA            | Philadelphia Electric Company                    | Pennsylvania Public<br>Utilities Commission                                                                              |
| WHATA            | Potomac Electric Power Company                   | District of Columbia<br>Public Service Commission<br>Maryland Public<br>Service Commission<br>Virginia State Agency      |
|                  | Virginia Electric Power Company                  | Virginia State Agency                                                                                                    |
| *                | For the purpose of transmission only             |                                                                                                                          |

 For the purpose of transmission only
 \*\* SEPTA resells power purchased from Philadelphia Electric Company to PATCO in the city of Philadelphia.

#### UTILITY/TRANSIT SYSTEM RATE STRUCTURE

Atlantic City Electric Co./PATCO Boston Edison Co./MBTA Braintree Light Dept./MBTA Cambridge Electric Light Co./MBTA Cleveland Electric Illuminating Co./GRCTA Commonwealth Edison Co./CTA Consolidated Edison Co./NYCTA Florida Power and Light Co./MIAMI Georgia Power Co./MARTA Massachussets Electric Co./MBTA Pacific Gas and Electric Co./BART Philadelphia Electric Co./SEPTA Potomac Electric Power Co.(DC)/WMATA Potomac Electric Power Co.(MD)/WMATA Potomac Electric Power Co. (VA)/WMATA Power Authority State of New York/NYCTA Public Service Electric and Gas Co./PATCO Public Service Electric and Gas Co./PATH Virginia Electric Power Co./WMATA

#### CLASSIFICATION

|            | Sej  | parate    |            |  |  |  |  |
|------------|------|-----------|------------|--|--|--|--|
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industria1 |  |  |  |  |
|            | Seg  | Darate    |            |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
|            |      | parate    |            |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
|            | Sep  | parate    |            |  |  |  |  |
|            | Ser  | parate(pe | anding)    |  |  |  |  |
|            | Sep  | barate    | -          |  |  |  |  |
|            | Sep  | parate    |            |  |  |  |  |
| Separate   |      |           |            |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Modified   | High | Voltage   | Industrial |  |  |  |  |
| Government |      |           |            |  |  |  |  |

TABLE 2-3 DEMAND ASPECTS OF RAIL TRANSIT POWER RATE STRUCTURES

| ELECTRIC UTILITY/RAIL TRANSIT SYSTEM                                          | DEMAND<br>INTERVAL (m (r)) | DEMAND<br>CONSOLIDATION | MONTHLY   | DEMAND<br>RATCHET |
|-------------------------------------------------------------------------------|----------------------------|-------------------------|-----------|-------------------|
| Atlantic City Electric Co./PATCD                                              | 15                         | coincont                | max/mo    | yes               |
| Boston Edison Co./MBTA                                                        | 30                         | noncoincont             | max/mo    | yes               |
| Braintree Light Dept./MBTA                                                    | 15                         | noncoincdat             | ma×/mo    | ves               |
| Cambridge Electric Light Co./MBTA                                             | 30                         | noncoincdat             | max/mo    | yes               |
| Cleveland Electric Illuminating Co./GRCTA                                     | 60                         | noncoincdnt             | max/mo    | no                |
| Commonwealth Edison Co./CTA                                                   | 60                         | coincdnt                | (1)       | yes               |
| Florida Power and Light Co./MIAMI                                             | 30                         | coincdnt                | max/mo    | no                |
| Georgia Power Co./MARTA                                                       | 60                         | coincdnt                | max/mo(5) | yes               |
| Massachussets Electric Co./MBTA                                               | 15                         | noncoincdnt             | max/mo    | yes               |
| Pacific Gas and Electric Co./BART                                             | 30                         | noncoincdnt             | max/mo    | yes               |
| Philadelphia Electric Co./SEPTA                                               | 30                         | coincdnt(6)             | max/mo    | yes               |
| Potomac Electric Power Co.(DC)/WMATA                                          | 30                         | coincdnt                | max/mo    | yes               |
| Potomac Electric Power Co.(MD)/WMATA                                          | 30                         | coincdnt                | max/mo    | yes               |
| Potomac Electric Power Co.(VA)/WMATA                                          | 30                         | coincdnt                | max/mo    | yes               |
| Power Authority State of New York/NYCTA                                       | 30                         | coincdnt                | max/mo    | yes               |
| Public Service Electric and Gas Co./PATCO                                     | 15                         | coincdnt                | (2)       | no                |
| Public Service Electric and Gas Co./PATH<br>Virginia Electric Power Co./WMATA | 15                         | coincdnt<br>(4)         | (3)       | nö                |

NOTES:

- (1) Average of 3 highest demands / month(2) Average of 4 highest daily maximum demands
- (3) Average of 2 highest daily maximum demands
- or 75% of highest daily demand, whichever is higher
- (4) No demand charge
- (5) In months Jun Sept max/mo, in months Oct May 60%+max/mo
- (6) SEPTA DC transit demand is coincident, the AC commuter lines served through Wayne Junction has a separate demand

TABLE 2-4 NONCOINCIDENT AND COINCIDENT PEAK POWER DEMAND FOR TRACTION METERS ON THE WMATA RED LINE

|                      |            | PEAK DEMAND       |
|----------------------|------------|-------------------|
| METER NAME           | VALUE (KW) | TIME OF DCCURENCE |
| FARRAGUT NORTH       | 2399       | 17:00 - 17:30     |
| GALLERY PLACE        | 2441       | 17:00 - 17:30     |
| UNION STATION        | 1741       | 17:30 - 18:00     |
| NEW YORK AVENUE      | 1831       | 16:45 - 17:15     |
| RHODE ISLAND AVENUE  | 2200       | 17:45 - 18:15     |
| BROOKLAND AVENUE     | 2961       | 17:45 - 18:15     |
| NEW HAMPSHIRE AVENUE | 2506       | 17:15 - 17:45     |
| TAKOMA PARK          | 2252       | 17:30 - 18:00     |
| SILVER SPRING        | 3542       | 9:15 - 9:45       |
| TOTAL NON-COINCIDENT | 21873      |                   |
|                      | 21073      |                   |
| COINCIDENT           | 16572      | 8:15 - 8:45       |

TABLE 2-5 VOLTAGE VARIATION INFLUENCES ON POWER

|                      | AVERAG | E POWER (KW)      | % CHANGE |
|----------------------|--------|-------------------|----------|
| METER NAME           | NORMAL | INCREASED VOLTAGE |          |
| FARRAGUT NORTH       | 648    | 64 1              | - 1      |
| GALLERY PLACE        | 232    | 206               | -11      |
| UNION STATION        | 259    | 187               | -28      |
| NEW YORK AVENUE      | 644    | 896               | +39      |
| RHODE ISLAND AVENUE  | 1236   | 1126              | -9       |
| BROOKLAND AVENUE     | 347    | 328               | -5       |
| NEW HAMPSHIRE AVENUE | 85     | 81                | -5       |
| TAKOMA PARK          | 107    | 106               | - 1      |
| SILVER SPRING        | 173    | 173               | 0        |
| COINCIDENT           | 3731   | 3743              | +.3      |

# TABLE 2-6 DESCRIPTION OF TYPICAL TRANSIT DEMAND RATCHETS

| ELECTRIC UTILITY/RAIL TRANSIT SYSTEM      | DESCRIPTION OF RATCHET                                                                                                      |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Atlantic City Electric Co./PATCO          | 75% of average monthly demand in past 12 months, or<br>75% of original contract capacity, or 1000 kW, whichever is greatest |
| Boston Edison Co./MBTA                    | 2/3 of highest monthly demand in past 11 months or 5000 kW                                                                  |
| Braintree Light Dept./MBTA                | 80% of highest montly demand or 75 kW                                                                                       |
| Cambridge Electric Light Co./MBTA         | 95% of highest monthly demand less 1000 kW                                                                                  |
| Cleveland Electric Illuminating Co./GRCTA | None                                                                                                                        |
| Commonwealth Edison Co./CTA               | Highest monthly demand in past 11 months                                                                                    |
| Florida Power and Light Co./MIAMI         | None                                                                                                                        |
| Georgia Power Co./MARTA                   | Seasonally differentiated for preceding 11 months                                                                           |
| •                                         | June - Sept:                                                                                                                |
|                                           | 95% of highest monthly demand in previous summer months, or                                                                 |
|                                           | 60% of highest monthly demand in previous winter months                                                                     |
|                                           | Oct - May:                                                                                                                  |
|                                           | 95% of highest monthly demand in previous summer months, or                                                                 |
|                                           | 60% of highest monthly demand in previous winter months                                                                     |
|                                           | For all months no less than 50% of contract capacity, or                                                                    |
|                                           | 5000 kW, whichever is greater                                                                                               |
| Massachussets Electric Co./MBTA           | 80% of highest monthly demand in past 11 months                                                                             |
| Pacific Gas and Electric Co./BART         | 12 month rolling average of monthly demand                                                                                  |
| Philadelphia Electric Co./SEPTA           | Seasonally differentiated                                                                                                   |
|                                           | Oct - May:                                                                                                                  |
|                                           | 80% of highest monthly demand in previous June - Sept, or                                                                   |
|                                           | 40% of maximum demand specified in contract                                                                                 |
|                                           | June - Sept:                                                                                                                |
|                                           | None                                                                                                                        |
| Potomac Electric Power Co.(DC)/WMATA      | Highest monthly demand in past two months                                                                                   |
| Potomac Electric Power Co.(MD)/WMATA      | Highest monthly demand in past two months                                                                                   |
| Potomac Electric Power Co.(VA)/WMATA      | Highest monthly demand in past two months                                                                                   |
| Power Authority State of New York/NYCTA   | None                                                                                                                        |
| Public Service Electric and Gas Co./PATCO | None                                                                                                                        |
| Public Service Electric and Gas Co./PATH  | None                                                                                                                        |
| Virginia Electric Power Co./WMATA         | None                                                                                                                        |
|                                           |                                                                                                                             |

# TABLE 2-71983/1984/1985ELECTRIC TRACTION ANNUAL POWER COSTS

|                                                                  |             |             |             | _ Total    | Costs      |            |
|------------------------------------------------------------------|-------------|-------------|-------------|------------|------------|------------|
| TRANSIT AUTHORITY/UTILITY                                        | 1983<br>Mwh | 1984<br>Mwh | 1985<br>MWH | 1983<br>\$ | 1984<br>\$ | 1985<br>\$ |
| AMIRAK                                                           |             |             |             |            |            |            |
| PHILADELPHIA ELECTRIC COMPANY                                    | 388,910     | 423,337     | 444,874     | 24,769,810 | 30,496,875 | 32,769,963 |
| PENNSYLVANIA POWER AND<br>LIGHT COMPANY                          | 24,643      | 22,489      | 20,707      | 1,375,093  | 1,420,391  | 1,639,306  |
| BALTIMORE GAS AND ELECTRIC<br>COMPANY                            | 79,015      | 84,037      | 89,562      | 3,820,727  | 4,511,424  | 5,003,278  |
| BART                                                             |             |             |             |            |            |            |
| PACIFIC GAS & ELECTRIC COMPANY                                   | 232,301     | 238,667     | 243,592     | 14,070,796 | 15,512,278 | 19,048,644 |
| CTA/ICG                                                          |             |             |             |            |            |            |
| COMMONWEALTH EDISON COMPANY                                      | 352,318     | 365,964     | 395,940     | 21,282,681 | 23,907,024 | 25,860,801 |
| MARTA                                                            |             |             |             |            |            |            |
| GEORGIA POWER COMPANY                                            | 84,697      | 92,318      | 130,574     | 3,565,679  | 4,264,358  | 5,774,166  |
| PATCO                                                            |             |             |             |            |            |            |
| ATLANTIC CITY ELECTRIC COMPANY                                   | 5,275       | 5,372       | 5,340       | 325,682    | 357,064    | 362,576    |
| RTA CLEVELAND                                                    |             |             |             |            |            |            |
| THE CLEVELAND ELECTRIC<br>TLLUMINATING COMPANY                   | 35,115      | 37,213      | 40,149      | 2,748,312  | 2,772,567  | 3,044,796  |
| SEPTA                                                            |             | ,           |             |            |            |            |
| PHILADELPHIA ELECTRIC POWER CO.                                  | 246,918     | 267,361     | 273,583     | 16,163,168 | 19,345,569 | 21,562,024 |
| WHATA                                                            |             |             |             |            |            |            |
| POTOMAC ELECTRIC POWER COMPANY                                   | 270,144     | 302,102     | 358,776     | 17,513,247 | 19,933,577 | 24,668,671 |
| VIRGINIA ELECTRIC POWER COMPANY<br>(EXCLUDING FACILITIES CHARGE) | 65,000      | 73,000      | 85,000      | 2,793,589  | 2,932,512  | 3,652,000  |

# 3. LOAD MANAGEMENT

# 3.1. INTRODUCTION

Load management is a term which refers to the control of the power demand component of the electric bill. Control can be accomplished in two ways. The first method is to provide an operational response to predicted values of high demand. The second method is to assure that high demand does not occur.

The first method involves monitoring, predicting and controlling peak power demand. It requires a monitoring system which can observe power demand in real time. The results of the observation are then used to predicted peak demand in the given demand interval. An appropriate operational response such as performance modification affecting traction power or reduction of support power is then initiated.

The second approach is assurance that demand will not exceed a given value. Various energy conservation strategies, which have already been discussed, do reduce peak demand. Since on most rail transit systems, peak demand will occur during peak transit operation (AM and PM rush hours), any strategy which reduces energy consumption during this period will reduce peak demand.

Another strategy which can be considered in the assurance category (rather than monitoring, prediction and control) is load leveling through energy storage. The basic strategy uses energy storage devices to absorb power during off-peak times and release power to the rail system during peak periods.

The cost effectiveness of load management strategies is particularly sensitive to the demand charge and method of computing billing demand. With no demand charge (just an energy charge), load management is not cost effective. A system which levels load through energy storage can hinge its cost-effectiveness on the energy rate of the power rate structure as well, since losses in the storage system use extra energy. The reduction of peak power demand through load management may be negated by an increase in the demand rate as a response of the electric utilities, in order to maintain their rate of return on the investment allocated to the transit agency. In order to avoid this situation, the transit authority must maintain a knowledgable representation at rate case hearings.

## 3.2. POWER DEMAND MONITORING

Three forms of power demand monitoring are possible: real time, batch process and electric bill. Real time monitoring is most appropriate when a load managment system is installed to provide an operational response to predicted values of high demand. Batch process and electric bill monitoring are more appropriate in energy audits, where causes for high demand are investigated after the fact.

## 3.2.1. Real Time Monitoring

Power demand monitoring in real time means a system whose objective is to observe the demand trend over the early portions of the demand interval and predict the demand level for the interval. If it appears that the demand will exceed some set limit, a warning is issued so that precautions may be taken to reduce the demand. The precautions may be part of an automatic or manual response scenario.

A generic demand monitoring system is shown in Figure 3-1. The power consumption and supply voltage are monitored near each metering point. It may be possible, upon agreement with the electric utility, to use the potential and current transformers associated with their meters, to monitor demand. In the event that this is not possible, one or two potential and current transformers will be required per metering point. It is important that the monitoring point be as electrically close to the utility metering point as practical, since the monitoring system can also be used to determine billing components to verify electric bills and disagreements are more likely to be real if the condition of closeness is met. The ideal monitoring point is

on the same feed point as the utility meter, with zero inpedance between the monitoring point and the electric meter. An even better situation is joint monitoring by both the utility and the transit authority.

The outputs of the potential and current transformers are fed to the inputs of a multi-element power transducer which produces output proportional to input. The output of one of the potential transformers is fed through a voltage transducer to produce a signal proportional to the supply voltage.

The outputs of the transducers are connected to the inputs of the remote transmitting units (RTU) (Figure 3-1) which convert them into frequency domain, multiplexed FM signals suitable for transmission over voice grade telephone lines. Each RTU transmits data along a single dedicated telephone line to the Central Office Equipment (COE) located at the data collection facility.

The COE separates and demodulates the two channels coming from the RTU. Each signal is processed and filtered to give the time average of its value (power or voltage) over some short, past time interval (typically 30-60 seconds). The COE contains a microprocessor that is programmed to sample power and voltage at each short time interval and pass the digitized results to the main Data Collection Computer (DCC), on command, via a serial link.

In the main DCC, the data from each meter are processed separately. The appropriate meter consolidation is made by summing the individual meter powers into appropriately consolidated meter curves. The slope and area under the power curve, together with other appropriate information, are evaluated over the early portion of the demand interval to predict the demand for the interval. The other appropriate information may be data from a train control computer, which allows a computation of car-miles to be made and ambient temperature. Both car-miles and ambient temperature can be used as peak demand predictors.

If a critical value of final demand is predicted, an alarm will sound, and those meters which are contributing the most to peak demand are displayed. In the case of an Automatic Train Control (ATC) system, a capability would exist for passing the warning to that unit for further processing. If the response would be initiated by a Support Power Control Unit, the warning would be passed to that unit. Since some experience will be required to develop some of the control algorithms, it is expected that initially the load would be shaved manually.

All of the data for a given demand interval is stored in a non-volatile memory to prevent loss in the event of a power fluctuation at the data collection facility. At the end of each day, data from memory are archived, so that historical information can be summoned for electric bill audits, rate case developments and investigation of unusual events.

A real time demand monitoring system will require proper maintenance. Many of the newer transit authorities now have parts of such systems which are not working because of lack of maintenance as well as poor reliability. Regular calibration of the transducers is a necessity.

The load monitoring system should be able to function under most common failure circumstances. Failure to predict demand levels can result in two problems:

- 1. Prediction of demand levels higher than actual, resulting in unnecessary reduction of transit system performance.
- 2. Prediction of demand levels lower than actual, meaning higher electric bills, which reduces the return on the investment in the load management system.

#### 3.2.2. Batch Process Monitoring

Some Electric utilities record metering information on magnetic tape for subsequent processing into electric bills. In the case where real time monitoring is not economically viable and where metering information is recorded, batch process monitoring may be desirable. This type of monitoring consists of certain types of analyses of these metering records designed to understand the nature of peak demand.

The detailed analyses which are possible using batch monitoring of metering records are described in Sections 5.2 and 5.3 under the energy audit material. Batch process monitoring is actually a partial energy audit.

#### 3.2.3. Electric Bill Monitoring

For those transit agencies which cannot use batch process monitoring because they do not have access to detailed metering records, monitoring of electric bills is possible. Because the value of peak demand, but not necessarily the time of peak demand, is usually presented on the electric bill, it is necessary only to keep records of car-miles/hour and any abnormal traction or support operation to determine how this peak demand was achieved.

Regression analysis using ambient temperature can be conducted, but only on the basis of average monthly temperature. Likewise, regression analysis to determine monthly energy consumption as it relates to car-miles/month can be carried out to determine the average monthly background power and the energy per car-mile.

# 3.3. POWER DEMAND REDUCTION OPPORTUNITIES

There are two classes of strategies which can be used to reduce power demand in response to a real time prediction of high power demand in a given demand interval. These strategy classes are traction performance modification and support power reduction. Both classes of strategies fall into the category of energy conservation as well.

Load leveling through energy storage can also be considered a power reduction strategy. It would not be used as part of a real time load management system (as a response to a real time prediction of high power demand), but on an everyday basis to keep the power demand component of the electric bill low.

#### 3.3.1. Traction Performance Modification

Since peak traction power demand will occur at most of the traction power meters during peak transit operating times, traction performance modification would be a particularly useful response, especially when the train operating performance is critical to maintaining system capacity. Thus, under most conditions, when predictions of peak demand do not exceed the specified limit, traction performance would remain high in order to maintain system capacity. However, during the unusual circumstances of a prediction of demand exceeding the limit, transit capacity would be allowed to deteriorate to maintain the demand below some prescribed limit.

It is important to recognize that performance modification would only be initiated in response to high demand prediction, only when capacity reduction would be traded off for reduced peak demand. If capacity would not suffer under conditions of performance modification, then the strategy should always be used during the peak period, saving both demand and energy, without the need for monitoring.

Speed reduction, coasting and optimum performance modification could be used as the response strategy. If on of these strategies is being used during the off-peak transit operating periods, and not used during the peak periods because of the problem of transit capacity reduction, this strategy would be a good candidate. In some cases, selective application of the strategy would be adequate to limit power demand. For example, a small reduction of traction performance across the board as opposed to a larger reduction in certain regions of the system may be appropriate. In all cases, the criteria is always the minimum response to limit demand with the minimum effect on system capacity.

# 3.3.2. Support Power Reduction

Just as traction performance modification could mean reducing the traction power, support performance modification can result in support power reduction. If support power reduction is the choice of response to limit peak power demand, then the same logic applies as in the case of traction performance modification, namely, application of the strategy must be traded off for support function deterioration. Again, if no support function deterioration occurs as a result of the response, then the application of the strategy should be made a permanent part of normal operation, saving energy dollars without the need for real time load monitoring.

Since the reduction of the support function must occur during the peak transit operating time, very few support function responses can be accomodated. Generally, reduction of heating, air conditioning and ventilation make the best response candidates. One definite requirement is that operating the support function contributes enough to peak demand so that its reduction will bring peak demand under the required limit. The support functions of signalling, communications, train control, lighting, escalators and elevators are generally necessary during peak transit operating time.

As in the case of traction performance modification, the minimum support power reduction response to limit peak demand is all that is required.

#### 3.3.3. Load Leveling Using Energy Storage

A power demand reduction opportunity, which does not require a real time, or any other kind of monitoring system is load leveling using energy storage devices. Recently, much attention has been given to such systems where the energy storage device is a large complex of batteries.

The energy storage devices are charged during off-peak periods, when power demand is low. They are used as power sources during the peak periods when

power demand is high, to supplement power being provided by the electric utility. The concept is shown with the help of Figure 3-2. In the figure, a typical doublepeaked daily load curve is shown. Charging of the energy storage devices occur during the off-peak periods. The utility power supply is supplemented from the storage devices during the peak period, "shaving" the load required to be served by the utility. Since energy storage devices are not 100% efficient, some energy is lost in the charge, discharge and natural decay of the energy storage device.

No deterioration of transit operating performance occurs because of peak load shaving using energy storage. Equipment is needed to store energy and to control charging and discharging. Additional energy use will be required because of the less than 100% efficiency of the energy storage devices and control apparatus.

# 3.4. COST AND BENEFIT

#### 3.4.1. Load Management with Demand Monitoring

As used in this context, load management will involve power demand monitoring and the ability to respond to a projected high peak demand by changing operating procedures. The power demand monitoring may be on a real time basis, batch processing of metering information, and/or analysis of electric bills, while changing operating procedures could mean exercising performance modification or support power reduction strategies during the peak transit operating period. In each case there is a cost and benefit involved. The benefit is measured as the savings in the demand component of the electric bill. The costs will involve both an initial investment (capital) and recurring costs (operating).

# 3.4.1.1. Cost Information

Budgetary estimates were made for the three classes of monitoring methods. These estimates are presented in Table 3-1. The high voltage equipment mentioned in the Table are the current transformers (CT) and potential transformers (PT) needed to monitor the high voltage lines. If the electric utility allows the use of their CT and PT's, then the cost is much less as shown in Table 3-1. Batch process and electric bill monitoring are much less expensive than real time monitoring.

# 3.4.1.2. Benefit

The main benefit achieved from load management is the reduction of the demand component of the electric bill. In a real time demand monitoring situation, the savings (and thus the payback period and return on investment) depends on how much time into the demand interval is allowed to pass before the response is initiated.

The load management concept of real time demand monitoring, prediction and control was investigated on both WMATA and MARTA rail systems. The same method of monitoring and prediction was utilized; namely, that illustrated conceptually in Figure 3-1. The demand control method used on each system is different.

Because the demand interval at WMATA is 30 minutes, peak demand reduction was estimated for reactions at 10, 15 and 20 minutes into the demand interval. The control reaction in this case was to initiate coasting.

Table 3-2 shows the basic cost components of the monitoring equipment. Table 3-3 lists the details of the energy cost savings affected by the load management system. Table 3-4 summarizes the cost/effectiveness of demand control, using coasting as the control option.

On the MARTA rail system, the control approach used for load management was different. In this case, shutting down the chiller load (support power reduction) would be the control reaction.

Because the demand interval at MARTA is one hour, operation of the control strategy was assumed to begin at 20, 30 and 40 minutes into the demand interval. The range over which load was shed was varied from 1000-5000kW.

Table 3-4 shows the basic cost components of the load monitoring and prediction portion of the system. Table 3-5 presents the cost/effectiveness of the load management system. Although payback periods are within acceptable limits at MARTA, it was difficult to find even 1000kW of load to shed under present operating conditions.

The biggest payback at MARTA occurs because of the summer ratchet, which means paying 95% of the summer demand charge all year round. Removal of the ratchet by the the Georgia Power Company could negate the effectiveness of the load management system.

#### 3.4.2. Load Leveling Through Energy Storage

Load leveling systems which use energy storage are based on batteries as the storage device. Bechtal Inc. has 'done several studies in this area for transit as well as other applications. The concept is to charge a large battery system during off peak hours and use that energy during peak hours to reduce peak demand.

#### 3.4.2.1. Cost Information

Load leveling system costs include both capital and operating costs. The capital costs represent the investment which includes procurement and installation of batteries and power control devices and installation of the plant. The initial investment is broken down into three categories: the cost of the batteries, the power converter and the balance of the plant. The initial investment is made in the initial year.

Since batteries have limited life, usually based on charge-discharge cycles and depth of discharge, it is necessary to replace them periodically. Batteries are usually accredited with an eight year lifetime in this type of service.

Investments for each of the three parts are usually determined by the formula  $C = C_{B} + C_{C} + C_{p}$ 

where C is the total cost,

 $C_{B} = C_{B0} + C_{B1} \bullet (KWH)$ 

is the battery cost. The converter cost is  $C_{c} = C_{c0} + C_{c1}$  (KW)

The fixed plant cost is

$$C_{p} = C_{p_{1}} + C_{p_{1}}$$
 (KWH)

Table 3-7 provides a listing of these cost coefficients<sup>2</sup> for Lead-Acid and Zinc-Chloride Batteries. These costs were obtained by Bechtel through discussions with manufacturers.

The \$400K fixed cost in the converter unit covers anticipated development and engineering costs. The \$100K in fixed plant costs purchases a computerized control unit which automatically puts the system on line at appropriate times.

The operating savings of a load leveling system based on battery energy storage is the reduction of the demand component of the electric bill less the operating and maintenance expenses of the system.

The reduction in peak demand related to peak load shaving may not be directly translatable to reduction in the demand component of the electric bill. Existence of ratchets will generally complicate the estimate.

#### 3.4.2.2. Benefit

The benefit of peak load shaving is reduction of the demand charge which is offset by additional energy cost incurred because of load leveling system inefficiency and auxiliary power required to operate the system.

Table 3-8 presents the energy cost savings, payback period and annual cas flow achievable for different battery system sizes.

<sup>&</sup>lt;sup>2</sup>"Economic Analysis of Storage Battery Systems for Demand-Peak Shaving"

No ratchet effects have been included. Ratchets tend to make payback periods longer. Payback periods of less than three years are difficult to achieve unless demand charges are very high.

## 3.5. LOAD MANAGEMENT AND THE POWER RATE STRUCTURE

The cost-effectiveness of load management systems depends upon the demand charge of the electric utilities. If the load management system contains an energy storage device such as in a peak load shaving operation, then the energy charge will also play a part in the cost-effectiveness.

The demand charge depends upon the billing demand and the demand rate. As was mentioned previously, the billing demand is usually a formula which is based on several basic elements including the demand interval, the method of demand consolidation, the monthly demand and the ratchet. A change in any of the elements of billing demand or the demand rate will change the payback period of the load management system.

The uncertainty in the future of the demand charges by the electric utility presents a long term risk in the investment of a load management system. Since the basic objective for the investment into such a system is to save money on the electric bill, a short payback period is appropriate. A payback period no longer than three years would mean that electric bill savings would be realized in the fourth year after the system began operation.

Reduction of peak demand will shift the burden of rate increase toward other customer classes serviced by the utility. The degree to which this shift occurs depends on many factors, in addition to the degree of peak demand reduction attainable.

- 1. The fraction of peak demand attributable to the transit system as a member of his customer class.
- 2. The fraction of peak demand attributable to the customer class of which the transit system is a member.

- 3. The relation of the time of peak demand of the agency to utility peak demand.
- 4. Facilities set aside for exclusive use of transit.
- 5. The ratio of peak demand to energy plus customer components in cost categories.

One strong argument for initiating load management is that other customer classes of the utility will manage their loads, shifting the cost burden to the transit system. Under these circumstances, load management would become a purely defensive measure.

Load management is particularly useful, without any repercussions from the utility in the form of a rate increase, whenever service (car-miles/hour) is increased. If demand can be held at the preexpanded service level, the utility has no basis for initiating a rate increase.

The cost effectiveness of load management is dependent on the ratio of the demand/energy use component of the electric bill. As the electric bill becomes more demand determined, load management is more desirable.

TABLE 3-1 POWER DEMAND MONITORING COST COMPONENTS (1986 DOLLARS)

# REAL TIME MONITORING

| INTTAL INCOTMENT                                         |                                    |
|----------------------------------------------------------|------------------------------------|
| INITIAL INVESTMENT                                       |                                    |
|                                                          | \$28,250/metering point            |
|                                                          | (\$13,450/metering point less high |
|                                                          | voltage equipment)                 |
| RECURRING COST                                           |                                    |
| Telephone Lines                                          | \$40/month/metering point          |
| Monitoring Technician                                    | \$65,000/man-year                  |
| (Independent of number of sete                           | rs sonitored)                      |
| The initial investment is based on a sixteen metering po | nt system:                         |
| Hardware Cost (Less High Voltage Equipment)              | \$123,000                          |
| High Voltage Equipment                                   | \$237,000                          |
| Engineering Labor (1 man year)                           | \$42,000                           |
| Total                                                    | \$452,000                          |
| BATCH PROCESS MONITORING                                 |                                    |
| INITIAL INVESTMENT                                       |                                    |
| Computer Programs                                        | \$30,000                           |
| RECURRING COST                                           |                                    |
| Computer Time                                            | \$700/month                        |
| Engineering Time (1/4 MY/Y)                              | \$1920/aonth                       |
| ELECTRIC BILL HOWITORING                                 |                                    |
| NO INITIAL INVESTMENT                                    |                                    |
| RECURRING COST                                           |                                    |
| Engineering Time (1/10 MY/Y)                             | \$770/month                        |
| • •                                                      |                                    |

# TABLE 3-2 COST OF DEMAND MONITORING EQUIPMENT FOR WMATA (1983 DOLLARS)

INITIAL INVESTMENT (72 METERING POINTS) (\$M)

| With high voltage equipment *     | 1.77 |
|-----------------------------------|------|
| Without high voltage equipment +  | 0.84 |
| Coasting Modification to fleet ** | 0.04 |

RECURRING COST (\$K/month)

| Telephone lines ***   | 2.3 |
|-----------------------|-----|
| Monitoring Technician | 4.2 |

- Based on initial investment of \$24,560/metering point
   (\$11,690 for monitor plus high voltage potential and
   current transformers)
- \*\* Initial coasting investment of \$32,000 in 1981 escalated to 1983 dollars.
- **\*\*\*** Estimated at \$32/month/metering point.

TABLE 3-3 ENERGY COST SAVINGS OF LOAD MANAGEMENT ON WMATA USING COASTING (1983 DOLLARS)

|          | DEMAND |      |        | NTHLY DEMAND SAVINGS(KW)<br>DASTING INITIATED AFTER: |        |        | ENERGY CDST SAVINGS<br>\$K/MONTH |        |  |
|----------|--------|------|--------|------------------------------------------------------|--------|--------|----------------------------------|--------|--|
|          | RATE   | (KW) | 10 MIN | 15 MIN                                               | 20 MIN | 10 MIN | 15 MIN                           | 20 MIN |  |
| PEPCO DC | 11.70  | 2300 | 1533   | 1150                                                 | 767    | 17.9   | 13.5                             | 9.0    |  |
| PEPCO MD | 9.85   | 670  | 447    | 335                                                  | 223    | 4.4    | 3.3                              | 2.2    |  |
| PEPCO VA | 7.85   | 150  | 100    | 75                                                   | 50     | 0.8    | 0.6                              | 0.4    |  |
| TOTAL    |        | 3120 | 2080   | 1560                                                 | 1040   | 23.1   | 17.3                             | 11.6   |  |

TABLE 3-4 COST/EFFECTIVENESS OF LOAD MANAGEMENT AT WMATA (1983 DOLLARS)

| 81 0.84<br>.5 6.5 |
|-------------------|
|                   |
| .1 23.1           |
| .3 17.3           |
| .6 11.6           |
|                   |
| .2 3.4            |
| .2 4.8            |
| .7 8.2            |
|                   |

\* High Voltage Equipment
 \*\* Time of demand interval when coasting is initialized
 + Based on 12%/year cost of money

COST DETAILS OF REAL TIME POWER DEMAND MONITORING TABLE 3-5 SYSTEM ON MARTA (1985 DOLLARS)

A. Initial Cost

|    | Hardware Cost<br>High Voltage Equipment<br>Engineering Labor (1 MY \$90K) | \$ 19 1K<br>\$368K<br>\$90K |
|----|---------------------------------------------------------------------------|-----------------------------|
|    | Total w/o high voltage equipment<br>w high voltage equipment              | \$28 1K<br>\$649K           |
| 8. | Recurring Cost                                                            |                             |
|    | Telephone Lines \$38/Month/Mtrg Pnt)<br>Technician (\$60K/yr)             | \$11.9K<br>\$60.0K          |
|    | TOTAL                                                                     | \$71.9K                     |

## TABLE 3-6 COST/EFFECTIVENESS OF LOAD MANAGEMENT ON MARTA (1985 DOLLARS)

#### WITH+ WITHOUT+

| INITIAL COST(\$K)                           | 281.0     | 649.0  |       |      |      |
|---------------------------------------------|-----------|--------|-------|------|------|
| RECURRING COST(\$K/MONTH)                   | 6.0       | 6.0    |       |      |      |
| DEMAND RATE(\$/KW)                          |           |        | 11.62 |      |      |
| BASE DEMAND LEVEL(KW)<br>DEMAND SAVINGS(KW) | 1000      | 2000   | 3000  | 4000 | 5000 |
| 20 MIN++                                    | 667       | 1333   | 2000  | 2667 | 3333 |
| 30 MIN                                      | 500       | 1000   | 1500  | 2000 | 2500 |
| 40 MIN                                      | 333       | 667    | 1000  | 1333 | 1667 |
| DEMAND SAVINGS(\$K/MONTH)                   |           |        |       |      |      |
| 20 MIN++                                    | 7.7       | 15.5   | 23.2  | 31.0 | 38.7 |
| 30 MIN                                      | 5.8       | 11.6   | 17.4  | 23.2 | 29.1 |
| 40 MIN                                      | 3.9       | 7.7    | 11.6  | 15.5 | 19.4 |
| PAYBACK PERIOD(YRS)(WITHOU                  | T HV EQUI | PENT)+ |       |      |      |
| 20 MIN**                                    | NP        | 2.2    | 1.3   | 0.9  | 0.7  |
| 30 MIN                                      | NP        | 3.4    | 1.8   | 1.3  | 1.0  |
| 40 MIN                                      | NP        | NP     | 3.4   | 2.2  | 1.6  |

| PAYBACK PERIOD(YRS)(WITH HV | EQUIPMEN | IT )+ |     |     |     |
|-----------------------------|----------|-------|-----|-----|-----|
| 20 MIN**                    | NP       | 4.4   | 2.7 | 2.0 | 1.5 |
| 30 MIN                      | NP       | NP    | 3.8 | 2.7 | 2.1 |
| 40 MIN                      | NP       | NP    | NP  | 4.4 | 3.3 |

High Voltage Equipment

++ Time into Demand Interval for Load Shedding

+ Cost of money at 12%/year

NP No Payback

## TABLE 3-7COST CDEFFICIENTS FORBATTERY STORAGE SYSTEM (1985 DOLLARS)

| SYSTEM           | STEM       |                  | BATTERY COST    |                  | CONVERTER COST  |                 | PLANT COST      |  |
|------------------|------------|------------------|-----------------|------------------|-----------------|-----------------|-----------------|--|
| TYPE             | SIZE (MWh) | FIXED<br>C<br>BO | UNIT<br>C<br>B1 | FIXED<br>C<br>CO | UNIT<br>C<br>C1 | FIXED<br>C<br>P | UNIT<br>C<br>PO |  |
|                  |            | (\$K)            | (\$/KWH)        | (\$K)            | (\$/KW)         | (\$K)           | (\$/KWH)        |  |
| Lead-Acid        | 1 00       | 0 Oč             | : 150-20        | 400.00           | 370.00          | 100.00          | 295.20          |  |
| Lease Acted      | 2 00       | 0.18             | 146.10          | 400.00           | 250.45          | 100.00          | 187.85          |  |
| Elected and per- | 4 (8)      | <b>()</b> (5)    | 1 1 1 2 1 7 1   | 400.00           | 198.30          | 100.00          | 155.83          |  |
| Central Ac FUE   | £j (3)()   | Ó (H             | 2 1312 AS2      | 400.00           | 196.48          | 100.00          | 146.98          |  |
| Lead Actual      | 8.00       | 0.00             | J 137-94        | 400.00           | 168.63          | 100.00          | · · • =         |  |
| Zinc Chioride    | 6.00       | 0.00             | 581.45          | 400.00           | 196.48          | 100.00          | 262.70          |  |

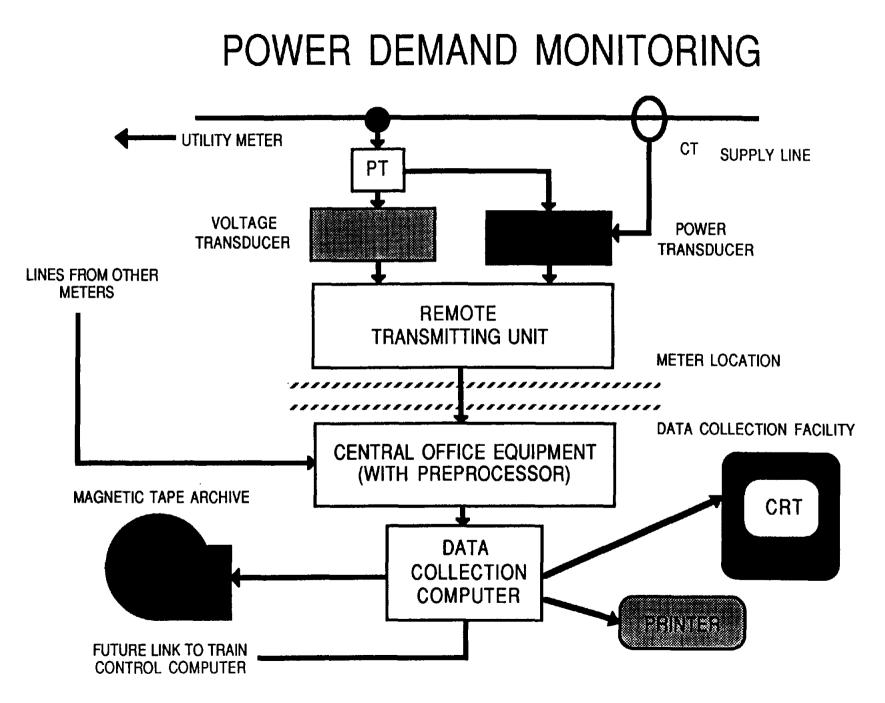
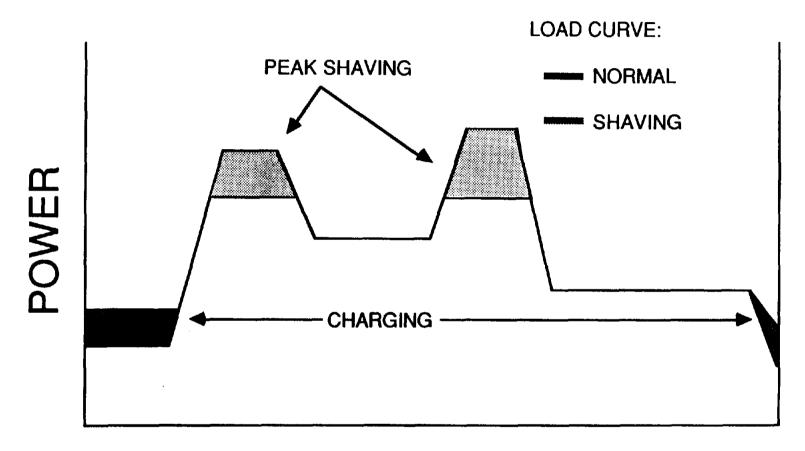

| System |        |       |        | Demand<br>Charge<br>\$/KW | •                     | Avg. annual<br>Net Savings<br>K\$ | Avg. annual<br>Cash Flow<br>K <b>\$</b> |
|--------|--------|-------|--------|---------------------------|-----------------------|-----------------------------------|-----------------------------------------|
|        | 2.     | 1,703 | 2,285  | 5.00                      | >25                   |                                   | -69.                                    |
| ( 1 MW | shaved | )     |        | 10.00<br>15.00<br>20.00   | >25<br>13.21<br>9.25  |                                   | -7.<br>55.<br>117.                      |
|        | 4.     | 2.502 | 3,628  | 5.00                      | >25                   |                                   | -78.                                    |
| ( 2 MW | shaved | )     |        | 10.00<br>15.00<br>20.00   | 15,68<br>7,85<br>5,64 | 191.<br>315.<br>439.              | 46.<br>170.<br>294.                     |
|        | 6.     | 3,300 | 4,970  | 5.00                      | >25                   |                                   | -87.                                    |
| ( 3 MW | shaved | )     |        | 10.00<br>15.00<br>20.00   | 13.52<br>6.77<br>4.89 |                                   | 99.<br>285.<br>471.                     |
|        | 10.    | 4,896 | 7,655  | 5.00                      | >25                   |                                   | - 105.                                  |
| ( 5 MW | shaved | )     |        | 10.00<br>15.00<br>20.00   |                       | 511.<br>821.<br>1131.             | 205.<br>515.<br>825.                    |
|        | 4.     | 6,492 | 10,340 | 5.00                      | >25                   |                                   | -124.                                   |
|        |        |       |        | 7.50                      | 19.73<br>11.26        |                                   | 94.<br>311.                             |
| ( 7 MW | shaved | )     |        | 15.00                     | 5.58                  |                                   | 745.<br>1179.                           |
|        |        |       |        |                           |                       |                                   |                                         |

Table 3-8 Summary of Peak Load Shaving Effectiveness


Notes: Assumed 2 cycles per day

each cycle 2 hours long. Therefore, for example, if the demand is shaved by 1 MW, then the battery delivers 2 MWH per cycle, and this has to be the size of the battery/system.

Have taken 2 cycles per day, 20 days per month every month of the year, for a total of 480 cycles per year.



# PEAK LOAD SHAVING



## TIME OF DAY

## 4. RAIL TRACTION ENERGY MANAGEMENT MODEL

#### 4.1. INTRODUCTION

The rail transit energy management model (EMM) is a group of computer programs which can be used to study the traction power costs on rail transit systems and electrified commuter railroads. The EMM consists of two major simulators and several computer programs which service these simulators both on the input and output side. The two major simulators are the Train Performance Simulator (TPS) and the Electric Network Simulator (ENS). Both work together to simulate schedule performance and energy consumption under normal and abnormal operation and under the application of energy conservation strategies to the transit system. Although originally designed for application to electric powered transportation systems, a fuel consumption routine has been added to the TPS and allows simulation of energy consumption on non-electrified systems.

The next section presents a brief description of the EMM and its capabilities. The next two sections describe the TPS and ENS, respectively, their input requirements and output capabilities, and the methodologies used in simulation.

#### 4.2. BRIEF DESCRIPTION OF THE ENERGY MANAGEMENT MODEL

#### 4.2.1. Objectives

The package of computer programs which constitute the EMM has been designed to meet certain functional and architectural objectives.

#### 4.2.1.1. Functional Objectives

The functional objectives define what the package is expected to accomplish. They are:

1. To realistically simulate power and energy use of existing and future electric powered transportation systems.

- 2. To separate the system's energy consumption into its important end uses and to provide the means to identify cause-effect relationships between the end uses and equipment design and operating practices.
- 3. To provide the means to develop, refine and test energy conservation strategies before they are tested and implemented on the real system.

#### 4.2.1.2. Architectural Objectives

The architectural objectives define how the package is built. They are:

- 1. To be modular at all levels so that any module can be developed, tested and verified, independently and can be inserted or replaced in the package without a major retrofit, which affects the package integrity.
- 2. To have a maximum of hardware independence and to be written in a widely used language. (In practice, no large package can come close to being machine independent, but steps can be taken to minimize the effort required to move the package from one computer to another.)
- 3. To have enough flexibility in structure to accommodate new models, new energy conserving strategies and new technology.

#### 4.2.2. Approach

The approach to simulating an electric powered transportation system; i.e., to

determine its schedule performance, power flows and energy consumption, and other

pertinent information, involves the following steps:

- 1. For each train in the system, assemble raw data on its physical and performance characteristics, the route and schedule it is to follow, and the physical characteristics of the route it is to follow.
- 2. Assemble raw data on the electrical configuration and component characteristics of the network supplying power to the trains.
- 3. The raw data assembled in steps 1 and 2 are processed and put into a form which is acceptable to the simulators.
- 4. Treating each train separately, calculate tables of its speed, position and power draw against time (hereafter called a power profile); and, from these tables, assemble a master table, which for selected time instants which span the period under investigation, contains information on the locations and electric power draw of every train on the system.
- 5. At each of the selected time instants, calculate the voltages, currents and real and reactive power flows for all salient points in the electrical network.
- 6. Integrate the power flows over all of the time instants in the simulation period to give energies and wattless flow.

In steps 1-6, the transportation system's energy consumption is synthesized from its end uses (examples of these end uses are energy consumed by on-board auxiliaries, losses in propulsion equipment, third rail losses, etc.). Thus, the simulation provides a means to identify the end uses, calculate the overall consumption and test sensitivities of both end uses and consumption to changes in design and operation of the system.

The EMM is designed to be run by competent engineers who have electrical, computer and transportation system experience. Recognizing this, allowances are made for knowledgeable professionals to interact with the package at two levels:

- 1. Through identification and creation of strategies that are systematic enough to be automated and consequently can become permanent package features; and,
- 2. Through direct interaction with the package in a time shared mode so that knowledgeable trial-and-error can be used to find solutions.

The overall package is assembled from the principal modules shown in Figure 1. Each of the programs within the modules is an independent entity developed, tested, verified and used, separately. All programs are written exclusively in FORTRAN 77. Each principal program is modular in structure to facilitate continued development, maintenance and upgrading. At every level, each module is defined with respect to its function, input and output.

#### 4.2.3. Principal Modules

The EMM consists of five principal components: a Train Performance Simulator, an Electric Network Simulator, an Energy Cost Module, an input File Construction Module, and a File Manipulation Module. The deployment of the principal and support components of the package is shown in the figure.

#### 4.2.3.1. Train Performance Simulator (TPS)

The TPS accepts as input, vehicle parameters such as weight, propulsion system characteristics (tractive effort and efficiencies vs. speed and tractive effort), train resistance, numbers and types of vehicles in train, auxiliary electric loads, and passenger load factors; wayside parameters such as power distribution system type (DC, single phase AC or three phase AC), voltage and right-of-way profile (grade, curve and speed restriction as a function of location); and system operational characteristics such as acceleration and braking rates, maximum speed and station dwell times. The program simulates the operation of a single train under the input conditions. Outputs include power profiles (real power for DC distribution and real and reactive power for AC distribution as a function of location). The program will accept trains with dynamic braking capability and the energy can be fed into storage devices aboard the vehicle (batteries or flywheels), dissipative devices aboard the vehicle (resistors), or other trains external to the train (regeneration) using the power distribution system.

Various forms of coasting (running trains with a power off condition) can be accommodated.

There are many other programs that can perform some or all of these functions. This program is unusual, not in terms of its functions, but its structure. First, it is modular and therefore can continue to easily grow. For instance, if new propulsion system models, or more accurate train resistance formulae are needed, the existing modules in which these are contained can easily be augmented or replaced.

#### 4.2.3.2. Electric Network Simulator (ENS)

This program accepts as input single train power and time profiles as a function of location along the right-of-way, timetables for movement of multiple trains, power rail, catenary or trolley impedances, running rail impedances, substation locations and characteristics, operating voltage both nominal, maximum and minimum,

characteristics of the distribution network, the substations, and metering point locations. This program simulates the movement of the trains by taking snapshots of the entire system at fixed intervals of time. The calculated output of this program is a complete electrical picture of the system including power flows, voltages, currents and losses at all salient points. In particular, power through metering points (forward and reverse), power distribution system and substation losses are computed. Capability for regeneration to other trains and/or through regenerative substations (even though metering points) is also included.

#### 4.2.3.3. Energy Cost Module (ECM)

The Energy Cost Module (ECM) consists of two computer programs which use the output of the ENS to compute such things as power demand at meters, coincident power demand and energy consumption. It does not compute energy costs directly, but rather provides the basis for a simple manual computation of these costs. This approach was taken since power rate structures vary greatly among transportation authorities.

The two programs which constitute the ECM are the Appended and Consolidated Load Curve (APL) program and the Energy-Demand Consolidation (EDC) program.

The APL uses as input, meter load curves which have been generated by the ENS. It appends these load curves and consolidates them by only selecting those meters which are designated for consolidation (i.e., they belong to the same power company or some other reason for consolidation). The time span of the resulting appended coincident load curve is the union of the set of time spans from the individual load curves.

The EDC uses as input a set of coincident meter load curves and summarizes the meter readings over the stated demand intervals.

#### 4.2.3.4. File Construction Module (FILCMD)

The FILCMD is a series of computer programs, which interact with the user to transform raw transit system and vehicle data to files which are acceptable input to the ENS and TPS. A brief description of each of these programs is given here.

AMF - Current Position File Construction | The positions along the track where instantaneous and RMS third rail or trolley current(amps) is to be calculated and displayed as output from ENS are specified using this program. The resulting file is used as input to the ENS. It requires a successive entry input file created by the user, either manually, or by using the program SUC, to be described later.

CLF - Control File Construction { Control and system type parameters, such as displays desired, train movement direction, maximum speed, acceleration and deceleration, and coasting parameters are developed using this process. The resulting file is used as input to the TPS.

NFC - Network File Construction | The electric network, in which the transit system operates and from which it obtains power, is specified using this program. The resulting file is used as input to the ENS.

OPF - Operating File Construction | This program constructs the operating file, which is used as input to the ENS. The file contains the time range over which the simulation is to run, and the time interval between snapshots of the power flows in the electric network.

STF - Station File Construction | This program constructs the station file, from an input file which was created by the user, either manually or using the program SUC, described next. The station file contains the position and names of the passenger stations and stops as well as dwell times and expected passenger loadings. SUC - General File Construction | This program is a general file construction process which uses an input format file to prompt the user to create a file consisting of records whose lengths are one entry. The successive records in the file follow the format and may be repeated indefinitely. The resulting output is an intermediate file which is used as input to other FILCMD programs, which create the final ENS and TPS acceptable files. Intermediate files created in this manner are station, grade, curve, speed restrictions, route and current position.

TLF - Train Location File Construction | The specification of the method (headway, position, timetable) for locating trains on the electric network and the subsequent construction of the train location file is achieved using this program. The resulting file is used as input to ENS.

TNF - Train File Construction | This process is used to create the train file, which is input to the TPS. The TNF uses a propulsion model which calls on actual manufacturer's data to determine propulsion system efficiencies in power and brake modes. It can accommodate cam or chopper control with series or separately excited motors.

TRF - Profile Construction | This program is used to create a file in a format acceptable as input to TPS, given an intermediate file of successive entry records, containing the data. The intermediate file is either generated manually or by using the program SUC.

#### 4.2.3.5. File Manipulation Module

There are several utility programs which manipulate the output files from the ENS and TPS. These programs are described below.

CMB - Power Profile Appender | This process appends several power profiles, which are output from the TPS and combines them into one power profile. This utility is exercised when it is convenient to run train performance on several

connected track segments separately, and later combine the results for input into the ENS or other programs.

EXP - Load Curve Projector | This process is useful to expand meter load curve cycles over time, when it is known that the original load curve is cyclic in nature. Such would be the case for a transit system operating with constant headway between identical trains.

PAV - Power Profile Averager | This program develops an average power profile given two or more power profiles(TPS Output) from different trains. For example, a train made up of mixed chopper and cam control cars with identical performance characteristics could be simulated by running two trains, one of them with all chopper cars and the other with all cam control cars. Using PAV, the mixed train power profile is developed from the other two power profiles.

#### 4.3. TRAIN PERFORMANCE SIMULATOR

The TPS is a program which accepts input data describing the characteristics of a train and information about stations, grade, curvature and speed restriction profiles of a corridor. These data are used to simulate the motion of the train along the corridor in order to obtain the trajectory of the train (speed and time vs. distance along the corridor) as well as its power profile in a format acceptable to the ENS.

#### 4.3.1. Input

Input data for the TPS are divided into four major categories: file definition, simulation or control parameters, train data and right of way data. The first category includes the names of files to be used as input data to the TPS and the names of files for output data. The second category includes selections for output display, input/output controls and general transportation system parameters such as acceleration, deceleration, top speed and starting position. The third category includes train makeup, on-board energy storage capability, propulsion and braking

characteristics. The fourth category includes station mileposts, dwell times and load factors, speed restrictions, grade and alignment profiles and routing information.

#### 4.3.1.1. File Definition

The File of Filenames contains the names of the input and output files which will be used in the TPS run.

The first seven records are input filenames: The first record contains the name of the control file which contains the system and control parameters. The second record is the name of the train file, which contains information on the makeup of the train, including the propulsion and braking system. The next five records contain the names of the station, grade, curve, speed restriction and route files, all of which comprise the corridor data.

The last three records of the File of Filenames contain the output filenames: The first record contains the name of the power profiles; the second, the name of the detailed output file and; the third, the name of the summary output file.

The user has the option of entering the names of these ten files, manually, in which case the File of Filenames would not be required as input.

#### 4.3.1.2. Simulation and Control Parameters

The simulation and train control parameters are set in the Control File. Five graph choices and ten tabular displays for detailed output can be chosen from thirty nine parameters. Train control parameters are also set in this file. These include acceleration and deceleration rates, maximum speed, coasting and direction of train movement.

#### 4.3.1.3. Train Data

Most of the data relative to the characteristics reside in the Train File. The

variables are grouped in four sections:

- Section 1 provides weight and dimensional type information, train resistance data and control information which key other inputs for the Train File.
- Section 2 provides data on any on board storage devices. These data include maximum input and output power, maximum and minimum energy storage, decay rates, and input and output efficiencies.
- Section 3 contains the information on converting mechanical power at the rail to electric power at the third rail, catenary or trolley or to fuel consumption. One of four choices can be made:
  - Use of an internal electric propulsion model
  - Use of efficiency arrays in both power and electrical braking, in which the efficiencies are a function of tractive or electrical braking effort and speed.
  - Use of direct conversion of rail horsepower to fuel rate.
  - Use of fuel consumption curves.
- Section 4 contains the maximum tractive, electrical braking and mechanical braking curves as a function of speed. The nominal tractive and braking efforts are set in the Control File.

#### 4.3.1.4. Right of Way Data

The description of the corridor is shared among the Station, Grade, Curve, Speed Restriction, and Route Files, which are read by the TPS in that order. In each file, an integer variable indicates the number of records in the file. The principal purpose of routing is to distinguish between tracks on different routes that a train may take through a complex network.

#### 4.3.2. The Main Program Description

The TPS uses discreet, adjustable time steps to integrate the equations of motion to obtain speed and position as a function of time. Electric power consumption is determined using propulsion system models which outputs electric power as a function of tractive and dynamic braking effort and speed. The models do not reside within the TPS, but the results of the models are part of the train file, which is input data. Using this method is efficient, since the TPS is not burdened with the recalculations necessary with a sophisticated propulsion model for every tractive effort-speed point in the trajectory.

A simplified flow diagram for the TPS is shown in Figure 2. In addition to the usual bookkeeping in such programs, the core of the program is contained in the forward and backward trajectory calculations. In the forward calculations, the equations of motion are integrated in the direction of positive time flow, while in the backward calculations, they are integrated in the direction of negative time flow. An example of the trajectory calculations is illustrated with the help of Figure 3.

To move from point A to B in the figure, the following steps would be taken if a minimum time trajectory were taken:

- 1. A forward trajectory would be developed from A to C by using maximum acceleration followed by maintaining the speed determined by the speed limit until the lower speed limit at C was encountered.
- 2. A backward trajectory calculation would then follow using maximum deceleration from C to F using negative time steps. The point F is determined by the intersection of the backward trajectory with the forward trajectory.
- 3. A forward trajectory is continued from to C to D, the point at which a higher speed limit is encountered.
- 4. A forward trajectory is developed from D to B by using maximum acceleration until the lower speed limit at B was encountered.
- 5. A backward trajectory using maximum deceleration from B to E using negative time steps. The point E is determined by the intersection of the backward trajectory with the forward trajectory.
- 6. Adjustments are made in the time increments to bring the forward and backward trajectories into synchronization.

Train length is accounted for in obeying speed restrictions; namely, the speed of the train is less than or equal to the speed limit when the head of the train enters the restricted zone and the same condition is true when the tail leaves the

zone.

Train resistance is computed from data in the train file. The algorithms used in these calculations allow measured values to be closely approximated.

#### 4.3.3. Output

There are three separately selectable outputs from the TPS. These are the Detailed, Summary, and Power Profile outputs.

#### 4.3.3.1. Detailed Output

The Detailed Output has six parts. The first part summarizes the input data concerning the train. Information concerning the number of vehicles, (powered and unpowered), vehicle empty and full weights as well as passenger load factor to start and train weight; number of motors, vehicle lengths and cross sectional areas; wheel diameter, and operating voltage are printed out when selected. Four character plots are also supplied. These graphs show acceleration versus speed and braking force (both electrical and mechanical) versus speed.

The second part lists the track profile and station information. All grades, curves, speed restrictions, and route segments are displayed versus distance. Station names, mileposts, dwell times and passenger load factors are all displayed.

The third part allows the user to select up to ten variables to be printed out at selected time increments during the calculation. There are thirty-nine variables from which to choose including speed, distance, acceleration, all of the various power variables, and all of the associated energy variables. Time is always displayed.

The fourth part allows the user to specify up to five variables to be plotted against distance in a character plot. These five variables can be selected from the thirty-nine mentioned above. The plot is completely self-scaling; however, the user may specify the horizontal scale.

The fifth part summarizes the on-board energy storage information.

The program summarizes the energy usage and power demand of the train for the entire run in the Detailed Output. Some information concerning the train make-up is repeated for clarity. Overall figures on kilowatt hours per car mile and watt hours per trailing ton mile are computed and displayed. Total distance, run time, average speed, and other summary information is also displayed. The actual energy consumption is also displayed as are all of its constituent parts such as energy going to rolling friction losses, etc. An energy flow diagram can be developed from this section of the output which graphically shows how much energy is lost to the environment and where these losses occur.

#### 4.3.3.2. Summary Output

The Summary Output provides a station-by-station summary of the run. The station-to-station names, distances, time(including dwell), average speeds, energies and energies per car mile are displayed as well as a summary of these same quantities for the entire run.

#### 4.3.3.3. Power Profile Output

The program creates a Power Profile containing information for the ENS. This file lists the train position, speed, routing real and reactive power demand, acceleration and tractive effort as a function of time. The user specifies the time increment between successive points in this output.

#### 4.4. METHODOLOGY

The TPS generates a speed, distance, routing, real and reactive power table as a function of time. It uses discrete time steps to integrate the equations of motion. Speed and distance are determined by integrating the equation of motion. Real and reactive power are determined by either using a propulsion system model to determine them as a function of tractive effort and speed of the propulsion unit or by converting mechanical power at the rail to real and reactive electrical power at the line using conversion efficiencies which are also functions of tractive effort and speed.

#### 4.4.1. Equations of Motion

The equation of motions are shown in Figure 4. The grade and curve resistance are also shown in the same figure.

The train resistance used in the computation follows the Davis type formulae. The actual formulae used are shown in Figure 4. Selection of the coefficients allow a close approximation to measured values.

The acceleration term in Figure 4 is written in the form:

 $M_{\rm c} * dv/dt = 100. * W * a$  where:

a is the acceleration(mphps)

W is the weight(tons).

This method of expressing the acceleration term includes an effect of approximately 10% for equivalent rotational weight. Changes in equivalent rotational weight can easily be made with a text editor in the program itself.

#### 4.4.1.1. Integration Formulae

Acceleration is integrated using Euler's Method to find speed

$$V_{n+1} = V_n + dt * A_n$$

at each step in time, in the forward calculation. In the backward calculation a reverse Euler's Method is employed as the index is being decremented (for negative time step).

$$V_n = V_{n+1} - dt * A_{n+1}$$

The trapezoidal rule is employed to integrate speed and determine distance. This method yields identical results for the forward and backward calculations though the form is slightly different.

$$S_{n+1} = S_n + dt * (V_n + V_{n+1})/2$$
 Forward  
 $S_n = S_{n+1} - dt * (V_n + V_{n+1})/2$  Backward

When calculating energy from the instantaneous values of power, Euler's Method is again used.

$$E_{n+1} = E_n + dt * P_n$$

There is no need to have a forward and a backward calculation at this point since the entire integration is in the forward direction using Euler's Method.

#### 4.4.2. Real and Reactive Power Estimates

It has been found by experience that a better way to input the propulsion system is to use propulsion efficiency and power factor curves for traction and electrical braking. Both efficiency and power factor are functions of both tractive effort and speed. This method is advantageous in that it allows the model calculations to be done before running the TPS, which is efficient in terms of running time. A simple linear interpolation scheme is used to obtain the actual efficiency and power factor (for AC distribution systems) in the power mode and the efficiency in the electrical braking mode.

#### 4.5. ELECTRIC NETWORK SIMULATOR

The Electric Network Simulator (ENS) is a computer program which determines the overall power flow in an electrified transportation system under the dynamic conditions of train movement.

#### 4.5.1. Input

Input data for the ENS are divided into six basic areas: file definition, electric network description, operating parameters, train location, current calculation designation, and train performance power profiles.

The first area includes the names of files to be used as input data to the ENS and the names of files to capture the generated output. The second area provides a description of the electric network which is feeding the moving trains. The third category provides the operating parameters for simulation. The fourth area deals with the specification of the location of trains and their movement in time. The fifth defines positions along the corridor where instantaneous and RMS values of third rail or trolley current will be computed. And finally, the sixth category includes a sequence of power profiles which have been generated by the TPS for each type train running on the system.

#### 4.5.1.1. File of Filenames

The first four records are the input filenames. The first record contains the name of the network description file, the second record contains the name of the operating time file, the third record has the name of the train locator file, and the fourth record shows the name of the current position file.

The next three records in the file are output files which the user may or may not specify. These files include the detailed output file, the meter load curve file, and the current measurement output file. This latter file can only be requested when a current position input file is named.

The remaining records in the file specify the names of the power profiles for each of the trains which will be running on the system.

#### 4.5.1.2. Electric Network Description File

The electric network description consists of a general portion, definition of the AC part of the network, definition of the DC part of the network, and definition of the converter portion, which is the interface between AC and DC sections.

There are several points worth noting on the input format to the network description file.

- 1. Two titles of eighty characters each can be used to describe the electric network. These titles will appear on both the summary and detailed output.
- 2. In general the electric rail transit in North America have both an AC and DC part to the network. In many cases the AC portion consists of just a meter node and an AC converter node for each substation. There are cases, however, where more extensive AC distribution and transmission does occur.

3. The meter node is considered an infinite bus, and as such the voltage will remain fixed. for all other nodes in the system the voltage will vary according to the solution of the network equations.

#### 4.5.1.3. Operating Time File

The Operating Time File controls both the time interval over which the simulation takes place plus the snapshot interval, or the time between snapshots.

#### 4.5.1.4. Train Locator File

The method for locating trains on the electric network and the parameters for execution of that method are determined using the train locator file. The user may specify both AC or DC trains, that is, trains which obtain their power from a line which carries AC or DC, and the method for locating the trains which may be by POSITION, TIMETABLE, or HEADWAY AND OFFSET.

Locating trains by specifying their POSITION means that the trains are placed on the network at particular locations. As the simulation advances in time, the trains will move according to their power profiles, and eventually will move from the network as they reach their terminating points. No new trains are added to the system after the beginning of the simulation. This method for locating the trains is useful when only a few snapshots of the system are taken at special positions to determine instantaneous currents and voltage drop.

The TIMETABLE method for train location is the usual way to effect the process. A schedule is specified, and the ENS places the trains on the network following that schedule. Departure times are considered the beginning point of the power profile. as the simulation proceeds trains are added and removed from the network as specified by the schedule.

The HEADWAY AND OFFSET method for locating trains is used in limited circumstances. The condition for specifying the method is a double track system between two terminus points with a regular schedule. The headway, which is the separation between trains running on the same track, is given as a time interval (seconds). The offset, which is the difference in the time when the trains leave one terminal relative to the second terminal, is also input as a time interval (seconds).

The offset can vary between zero, in which the trains leave each of the terminals simultaneously, to one second less than one headway.

#### 4.5.1.5. Current Position File

This file specifies the position at which line current will be computed and displayed, for each snapshot and in summary form as an RMS current. The position is specified as both a milepost and track number. The actual current calculated at that position will be flowing through the third rail, or alternatively, the trolley or catenary.

#### 4.5.1.6. Train Power Profiles

The train power profile is a direct output from the TPS. It is the specification of how a particular train will run through the network as the simulation advances in time. The actual power used or regenerated by the train is also contained in the records of this file.

#### 4.5.1.7. Main Program Description

This program accepts as input, single train power and time profiles as functions of location along the right of way, timetables for movement of multiple trains, power rail, catenary or trolley impedances, running rail impedances, substation locations and characteristics, operating voltages-nominal, maximum and minimum, characteristics of the distribution network, the substation feeders, and metering point locations and simulates the movement of the trains by taking snapshots of the entire system at fixed intervals in time. The output gives a complete electrical picture of the system including power flows, voltages, currents and losses at all salient points. In particular, power through metering points (forward and reverse), third rail propulsion system and substation losses and energy given to the environment (train resistance, auxiliary loads, friction or dissipative braking) are computed. Capability for regeneration to other trains and/or through regenerative substations (even through metering points), is also included.

The flow diagram for the ENS is shown in Figure 5.

The electric network in which the trains run is first set up without the trains. This means that all of the nodes are identified and all of the impedances of the connecting lines are computed.

In each snapshot (calculational time), the trains are placed in their proper positions as determined from the timetable and the power profiles of the trains which were computed by the TPS. The new electric network is set up which includes new lines between trains and all line impedances are calculated. Both the DC and AC parts of the network are converted to an interconnected AC network with the DC substation lines and train nodes treated specially. The admittance matrix is calculated and the network is solved.

In the case of trains which are taking DC power and are capable of regenerating, if power tries to flow in the reverse direction through the substation lines, the substation impedance is increased substantially and the network is resolved. Likewise, if maximum voltage at any train is exceeded because of regeneration, the regenerated power is reduced and the network is resolved.

#### 4.5.2. Output

The output, all of which is user selectable, consists of three files: detailed output, meter load curves, and current measurement.

#### 4.5.2.1. Detailed Output

The detailed output consists of a title page, a description of the input parameters and a detailed output of the voltages at each node and other data concerning the run at each snapshot.

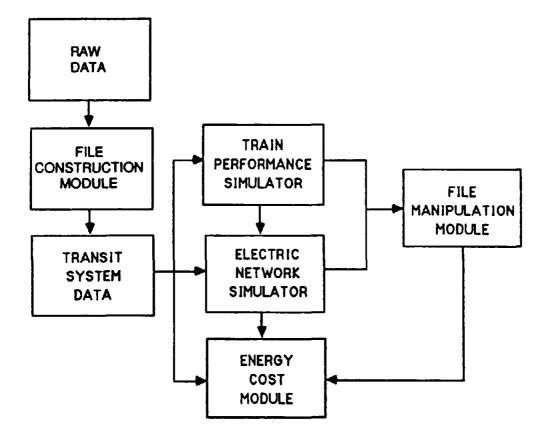
#### 4.5.2.2. Meter Load Curves

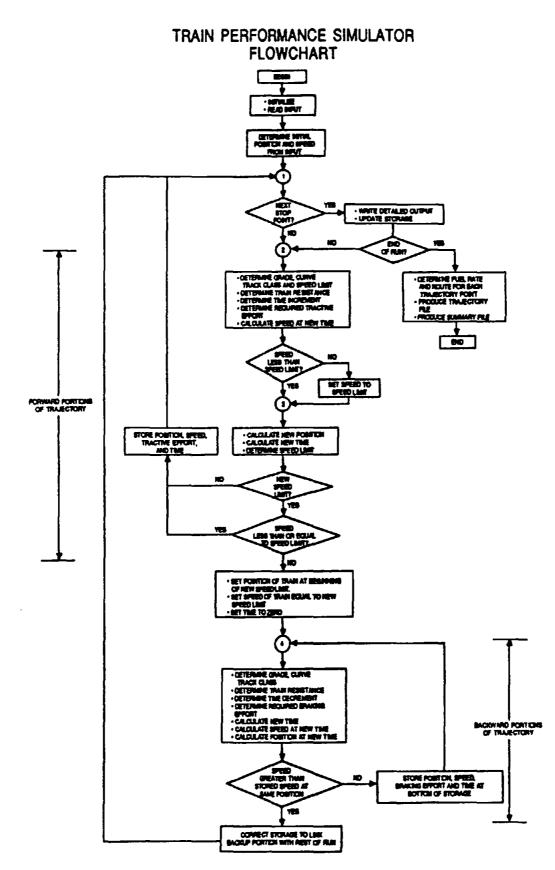
Meter load curves for each meter are output one point per snapshot. The file contains this information as well as the number of snapshots, time interval between snapshots, and beginning and end time. This file is used as an input to the energy - demand consolidation program which is used to predict demand and energy.

#### 4.5.2.3. Current Measurement Output

This file contains a detailed output of all voltages at all of the nodes, currents flowing through the converters and currents at selected points along the right of way (third rail, catenary or trolley). These points are selected by specifying a current position file as input. The information just described is output every snapshot and is summarized at the end for the whole simulation period.

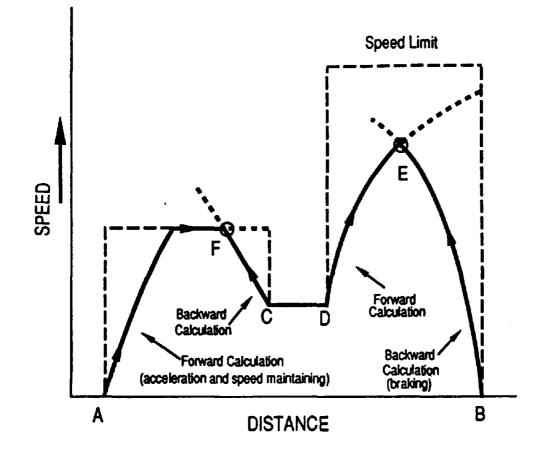
#### 4.5.3. Methodology


#### 4.5.3.1. Load Flow

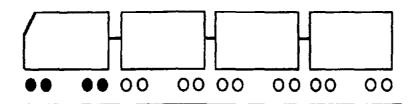

The load flow calculation uses the Gauss-Seidel iterative method. This module differs from conventional load flow calculations. It has the capability to handle either AC, DC or composite networks.

The basic steps are:

- 1. Convert the system to an all AC network keeping a record of the DC part and the converters.
- 2. Perform the load flow calculation on the AC network.
- 3. Check the current flows through all the converters. If the converter is an inverter, the current can flow both ways. If the converter is a rectifier and current tries to flow in the blocked direction, increase the impedance of the rectifier in a sizable step. If the current is flowing in the unblocked direction set the rectifier impedance in accordance with the rectifier model.


- 4. Repeat procedure 2 and 3 until convergence is obtained.
- 5. After convergence is obtained, the voltage for each vehicle is checked in the system. If there is any vehicle with its voltage exceeding maximum allowable then its regeneration power is reduced by 25%.
- 6. Repeat procedure 4 and 5 until convergence is obtained.
- 7. Continue with the next snapshot, go to procedure 1.
- 8. When snapshots are finished formalize output.






.

Figure 2



### Figure 3 TPS Trajectory Calculation Methodology



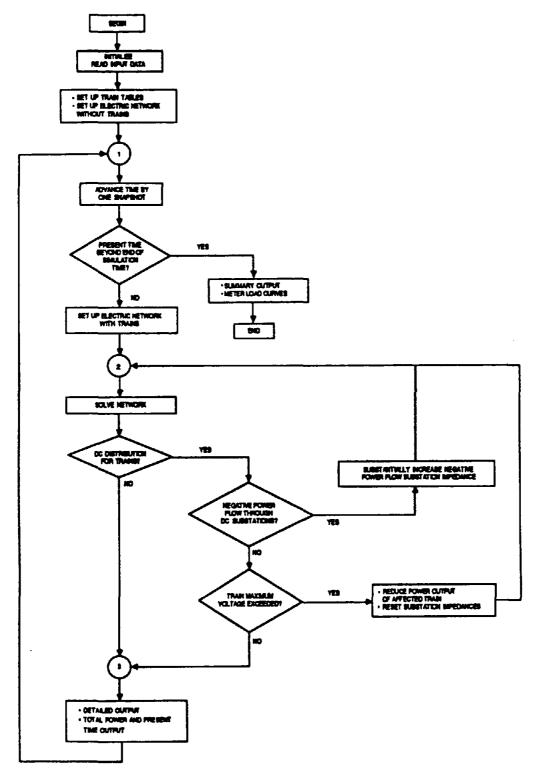
EQUATION OF MOTION

 $F_A - T_{RR} - T_{RA} - G - C = M_E \cdot dV/dT$ 

DEFINITION OF QUANITITIES:

F<sub>A</sub> Tractive effort (positive) of Braking effort (negative)

T<sub>RR</sub> Rolling portion of train resistance


T<sub>RA</sub> Aerodynamic portion of train resistance.

- C Curve resistance [0.8 LBS/TON \*CURVATURE]
- G Grade resistance [20 LBS/TON/%GRADE]
- M<sub>E</sub> Equivalent mass to include rotational inertia effects

dV/dT Acceleration or deceleration

driver wheel
 non-driver wheel

#### ELECTRIC NETWORK SIMULATOR FLOWCHART



## 5. ENERGY AUDIT

#### 5.1. INTRODUCTION

The purpose of the energy audit is to determine the energy use pattern and its relation to the operating rail system. This can be done by studying the metered power and its end uses as a function of time and relating this study to variations in the pattern of operation.

Since the energy use pattern should be related to energy cost, it is important that the metering information required for the audit be obtained from electric utility metering records. This information is sometimes available on magnetic tape. The smallest time interval available for the audit is the smallest interval for which metering data are available.

For those transit agencies which are served by electric utilities which do not keep detailed metering records, analysis of electric bills may be possible. In this case, just the value of peak demand is known and total monthly energy use. Under these circumstances, only very gross characteristics of the energy use pattern can be determined.

There are two principal analyses which can be carried out using metering records. The first analysis relates the metering data to the operating characteristics which are driving energy use, and these are car-miles per unit time and ambient temperature (heating and cooling). The second analysis provides statistical summaries of the data. These summaries, which include such things as average values, standard deviations, maxima and minima, can sometimes be related to abnormal operating conditions, the usual cause of high peak demand.

#### 5.2. ENERGY AUDIT OF THE MARTA RAIL SYSTEM

The energy audit of the MARTA rail system was conducted by analyzing power metering data supplied by Georgia Power Co. (GP), for the period beginning December 1, 1982 through August 31, 1984, a time interval of twenty-one months. This period was selected because the rail system operational timetable remained relatively constant during this time.

#### 5.2.1. Description of the Power Metering Data

During the time period selected for the audit, GP metered the rail system through twenty to twenty-six feed points. The names of the metering points, their circuit numbers and identification codes are listed in Table 5-1. Observation of this table shows that each of the metered feeds to the rail system supplies both traction and support power. Traction power is supplied through the traction substations, and its primary end uses are the running of the trains and auxiliary functions aboard the cars. Support power is used for support operations along the wayside. Its end uses include heating, air conditioning and ventilation, lighting, escalators and elevators, and train control. The meters do not distinguish between the energy delivered to traction and support functions.

The demand interval for electric power service to the rail system is one hour. Demand is measured on a coincident basis, which means that in any one hour clock interval (beginning on the hour), the average power is the sum of the power recorded at each of the meters. The resulting sum of the average powers is the demand for the one hour time interval. The monthly demand is the highest of the demands recorded during a monthly billing period, which typically runs from the twentieth of the month to the twentieth of the next month.

GP provided a magnetic tape, which contained the hourly demands for each of the twenty-six meters for the twenty-one months. These data provided the basis for the energy audit.

During the time period selected for the energy audit (12/82 - 8/84), there were three minor changes in the rail operations, which affected energy consumption. On December 18, 1982, service was extended on the NS line. On October 12, 1983, auxiliary load was added to Peachtree Center station. In January, 1984, the headway on the EW line was shortened from ten to six minutes and the number of cars per train during the weekday AM and PM peak periods was decreased fom six to four.

#### 5.2.2. Regression Analyses

Data readily available at MARTA allowed regression analyses using daily energy as the dependent variable and daily car-miles (CM) and ambient temperature effects as the independent variables. A list of daily car-miles was obtained from the Authority and a list of daily average ambient temperatures was obtained from the U.S. Weather Bureau for the audit time period (12/82 - 8/84).

Three models were used to test the existing energy data dependence on carmiles and daily average temperature effects. All of the models used the concept of heating and cooling degree-days, but in each of the models heating and cooling degree-days were defined differently to reflect the behavior of the heating and cooling facilities in the rail system with the help of Figure 5-1.

In model #1, the heating (HDD) and cooling (CDD) degree days are defined in the standard manner. The number of heating degree days in a particular day is just the difference between  $65^{\circ}F$  and the average temperature of the day. If the average temperature of the day is  $65^{\circ}$  or higher, then HDD = 0. Likewise, the number of cooling degree days in a particular day is just the difference between the average temperature of the day and  $65^{\circ}F$ . If the average temperature of the day is  $65^{\circ}F$  or less, then CDD = 0.

In model #2, a base temperature is defined for both the definition of the heating and cooling degree day. Thus the number of heating degree days in a

particular day is just the difference between the heating degree day base temperature  $(T_{H})$  and the average temperature of the day. If the average temperature of the day is higher than  $T_{H'}$  then HDD = 0. This model reflects the fact that heating facilities begin to operate when the temperature falls below  $T_{H'}$ . Likewise, the number of cooling degree days in a particular day is just the difference between the cooling degree day base temperature  $(T_{C})$  and the average temperature of the day. If the average temperature of the day is lower than  $T_{C'}$  then CDD = 0. Again, this model reflects the fact that cooling facilities begin to operate once the temperature rises above  $T_{C'}$ . The temperatures  $T_{H}$  and  $T_{C}$  are selected by the optimum fit of the data to the regression equation.

Finally, model #3 is an extension of model #2, where the effect of saturation of heating and cooling facilities is added. The temperatures  $T_H$  and  $T_C$  have the same meaning as in model #2, however the following modifications are made to the meaning of heating and cooling degree days. When the average daily temperature is below the heating degree day saturation temperature  $(T_{HS})$ , the number of heating degree days remains constant, at a value  $(T_H - T_{HS})$ . When the average daily temperature  $(T_{CS})$ , the number of cooling degree days remains constant, at a value  $(T_H - T_{HS})$ . When the average daily temperature  $(T_{CS})$ , the number of cooling degree days remains constant, at a value of the time of the including the "turning on" effect at different base temperatures of the heating and cooling facilities of model #2, model #3 also includes the effects of these facilities operating all of the time once saturation temperatures are reached.

The regression equation was a simple linear relation between the independent variables car miles, heating degree days and cooling degree days and the dependent variable, daily energy consumption. The equation had the form:

 $E = E_0 + E_{CM} * CM + E_{HDD} * HDD + E_{CDD} * CDD$ 

with the following definition of symbols:

- E Daily energy use (kWh)
- E<sub>0</sub> Background energy use (not dependent on car miles or degree days.) (kWh)
- E<sub>CM</sub> Coefficient of car-mile dependent term (kWh/CM)
- CM Daily car-miles (CM)
- E<sub>HDD</sub> Coefficient of heating degree day dependent term (kWh/HDD)
- HDD Number of heating degree days (HDD)
- E<sub>CDD</sub> Coefficient of cooling degree day dependent term (kWh/CDD)
- CDD Number of cooling degree days (CDD)

The results of the regression analysis are summarized in Table 5-2. For all of the three models. The following remarks refer to the results shown in Table 5-2.

1. Model #3 best explains the variation of daily energy with car-miles and ambient temperature. The best fit shows that the heating facilities begin operation at 54°F and operate continuously when the daily average temperature reaches 33°F. Likewise the same model shows that cooling operations begin at 70°F and are saturated at 83°F.

2. The model #3  $R^2$  term, which represents the goodness of the fit (0% = no fit, 100% = ideal fit), is 87%. This is considered an excellent fit.

3. The T-ratio, which is also a measure of the goodness of the fit to each coefficient separately, is large for each of the coefficients. A value of a T-ratio greater than 2 is considered good.

The largest change in daily energy consumption took place on January 9, 1984 when the timetable on the EW line changed. The metering data were divided into several parts:

1. NS line (Jan 9, 1984 - Aug 31, 1984) [N-S (1984)]

2. EW line (Jan 9, 1984 - Aug 31, 1984) [E-W (1984)]

3. Both Lines (Jan 9, 1984 - Aug 31, 1984) [BOTH (1984)]

4. Both Lines (Jan 1, 1983 - Jan 8, 1984) [BOTH (1983)]

Because car-miles were available from the NS and EW line, separately from Jan - Aug, 1984, it was possible to conduct regression analyses on the four cases which were just outlined. The results are presented in Table 5-3 using model #3.

Observation of Table 5-3 shows that the best fits occur on the EW lines during 1984 and both lines combined during 1984. The worst R<sup>2</sup> occurs for the analyses of the NS line during 1984.

It is interesting to compare the contribution of each of the terms of the regression equation on a typical summer, spring and winter day at several levels of daily car-miles. The results of this comparison are shown in Table 5-4. The 23,000 car-mi/day was typical of weekday operation during the audit period, while the 10,000 car-mi/day was typical of weekend operation. Three average daily temperatures were selected, the heating

Finally, Figure 5-2 shows the observed versus predicted values of daily energy use. The prediction uses the regression equation of model #3.

#### 5.2.3. Power Demand Statistics

Summary statistics for hourly energy use for the MARTA rail system during the energy audit are shown in Figure 5-3. This graph shows the minimum, average, average plus one standard deviation and the maximum hourly energy use. Since the energy use time interval is one hour, the power demand is equivalent to the energy use per hour. The dates, on which the minimum and maximum demand at each hour of the day occurred, are shown to the right of the bar chart in the figure. The absolute minimum and maximum demands are indicated with an asterisk.

The data, from which these summary statistics were generated, spanned a time interval which included two summer and two winter seasons. Both the peaks of average power and average power plus one standard deviation occur in the transit operating peak periods in the morning (7:00 - 8:00 AM) and the afternoon (5:00 - 6:00 PM). This is typical of rail transit power demand. The ratio of the average power demand during midday (10:00 AM - 4:00 PM) to the peak power is not typical of transit operations. At MARTA this ratio is 90%. At most other rail transit systems, it is 60 - 70%.

One reason that this ratio was so high at MARTA during the energy audit is that the same consist sizes and same headways were run throughout the day, with only minor reductions in car-mi/hr from peak to midday. A second reason is that the ratio of support power to total power (support plus traction) is large.

Figures 5-4 through 5-10 show summary statistics of hourly energy use for the months January 1983, April 1983, July 1983, Ocotber 1983, January 1984, April 1984 and July 1984, respectively. These summary statistics illustrate power demand behavior during two winter months, two summer months, two spring months and one fall month. The study of these statistics leads to the following observations:

- 1. Peaks during the winter months tend to occur during the AM peak period, when heating facilities are operating at their maximum, together with more lighting because of the shorter day.
- 2. Peak during the summer months generally occur during the PM peak, when cooling facilities are operating at their maximum.
- 3. In the fall and spring months, peaks can occur during either the AM or PM peak operating time.

#### 5.3. ENERGY AUDIT OF WMATA RAIL SYSTEM

#### 5.3.1. Traction Energy

In Metrorail operation, traction energy is the time integrated power registered by the electric meters in the traction substations. It includes energy to operate the trains during revenue service, testing and yard movement. It also includes energy for other functions which are powered through these substations, such as auxiliaries aboard the cars during layup, heating and ventilation, some air conditioning, tunnel lighting and switchpoint heating. In order to determine what fraction of the energy was used for traction, it was necessary to undertake an audit of the energy end uses.

The traction energy audit was conducted by analyzing metering information supplied by the Potomac Electric Power Company (PEPCO) for nine months of the year 1980. This method was chosen because PEPCO supplied 86% of the energy for Metrorail operations during this time period. The Virginia Electric Power Company (VEPCO) supplied the remaining 14%. Table 5-5 provides a summary of energy used in 1980 by utility and jurisdiction. A second reason for this course of action was that PEPCO had detailed metering information available while VEPCO did not.

#### 5.3.1.1. Description of PEPCO Metering Data

The interval selected for the traction energy audit was a compromise based on the time span of the metering information provided by PEPCO and the period during which the 1980 Metrorail operating timetable remained relatively constant.

The PEPCO provided a magnetic tape which contained energy usage (pulses) for each fifteen minute interval for the twenty-six traction energy meters which were in operation during 1980. The time span was January 20, 1980, to January 19, 1981. The data from each meter were analyzed.

Of the twenty-six traction meters considered in the analysis, eighteen, five and

three were in the DC, MD and VA jurisdictions, respectively. During the analysis, it was found that pulses were not provided by PEPCO for the meters at Cheverly, Landover, Beaver Dam Creek, New Carrollton Yard and Silver Spring substations, all of which were in the MD jurisdiction. Thus, precautions were taken during the audit to discount the effect of these meters.

The 1980 Metrorail operating timetable showed the same weekly pattern of train operation from February I, 1980, to November I, 1980, at which time service on the Blue Line was extended from the Stadium Armory station to the Addison Road station.

Because of more missing metering information from October 15, 1980, to November I, 1980, the time span for the audit was selected from February 1, 1980, to October 15, 1980, a total of 257 days.

#### 5.3, 1.2. Regression Analyses: Daily Car-Miles and Temperature

In order to determine the dependence of traction energy usage on car-miles and daily temperature, regression analyses were conducted using the traction meter data. Each day was divided into two periods: revenue service time and non-revenue service time. Revenue service time was that part of the weekday, Saturday or Sunday, during which trains were scheduled to run according to the operating timetable. Non-revenue service time was all other time.

5.3.1.2.1 Revenue Service Time Regression Description

The regression formula was assumed to have the form:  $P = P_0 + E_1(CM/H) + P_2(ADD)$ 

where P is the average power over the revenue operating time as obtained from the meter data,  $P_0$  is the background power in units of KW, CM/H is the average carmiles per hour over revenue service time on a daily basis, ADD is the average degree-day defined as the average temperature less 70°F. The coefficient E,

represents the energy per car-mile (KWHPCM) and P<sub>2</sub> represents the average power per average degree day (KWPADD).

In order to conduct the regressions, the actual car-miles accumulated each day were obtained from Metrorail over the interval of the audit. A statistical summary of the actual car-miles on the Red, Blue and Orange Lines are shown in Figures 5-11 to 5-13. The three peaks visible in the figures are attributed to weekday, Saturday, and Sunday operation. Table 5-6 presents a summary of the average, actual, and scheduled car-miles per day for the Red Line, and Blue/Orange Line combination.

An increase in actual car-miles on the Red Line was observed to occur on May 1, 1980. Table 5-6 shows the average car-miles broken down into two periods: February 1-April 30, 1980, and May 1-October 15, 1980. The weekday and Saturday averages were significantly different for the two cases. Metro reports that four-, together with six-car trains were used during weekday evenings, Saturdays, and Sundays during the spring of 1980.

The second independent variable of the revenue service time regression was the average degree day (ADD), defined as the average daily temperature less  $70^{\circ}$ F. A statistical summary of ADD over the audit period is shown in Figure 5-14. The average value is -3.7°, which represents an average daily temperature of 66.3°F.

#### 5.3.1.2.2 Non-Revenue Service Time Regression

During non-revenue service time, the regression formula was assumed to have the form:

$$P = P_0 + P_2(MDD)$$

where all of the variables are the same as in the revenue service time regression, and MDD is the minimum degree day, the minimum temperature less 70°F. The average value of the minimum degree day is -13°, which represents a temperature of 57°F. The minimum temperature was selected as the independent variable because non-revenue service time generally had the minimum temperature.

#### 5.3.1.2.3 Regression Analyses Results

The results of the regression analyses for the traction energy meters are shown in Table 5-7. In addition to those completed on the individual meters, regressions were also conducted on Red Line coincident power, and Blue/Orange Line coincident power with the exception of the power metered at Cheverly, Landover, Beaver Dam Creek, and New Carrollton.

During revenue service time, a strong dependence on car-miles is obvious. The confidence limits of this dependence exceeded 99%, even for the smallest value of the coefficient (E,) of 0.24 at the New Carrollton Yard substation meter.

Table 5-8, which is based on the results of Table 5-7, shows the degree-day coefficients  $(P_2)$  for five meter consolidations separated by heating and cooling effects. Load differences between winter (20-30°F) and summer (80-90°F) are also tabulated. For example, for non-revenue service time the summer-winter power differential is (235 KW-67 KW) 168 KW.

Car storage during revenue service time at midday and evenings on weekdays, and on Saturdays and Sundays, has its predominant effect on the meters at New York Avenue (Brentwood Yard), Silver Spring and New Carrollton Yard. The meter at New Carrollton Yard exhibits only a 30% dependence on car-miles with the background accounting nearly for the remaining amount. The background is attributed to yard car movement and car storage.

During revenue service time, the degree-day component of the traction power is small. With the exception of the power at the Shirley Highway meter, which exhibits an 8% temperature component on the average day, the remaining degree-day components are 1% or less of the total power during revenue service time.

During non-revenue service time, the temperature component is much higher because there is no car-mile component.

Several of the meters exhibit increased power with rising temperature (cooling effects dominate  $P_2$  positive), while others exhibit increased power with falling temperature (heating effects dominate  $P_2$  negative). The large cooling effects occur at New Hampshire Avenue, Shirley Highway, Rosslyn, Potomac Avenue, and New Carrollton Yard. The effects at Shirley Highway and Rosslyn are the result of chiller plant power being metered through the traction substation, and the effect at New Carrollton is due to air conditioning of the yard office building and tower. At the present time, there is no explanation for the effects at New Hampshire Avenue on the Red Line, and Potomac Avenue on the Blue/Orange Line.

Table 5-9 lists the average powers for the traction meters at different operating times from May 1, 1980, to October 15, 1980. This time interval was selected for the averages because six car trains were generally used on Saturdays, Sundays and weekday evenings rather than mixtures of four and six car trains as were used in the Spring of 1980. Ratios of average power of AM peak to midday, AM peak to PM peak, midday to evening, and midday to Sunday are listed.

If there were no background, the ratio of AM peak to midday peak would be 2.3 on the Red Line, and 2.0 on the Blue/Orange Line.

The ratio of AM to PM peak power is 0.93 on the Red Line, and 0.95 on the Blue/Orange Line.

The ratio of midday to evening power is 1.03 on the Red Line, and 0.97 on the Blue/Orange Line. The ratio of midday to Sunday is 1.09 on all lines, so that 9% more power is used during midday operation than on Sunday.

5.3.1.3. Selection of Metered Background Power

It is clear from the regression analyses carried out on the traction energy meter that a background of power is registered even when no trains are operated. This background exists because of:

1. no-load losses of the transformer-rectifier units in the substation,

- 2. operation of car auxiliaries during layup,
- 3. support services, such as heating and ventilation of substations and other structures, chiller plants metered through the traction meters, tunnel ventilation, lighting and switchpoint heating, and testing of trains.

This background is not simply the background of the regression analysis carried out during revenue service time, because of the intercept error. It is more appropriate to consider the non-revenue service time as the basis for the background estimate (Table 5-7).

Table 5-10 contains a summary of the background values for all the traction meters used in all of the subsequent analyses using the EMM. These backgrounds were derived using the following rules:

- 1. The minimum power through any traction meter is the no-load losses of the transformer-rectifier units in the substation. These are estimated at 8 KW per unit. These no-load losses are also shown in the table.
- 2. The average layup power used by a car is 5 KW. This number is based on a measured value.

The background power for peak and non-peak operation differ because of the layup power of the auxiliaries on board the cars which are stored during non-peak operation.

Since it was not possible to obtain a detailed analysis of the background associated with the VEPCO meter, this estimate was made by taking each VEPCO substation background the same as the average of all of PEPCO substations. Thus, the background value for the VEPCO meter was 686 KW.

#### 5.3.1.4. Consolidation Histogram Analysis

Figures 5-15, through 5-19 show statistical summaries of traction power metered by PEPCO for the AM peak for the Red Line, Blue/Orange Line, DC, MD and VA jurisdictions of PEPCO, respectively. Figures 5-20 through 5-24 show statistical summaries for the PM peak for the same PEPCO traction meter consolidations. The time interval selected for these summaries was May 1-October 15, 1980, for which the timetable was relatively stable.

The statistical summaries show the average, standard deviation, and the maximum of the traction power over one-half hour intervals beginning each quarter hour. These values are the measured power demands.

Table 5-11 presents a comparison of the maximum power demand to the average power demand for the AM and PM peak operating periods, for four meter consolidations: Red Line, Blue/Orange Lines, DC and VA jurisdiction of PEPCO. Because of missing meter data on the MD jurisdiction meters, this consolidation was not considered. In the case of the Red and Blue/Orange Line traction meter consolidation, the percent increase of the maximum demand over the average demand is 25-31%. In the case of the DC jurisdiction, the percent increase of the PEPCO VA jurisdiction, the percent increase is 67-86%.

The large difference in the case of the VA jurisdiction can be attributed to the small number of meters in the consolidation (3 meters), and as a result, any variation in operating conditions over the portion of the rail network serviced through these three meters tend to be coincidental, whereas, in the case of the DC jurisdiction serviced by a large number of meters serving different portions of different lines, the operating difference effects tend to be non-coincidental.

#### 5.3.2. Support Energy

In Metrorail operation, the support energy is the time integrated power registered by the electric meters in the passenger stations, the office building, and the repair shops. It includes energy for heating, air conditioning, ventilation, lighting, elevators, escalators, signals and communications, and power to run special equipment and machinery. As in the case of traction energy, an audit was undertaken by analyzing metering information from PEPCO for part of the year 1980.

#### 5.3.2.1. Description of Audit

The time interval selected for the audit was the same as that for the traction energy audit.

Of the thirty-seven support meters analyzed as part of the 1980 operation, thirty were in the DC jurisdiction, four were in the MD jurisdiction, and three were in the VA jurisdiction. During the analysis, it was found that pulse data were missing from the meters at Silver Spring, Landover, Cheverly, and Minnesota Avenue. Thus, precautions were taken during the audit to discount the effects of these meters.

#### 5.3.2.2. Regression Analyses: Temperature

In order to determine the dependence of support energy usage on daily temperature, regression analyses were conducted using the support meter data. Each day was divided into two periods: revenue service time and non-revenue service time. Revenue service time was that part of the weekday, Saturday or Sunday, during which trains were scheduled to run according to the operating timetable. Non-revenue service was all other times.

The regression formula was assumed to have the form:  $P = P_0 + P_2(ADD)$ 

during revenue service time, and:

 $P = P_0 + P_2(MDD)$ 

during non-revenue service time, where P is the average power as obtained from the meter data,  $P_0$  is the background power in units of KW, ADD is the average degreeday defined as the average temperature less  $70^{\circ}F$ , and MDD is the minimum degreeday defined as the minimum temperature less  $70^{\circ}F$ .

The results of the regression analyses are shown in Table 5-12. All stations which are above ground show a power increase with decreasing degree-days (heating), and those below grade show a power increase with increasing degree-days. For the below ground stations, this is attributed to tunnel ventilation, and for above ground stations it is attributed to heating and lighting. The lighting correlation is probably a secondary effect due to a relation between longer night hours and colder days.

The office building shows a large cooling effect because chiller plants at Gallery Place and Judiciary Square are metered here. The Garden City Shop shows a large heating effect.

Table 5-13 shows the temperature dependent coefficient of the regression analyses and load dependence on temperature for several consolidations of the support meters. The load differences can be interpreted as between winter  $(30^{\circ}F)$  and summer  $(90^{\circ}F)$ , and the spring and fall seasons  $(60^{\circ}-70^{\circ}F)$ .

#### 5.3.2.3. Average PEPCO Support Power

Table 5-14 lists the average support power for the passenger stations, the office building, and repair shops for PEPCO jurisdictions during the principal operating periods. Table 5-15 lists the average support power for five PEPCO support meter consolidations which are the Red Line passenger stations, the Blue/Orange Line passenger stations, and the DC, MD and VA jurisdictions. The MD and DC jurisdictions are shown with and without office building and repair shop power.

The PEPCO support power model was developed for the passenger stations serviced by PEPCO. It includes a background power, lighting loads, and escalator loads.

5.3.2.4.1 PEPCO Passenger Station Lighting Loads

Table 5-16 shows a summary of the power used for lighting of the passenger stations serviced by PEPCO. This table was constructed using the following information from Metro:

- 1. Underground stations with center (side) platforms have 70 (120) KW of lighting load.
- 2. Stations above ground with center (side) platforms have 30 (40) KW of lighting load.
- 3. The Pentagon and Rosslyn stations have two levels underground, and the lighting load is 130KW.
- 4. Parking lot lighting loads associated with passenger stations are estimated at 30 watts/space.

Based on this information in Table 5-16, a summary of the lighting loads for Red Line, Blue/Orange Line, and DC, MD and VA jurisdiction passenger stations is presented in Table 5-17.

5.3.2.4.2 PEPCO Passenger Station Escalator Loads

It has been shown that if as many people ascend escalators as descend them in a given time period at the loading which would be experienced at Metro, the average power consumed in the time period is proportional to the sum of the heights of rise of all of the escalators. This conclusion is valid for the modular escalators supplied by Westinghouse to Metro under medium load conditions. The conversion coefficient from the height of rise to KW is 0.11 KW/ft. of rise.

In order to use this relation between height of rise and escalator power, time

periods must be selected where ascending and descending load averages over the periods are relatively equal. These periods are: the AM and PM peak taken together, midday, evening, Saturday and Sunday operation. It is even more valid when considering several passenger stations, such as on the separate lines or the DC jurisdiction where all people must enter and leave the system within 30 minutes.

Using the relationship between escalator power and height of rise, a summary of average power consumed by the escalators is listed in Table 5-18. The heights of rise were calculated based on the Metro information.

The average power for all underground stations was determined for the peak revenue service periods and the non-revenue service periods on weekdays in order to verify the validity of the simple power formula for the escalators. The difference between the powers during these two weekday periods should equal the escalator power if the assumptions that all escalators are running during the peak revenue service periods and that of the passenger station loads only the escalators are turned off during the non-revenue service periods. This comparison is shown in Table 5-19. Agreement is within 2%.

#### 5.3.2.4.3 PEPCO Support Power Model

In this study, support background power is defined as all support power less the lighting and escalator load on the average degree-day. This definition was selected in order to test lighting and escalator energy conservation strategies.

The PEPCO support background power was estimated by subtracting the escalator average power, as calculated using the simple escalator formula described in the previous section, and the full underground station lighting loads from the average support power used in the AM and PM peak revenue service periods taken together. A summary of the resulting support power background for the passenger stations of the Red Line, Blue/Orange Line, and the DC, MD and VA jurisdictions is tabulated together with the lighting and escalator loads in Table 5-20.

In the construction of Table 5-20, it was assumed that station lighting was operational for all periods, and lighting in stations above ground was used only in the evening. The latter assumption is not critical. Escalators were assumed off during non-revenue service time.

With reference to Table 5-20, the actual power and estimated power have been forced to agree during the peak periods because of the estimation method. However, the agreement during the other periods is good with the exception of that of the MD jurisdiction where the metering information was not complete.

Table 5-21 lists the metered power demand and energy use for the office building and repair shops. Since no conservation strategies will be applied to these installations in this study, this power will be considered background in the DC and MD jurisdictions.

#### 5.3.2.5. The VEPCO Support Power Model

Since no detailed information is available on VEPCO support power, the model was patterned after that of PEPCO. The background support power was estimated using the average background of similar type passenger stations serviced by PEPCO. The types of stations considered were underground side platform, underground center platform, and above ground.

Table 5-22 presents a comprehensive listing of lighting and escalator loads (using the simple escalator power formula) in VEPCO passenger stations.

Table 5-23 presents a listing of background, lighting and escalator power for VEPCO service at passenger stations. The background support power was estimated in the same way as in PEPCO serviced passenger stations.

#### 5.3.2.6. Algorithms for Estimating Support Power Demand and Energy Use

The models developed in Sections 5.3.2.4 and 5.3.2.5 can be applied directly to energy conservation strategies involving escalator and lighting power reduction. The following procedure is used.

#### Estimate of Peak Power Demand

Peak power demand is estimated by summing up the background power, the lighting power, and the escalator power during the peak demand period.

#### Estimate of Energy Use

Energy use is estimated by summing the background energy (background power x 24 hours/day), the lighting energy (integration of the lighting vpower over the day), and the escalator energy (integration of the escalator power over the day).

Table 5-24 shows an estimate of the support energy use and average peak power demand for normal operation on a weekly basis. The assumptions for this estimate are:

- 1. Lighting load of underground stations is continuous.
- 2. Lighting load of stations above ground is on during evening revenue service operation only (6:00PM-12:00AM).
- 3. Escalators operate only during revenue service.

## TABLE 5-1

## METERING POINTS AND POWER FEED INFORMATION

METER NAME CODE

### END USE OF FEEDS

& CIRCUIT#

## TRACTION AUXILIARY CHILLER OTHER

|                     | NORTH-S      | OUTH LINE |     |   |    |
|---------------------|--------------|-----------|-----|---|----|
| West End A0708      | 100E         | 1         | 1   |   |    |
| West End A0709      | 1 <b>00F</b> | 3         | 2   |   |    |
| Wabash A1382        | 10 <b>0C</b> | 3         | 2   |   |    |
| Wabash A1392        | 100D         | 3         | 3   | 1 |    |
| Spring Street S7582 | 100A         | 3         | 2   | 1 |    |
| Spring Street S7592 | 10 <b>0B</b> | 3         | 3   |   |    |
| Lindmont L1762      | 100H         | 2         | 2   |   |    |
| Lindmont L1752      | 100 <b>G</b> | 3         | 1 - |   |    |
| Buckhead S1588      | 100J         | 3         | 1   |   |    |
| Buckhead S1598      | 100K         | 2         | 2   |   |    |
|                     | EAST-W       | EST LINE  |     |   |    |
| Hightower H0142     | 101L         | 1         | 1   |   |    |
| Hightower H0152     | 101M         | 1         | 1   |   |    |
| Northwest 808       | 101K         | 2         | 2   |   |    |
| Northwest 468       | 101J         | 2         | 1   |   |    |
| Davis Street 188    | 101E         | 2         | 2   | 1 |    |
| Davis Street 198    | 101F         | 1         | 1   |   |    |
| Davis Street 488    | 10 1H        | 2         | 2   |   |    |
| Davis Street 498    | 101G         | 1         | 1   |   | 1+ |
| Hill Street 1612    | 101C         | 3         | 3   |   |    |
| Hill Street 1622    | 101D         | 3         | 4   | 1 |    |
| Moreland 1362       | 101B         | 3         | 3   |   | 1+ |
| Moreland 1312       | 101A         | 3         | 4   |   |    |
| Decatur 592         | 02 <b>8M</b> | 2         | 1   |   | 2# |
| Decatur 582         | 02 <b>8L</b> | 1         | 1   |   | 2+ |
| Scottdale 352       | 278A         | 1         | 1   |   | 2+ |
| Scottdale 362       | 27 <b>8B</b> | 2         | 1   |   | 3# |

+ Fan

# Car Shop & Maintenance of Way

+ Central Train Control, Yard Control

## TABLE 5-2

## REGRESSION ANALYSES RESULTS

| Coefficient                                                                 | Model #1          | Model #2                    | Model #3      |          |
|-----------------------------------------------------------------------------|-------------------|-----------------------------|---------------|----------|
| E <sub>o</sub> (kWH)                                                        | 144,269           | 150,328                     | 151,123       | <u> </u> |
|                                                                             | A) A 70 A         | 4.714                       | 4.685         |          |
|                                                                             | DD) 2253          | 2554                        | 2939          |          |
| E <sub>CM</sub> (KWH/CN<br>E <sub>HDD</sub> (KWH/HI<br>E <sub>KWH/CDD</sub> | 1018              | 1161                        | 1548          |          |
| Base and Satu                                                               | ration Temperat   | ures ( <sup>°</sup> F) [Bes | t Fit]        |          |
| CDD Base                                                                    | e 65              | 69                          | 70            |          |
| HDD Base                                                                    | e 65              | 57                          | 54            |          |
| CDD Satu                                                                    | uration -         | -                           | 83            |          |
| HDD Satu                                                                    | uration -         | -                           | 33            |          |
| Statistica                                                                  | al Quantities [Be | est Fit]                    |               |          |
| R <sup>2</sup> (Adjust                                                      | ted for Degrees   | of Freedom)                 |               |          |
|                                                                             | 85.5%             | 85.9%                       | 86.6%         |          |
| T-Ratio (                                                                   | Coefficient/Std   | Deviation)                  |               |          |
| of E <sub>A</sub> ter                                                       | rm 85.52          | 97.13                       | 101.62        |          |
| of ECM to                                                                   |                   | 56.57                       | 57 <b>.78</b> |          |
| LM                                                                          | term 23.81        | 23.33                       | 24.15         |          |
|                                                                             | term 18.13        | 17.43                       | 18.73         |          |

.

## TABLE 5-3

## RESULTS OF REGRESSION ANALYSES ON NORTH-SOUTH AND EAST-WEST LINES DURING DIFFERENT TIME PERIODS

| Analyses      | ۲            | DD          | CDD          | R <sup>2</sup>  | ε <sub>o</sub> | E,       | E CDD     | E HOD     |
|---------------|--------------|-------------|--------------|-----------------|----------------|----------|-----------|-----------|
| D             | BASE<br>(*F) | SAT<br>(°F) | BASE<br>(°F) | SAT (%)<br>(°F) | (KWH)          | (KWHPCM) | (KWHPCDD) | (KWHPCDD) |
| 1. N-S(1984)  | 55           | 34          | 68           | 76 79.2         | 41467          | 5.00     | 1802      | 405       |
| 2. E-W(1984)  | 56           | 37          | 69           | 81 94.2         | 120820         | 3.76     | 1123      | 1182      |
| 3. BOTH(1984) | 54           | 26          | 68           | 78 93.0         | 162036         | 4.17     | 2918      | 1777      |
| 4. BOTH(1983) | 55           | 36          | 73           | 84 82.8         | 145155         | 5.01     | 3935      | 1404      |

.

.

. •

## COMPARISON OF TERMS OF REGRESSION EQUATION TO TOTAL DAILY ENERGY

| Daily<br>Car-Miles | Ambient<br>Temp | Background | Energy<br>Car-Mi | Totai     |                            |  |
|--------------------|-----------------|------------|------------------|-----------|----------------------------|--|
|                    |                 |            |                  |           |                            |  |
| 23,000             | 22 <sup>0</sup> | 151123[52] | 107756[ 071      | 225165111 | 2912055 1001               |  |
| 23,000             | 33°<br>65°      | 151123[52] | 107756[42]       |           | 291395[100]<br>258879[100] |  |
|                    | 83°             | 151123[51] | 107756[36]       | 38207[13] | 297086[100]                |  |
| 10,000             | 33°             | 151123[66] | 46851[20]        | 32516[14] | 230490[100]                |  |
|                    | 65°<br>83°      | 151123[76] | 46851[24]        | [0]0      | 197974[100]                |  |
|                    | 83°             | 151123[64] | 46851[20]        | 38207[16] | 236181[100]                |  |

.

### TABLE 5-5 ENERGY CONSUMED BY METRO OPERATIONS DURING 1980

(X1000 KWH)(% of TOTAL)

|                              | РЕРСО         | · · · · · · · · · · · · · · · · · · · | VEPCO        |  |  |
|------------------------------|---------------|---------------------------------------|--------------|--|--|
| ENERGY CONSUMED BY           | DC            | MD & VA                               |              |  |  |
| All Passenger Stations       | 47,721 (66%)  | 12,541 (17%)                          | 12,184 (17%) |  |  |
| All Rail Traction Operations | 107,635 (62%) | 43,371 (25%)                          | 21,819 (13%) |  |  |
| TOTAL                        | 155,356 (63%) | 55,912 (23%)                          | 34,453 (14%) |  |  |

Source: Testimony of Richard T. Labonski of Washington Metro before the DC Public Service Commission, Formal Case #748, April 1981.

.

# TABLE 5-6SUMMARY OF AVERAGE ACTUAL VS. SCHEDULED CAR-MILESFOR METRO(FEBRUARY 1, 1980-OCTOBER 15, 1980)

| RED LINE         | Average Actual<br>Car-Miles | Scheduled<br>Car-Miles |
|------------------|-----------------------------|------------------------|
| Weekdays         | 16,470                      | 18,018                 |
| Saturdays        | 10,489                      | 11,571                 |
| Sundays          | 5,487                       | 5,964                  |
| BLUE/ORANGE LINE |                             |                        |
| Weekdays         | 41,338                      | 41,855                 |
| Saturdays        | 25,186                      | 26,779                 |
| Sundays          | 13,977                      | 14,053                 |

RED LINE

## Average Actual Car-Miles

|          | February 1-April 30, 1980 | <u>May 1-October 15, 1980</u> |
|----------|---------------------------|-------------------------------|
| Weekdays | 14,876                    | 17,372                        |
| Saturday | 8,712                     | 11,419                        |
| Sunday   | 5,203                     | 5,618                         |

### TABLE 5-7 RESULTS OF REGRESSION ANALYSES FOR POWER VS. CAR-MILES AND DEGREE-DAYS

| RED LINE METER NAME (SYMBOL                                                      |                            | REVENUE SERVICE TIME* |                       | NON-REVENUE SERVICE TIME                           |                                           |  |
|----------------------------------------------------------------------------------|----------------------------|-----------------------|-----------------------|----------------------------------------------------|-------------------------------------------|--|
|                                                                                  | Р <sub>О</sub> (КМ)        | E (KWHPCM)            | Р <sub>2</sub> (кироо | ) P <sub>O</sub> (KW)                              | P <sub>2</sub> (KWPDD)                    |  |
| Farragut North (MA1)                                                             | 222                        | 0.90                  | -1.1                  | 93                                                 | 0.4                                       |  |
| Gallery Place (MB1)                                                              | 134                        | 0.88                  | N                     | 98                                                 | N                                         |  |
| Union Station (MB2)                                                              | - 95                       | 0.69                  | N                     | 133                                                | N                                         |  |
| New York Avenue (MB3)                                                            | 217                        | 0.75                  | N                     | 321                                                | N                                         |  |
| Rhode Island Avenue (MB4)                                                        | 44                         | 0.73                  | -1.6                  | 75                                                 | -0.7                                      |  |
| Brookland Avenue (MBS)                                                           | 261                        | 1.00                  | -3.3                  | 274                                                | -2.6                                      |  |
| New Hampshire Avenue (MB6)                                                       | 170                        | 0.63                  | N                     | 323                                                | 6.3                                       |  |
| Takoma Park (M87)                                                                | 71                         | 0.82                  | -2.9                  | 107                                                | -1.4                                      |  |
| Silver Spring (M88)                                                              | 449                        | 0.62                  | N                     | 388                                                | N                                         |  |
| Coincident Red                                                                   | 1844                       | 6.87                  | -11.6                 | 1853                                               | N                                         |  |
| ORANGE/BLUE LINE METER NAME                                                      | (SYMBOL)                   |                       |                       |                                                    |                                           |  |
| Shirley Highway (MC8)                                                            | 197                        | . 30                  | 7.8                   | 256                                                | 6.6                                       |  |
| Washington Boulevard (HC6)                                                       | 106                        | . 60                  | 0.7                   | 81                                                 | -0.7                                      |  |
| Rosslyn (MC5)                                                                    | 60                         | . 50                  | 3.7                   | 220                                                | 2.6                                       |  |
| Potomac (MC4)                                                                    | 43                         | . 50                  | N                     | 91                                                 | -0.7                                      |  |
| Farragut West (MC3)                                                              | -11                        | . 58                  | 1.3                   | 54                                                 | N                                         |  |
| Metro Center (MC1)                                                               | 52                         | . 55                  | 2.2                   | 31                                                 | N                                         |  |
| Smithsonian (MD2)                                                                | 51                         | .51                   | 0.9                   | 36                                                 | N                                         |  |
| Federal Center (MD4)                                                             | -57                        | . 40                  | 0.6                   | 22                                                 | N                                         |  |
| Seward Square (MD6)                                                              | 64                         | . 62                  | 1.2                   | 41                                                 | N                                         |  |
| Potomac Avenue (MD7)                                                             | -82                        | . 36                  | N                     | 75                                                 | 1.7                                       |  |
| Stadium Armory (MD8)                                                             | 197                        | . 55                  | N                     | 73                                                 | -0.3                                      |  |
| Minnesota Avenue (MO9)                                                           | 123                        | . 53                  | N                     | 79                                                 | 0.6                                       |  |
| Deanwood (MD10)                                                                  | 111                        | . 49                  | 1.7                   | 79                                                 | -10.7                                     |  |
| Cheverly (MD11)                                                                  | 96                         | . 54                  | N                     | 132                                                | -1.0                                      |  |
| Landover (MD12)                                                                  | 254                        | . 31                  | 2.8                   | 222                                                | -8.4                                      |  |
| Beaver Dam Creek (MD13)                                                          | 176 -                      | . 39                  | 2.2                   | 266                                                | N                                         |  |
| New Carrollton Yard (MDY)                                                        | 639                        | .24                   | 7.8                   | 981                                                | 6.5                                       |  |
| Coincident Blue/Orange                                                           | 895                        | 5.52                  | 18.7                  | 1156                                               | N                                         |  |
| (Except HD11, HD12, HO13,                                                        | HDY)                       |                       |                       |                                                    |                                           |  |
| Coincident Blue/Orange                                                           | 1526                       | 5.73                  | 37.1                  | . 1796                                             | 8.2                                       |  |
| *Revenue Operating Time                                                          |                            |                       | -                     | Regression Equ                                     |                                           |  |
| Red Line                                                                         |                            | Orange Line           |                       | $P = P_0 + E_1(CH)$                                | •                                         |  |
| Weekdays 00:00-00:45; 05:1<br>Saturdays 00:00-00:45; 07:3<br>Sundays 09:30-18:45 |                            | 0:45; 07:30           | -24:00                | P : Average Po<br>P_: Background<br>C1: KWHPCM (Ca | wer (KN)<br>Power (KN)<br>r-Mile Componen |  |
| **Non-Revenue Operating Ti                                                       | MÈ                         |                       | - 1                   | Coefficie                                          | nt)<br>Car-Miles/Hour                     |  |
| weekdays 00:45-05:15                                                             | 00:45-0                    |                       |                       | P₂: KWHPDD (De                                     | gree-Day Compon                           |  |
| Saturdays 00:45-07:30<br>Sundays 00:00-09:30; 18:4                               | 00:45-0<br>5-24:00 00:00-0 |                       |                       | <sup>c</sup> Coefficie           D: Degree-Day     | nt)                                       |  |
| N - Not significant with 951                                                     | Confidence Limit           | K.                    |                       |                                                    |                                           |  |

### TABLE 5-8 TEMPERATURE DEPENDENT COEFFICIENT OF REGRESSION ANALYSES AND LOAD DIFFERENCES FOR TRACTION METER CONSOLIDATION

|                   | P <sub>2</sub> (KW     | PADD)                  | P2(KWPMDD)              |                          |  |  |
|-------------------|------------------------|------------------------|-------------------------|--------------------------|--|--|
|                   | Revenue Se<br>Negative | rvice Time<br>Positive | Non-Revenue<br>Negative | Service Time<br>Positive |  |  |
| Red Line          | 8.9                    | 0                      | 4.7                     | 6.7                      |  |  |
| Blue/Orange Line  | 0                      | 32.9                   | 21.8                    | 16.3                     |  |  |
| D.C. Jurisdiction | 8.9                    | 7.9                    | 16.4                    | 9.0                      |  |  |
| MD Jurisdiction   | 0                      | 12.8                   | 9.4                     | 6.5                      |  |  |
| VA Jurisdiction   | 0                      | 12.2                   | 0.7                     | 9.2                      |  |  |

|                   | <u>P(30°)-P(70°)</u> | P(90°)-P(70°) | P(20°)-P(70°) | P(80°)-P(70°) |
|-------------------|----------------------|---------------|---------------|---------------|
| Red Line          | 356                  | 0             | 235           | 67            |
| Blue/Orange Line  | 0                    | 658           | 1090          | 163           |
| D.C. Jurisdiction | n 356                | 158           | 820           | 90            |
| MD Jurisdiction   | 0                    | 256           | 470           | 65            |
| VA Jurisdiction   | 0                    | 244           | 35            | 92            |

LOAD DIFFERENCES (KW)

ក ភូមិ ស

# TABLE 5-9AVERAGE POWERS (KW) FOR TRACTION METERS AT DIFFERENTOPERATING TIMES (MAY 1, 1980-OCTOBER 15, 1980)

|                                        |                      | WEE                   | K D A Y                |                        |                         |                       |                   |                    |                    |                  |
|----------------------------------------|----------------------|-----------------------|------------------------|------------------------|-------------------------|-----------------------|-------------------|--------------------|--------------------|------------------|
| <u>RED LINE METER NAME (SYMBOL)</u>    | AM PEAK<br>8:00-9:00 | HIDDAY<br>12:00-13:00 | PM PEAK<br>17:00-18:00 | EVENING<br>20:00-21:00 | SATURDAY<br>12:00-13:00 | SUNDAY<br>12:00-13:00 | AM PEAK<br>HTDDAY | AN PEAK<br>PH PEAK | MEDDAY<br>EVENTING | HIDDAY<br>SUNDAY |
| Farragut North (MAI)                   | 1759                 | 832                   | 1836                   | 819                    | 813                     | 796                   | 2.11              | . 96               | 1.02               | 1.05             |
| Gallery Place (MB1)                    | 1585                 | 757                   | 1663                   | 713                    | 717                     | 671                   | 2.09              | .95                | 1.06               | 1.13             |
| Union Station (MB2)                    | 1116                 | 590                   | 1283                   | 557                    | 526                     | 484                   | 1.89              | .87                | 1.06               | 1.22             |
| New York Avenue (HB3)                  | 1149                 | 735                   | 1338                   | 784                    | 655                     | 622                   | 1.56              | .86                | . 94               | 1.18             |
| Rhode Island Avenue (MB4)              | 1160                 | 534                   | 1259                   | 505                    | 500                     | 437                   | 2.17              | . 92               | 1.06               | 1.22             |
| Brookland Avenue (MBS)                 | 1764                 | 922                   | 1827                   | 926                    | 889                     | 846                   | 1.91              | . 97               | 1,00               | 1.09             |
| New Hampshire Avenue (MB6)             | 970                  | 639                   | 1086                   | 568                    | 619                     | 611                   | 1.52              | .89                | 1.13               | 1.05             |
| Takoma Park (MB7)                      | 1267                 | 614                   | 1277                   | 593                    | 626                     | 606                   | 2.06              | . 99               | 1.04               | 1.01             |
| Silver Spring (HB8)                    | 1241                 | 854                   | 1278                   | 854                    | 794                     | 860                   | 1.45              | . 97               | 1.00               | . 99             |
| Coincident Red                         | 12011                | 6476                  | 12847                  | 6318                   | 6140                    | 5933                  | 1.85              | . 93               | 1.03               | 1.09             |
| <u>BLUE/ORANGE LINE METER NAME (SI</u> | MBOL)                |                       |                        |                        |                         |                       |                   |                    |                    |                  |
| Shirley Highway (MC8)                  | 563                  | 379                   | 615                    | 461                    | 500                     | 496                   | 1.49              | . 92               | .82                | .76              |
| Washington Boulevard (MC6)             | 1009                 | 565                   | 1055                   | 572                    | 523                     | 499                   | 1.79              | . 96               | . 99               | 1.13             |
| Rosslyn (MCS)                          | 1739                 | 912                   | 1841                   | 687                    | 832                     | 853                   | 1.91              | . 94               | 1.03               | 1.07             |
| Potomac (HC4)                          | 1705                 | 918                   | 1741                   | 949                    | 866                     | 813                   | 1.86              | . 96               | . 97               | 1.13             |
| Farragut Nest (HC3)                    | 1986                 | 1017                  | 2123                   | 967                    | 929                     | 902                   | 1.95              | .94                | 1.05               | 1.13             |
| Hetro Center (HCl)                     | 1962                 | 1030                  | 2016                   | 992                    | 986                     | 963                   | 1.90              | . 97               | 1.04               | 1.07             |
| Smithsonian (HD2)                      | 1800                 | 972                   | 1832                   | 946                    | 875                     | 900                   | 1.85              | . 98               | 1.03               | 1.08             |
| Federal Center (MD4)                   | 1248                 | 640                   | 1449                   | 657                    | 593                     | 547                   | 1.95              | . 86               | . 97               | 1.17             |
| Seward Square (MD6)                    | 2143                 | 1177                  | 2179                   | 1144                   | 1074                    | 1103                  | 1.82              | . 98               | 1.03               | 1.07             |
| Potomac Avenue (MD7)                   | 1006                 | 537                   | 1138                   | 537                    | 501                     | 503                   | 1.87              | .88                | 1.00               | 1.07             |
| Stadium Armory (MD8)                   | 2031                 | 1147                  | 2079                   | 1142                   | 1100                    | 1110                  | 1.77              | . 98               | 1.00               | 1.03             |
| Minnesota Avenue (HD9)                 | 1036                 | 615                   | 1162                   | 609                    | 571                     | 558                   | 1.68              | . 89               | 1.01               | 1.10             |
| Deanwood (MD10)                        | 1023                 | 591                   | 1076                   | 609                    | 567                     | 562                   | 1.73              | . 95               | . 97               | 1.05             |
| Cheverly (HD11)                        | 978                  | 625                   | 1044                   | 610                    | 551                     | 537                   | 1.48              | . 94               | 1.02               | 1.16             |
| Landover (HD12)                        | 734                  | 569                   | 869                    | 592                    | 484                     | 463                   | 1.29              | .85                | . 96               | 1.23             |
| Beaver Dam Creek (MD13)                | 737                  | 537                   | 745                    | 559                    | 461                     | 479                   | 1.37              | . 99               | . 96               | 1.12             |
| New Carrollton Yard (MDY)              | 635                  | 747                   | 638                    | 1084                   | 564                     | 605                   | .85               | 1.00               | .69                | 1.23             |
| Coincident Blue/Orange                 | 22332                | 12979                 | 23600                  | 13315                  | 11975                   | 1 1893                | 1.72              | . <b>9</b> 5       | . 97               | 1.09             |
| Lotneldent Blue/Orange                 | 19248                | 10501                 | 20104                  | 10470                  | 9915                    | 9809                  | 1.83              | . 95               | 1.00               | 1.07             |

## TABLE 5-10 DERIVED BACKGROUND OF PEPCO TRACTION METERS ON RED, ORANGE AND BLUE LINES

| METER NAME                                                                                 | LINE                                                          | LOCATION<br>(NILEPOST)                                   | SYMBOL                                     | AUXILIARY<br>RATED KH        | NUMBER OF<br>2000 KN<br>TRANSFORMER-<br>RECTIFIER UNITS | NO LOAD<br>LOSSES<br>(KW)        | NON-REVENUE<br>SERVICE<br>Time Power<br>(KW) | CAR LAYUP<br>POWER<br> | MININUM<br>BACKGROUND<br>(KW)<br><u>(AM+PM</u> PEAK) | MIDDAY<br>& EVENING<br>BACKGROUND<br>(KW)   |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------|---------------------------------------------------------|----------------------------------|----------------------------------------------|------------------------|------------------------------------------------------|---------------------------------------------|
| Farragut North                                                                             | Ked                                                           | 0.434                                                    | MAT                                        | -                            | 3                                                       | 24                               | 88                                           |                        | 88                                                   | 88                                          |
| Gallery Place                                                                              | Red                                                           | 1.504                                                    | MB1                                        | •                            | 3                                                       | 24                               | 98                                           |                        | 98                                                   | 98                                          |
| Union Station                                                                              | Red                                                           | 2.508                                                    | MB-2                                       | -                            | 2                                                       | 16                               | 133                                          |                        | 133                                                  | 133                                         |
| New York Avenue                                                                            | Red                                                           | 3.610                                                    | MB3                                        | 150                          | 2                                                       | 16                               | 321                                          | 200                    | 121                                                  | 241                                         |
| Rhode Island Avenue                                                                        | Red                                                           | 4.468                                                    | MB4                                        | -                            | 3                                                       | 24                               | 84                                           |                        | 84                                                   | 84                                          |
| Brookland Avenue                                                                           | Red                                                           | 6.029                                                    | MB5                                        | 150                          | 3                                                       | 24                               | 306                                          |                        | 306                                                  | 306                                         |
| New Hampshire Avenue                                                                       | Red                                                           | 7.199                                                    | MB6                                        | 150                          | 2                                                       | 16                               | 250                                          |                        | 250                                                  | 250                                         |
| Takoma Park                                                                                | Red                                                           | 8.730                                                    | MB7                                        | -                            | 2                                                       | 16                               | 124                                          |                        | 124                                                  | 124                                         |
| Silver Spring                                                                              | Red                                                           | 9.984                                                    | MB8                                        | -                            | 3                                                       | 24                               | 388                                          | 180                    | 208                                                  | 328                                         |
|                                                                                            |                                                               |                                                          |                                            |                              |                                                         |                                  |                                              |                        | 1412                                                 | 1652                                        |
| Shirley Highway                                                                            | Blue                                                          | 1.676                                                    | MC8                                        | 1500                         | 2                                                       | 16                               | 163                                          |                        | 163                                                  | 163                                         |
| Washington Boulevard                                                                       | Blue                                                          | 2.795                                                    | MC6                                        | 500                          | 2                                                       | 16                               | 90                                           |                        | 90                                                   | 90                                          |
| Rosslyn                                                                                    | Blue/Orange                                                   | 4.004                                                    | MC5                                        | 750                          | 3                                                       | 24                               | 184                                          |                        | 184                                                  | 184                                         |
| Potomac                                                                                    | Blue/Orange                                                   | 5.225                                                    | HC4                                        | 600                          | 2                                                       | 16                               | 100                                          |                        | 100                                                  | 100                                         |
| Farragut West                                                                              | Blue/Orange                                                   | 6.171                                                    | MC3                                        | -                            | 3                                                       | 24                               | 54                                           |                        | 54                                                   | 54                                          |
| Metro Center                                                                               | Blue/Orange                                                   | 7.036                                                    | MC1                                        | -                            | 3                                                       | 24                               | 31                                           |                        | 31                                                   | 31                                          |
| Smithsonian                                                                                | Blue/Orange                                                   | 7.770                                                    | MD2                                        | -                            | 2                                                       | 16                               | 36                                           |                        | 36                                                   | 36                                          |
| Federal Center                                                                             | Blue/Orange                                                   | 8.545                                                    | HD4                                        | -                            | 2                                                       | 16                               | 22                                           |                        | 22                                                   | 22                                          |
| Seward Square                                                                              | Blue/Orange                                                   | 9.313                                                    | MD6                                        | -                            | 2                                                       | 16                               | 41                                           |                        | 41                                                   | 41                                          |
| Potomac Avenue                                                                             | Blue/Orange                                                   | 10.748                                                   | HD7                                        | 500                          | 3                                                       | 24                               | 52                                           |                        | 52                                                   | 52                                          |
| Stadium Armory                                                                             | Blue/Orange                                                   | 11.387                                                   | MD8                                        | 225                          | 2                                                       | 16                               | 77                                           |                        | 77                                                   | 17                                          |
| Hinnesota Avenue                                                                           | Orange                                                        | 12.878                                                   | ND9                                        | -                            | 2                                                       | 16                               | 71                                           |                        | 71                                                   | 71                                          |
| Deanwood                                                                                   | Orange                                                        | 13.891                                                   | MD10                                       | -                            | 2                                                       | 16                               | 213                                          |                        | 213                                                  | 213                                         |
| Cheverly                                                                                   | Orange                                                        | 15.042                                                   | MD11                                       | -                            | 2                                                       | 16                               | 140                                          |                        | 140                                                  | 140                                         |
| Landover                                                                                   | Orange                                                        | 16.447                                                   | MD12                                       | 112.5                        | 2                                                       | 16                               | 287                                          |                        | 287                                                  | 287                                         |
| Beaver Nam Creek                                                                           | Orange                                                        | 17.395                                                   | MD13                                       | 75                           | 2                                                       | 16                               | 266                                          |                        | 266                                                  | 266                                         |
| New Carrollton Yard                                                                        | Orange                                                        | 18.314                                                   | MDY                                        | 1500                         | 2                                                       | 16                               | 929                                          | 600                    | 329                                                  | 599                                         |
| Stadium Armory<br>Hinnesota Avenue<br>Deanwood<br>Cheverly<br>Landover<br>Beaver Daw Creek | Blue/Orange<br>Orange<br>Orange<br>Orange<br>Orange<br>Orange | 11.387<br>12.878<br>13.891<br>15.042<br>16.447<br>17.395 | HD8<br>HD9<br>HD10<br>HD11<br>HD12<br>HD13 | 225<br>-<br>-<br>112.5<br>75 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                    | 16<br>16<br>16<br>16<br>16<br>16 | 77<br>71<br>213<br>140<br>287<br>266         | 600                    | 77<br>71<br>213<br>140<br>287<br>266                 | 77<br>71<br>213<br>140<br>287<br>266<br>599 |

1134(w/o MD)1, 12, 13, Y)

| CAR LAYUP INFORMATION | NUMBER O | F CARS |
|-----------------------|----------|--------|
|                       | NIGHT    | MIDDAY |
| Silver Spring         | 36       | 24     |
| Brentwood Yard        | 40       | 16     |
| New Cairollton Yard   | 120      | 54     |
| Ballston              | 24       | 6      |
| National Airport      | J6       | 18     |

-

# TABLE 5-11COMPARISON OF MAXIMUM POWER DEMAND TO AVERAGEFOR SEVERAL TRACTION ENERGY METER CONSOLIDATIONS

|                     | AM PEAK                 |                           | PM PEAK                 |                           |  |
|---------------------|-------------------------|---------------------------|-------------------------|---------------------------|--|
| METER CONSOLIDATION | MAXIMUM DEMAND INTERVAL | $\frac{MAX-AVG}{AVG}$ (%) | MAXIMUM DEMAND INTERVAL | $\frac{MAX-AVG}{AVG}$ (%) |  |
| Red Line            | 7:30-8:00               | 29                        | 17:15-17:45             | 31                        |  |
| Blue/Orange Line    | 7:00-7:30               | 31                        | 16:45-17:15             | 25                        |  |
| DC Jurisdiction     | 7:45-8:15               | 19                        | 17:45-18:15             | 18                        |  |
| VA Jurisdiction     | 8:15-8:45               | 67                        | 18:15-18:45             | 86                        |  |

Note: The MD consolidation was not considered because of missing data from several of the MD meters.

## **TABLE 5-12** RESULTS OF TEMPERATURE REGRESSION ANALYSES FOR SUPPORT METERS

| RED LINE PASSENGE  | STATIONS    | LOCATION | JURISDICTION | REVENUE SI  | P2(KWPADD)   | NON-REVENUE<br>P <sub>O</sub> (KN) | SERVICE TIME** |
|--------------------|-------------|----------|--------------|-------------|--------------|------------------------------------|----------------|
| Dupont Circle      | (MSA3)      | <u>-</u> | DC           | 350         | D.85         | 298                                | 1.05           |
| Farragut North     | (MSA2)      | U        | DC           | 327         | 1.75         | 319                                | 2.25           |
| Metro Center       | (MSAI)      | Ŭ        | DC           | 373         | 2.95         | 384                                | 3.57           |
| Gallery Place      | (MSB1)      | -<br>U   | DC           | 214         | 0.55         | 195                                | 0.44           |
| Judiciary Square   | (MSB2)      | Ŭ        | DC           | 246         | 0.39         | 228                                | 0.59           |
| Union Station      | (MSB3)      | U        | DC           | 261         | 1.39         | 243                                | 1.47           |
| Rhode Island Ave.  | (MSB4)      | Å        | DC           | 103         | -4.81        | 69                                 | -5.11          |
| Srookland          | (MS85)      | A        | DC           | 112         | -1.55        | 96                                 | -1,47          |
| Fort Totten        | (MS86)      | A        | DC           | 100         | -1.16        | 89                                 | -1.18          |
| Takoma Park        | (MSB7)      | A        | DC           | 77          | -0.97        | 62                                 | -0.99          |
| Silver Spring      | (MS88)      | A        | MD           | 115         | N            | 104                                | -0.25          |
| BLUE/ORANGE LINE P | ASSENGER S  | TATIONS  |              |             |              |                                    |                |
| Pentagon           | (MSC7)      | U        | VA           | 398         | 1.23         | 364                                | 1.17           |
| Arlington Cemetery | (MSC6)      | A        | VA           | 106         | -0.36        | 77                                 | -0.42          |
| Rosslyn            | (MSC5)      | U        | VA           | 370         | 1.20         | 346                                | 1.21           |
| Foggy Bottom       | (MSC4)      | U        | DC           | 189         | 0.57         | 165                                | 0.63           |
| Farragut West      | (MSC3)      | U        | 0C           | 305         | 1.48         | 296                                | 1.75           |
| McPherson Square   | (MSC2)      | U        | DC           | 265         | 0.99         | 260                                | 1.21           |
| Metro Center       | (MSC1)      | U        | DC           | 290         | 1.59         | 276                                | 1.65           |
| Federal Triangle   | (MSD1)      | U        | OC           | 183         | 0. <b>98</b> | 167                                | 0.72           |
| Smithsonian        | (MSD2)      | U        | DC           | 255         | 0.24         | 223                                | 0.19           |
| L'Enfant Plaza     | (MSD3)      | U        | DC           | 305         | 1.05         | 279                                | 1.15           |
| Federal Center     | (MSD4)      | U        | DC           | 196         | 0.73         | 184                                | 0.65           |
| Capitol South      | (MSD5)      | U        | DC           | 247         | 1.86         | 242                                | 1,91           |
| Eastern Market     | (MSD6)      | U        | DC           | 102         | N            | 95                                 | N              |
| Potomac Ave.       | (MSD7)      | U        | DC           | 147         | 0.37         | 142                                | 0.39           |
| Stadium Armony     | (MSD8)      | U        | DC           | 226         | 0.77         | 197                                | 0.84           |
| Minnesota Ave.     | (MSD9)      | A        | DC           | 110         | -1.34        | 100                                | -1.30          |
| Deanwood           | (MS10)      | A        | <b>DC</b>    | 95          | -0.70        | 76                                 | -0.65          |
| Cheverly           | (M\$11)     | . A      | MD           | 86          | -0.36        | 94                                 | 0.35           |
| Landover           | (MS12)      | A        | MD           | 54          | N            | 48                                 | -0.69          |
| New Carrollton     | (MS13)      | A        | MD           | 111         | N            | 151                                | N              |
| Gallery Place      | (MSE3)      | U        | DC           | 141         | 0.36         | 146                                | 0.35           |
| Archives           | (MSE2)      | Ų        | DC           | 60          | 1.26         | 72                                 | 1.29           |
| L'Enfant Plaza     | (MSET)      | U        | DC           | 198         | 0.51         | 182                                | 0.52           |
| OFFICE BUILDING A  | ND REPAIR S | HOPS     |              |             |              |                                    |                |
| Office Building    | (MOB)       |          | DC           | 1972        | 12.16        | 1594                               | 9.3            |
| T-St. Repair Shop  | (MRS)       |          | DC           | 57 <b>9</b> | 0.63         | 522                                | N              |
| Garden City Shop   | (MGCS)      |          | MD           | 273         | -11.14       | 181                                | -14.9          |

| Revenue   | Operating Time          |               |  |  |  |  |  |
|-----------|-------------------------|---------------|--|--|--|--|--|
|           | Red Line                | Blue/Ora      |  |  |  |  |  |
| Weekdays  | 00:00-00:45; 05:15-24:0 | 0 00:00-00:4  |  |  |  |  |  |
| Saturdays | 00:00-00:45: 07:30-24:0 | 0 00:00-00:49 |  |  |  |  |  |
| Sundays   | 09:30-18:45             |               |  |  |  |  |  |
| Non-Rev   | venue Operating Time    |               |  |  |  |  |  |
| Weekdays  | 00:45-05:15             | 00:45-05:30   |  |  |  |  |  |

inge Line 45; 05:30-24:00 5; 07:30-24:00

00:45-05:15 00:45-07:30 00:45-07:30 00:00-09:30; 18:45-24:00 00:00-09:30; 18:45-24:00

N - Not significant with 95% Confidence Limits.

Saturdays Sundays

Regression Equations

P = P<sub>0</sub> + P<sub>2</sub>(DD) P : Average Power (KW) P<sub>0</sub>: Background Power (KW)

P2: KWHPDD (Degree-Day Component Coefficient)

DD: Degree-Day

## TABLE 5-13 TEMPERATURE DEPENDENT COEFFICIENTS OF REGRESSION ANALYSES LOAD DIFFERENCES FOR SUPPORT METER CONSOLIDATION

|                             | P <sub>2</sub> (KWPADD) |                       | P <sub>2</sub> (KWI | PMDD)                    |
|-----------------------------|-------------------------|-----------------------|---------------------|--------------------------|
| SUPPORT METER CONSOLIDATION | REVENUE SEF             | VICE TIME<br>POSITIVE | NON-REVENUE         | SERVICE TIME<br>POSITIVE |
| Red Line                    | 8.49                    | 7.88                  | 9.00                | 9.37                     |
| Blue/Orange Line            | 2.76                    | 15,19                 | 3.06                | 15.98                    |
| DC Jurisdiction             | 10.53                   | 33.43                 | 10.7                | 29.76                    |
| MD Jurisdiction             | 11.50                   | 0                     | 15.84               | 0.35                     |
| VA Jurisdiction             | 0.36                    | 2.43                  | 0.42                | 2.73                     |
|                             |                         | LOAD DIFFERENC        | <u>ES (KW)</u>      |                          |
| P                           | 30°)-P(70°)             | P(90°)-P(70°)         | P(20°)-P(70         | D°) P(80°)-P(70°)        |
| Red Line                    | 340                     | 158                   | 450                 | 94                       |
| Blue/Orange Line            | 110                     | 304                   | 153                 | 160                      |
| DC Jurisdiction             | 421                     | 669                   | 535                 | 298                      |
| MD Jurisdiction             | 460                     | 0                     | 794                 | 4                        |
| VA Jurisdiction             | 14                      | 49                    | 21                  | 27                       |

## TABLE 5-14 AVERAGE SUPPORT POWER (KW) FOR PASSENGER STATIONS, OFFICE BUILDINGS AND REPAIR SHOPS DURING PRINCIPAL DAILY OPERATIONAL PERIODS

| WETER                        | JURIS-  |         |        | EKDA    |              |       |          | RDAY         |          | SUNDAY      |             |
|------------------------------|---------|---------|--------|---------|--------------|-------|----------|--------------|----------|-------------|-------------|
| METER                        | DICTION | AN PEAK | MICOAY | PM PEAK | EVENING      | NIGHT | OPERATIO | <u>NIGHT</u> | OPERATIO | N EVENING   | NIGHT       |
| RED LINE PASSENGER STATIONS  |         |         |        |         |              |       |          |              |          |             |             |
| Dupont Circle (MSA3)         | C       | 369     | 368    | 380     | 376          | 317   | 361      | 314          | 354      | 309         | 307         |
| Farragut North (MSA2)        | 00      | 360     | 357    | 359     | 354          | 318   | 336      | 312          | 341      | 318         | 313         |
| Metro Center (MSAI)          | 00      | 411     | 405    | 410     | 408          | 389   | 403      | 370          | 398      | 376         | 37-         |
| Gallery Place (MSB1)         | DC      | 216     | 217    | 220     | 218          | 196   | 220      | 297          | 205      | 187         | 185         |
| Judiciary Square (MSB2)      | DC      | 257     | 255    | 256     | 251          | 229   | 240      | 225          | 236      | 223         | 223         |
| Union Station (MSB3)         | CC      | 278     | 283    | 280     | 273          | 244   | 270      | 242          | 267      | 242         | 242         |
| Rhode Island Avenue (MSB4)   | DC      | 70      | 63     | 63      | 94           | 89    | 76       | 84           | 61       | 83          | -6          |
| Brookland (MSB5)             | DC      | 102     | 92     | 104     | 109          | 100   | 104      | 101          | 97       | 98          | 96          |
| Fort Totten (MSB6)           | DC      | 56      | 83     | 83      | 104          | 93    | 88       | 90           | 83       | 88          | 87          |
| Takoma Park (MSB7)           | 90      | 77      | 72     | 70      | 86           | 70    | 76       | 69           | 70       | 77          | 67          |
| Silver Spring (MSB8)         | MD      | 117     | 109    | 108     | 125          | 106   | 110      | 107          | 105      | 113         | 105         |
| BLUE/ORANGE LINE PASSENGER S | TATIONS |         |        |         |              |       |          |              |          |             |             |
| Pentagon (MSC7)              | VA      | 417     | 401    | 411     | 415          | 368   | 397      | 364          | 392      | 378         | 365         |
| Arlington Cemetery (MSC6)    | VA      | 106     | 95     | 107     | 104          | 79    | 100      | 82           | 98       | 93          | 81          |
| Rosslyn (MSC5)               | VA      | 388     | 385    | 391     | 384          | 352   | 376      | 343          | 358      | 332         | 330         |
| Foggy Bottom (MSC4)          | 00      | 195     | 188    | 189     | 186          | 168   | 185      | 165          | 185      | 170         | 168         |
| Farragut West (MSC3)         | DC      | 330     | 324    | 325     | 327          | 300   | 309      | 285          | 316      | 296         | 283         |
| McPherson Square (MSC2)      | DC      | 288     | 291    | 293     | 285          | 254   | 269      | 254          | 270      | 254         | 256         |
| Metro Center (MSC1)          | DC      | 309     | 309    | 309     | 306          | 277   | 309      | 279          | 308      | 280         | 279         |
| Federal Triangle (MSDI)      | DC      | 194     | 192    | 198     | 195          | 180   | 190      | 167          | 187      | 175         | 161         |
| Smithsonian (MSD2)           | DC      | 268     | 261    | 257     | 249          | 225   | 257      | 224          | 258      | 221         | 219         |
| L'Enfant Plaza (MSO3)        | DC      | 332     | 324    | 327     | 324          | 283   | 304      | 286          | 303      | 283         | 282         |
| Federal Center (MSD4)        | DC      | 208     | 203    | 209     | 203          | 182   | 200      | 180          | 201      | 183         | 181         |
| Capitol South (MSD5)         | 0C      | 264     | 261    | 266     | 262          | 239   | 259      | 241          | 263      | 246         | 243         |
| Eastern Market (MSD6)        | DC      | 88      | 88     | 88      | 88           | 85    | 101      | 97           | 90       | 88          | 92          |
| Potomac Avenue (MSD7)        | DC      | 147     | 147    | 152     | 146          | 135   | 145      | 129          | 148      | 13 <b>6</b> | 132         |
| Stadium Armory (MSDB)        | DC      | 229     | 231    | 235     | 233          | 202   | 230      | 200          | 227      | 203         | 196         |
| Minnesota Avenue (MSD9)      | DC      | 96      | 94     | 96      | 114          | 100   | 106      | 103          | 100      | 107         | 101         |
| Deanwood (MS10)              | DC      | 88      | 82     | 82      | 100          | 80    | 87       | 78           | 80       | 83          | 75          |
| Cheverly (MS11)              | MD      | 88      | 78     | 77      | 108          | 94    | 92       | 97           | 79       | 96          | 87          |
| Landover (MS12)              | MD      | 54      | 49     | 53      | 61           | 51    | 54       | 53           | 43       | 47          | 48          |
| New Carrollton (MS13)        | MD      | 146     | 125    | 124     | 215          | 216   | 155      | 200          | 121      | 191         | 179         |
| Gallery Place (MSE3)         | 0C      | 148     | 145    | 144     | 145          | 146   | 144      | 148          | 143      | 144         | 145         |
| Archives (MSE2)              | C       | 72      | 72     | 73      | 73           | 72    | 73       | 73           | 71       | 71          | 71          |
| L'Enfant Plaza (MSEl)        | DC      | 208     | 209    | 209     | 204          | 183   | 201      | 184          | 201      | 185         | 183         |
| OFFICE BUILDING AND REPAIR S | HOPS    |         |        |         |              |       |          |              |          |             |             |
| Total Office and Shop        |         | 3197    | 3382   | 3202    | 28 <b>06</b> | 2377  | 2427     | 2260         | 2085     | 2130        | 2085        |
| Office Building (MOB)        | DC      | 2382    | 2516   | 2380    | 1969         | 1651  | 1689     | 1459         | 1471     | 1419        | 1311        |
| T-St. Repair Shop (MRS)      | 0C      | 557     | 640    | 606     | 603          | 510   | 533      | 533          | 411      | 507         | 515         |
| Garden City Shop (MGCS)      | MD      | Z58     | 226    | 216     | 234          | 216   | 205      | 268          | 203      | 204         | 25 <b>9</b> |

## TABLE 5-15 AVERAGE SUPPORT POWER FOR METER CONSOLIDATIONS AT VARIOUS OPERATING PERIODS

|                  | WEEKDAY |         |         |             |          | SATURDAY    |        |           | SUNDAY       |       |
|------------------|---------|---------|---------|-------------|----------|-------------|--------|-----------|--------------|-------|
|                  | AM PEAK | MIDDAY  | PM PEAI | K EVENING   | G NIGHT  | OPERATION   | NIGHT  | OPERATION | EVENING      | NIGHT |
| Red Line         | 2343    | 2304    | 2333    | 2398        | 2151     | 2284        | 2111   | 2217      | 2114         | 2078  |
| Blue/Orange Line | 4663    | 4554    | 4616    | 4728        | 4271     | 4543        | 4232   | 4442      | 4263         | 4157  |
| DC Jurisdiction  | 5690    | 5616    | 5678    | 5714        | 5156     | 5543        | 5097   | 5463      | 5127         | 5040  |
| MD Jurisdiction  | 405     | 361     | 362     | 509         | 467      | 411         | 457    | 348       | 447          | 419   |
| VA Jurisdiction  | 911     | 881     | 909     | <b>9</b> 03 | 799      | 873         | 789    | 848       | 803          | 776   |
|                  | ALL     | SUPPORT | METERS  | INCLUDING   | OFFICE B | UILDING AND | REPAIR | FACILITIE | <u>(KW</u> ) |       |
| DC Jurisdiction  | 8629    | 8772    | 8664    | 8286        | 7317     | 7765        | 7089   | 7345      | 7053         | 6866  |
| MD Jurisdiction  | 663     | 587     | 578     | 743         | 683      | 616         | 725    | 551       | 651          | 678   |

## PASSENGER STATION (KW)

## TABLE 5-16 SUMMARY OF LIGHTING LOADS BY PASSENGER STATION

| STATION (METER SYMBOL)     | JURIS-<br>DICTION | STATION<br>LOCATION | STATION<br>TYPE | NUMBER OF<br>PARKING SPACES | STATION<br>LIGHTING (KW) | PARKING LOT<br>LIGHTING (KW)*** | TOTAL<br>LIGHTING (KW) |
|----------------------------|-------------------|---------------------|-----------------|-----------------------------|--------------------------|---------------------------------|------------------------|
| RED LINE STATIONS          |                   |                     |                 |                             |                          |                                 |                        |
| Dupont Circle (MSA3)       | C                 | U                   | s               |                             | 120                      |                                 | 120                    |
| Farragut North (MSA2)      | ЭС                | ដ                   | с               |                             | 70                       |                                 | 70                     |
| Metro Center (MSA1)        | <b>00</b>         | ŭ                   | S               |                             | 120                      |                                 | 120                    |
| Gallery Place (MSB1)       | C                 | U                   | s               |                             | 120                      |                                 | 120                    |
| Judiciary Square (MS82)    | 30                | U                   | с               |                             | 120                      |                                 | 120                    |
| Union Station (MSB3)       | 0C                | U                   | ¢               |                             | 70                       |                                 | 70                     |
| Rhode Island Avenue (MS84) | C                 | A                   | C               | 300                         | 30                       | 9                               | 39                     |
| Brookland (MSB5)           | DC                | A                   | С               |                             | 30                       |                                 | 30                     |
| Fart Totten (MS86)         | 0C                | A                   | С               | 300                         | 30                       | 9                               | 39                     |
| Takoma Park (MS87)         | DC                | A                   | С               | 1000                        | 30                       | 30                              | 60                     |
| Silver Spring (MSB8)       | MD                | A                   | С               |                             | 30                       |                                 | 30                     |
| BLUE/ORANGE LINE STATIONS  |                   |                     |                 |                             |                          |                                 |                        |
| Pentagon (MSC7)            | VA                | U                   | S**             |                             | 130                      |                                 | 130                    |
| Arlington Cemetery (MSCS)  | VA                | A                   | S               |                             | 40                       |                                 | 40                     |
| Rosslyn (MSCS)             | ٧A                | U                   | S**             |                             | 130                      |                                 | 130                    |
| Foggy Battom (MSC4)        | DC                | U                   | с               |                             | 70                       |                                 | 70                     |
| Farragut West (MSC3)       | DC                | ប                   | 5               |                             | 120                      |                                 | 120                    |
| McPherson Square (MSC2)    | DC                | U                   | 5               |                             | 120                      |                                 | 120                    |
| Metro Center (MSC1)        | DC                | U                   | с               |                             | 70                       |                                 | 70                     |
| Federal Triangle (MSD1)    | DC                | Ð                   | с               |                             | 70                       |                                 | 70                     |
| Smithsonian (MSD2)         | DC                | U                   | S               |                             | 120                      |                                 | 120                    |
| L'Enfant Plaza (MSD3)      | DC                | U                   | С               |                             | 70                       |                                 | 70                     |
| Federal Center (MSD4)      | DC                | U                   | C               |                             | 70                       |                                 | 70                     |
| Capitol South (MSD5)       | DC                | U                   | C               |                             | 70                       |                                 | 70                     |
| Eastern Market (MSD6)      | DC                | ü                   | С               |                             | 70                       |                                 | 70                     |
| Potomac Avenue (MSD7)      | DC                | U                   | С               |                             | 70                       |                                 | 70                     |
| Stadium Armory (MSD8)      | DC                | U                   | C               |                             | 70                       |                                 | 70                     |
| Minnesota Avenue (MSD9)    | DC                | A                   | С               | 250                         | 30                       | 7                               | 37                     |
| Deanwood (MS10)            | DC                | A                   | С               | 220                         | 30                       | 7                               | 37                     |
| Cheverly (MSII)            | MD                | A                   | S               | 500                         | 40                       | 15                              | 55                     |
| Landover (MS12)            | MD                | A                   | С               | 1000                        | 30                       | 30                              | 60                     |
| New Carrollton (MS13)      | MD -              | A                   | C               | 1900                        | 30                       | 56                              | 8 <b>6</b>             |
| Gallery Place (MSE3)*      | DC                | ប                   | c               |                             | 70                       |                                 | 70                     |
| Archives (MSE2)*           | DC                | U                   | с               |                             | 70                       |                                 | 70                     |
| L'Enfant Plaza (MSEl)*     | DC                | ប                   | S               |                             | 120                      |                                 | 120                    |
|                            |                   |                     | - • <b>4</b>    | *Canan (Ya]]                | . I fae                  |                                 |                        |

Note: U - underground S - side platform A - above ground C - center platform

\*Green/Yellow Line \*\*two level \*\*\*based on 30 watts per space

## TABLE 5-17 SUMMARY OF LIGHTING LOADS BY METER CONSOLIDATIONS

| SUPPORT METER CONSOLIDATIONS    | PARKING<br>LIGHTING | (KW)<br>STATION<br>LIGHTING | TOTAL<br>LIGHTING |
|---------------------------------|---------------------|-----------------------------|-------------------|
| Red Line Passenger Stations     | 48                  | 770                         | 818               |
| Blue/Orange Passenger Stations* | 115                 | 1830                        | 1945              |
| DC Passenger Stations           | 62                  | 2050                        | 2112              |
| MD Passenger Stations           | 101                 | 130                         | 231               |
| VA Passenger Stations           | 0                   | 300                         | 300               |

\*Includes three Green/Yellow Line stations which were on during 1980: L'Enfant Plaza, Gallery Place and Archives.

.

## TABLE 5-18 PASSENGER STATION AVERAGE DAILY POWER OF ESCALATORS

| PASSENGER STATION (METER)                                                                                                                                                                          | JURISDICTION | TOTAL<br>ESCALATOR RISE (FT) | DATLY YW*** |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|-------------|--|--|--|
| RED LINE PASSENGER STATION                                                                                                                                                                         | <u></u>      |                              | <u></u>     |  |  |  |
| Supont Circle (MSA3)                                                                                                                                                                               | DC           | 540                          | 59          |  |  |  |
| Farragut North (MSA2)                                                                                                                                                                              | 00           | 307                          | 34          |  |  |  |
| Metro Center (MSA1)                                                                                                                                                                                | DC           | 576                          | 63          |  |  |  |
| Gallery Place (MSB1)                                                                                                                                                                               | 50<br>50     | 39                           | 11          |  |  |  |
| Judiciary Square (MSB2)                                                                                                                                                                            | DC           | 187                          | 21          |  |  |  |
| Union Station (MSB3)                                                                                                                                                                               | DC           | 159                          | 17          |  |  |  |
| Rhode Island Avenue (MSB4)                                                                                                                                                                         | 20<br>20     | 64                           | 7           |  |  |  |
| Brookland (MS85)                                                                                                                                                                                   | DC           | 89                           | 10          |  |  |  |
| Fort Totten (MSB6)                                                                                                                                                                                 | DC           | 85                           | 9           |  |  |  |
| Takoma Park (MSB7)                                                                                                                                                                                 | DC           | 76                           | 8           |  |  |  |
| Silver Spring (MSB8)                                                                                                                                                                               | MD           | 116                          | 13          |  |  |  |
| BLUE/ORANGE LINE PASSENGER S                                                                                                                                                                       | TATIONS      |                              |             |  |  |  |
| Pentagon (MSC7)                                                                                                                                                                                    | DC           | 481                          | 53          |  |  |  |
| Arlington Cemetery (MSC6)                                                                                                                                                                          | VA           | 219                          | 24          |  |  |  |
| Rosslyn (MSC5)                                                                                                                                                                                     | VA           | 483                          | 53          |  |  |  |
| Foggy Bottom (MSC4)                                                                                                                                                                                | DC           | 134                          | 15          |  |  |  |
| Farragut West (MSC3)                                                                                                                                                                               | DC           | 229                          | 25          |  |  |  |
| McPherson Square (MSC2)                                                                                                                                                                            | DC           | 266                          | 29          |  |  |  |
| Metro Center (MSC1)                                                                                                                                                                                | DC           | *                            | +           |  |  |  |
| Federal Triangle (MSDI)                                                                                                                                                                            | DC           | 106                          | 12          |  |  |  |
| Smithsonian (MSD2)                                                                                                                                                                                 | DC           | 237                          | 26          |  |  |  |
| L'Enfant Plaza (MSD3)                                                                                                                                                                              | DC           | 720                          | 79          |  |  |  |
| Federal Center (MSD4)                                                                                                                                                                              | DC           | 152                          | 17          |  |  |  |
| Capitol South (MSD5)                                                                                                                                                                               | DC           | 1 <b>66</b>                  | 18          |  |  |  |
| Eastern Market (MSD6)                                                                                                                                                                              | DC           | 139                          | 15          |  |  |  |
| Potomac Avenue (MSD7)                                                                                                                                                                              | DC           | 156                          | 17          |  |  |  |
| Stadium Armory (MSD8)                                                                                                                                                                              | DC           | 279                          | 31          |  |  |  |
| Minnesota Avenue (MSD9)                                                                                                                                                                            | DC           | 86                           | 9           |  |  |  |
| Deanwood (MS10)                                                                                                                                                                                    | DC           | 67                           | 7           |  |  |  |
| Cheverly (MS11)                                                                                                                                                                                    | MD           | 117                          | 13          |  |  |  |
| Landover (MS12)                                                                                                                                                                                    | MD           | 43                           | 5           |  |  |  |
| New Carrollton (MS13) <sup>+</sup>                                                                                                                                                                 | MD           | 71                           | 8           |  |  |  |
| Gallery Place (MSE3)                                                                                                                                                                               | DC           | **                           | **          |  |  |  |
| Archives (MSE2)                                                                                                                                                                                    | DC           | **                           | **          |  |  |  |
| L'Enfant Plaza (MSE1) <sup>+</sup>                                                                                                                                                                 | DC           | **                           | **          |  |  |  |
| <pre>*Included with MSAT Metro Center.     **Escalators not on in 1980.     ***Calculated on basis of 0.11 kw/ft.     *These escalators to lower levels were not in         service in 1980.</pre> |              |                              |             |  |  |  |

#### TABLE 5-19 COMPARISON OF PREDICTED DAILY AVERAGE ESCALATOR POWER WITH OBSERVATION USING SIMPLE ESCALATOR POWER FORMULA

## SUPPORT METER CONSOLIDATION KW(PEAK) KW(NIGHT) KW(PEAK)- KW(NIGHT) KW(ESC.)\* Underground Stations 5552 4943 609 595

\*Based on the assumption that all escalators operate during the peak periods and that only the escalators in underground stations are turned off at nonrevenue service time, the value 595KW computed using the simple escalator formula compares well with the actual measured power of 609KW. TABLE 5-20 SUMMARY OF BACKGROUND, LIGHTING AND ESCALATOR POWER (KW) FOR SUPPORT METERS AT PASSENGER STATIONS

|                  | PEAK** | MIDDAY** | EVENING | NON-REVENUE |
|------------------|--------|----------|---------|-------------|
| RED LINE         |        |          |         |             |
| Background*      | 1470   | 1470     | 1470    | 1470        |
| Lighting         | 620    | 620      | 820     | 620         |
| Escalators       | 250    | 250      | 250     | 0           |
| Total            | 2340   | 2340     | 2540    | 2090        |
| Actual Total     | 2340   | 2300     | 2400    | 2130        |
| BLUE/ORANGE LINE |        |          |         |             |
| Background*      | 2555   | 2555     | 2555    | 2555        |
| Lighting         | 1630   | 1630     | 1945    | 1630        |
| Escalators       | 455    | 455      | 455     | 0           |
| Total            | 4640   | 4640     | 4955    | 4185        |
| Actual Total     | 4640   | 4550     | 4730    | 4270        |
| DC JURISDICTION  |        |          |         |             |
| Background*      | 3275   | 3275     | 3275    | 3275        |
| Lighting         | 1870   | 1870     | 1945    | 1870        |
| Escalators       | 540    | 540      | 540     | 0           |
| Total            | 5685   | 5685     | 5760    | 5145        |
| Actual Total     | 5685   | 5615     | 5715    | 5160        |
| MD JURISDICTION  |        |          |         |             |
| Background*      | 340    | 340      | 340     | 340         |
| Lighting         | 0      | 0        | 230     | 0           |
| Escalators       | 40     | 40       | 40      | 0           |
| Total            | 380    | 380      | 510     | 340         |
| Actual Total     | 380    | 360      | 510     | 465         |
| VA JURISDICTION  |        |          |         |             |
| Background*      | 520    | 520      | 520     | 520         |
| Lighting .       | 260    | 260      | 300     | 260         |
| Escalators       | 130    | 130      | 130     | 0           |
| Total            | 910    | 910      | 950     | 780         |
| Actual Total     | 910    | 880      | 900     | 800         |

\*The background is determined by subtracting the underground station lighting load and escalator load from the average support power during peak periods. \*\*Only underground station lighting is on during these periods.

## TABLE 5-21 AVERAGE POWER DEMAND DURING PEAK PERIODS AND DAILY ENERGY CONSUMPTION OF OFFICE BUILDINGS AND REPAIR SHOP

|                          | OFFICE BUILDING (DC)<br>(MOB) | <u>T-ST. REPAIR SHOP (DC)</u><br>(MRS) | <u>GARDEN CITY SHOP (MD)</u><br>(MGCS) |
|--------------------------|-------------------------------|----------------------------------------|----------------------------------------|
| POWER DEMAND (KW)        |                               |                                        |                                        |
| AM Peak (8:00-9:00AM)    | 2280                          | 610                                    | 290                                    |
| PM Peak (16:00-17:00PM)  | 2205                          | 590                                    | 235                                    |
| ENERGY CONSUMPTION (KWH) |                               |                                        |                                        |
| Weekday                  | 47510                         | 13835                                  | 6865                                   |
| Saturday                 | 37375                         | 12525                                  | 6570                                   |
| Sunday                   | 32025                         | 11795                                  | 5410                                   |
| ANNUAL ENERGY USE (MWH)  | 16000                         | 4900                                   | 2400                                   |

#### TABLE 5-22 PASSENGER STATION LIGHTING AND ESCALATOR LOADS PROVIDED BY VEPCO

| PASSENGER STATION | LOCATION | TYPE | LIGHTING<br>LOAD (KW) | ESCALATOR RISE<br>(ft) | AVERAGE ESCALATOR<br>POWER (KW)(0.11/ft rise) |
|-------------------|----------|------|-----------------------|------------------------|-----------------------------------------------|
| National Airport  | A        | C&S  | 70*                   | 84                     | 9                                             |
| Crystal City      | U        | S    | 120                   | 191                    | 21                                            |
| Pentagon City     | U        | S    | 120                   | 169                    | 19                                            |
| Courthouse        | U        | C    | 70                    | 219                    | 24                                            |
| Clarendon         | U        | S    | 120                   | 114                    | 13                                            |
| Virginia Square   | U        | S    | 120                   | 144                    | 16                                            |
| Ballston          | U        | S    | 120                   | 168                    | 18                                            |
| TOTAL             |          |      | 740                   |                        | 120                                           |

A - above ground

U - underground

C - center platform

S - side platform

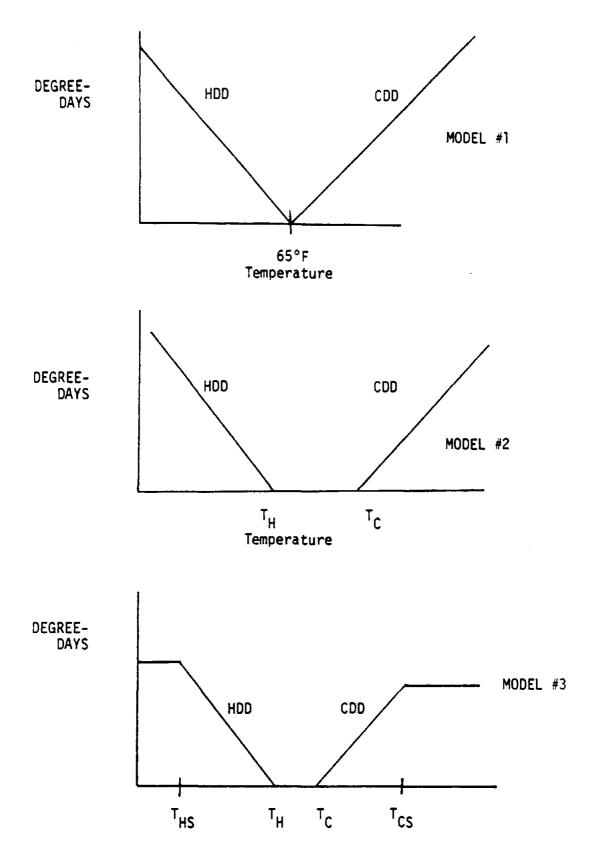
### TABLE 5-23 SUMMARY OF BACKGROUND, LIGHTING AND ESCALATOR SUPPORT POWER (KW) FURNISHED BY VEPCO

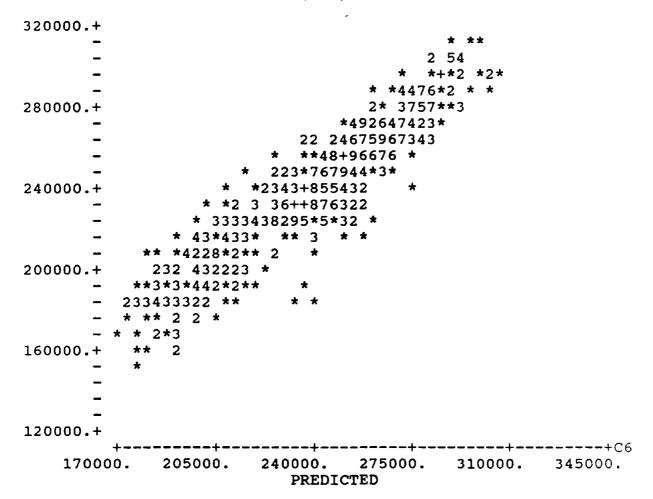
|            | PEAK | MIDDAY | EVENING | NON-REVENUE |
|------------|------|--------|---------|-------------|
| Background | 1065 | 1065   | 1065    | 1065        |
| Lighting   | 670  | 670    | 740     | 670         |
| Escalator  | 120  | 120    | 120     | 0           |
| TOTAL      | 1855 | 1855   | 1925    | 1735        |

.

.

•


### AVERAGE DATA ON THE PEPCO SERVICED PASSENGER STATIONS USED IN DETERMINING BACKGROUND


| TYPE | AVERAGE<br>BACKGROUND (KW)                                         |
|------|--------------------------------------------------------------------|
| С    | 147                                                                |
| S    | 167                                                                |
| C    | $\left. \begin{array}{c} 84 \\ 77 \end{array} \right\}$ Average 81 |
| S    | 77 <b>f</b> <sup>(1)</sup> (2) (1)                                 |
|      | C<br>S                                                             |

#### TABLE 5-24 ESTIMATE OF SUPPORT ENERGY USE AND AVERAGE PEAK POWER DEMAND BY UTILITY/JURISDICTION

| ANNUAL SUPPORT ENERGY (MWH)   | HRS/WEEK          | DC F       | PEPCO<br>MD        | VA        | VEPCO      |
|-------------------------------|-------------------|------------|--------------------|-----------|------------|
| Background                    | 168               | 49400(72)  | 5400 ( 90 <b>)</b> | 4500(58)  | 9300(58)   |
| Lighting                      |                   |            |                    |           |            |
| Underground                   | 168               | 16300      | 0                  | 2300      | 5900       |
| Above Ground                  | 36                | 100        | 400                | 100       | 100        |
| Total                         |                   | 16400(24)  | 400(7)             | 2400(32)  | 6000(38)   |
| Escalators                    | 114               | 3200(4)    | 200(3)             | 800(10)   | 700(4)     |
| TOTAL                         |                   | 69000(100) | 6000(100)          | 7700(100) | 16000(100) |
| ( ) indicates % of tota       | l support energy. |            |                    |           |            |
| SUPPORT PEAK POWER DEMAND (KW | <u>)</u>          |            |                    |           |            |
| Station Background            |                   | 3275       | 340                | 520       | 1065       |
| Office and Repair Shop Back   | cground           | 2890       | 290                | 0         | 0          |
| Station Lighting              |                   | 1870       | 0                  | 260       | 670        |
| Station Escalators            |                   | 540        | 40                 | 130       | 120        |
| TOTAL                         |                   | 8575       | 670                | 910       | 1855       |
| AVERAGE POWER (KW) USED FOR E | VERGY COMPUTATION |            |                    |           |            |
| Station Lighting              |                   |            |                    |           |            |
| Underground                   |                   | 1870       | 0                  | 260       | 670        |
| Above Ground                  |                   | 75         | 230                | 40        | 70         |
| Station Escalators            |                   | 540        | 40                 | 130       | 120        |

272





### OBSERVED VS PREDICTED DAILY ENERGY USE (KWH)

FIGURE 5-2

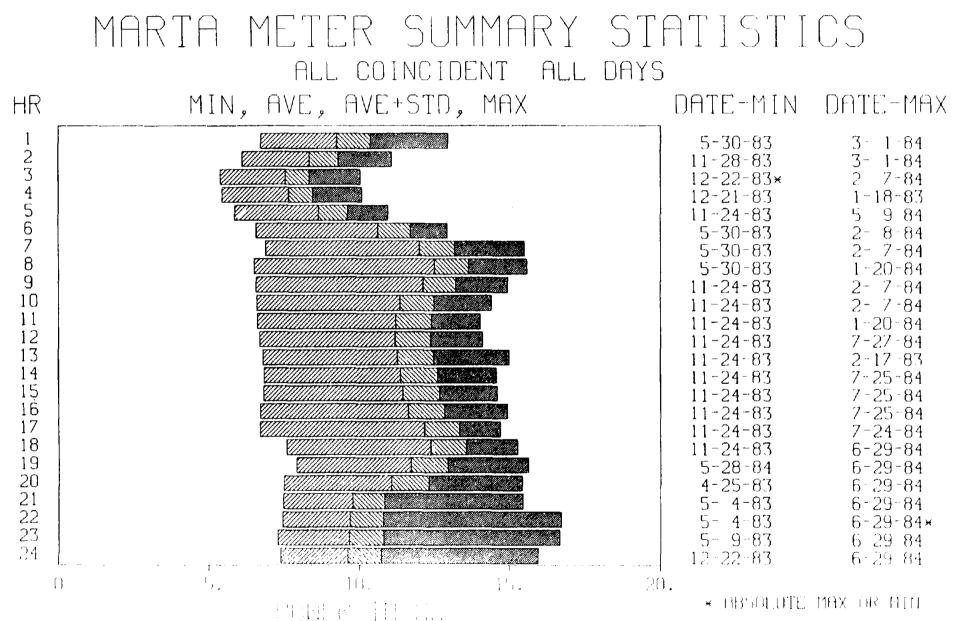
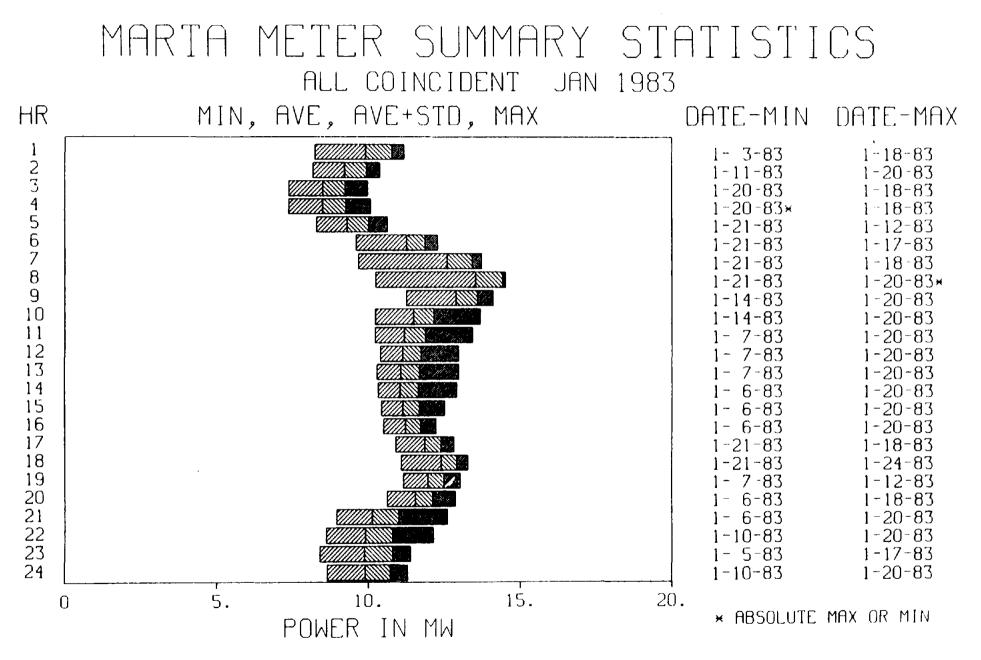
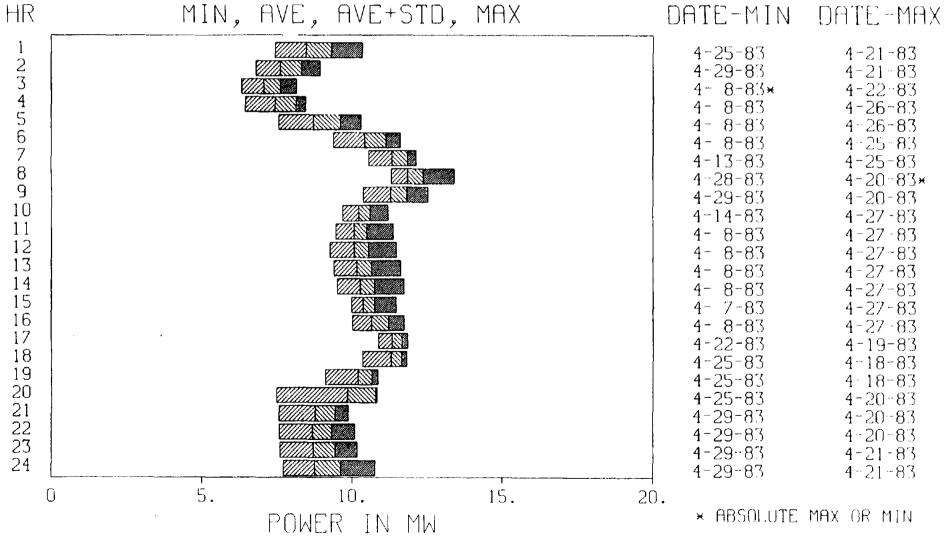





FIGURE 5-3





### MARTA METER SUMMARY STATISTICS ALL COINCIDENT APR 1983



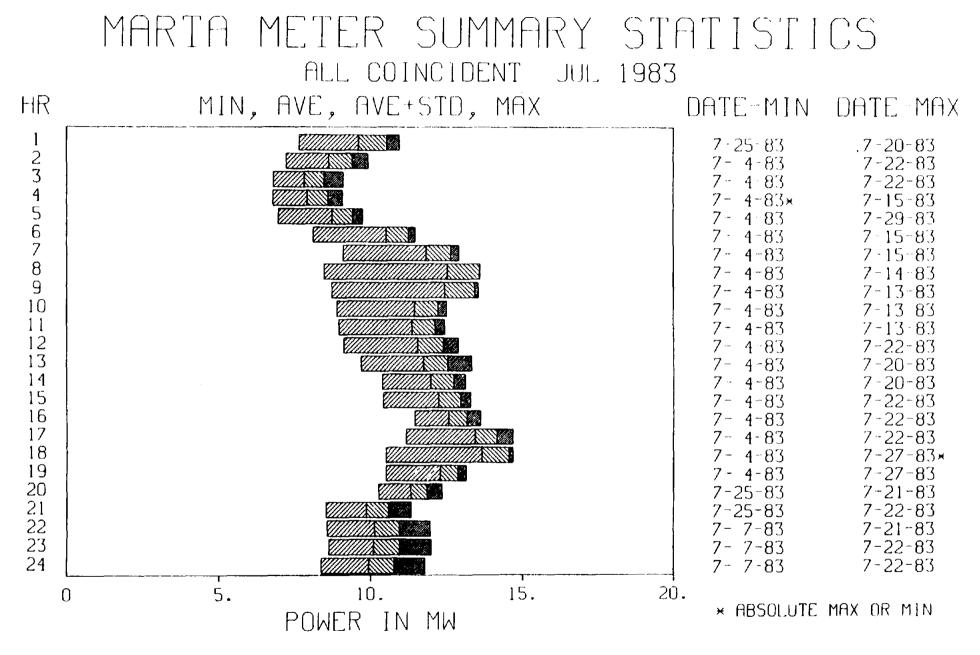



FIGURE 5-6

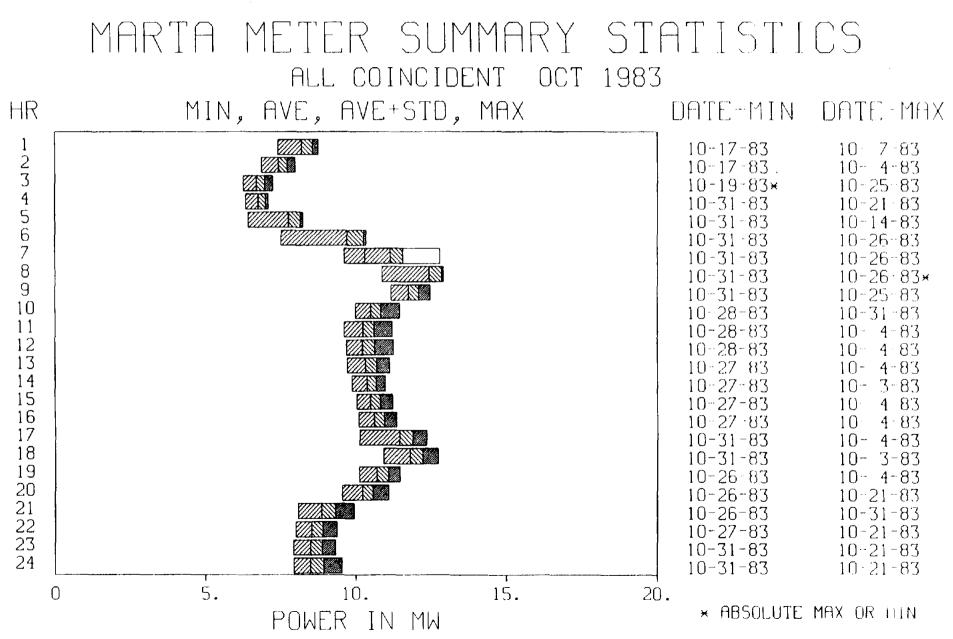



FIGURE 5-7

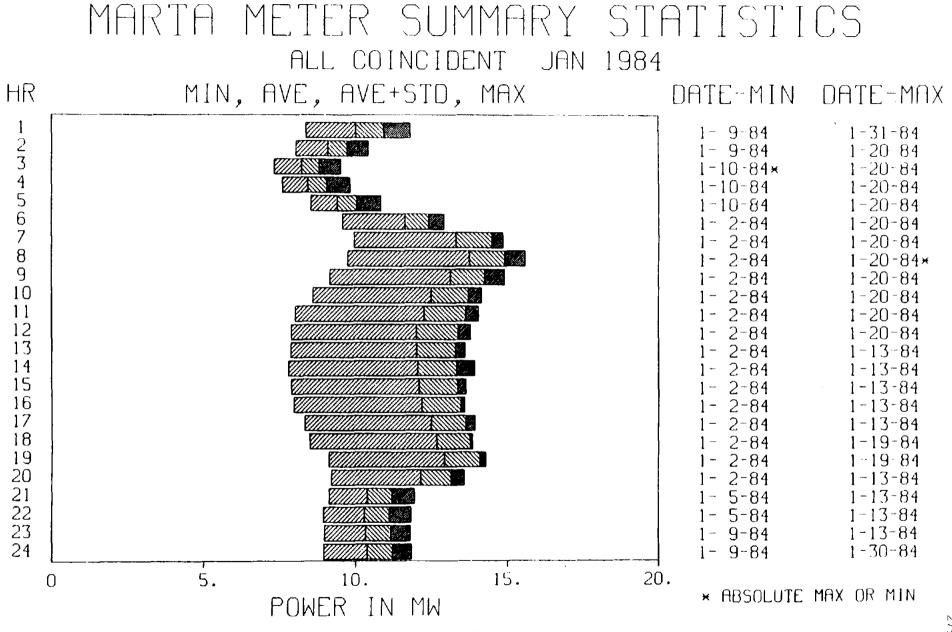
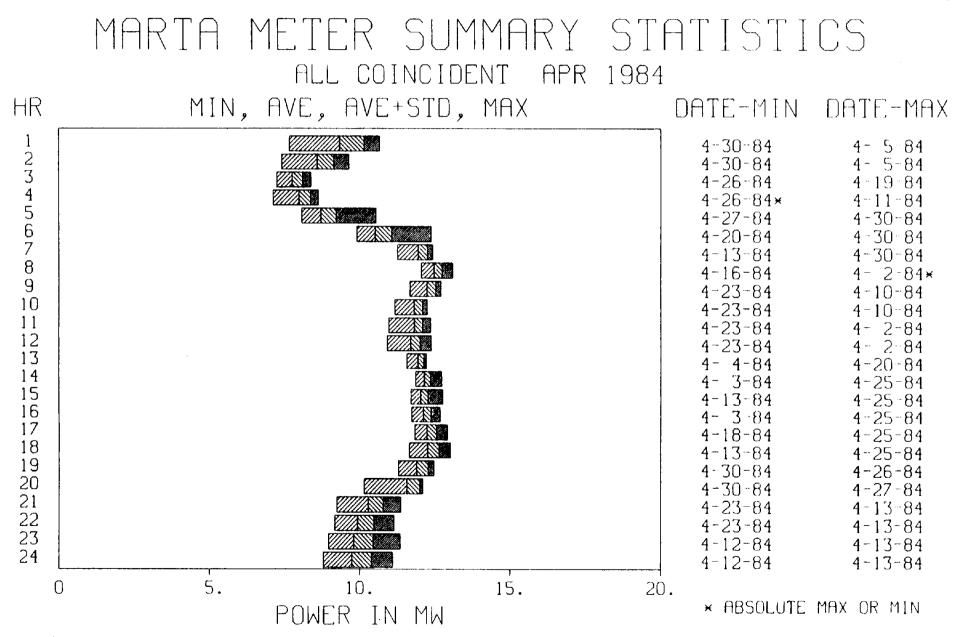
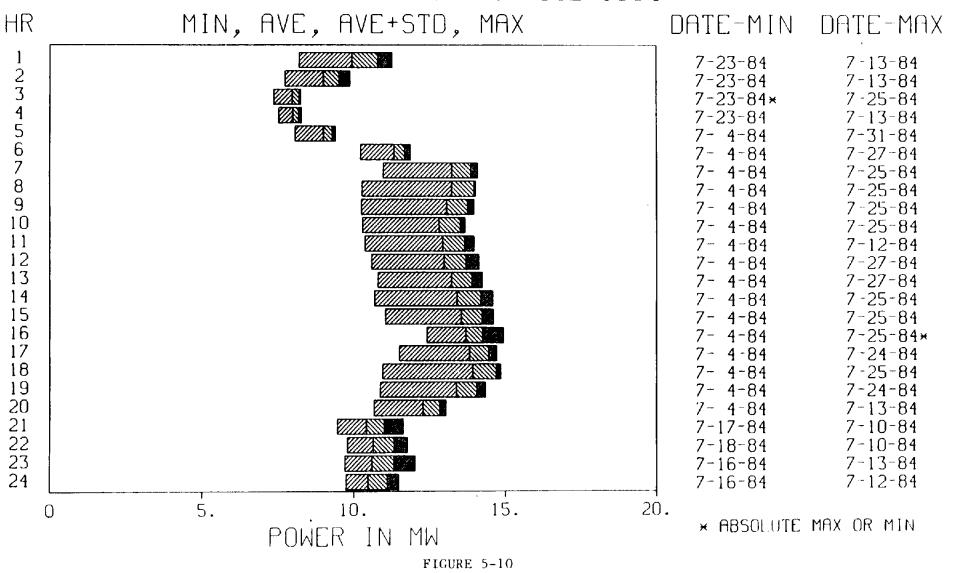
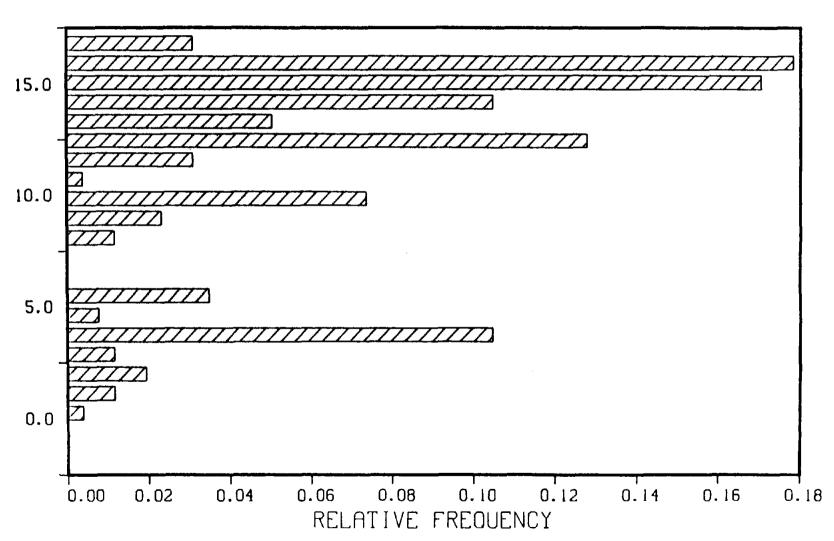





FIGURE 5-8




### MARTA METER SUMMARY STATISTICS ALL COINCIDENT JUL 1984



## HISTOGRAM RED LINE-CAR MILES (FEB 1 - OCT 15, 1980)

×10<sup>3</sup>



### HISTOGRAM BLUE LINE-CAR MILES (FEB 1 - OCT 15, 1980)

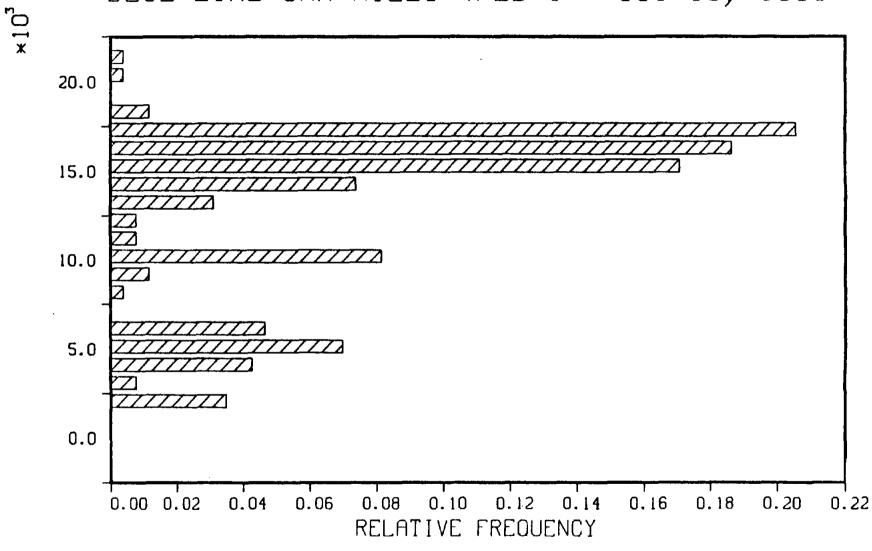
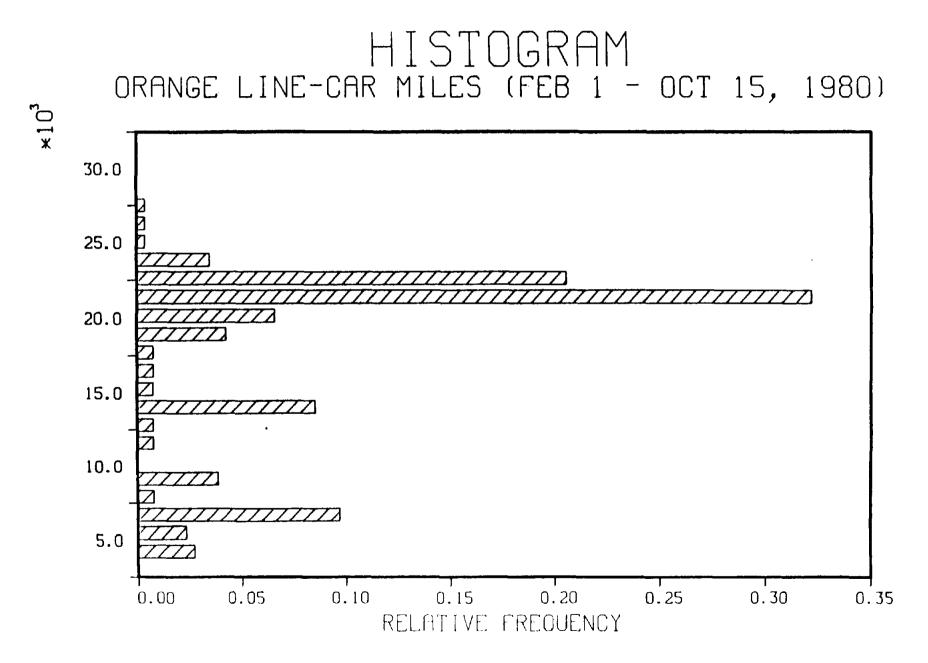




FIGURE 5-12

E Contra Contra



HIGURE 5-13

· · · ·

### HISTOGRAM AVERAGE DEGREE DAY (FEB 1 - OCT 15, 1980)

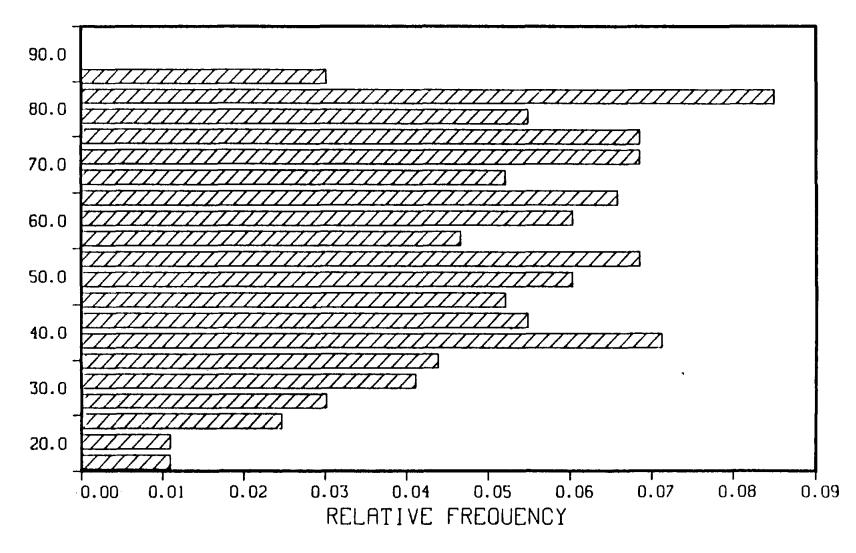



FIGURE 5-14

## SUMMARY STATISTICS WMATA RED LINE-AM PEAK

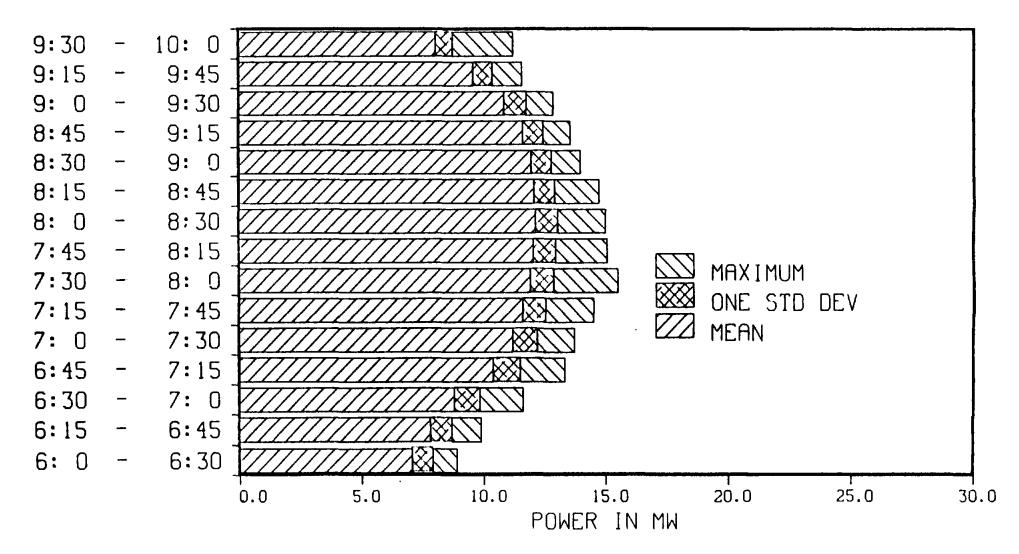
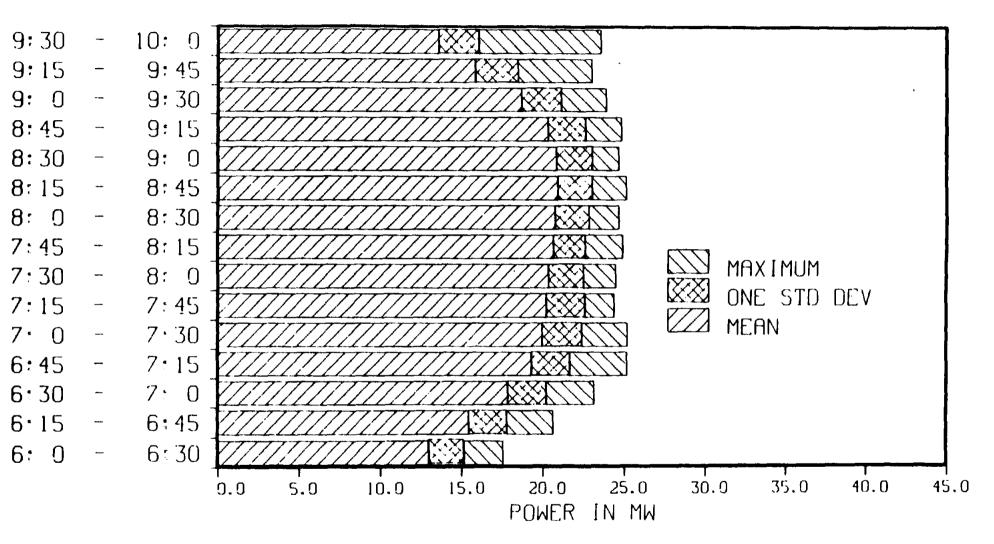




FIGURE 5-15

# SUMMARY STATISTICS WMATA BLUE/ORANGE LINE-AM PEAK



,

## SUMMARY STATISTICS DC JURISDICTION-AM PEAK

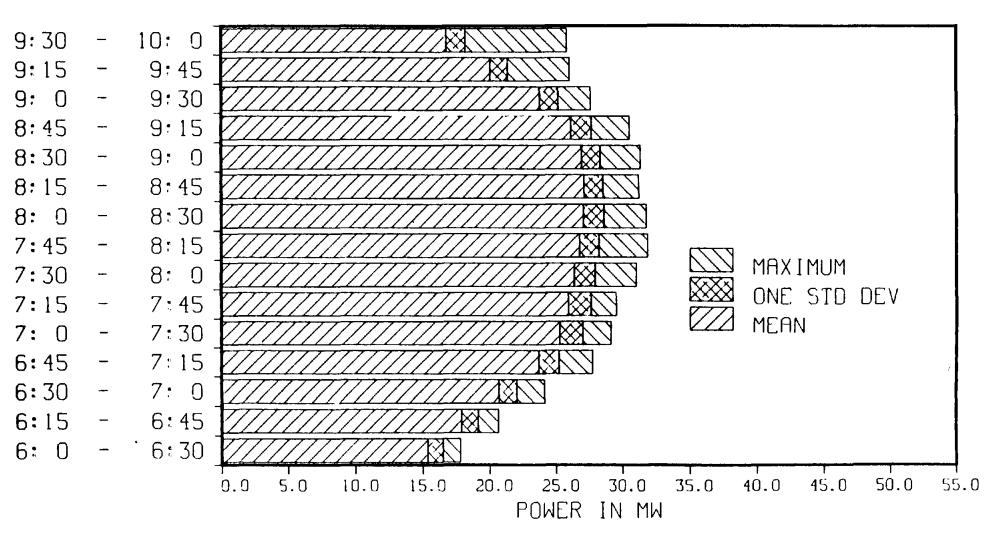
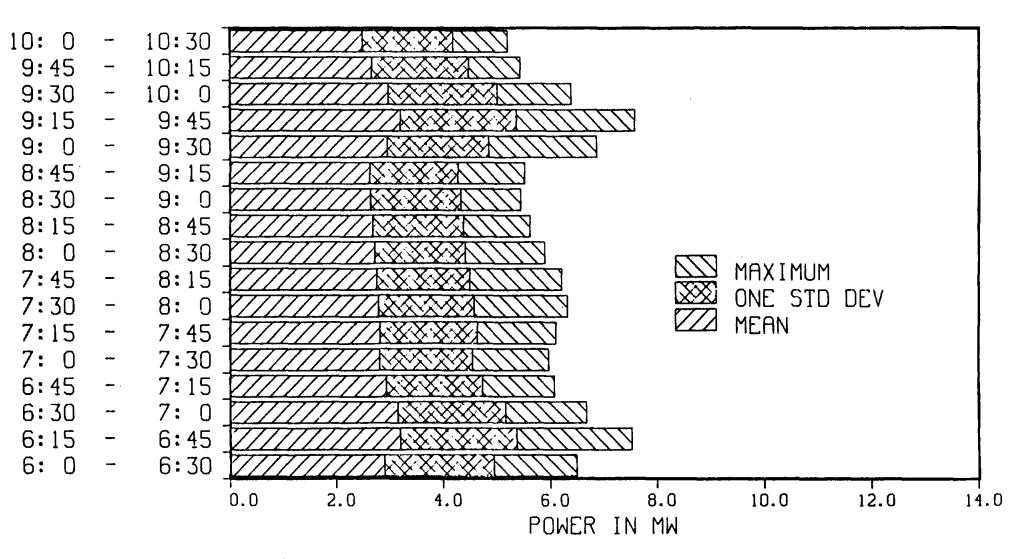
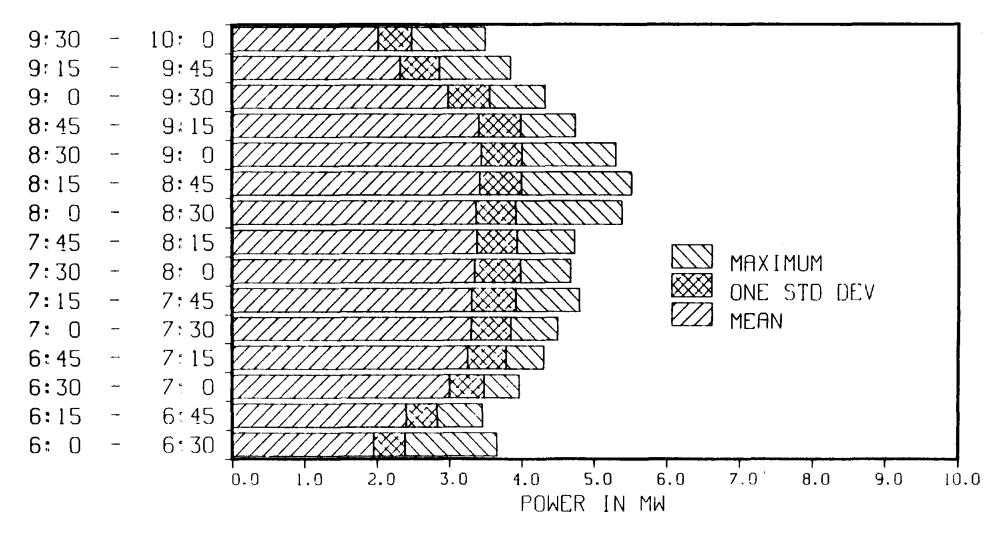





FIGURE 5-17

## SUMMARY STATISTICS MD JURISDICTION - AM PEAK



### SUMMARY STATISTICS VA JURISDICTION-AM PEAK



### SUMMARY STATISTICS WMATA RED LINE-PM PEAK

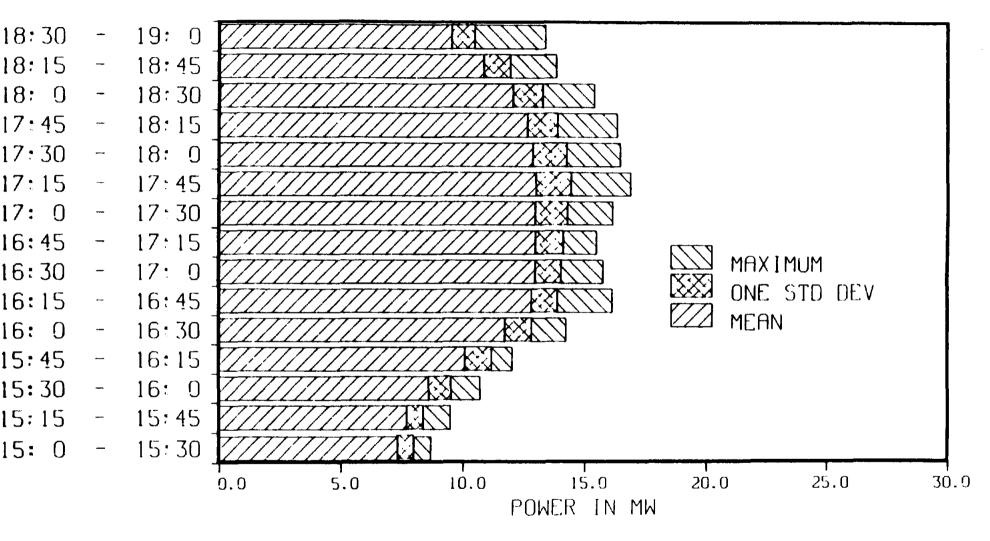



FIGURE 5-20

## SUMMARY STATISTICS WMATA BLUE/ORANGE LINE-PM PEAK

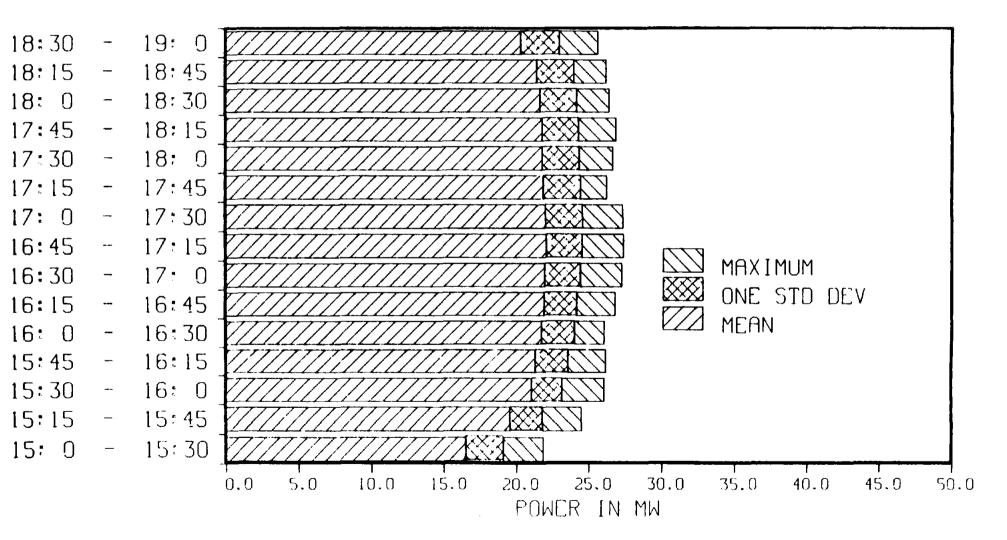
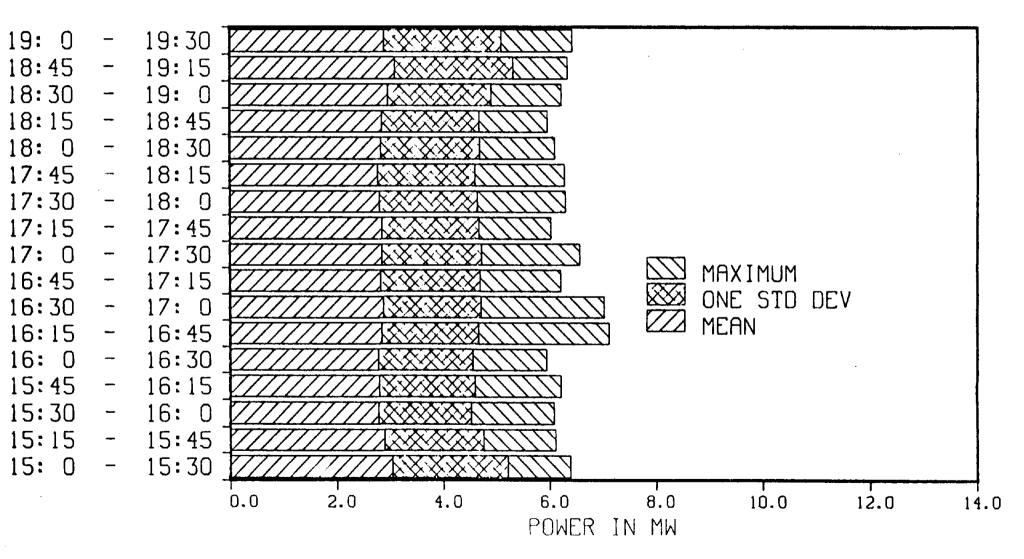
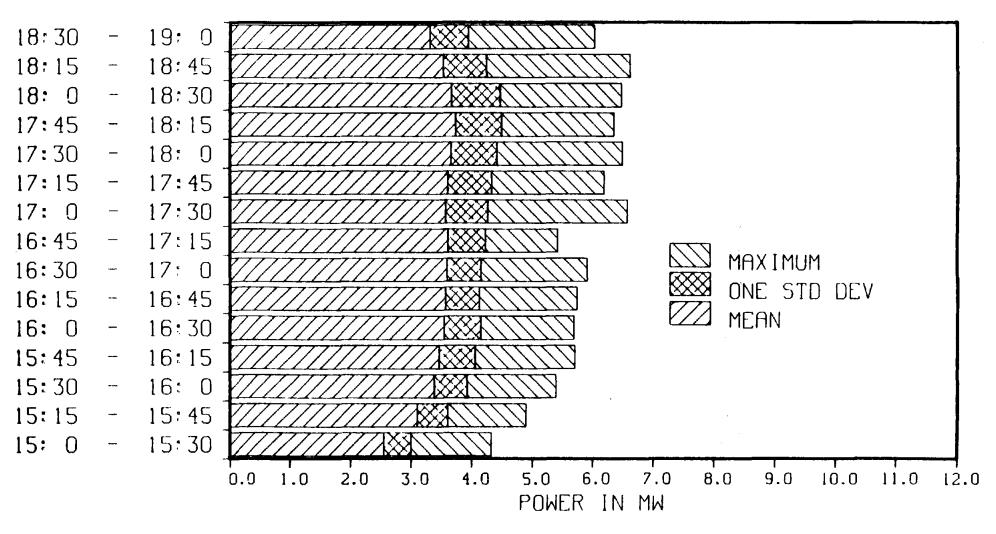




FIGURE 5-21


### SUMMARY STATISTICS DC JURISDICTION-PM PEAK

18:30 19: 0 ----18:15 18:45 — 18: 0 18.30 -17:45 18:15 ---17:30 18: 0 ----17:15 17:45 -17:30 17: 0 -16:45 17:15 -MAXIMUM 17:0 16:30 --- $\otimes$ ONE STD DEV 16:15 16:45 — MEAN 16:30 16:0 -15:45 16:15 --15:30 16: 0 — 15:45 15:15 — 15:30 15: 0 ----55.0 60.0 15.0 25.0 30.0 35.0 40.0 45.0 50.0 0.05.0 10.0 20.0 POWER IN MW

### SUMMARY STATISTICS MD JURISDICTION - PM PEAK



### SUMMARY STATISTICS VA JURISDICTION-PM PEAK



17874

MY 23 94

## MTA LIBRARY

HE 4211 .U54 1987 V · I

Uher, Richard A. 17874

Energy management guidelines for rail transit systems

| DUE DATE    | _ | DUE DATE |
|-------------|---|----------|
|             |   |          |
|             |   |          |
|             |   |          |
|             |   | ,        |
| <del></del> |   |          |
|             |   | ·        |
|             | 1 |          |





**x**\* -

·

.



