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MODULE 1 

INTRODUCTION 

1.1 The Motivation for This Course 

Many practical transportation policy issues are concerned with mode 

choice. For example, the gain or loss in transit revenues caused by a fare 

increase depends on how travelers' mode choices are affected by the 

increase. If few current transit riders switch to other modes because of 

the fare increase, transit revenues will increase proportionally to the 

increase in fare. But if many riders switch to other modes, revenues will 

increase less than proportionally to the fare increase and may decrease. 

Similarly, the effects of changes in transit routes and schedules on 

ridership, revenues, and traffic congestion all depend on how the changes 

affect individual travelers' mode choices. The effectiveness of programs to 

encourage ridesharing -- for example, preferential parking or preferential 

access to freeways for carpools -- also depends on how the programs affect 

mode choice. In most situations, planners must choose among a variety of 

fare schedules and service designs. An understanding of the separate and 

combined effects of these decisions on trav~l mode choice is essential to 

selection of the best plan to meet specific transportation objectives. 

The importance of mode choice in transportation _policy analysis and 

decision making has lead to a variety of methods for predicting the effects 

of policy measures on travelers' mode choices. Two well-known and 

frequently used prediction methods are the method of elasticities and 

aggregate mode split modeling. Both of these methods have serious defects 

that greatly restrict their practical usefulness. For example, the method 

of elasticities cannot predict accurately the effects of making several 



changes in transit service simultaneously (e.g., of increasing both the fare 

and the schedule frequency or of adding a new route to the system). 

Aggregate mode split models can be exceedingly costly and cumbersome to 

develop. Moreover, they are subject to serious biases and prediction errors 

owing to their reliance on aggregate travel data rather than records of 

individual trips. The range of policy questions that can be treated with 

aggregate models is quite limited. For example, it usually is not possible 

to carry out multimodal analyses with these models (e.g., analyses in which 

it is necessary to predict the use of several different modes such as bus 

transit, rail transit, carpool, and single-occupant automobile). 

This course is concerned with a third class of mode choice models, 

called disaggregate models, that have substantial practical advantages over 

both elasticity methods and aggregate mode split models. Disaggregate 

models achieve a higher degree of policy sensitivity than either elasticity 

or aggregate mode split models. Disaggregate models can represent a wider 

range of policy variables than can either elasticity or aggregate models, 

and they can treat multimodal problems without difficulty. Moreover, 

disaggregate models avoid the biases inherent in aggregate models, and they 

are much more efficient than aggregate models in terms of data and 

computational requirements. Disaggregate models can be developed using data 

from only 1000-3000 households -- less than one tenth the number required by 

aggregate models -- and they can be implemented on microcomputers. In fact, 

as the examples given later in this course will show, many useful 

applications of disaggregate models can be made by hand with the aid of a 

desk calculator. 

Disaggregate mode choice models have been available for use in 

transportation planning and policy analysis for nearly 15 years. Many 
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transportation agencies now use these models for practical policy analysis. 

This makes it important for transportation professionals to understand the 

principles underlying the development and use of disaggregate models, since 

failure to understand these principles can lead to the development of 

seriously erroneous models and to serious prediction errors. 

Unfortunately, materials that explain how to use disaggregate models 

are not readily available. Most descriptions of disaggregate modeling 

techniques are written for members of the research community or for graduate 

students. People in both groups have extensive backgrounds in mathematics 

and statistics, and graduate students may be able to spend several months 

learning to use the techniques. Consequently, the available descriptions 

emphasize the mathematical and statistical details of the techniques and, 

thereby, convey the impression that the techniques are useful mainly to 

researchers and can be used only by people with considerable mathematical 

training. This is a false impression. The main concepts and methods of 

disaggregate mode choice modeling can be understood and applied by anybody 

who has mastered high-school algebra. The purpose of this course is to 

explain what disaggregate mode choice models are, how they work, and how 

they can be applied to practical problems, and to do this with a minimum of 

mathematics and jargon. 

1.2 Description of the Course 

This is a complete, self-instructing course in disaggregate mode choice 

modeling. It includes a text, worked examples, problems for readers to 

solve, and solutions to the problems. The course is designed for readers 

who are familiar with urban transportation planning issues and methods and 

have knowledge of mathematics at the level of high school algebra. No prior 
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familiarity with statistics or computer programming is needed. The only 

equipment required, apart from pencil and paper, is a desk calculator. A 

supplement to the course provides problems to be worked on a microcomputer. 

This supplement may be skipped by readers without access to an IBM­

compatible microcomputer. The course is divided into self-contained modules 

of 1-2 hours duration. It is expected that most individuals will be able to 

complete the entire course in 15-20 hours of work. 

The purpose of the course is to familiarize readers with the basic 

concepts and methods of disaggregate mode choice modeling and to do so with 

a minimum of mathematics and technical jargon. It is designed to help 

readers understand how disaggregate models work and why they are useful so 

that readers can become informed users of these models and their outputs. 

The course will not make experts out of its readers. No short, self­

instructing, non-mathematical course could do this. However, this course 

will enable readers to understand what the _experts are doing (or should be 

doing) and how the results can be used. It also will enable readers to do 

some of the things that they previously may have thought require the 

services of an expert. Readers who wish to achieve a more detailed 

understanding of disaggregate models or a higher level of expertise than 

this course provides should consider taking a college course in travel 

demand modeling or reading one or more of the references listed at the end 

of this module. 

The course consists of 7 modules, including this introduction. Modules 

2-4 describe the conceptual foundations of disaggregate mode choice 

modeling. These modules explain the assumptions about travel behavior that 

underlie disaggregate mode choice models and show how these assumptions are 

represented in models suitable for use in practical analysis. Numerical 
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examples are given that illustrate the usefulness of the behavioral 

assumptions and the plausibility of mode choice models based on these 

assumptions. 

Modules 5-7 are concerned with the practical development and 

implementation of mode choice models. Module 5 discusses the explanatory 

variables that typically are used in disaggregate mode choice models, the 

choices that analysts face in selecting variables, and the practical 

consequences of alternative choices. Module 6 explains how disaggregate 

mode choice models are estimated or calibrated. This module also describes 

the data requirements of these models and discusses how the models can be 

tested empirically. Particular emphasis is placed on practical procedures 

for determining whether the correct explanatory variables have been used in 

a model and on comparing different versions of the same model to determine 

which provides the best explanation of the available data. Module 7 

explains how aggregate travel demand can be predicted using disaggregate 

mode choice models. 

The modules build on one another. Each uses material from its 

predecessors, and none can be understood without first understanding its 

predecessors. Therefore, readers are strongly advised to work through the 

modules in sequence without skipping any. Each module contains numerical 

examples that illustrate the material being presented, and each includes 

problems for the reader to solve. Readers are urged to work through the 

numerical examples and to understand them fully. Readers are also urged to 

solve the problems. It is possible to gain a complete understanding of the 

ideas presented here only by working with them. The problems provide an 

opportunity to do such work. Solutions to the problems are given following 

Module 7. 
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The time required to work through a module will vary greatly among both 

modules and readers. It is likely that most readers will be able to work 

through the text and examples of most modules in 1-2 hours, although some 

modules and readers may require more or less time. Working the problems at 

the end of a module may require an additional hour. 

1.3 Summary 

Disaggregate mode choice models have important practical advantages 

over other available methods for predicting the consequences of 

transportation policy measures that affect mode choice. This course is 

designed to provide readers with a working knowledge of practical 

disaggregate mode choice modeling. It does not require extensive 

mathematical training or other special technical preparation. It can be 

worked by readers who are familiar with urban transportation planning 

practice and are comfortable with high school algebra. The course is 

suitable for individuals who must carry out mode choice analyses, use and 

interpret the outputs of such analyses, or supervise those who do such work. 
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2.1 Introduction 

MODULE 2 

INTRODUCTION TO CHOICE THEORY 

This module introduces the behavioral theory that forms the basis of 

disaggregate mode choice models. The theory is presented in its simplest 

form in this module. The theory is expanded and made more realistic in 

Modules 3 and 4. 

2.2 The Role of Choice in Generating Travel Demand 

The basic idea underlying modern approaches to travel demand modeling 

is that travel is the result of choices made by individuals or collective 

decision-making units such as households. For example, an individual 

preparing to travel to work must choose whether to drive alone, take a bus, 

travel in a carpool, etc. The individual also must choose when to leave 

home and, depending on the chosen mode, may have to choose which route to 

use. The objective of travel demand modeling is to model and predict the 

outcomes of these choices by individuals (or, if appropriate, by collective 

decision-making units such as households). Measures of aggregate travel, 

such as bus ridership, are obtained by adding up the choices of individuals. 

To model the outcomes of individuals' choices, it is necessary to: 

1. Identify the decisions that must be made and the options, or 

alternative outcomes, that are available to the individual. In 

this course, the decision that will be considered is choice of 

mode, and the options are travel modes such as drive alone, 

carpool, and bus. However, the methods that will be discussed also 
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are applicable to other travel choices, including choices of trip 

frequencies, destinations, and routes. 

2. Identify variables likely to affect the choices of interest. It is 

particularly important to identify policy variables -- i.e., 

variables whose values may be changed through deliberate policy 

decisions -- since much practical travel demand modeling is 

concerned with predicting the consequences of changing the values 

of these variables. Travel time and travel cost are examples of 

policy variables relevant to mode choice. 

3. Develop a mathematical formula that describes the dependence of 

choices on the relevant variables. 

This module is concerned primarily with item 3. The module describes a 

theory of human preferences and choices that is useful for guiding the 

development of mathematical formulas relating choices to appropriate sets of 

variables. The application of the theory is illustrated with examples 

involving the prediction of mode choice. 

To minimize the complexity of the presentation, it will be assumed in 

this module that all of the variables relevant to individuals' choices of 

modes are known to the analyst. This makes it possible to develop models 

that predict individuals' choices of modes with certainty and without error. 

Of course, it is not possible in practice to achieve such a high degree of 

modeling perfection, and it will be necessary to modify the models discussed 

in this module to make them suitable for use in real-world applications. 

The modified models, which are explained in Modules 3 and 4, are based on 

the behavioral concepts described in this module. The modifications needed 

to achieve practical models extend, rather than replace, the concepts 

presented in this module. 
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2.3 Preferences 

An individual's choice represents an expression of his preferences 

among the available options at the time and under the conditions in which 

the choice is made. For example, if an individual decides to travel to work 

by bus rather than by driving alone or by carpooling, this means that he 

prefers bus to the other two modes under the conditions that exist when the 

choice is made. 

It is important to understand that the preferences relevant to choice 

are the ones that pertain to the chooser's existing circumstances, not to an 

ideal set of circumstances. For example, a commuter boarding a bus may 

think to himself that he would really rather take a taxi if he could afford 

it and that he is taking the bus only because he does not have much money. 

Such thoughts do not imply that the commuter prefers taxi to bus under the 

existing circumstances. He would prefer taxi to bus under ideal_ 

circumstances (e.g., having a lot of money), but under the existing 

circumstances (e.g., having to give up lunch if he spends money on a taxi), 

he prefers bus. 

Since choice is an expression of preferences, modeling and predicting 

choices is equivalent to modeling and predicting preferences -- i.e., if one 

has a model that enables one to predict an individual's preferences among 

the available options, one also is able to predict the same individual's 

choices. Preferences among a set of options depend on the attributes of the 

options and of the individual involved. For example, attributes of travel 

modes that are relevant to preferences among modes include travel time, 

travel cost, comfort, and reliability. Attributes of individuals that 

affect preferences among modes include income and the number of automobiles 
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owned. The next section describes a way of relating attributes to 

preferences and choices. 

2.4 Utility Theory 

Virtually all operational models for predicting individuals' choices 

are based on a behavioral principle called "utility maximization." This 

principle and its relation to choice can be stated in words very simply. 

According to the utility maximization principle, there is a mathematical 

function U, called a utility function, whose numerical value depends on 

attributes of the available options and the individual. The utility 

function has the property that its value for one option exceeds its value 

for another if and only if the individual prefers the first option to the 

second. Thus, the ranking of the available options according to the 

individual's preferences and the ranking according to the values of the 

utility function are the same. The individual chooses the most preferred 

option, which is the one with the highest utility-function value. 

The utility maximization principle can be stated mathematically as 

follows. Let C denote the set of options available to an individual (e.g., 

drive alone, carpool, and bus in the case of mode choice). C is called the 

choice set. For each option i in C, let Xi denote the attributes of i for 

the individual in question. For example, if i corresponds to drive alone, 

X. denotes the travel time, travel cost, and other relevant attributes of 
l. 

the drive alone mode for the individual in question. Let S denote the 

attributes of the individual that are relevant to preferences among the 

options in C (e.g;, income, automobiles owned, etc.). Then, according to 

the utility maximization principle, there is a function U (the utility 

function) of the attributes of options and individuals that describes 
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individuals' preferences. Uhas the property that for any two options i ar•d 

j in C 

U(X. ,S) > U(X. ,S) 
1 J 

(2.1) 

implies that the individual prefers alternative i to alternative j and will 

choose i if given a choice between i and j. Given a choice among many 

options, alternative i in C is chosen if 

U(X.,S) > U(X. ,S) 
1 J 

(2.2) 

for all alternatives j (other than i) in C. 

The utility function U is defined to have the following properties: 

1. The function U is the same for all options. Differences among 

options are accounted for by differences in the numerical values of 

the attributes X, not by changing the function U. (Of course, the 

nwnerical value of U depends on the option, but the functional form 

of U is the same for all options.) 

2. The utility of an alternative depends only on attributes of that 

alternative and of the individual. It does not depend on 

attributes of other alternatives. Thus, for example, the utility 

of driving alone does not depend on bus travel time and cost. Of 

course, the choice the individual makes depends on the attributes 

of all alternatives since the chosen mode is the one with the 

highest utility. 

The following example illustrates the use of the utility maximization 

principle in mode choice analysis. 

Example 2.1: A Utility Model of Mode Choice 

Suppose that an individual can travel to work by driving alone, 

carpooling, or riding the bus. Assume that the relevant attributes of these 

12 



modes are travel time and travel cost. Assume that the relevant attribute 

of the individual is annual income. Let T denote door-to-door travel time 

in hours, C denote travel cost in dollars, and Y denote annual income in 

thousands of dollars per year. Let the utility function be 

U(T,C,Y) - -T - 5C/Y. (2.3) 

Suppose the values of travel time and cost for the available modes are: 

Time (T) Cost (C) 
Mode (hours) ($) 

Drive Alone 0.50 2.00 

Carpool 0.75 1.00 

Bus 1.00 0.75 

Then if income is $40,000 per year, for example, the value of U for drive 

alone is -0.50 - 5(2000)/40 - -0.75. The following table shows the value of 

U corresponding to each mode for an individual whose income is $40,000 per 

year (Y - 40) and an individual whose income is $10,000 per year (Y - 10): 

y 

Mode Y - 40 Y - 10 

Drive Alone -0.75 -lo SO 

Carpool -0.88 -1.25 

Bus -1.09 -1. 38 

The high-income individual chooses to drive alone (because drive alone has 

the highest utility for this individual), and the low-income individual 

chooses to carpool. Note that all utilities are negative because U consists 

13 



of (generalized) costs of travel but excludes the value of reaching the 

destination. In this case, the highest value of U is the one that is least 

negative. 

Now suppose that the quality of transit service is improved so that 

travel time for bus is 0.75 hr. Then the utilities become: 

1! 

Mode Y - 40 Y - 10 

Drive Alone -0.75 -1.50 

Carpool -0.88 -1. 25 

Bus -0.84 -1.13 

The high-income individual still drives alone, but the low-income individual 

switches to bus. 

Although this example is very simple, it illustrates some important 

characteristics of choice models based on the utility maximization 

principle. First, it shows how a utility function can be used to describe 

the dependence of preferences and choices on attributes of individuals and 

options. Notice, in particular, that the same utility function describes 

the preferences of more than one individual. It is not necessary to have a 

separate utility function for each individual if differences among 

individuals can be accounted for by attribute variables such as income. 

Second, the example illustrates the use of utility theory to predict changes 

in preferences and choices that occur when an attribute of one of the 

options changes. Moreover, the utility model is able to capture differences 

in the responses of different individuals to the same attribute change. 
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Finally, the example illustrates some advantages of utility models over many 

traditional mode choice models. For instance, the model in the example 

treats choice among three modes and can easily be extended to treat more 

than three modes. Many traditional models are able to treat only two modes. 

In addition, since the utility model operates at the level of individuals, 

it guarantees that the percentages of individuals choosing a mode always are 

within the range 0-100% and always add up to 100%. Many traditional mode 

choice models do not have this obviously desirable property. 

2.5 Properties of Utility Functions and Utility Models 

It is tempting to interpret the numerical values of the utilities of a 

set of options as indicators of an individual's strengths of preference for 

the options. For example, if a certain individual's utility of driving 

alone is 5 and his utility of traveling by bus isl, then it might be said 

that the individual's preference for driving alone is 5 times greater than 

his preference for traveling by bus. As it turns out, such an 

interpretation is both unnecessary and incorrect. 

The interpretation is unnecessary because choice does not depend on 

strengths of preference; it depends only on preference ordering. A utility 

model always predicts that the option with the highest utility will be 

chosen, regardless of whether that option's utility is much larger or only 

slightly larger than the utilities of the other available options. For 

example, driving alone will be chosen if the utilities of driving alone, 

carpooling, and traveling by bus are 100.0, 2.0, and 1.0, respectively; and 

driving alone will also be chosen if the utilites are 2.1, 2.0, and 1.9. 

That the preference strength interpretation of utility is incorrect 

follows from the observation that the utility function is defined only as a 
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function whose numerical values for the available options have the same 

ordering (e.g., highest to lowest) as the individual's preferences among the 

options. The definition of a utility function does not include any 

assumptions or statements about strengths of preference. Any function that 

reproduces preference orderings can serve as a utility function and will 

give the same predictions of choice, regardless of the signs or numerical 

values of the utilities. Thus, the utility function contains no information 

about strengths of preference. 

In fact, there are infinitely many utility functions that can be used 

to describe the same preferences and that give the same predictions of 

choices. This nonuniqueness of utility functions is illustrated by the 

following example. 

Example 2,2: Nonunigueness of Utility Functions 

In example 2.1, preferences among the alternatives drive alone, 

carpool, and bus were described with the utility function 

U(T,C,Y) -T - SC/Y, (2.4) 

where T, C, and Y, respectively, are travel time in hours, travel cost in 

dollars, and income in thousands of dollars per year. However, exactly the 

same preference rankings and choice predictions would be obtained with any 

of the following alternative utility functions: 

V(T,C,Y) - -TY - SC, 

W(T,C,Y) 

X(T,C,Y) 

10 - 20T - lOOC/Y, 

-T
2 

- lOCT/Y - 2Sc2;y2
. 

(2.5) 

(2.6) 

(2.7) 

To see this for the case of utility function V, suppose that U(T1 ,c1 ,Y) > 

U(T
2

,c
2

,Y), where T
1 

and c
1 

denote the travel time and cost of option 1, and 

T
2 

and c
2 

denote the travel time and cost of option 2. Then 
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-T - SC /Y > 
1 1 (2.8) 

Multiplying both sides of equation (2.8) by Y yields 

(2.9) 

which is equivalent to 

(2.10) 

Thus, the utility functions U and V are interchangeable: they give the same 

preference orderings and the same predictions of choice. Similarly·, the 

utility functions Wand X defined in equations (2.6) and (2.7) are 

interchangeable with U. You will be asked to show this in Exercise 2.3. 

2.6 Predictions of Aggregate Travel Behavior 

The utility maximization principle and utility-based choice models are 

methods for describing and predicting choices made by individuals. However, 

practical travel demand analysis rarely is concerned with the choices of 

individual travelers. Rather, it is concerned with the behavior of large 

groups or aggregates of travelers. A utility model can be used to obtain 

predictions of aggregate travel behavior: one simply adds up the model's 

predictions of the choices of the individuals in the group of interest. 

This process is illustrated in the following example. 

Example 2.3: Aggregate Travel Behavior 

As in Example 2.1, consider choice among the modes drive alone, 

carpool, and bus with the utility function 

U(T,C,Y) - -T - 5C/Y, (2.11) 

where T, C, and Y, respectively, denote travel time in hours, travel cost in 

dollars, and income in thousands of dollars per year. Suppose that 
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individuals who live in a certain suburb of a city and work downtown face 

the following travel times and costs for trips from home to work: 

Time (T) Cost (C) 
Mode (hours) ($) 

Drive Alone 0.50 2.00 

Carpool 0.75 1.00 

Bus 1.00 0.75 

In addition, suppose that the incomes of these individuals are distributed 

as follows: 

Percentage of 
Income Individuals 

17 5 

19 15 

27 25 

33 25 

37 20 

40 10 

Then the utility values and mode choices according to income group are: 
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Income Drive Alone Carpool Bus Choice 

17 -1. 09 -1.04 -1. 22 Carpool 

19 -1. 03 -1.01 -1.20 Carpool 

27 -0.87 -0.94 -1.14 Drive Alone 

33 -0.80 -0.90 -1.11 Drive Alone 

37 -0. 77 -0.89 -1.10 Drive Alone 

40 -0.75 -0.88 -1.09 Drive Alone 

Since 20% of the individuals belong to income groups in which carpool is 

chosen and 80% belong to income groups in which drive alone is chosen, the 

aggregate mode shares are 20% for carpool and 80% for drive alone. No 

individuals in the population under consideration choose bus. 

Notice that aggregate behavior cannot be predicted correctly by 

averaging the utility values over individuals and predicting aggregate 

behavior using the average utilities. The average utility of driving alone 

in this example is -0.86 [i.e., 0.05(-1.09) + 0.15(-1.03) + 

+ 0.10(-0.75)], and the average utilities of carpooling and traveling by 

bus are -0.93 and -1.13, respectively. Thus, use of the average utility 

values would result in the erroneous prediction that all of the travelers in 

the population under consideration drive alone. 

2.7 Summary 

Modern approaches to travel demand modeling are based on a behavioral 

principle called utility maximization. This module has explained the 

utility maximization principle and illustrated its use in predicting 

individuals' mode choices and aggregate mode shares. 
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EXERCISES 

2.1 Refer to Example 2.1. Suppose the utility function in this example 

were 

U(W,T,C,Y) - W - T - 5C/Y, 

where Wis the value of arriving at work. Let W - 3.0, and let the 

values of T and C be as in Example 2.1. Compute the utilities of drive 

alone, carpool, and bus for Y - 40 and Y - 10 using this new utility 

function. Are there now any negative utilities? Are any of the 

predicted choices different from those in Example 2.1? 

2.2 Suppose, as in Example 2.1, that an individual can travel to work by 

driving alone, carpooling, or riding the bus. Assume that the relevant 

attributes of these modes are travel time and travel cost. Assume that 

the relevant attribute of the individual is annual income. Using the 

notation of Example 2.1, let T denote door-to-door travel time in 

hours, C denote travel cost in dollars, and Y denote annual income in 

thousands of dollars per year. Let the utility function be 

U(T,C,Y) -3T - 8CjY. 

Let the values of travel time and cost for the available modes be 

Time (T) Cost (C) 
Mode {hours) ($) 

Drive Alone 0.35 2.25 

Carpool 0.60 0,95 

Bus 0.75 0.60 
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Compute the utility values for an individual with an income of $40,000 

per year and for an individual with an income of $10,000 per year. 

What mode would each individual choose? 

2.3 Show that the utility functions Wand X in Example 2.2 are 

interchangeable with U. Evaluate the utility functions U, V, W, and X 

for some representative values of the attributes of the drive alone, 

carpool, and bus modes. Use the results to illustrate why utility 

values should not be interpreted as strengths of preference. 

2.4 Consider choice among the modes drive alone, carpool, and bus with the 

utility function: 

U(T,C,Y) -T - 5C/Y, 

where T, C, and Y, respectively, denote travel time in hours, travel 

cost in dollars, and income in thousands of dollars per year. Suppose 

that individuals who live in a certain suburb of a city and work 

downtown face the following travel times and costs for trips from home 

to work: 

Time (T) Cost (C) 
Mode (hours) ($) 

Drive Alone 0.50 2.50 

Carpool 0.75 1.25 

Bus 1.00 0.50 

In addition, suppose that the incomes of these individuals are 

distributed as follows: 
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Percentage of 
Income Individuals 

14 5 

18 15 

22 25 

26 25 

30 20 

34 10 

Determine individuals' mode choices according to income, and use these 

to compute the aggregate shares of each mode. 

Now suppose that bus travel time is reduced to 0.95 hr. Compute the 

new aggregate shares and the percentage changes in the shares resulting 

from the improvement in bus service. Also, compute the aggregate 

shares by first averaging the utilities over individuals and then 

predicting mode choices based on the average utilities. Do you obtain 

the same aggregate shares as when you determine the mode choices before 

averaging? If not, which method is correct? 
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MODULE 3 

INTRODUCTION TO PROBABILISTIC CHOICE THEORY 

3.1 Introduction 

Module 2 introduced the theory of behavior that forms the basis of 

disaggregate mode choice models. This module continues developing the 

theory in ways that make it more realistic and useful for practical 

applications. 

3.2 Inadequacy of Deterministic Utility Models 

The theory of travel choice described in Module 2 yields a simple model 

of decision making that makes deterministic predictions of travel choices. 

In other words, according to this theory there is no uncertainty in the 

predicted choices. An individual is predicted to choose the alternative 

with the highest utility, and according to the model, there is no 

possibility that any other alternative will be chosen. Models based on 

utility maximization that yield deterministic predictions of choice are 

called deterministic utility models. 

If deterministic utility models describe travel behavior correctly, 

then similar individuals would be expected to make the same travel choices 

when faced with the same sets of alternatives. In practice, however, it is 

not unusual for apparently similar individuals to make different choices 

when faced with similar or even identical alternatives. In fact, the same 

individual may make different choices when faced with the same alternatives 

on different occasions. For example, in studies of work trip mode choice it 

is frequently found that individu~ls who have identical personal 

characteristics according to the available data and who face similar sets of 
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travel alternatives choose different modes of travel to work. Some of these 

individuals may vary their choices from day to day for no apparent reason. 

Deterministic utility models cannot treat such "unexplained" variations 

in travel behavior. Thus, deterministic utility models provide inadequate 

descriptions of travel behavior. The purpose of this module is to explore 

the reasons for this inadequacy and to lay the groundwork for a family of 

models, also based on utility theory, that do take account of unexplained 

variations in travel choices. This family of improved models is presented 

in detail in Module 4. 

It is easy to understand the basic sources of the inadequacy of 

deterministic utility models. First, analysts and the individuals making 

the travel choices being modeled are unlikely to have the same information 

about the available alternatives. For example, the analyst may not have 

data on the reliability of a particular bus line or the likelihood that a 

particular individual will get a seat on the bus. But the individual in 

question is likely either to know these things (if he has had experience 

with the bus line) or to have opinions about them that are unknown to the 

analyst. Second, the analyst is unlikely to know all the characteristics of 

each individual that are relevant to mode choice. For example, an 

individual's choice of mode for the work trip may depend on whether other 

family members want to use the car that will be driven to work if automobile 

is the chosen mode. However, it is unlikely that an analyst will have 

detailed information on the activities of family members. 

If analysts had data on all of the variables relevant to mode choice, 

it would be reasonable to expect that mode choice could be described and 

predicted satisfactorily by deterministic utility models. Experience has 

shown, however, that analysts do not have such data and have no realistic 
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possibility of.obtaining them. Therefore, mode choice models should take a 

form that recognizes and accommodates analysts' lack of information. In 

this module and the next, it is shown how determistic utility models can be 

modified to achieve this objective. The resulting models are called "random 

utility models" or "probabilistic choice models" because they describe 

preferences and choice in terms of probabilities. Instead of predicting 

that an individual will choose a particular mode with certainty, these 

models give probabilities that each of the available modes will be chosen. 

Thus, the analyst's lack of complete information about the attributes of 

alternatives and individuals is accommodated in the modeling process by 

predicting the probabilities with which choices will be made instead of 

predicting that a specific choice will be made with certainty. 

The remainder of this module describes some specific limitations of 

information that affect mode choice modeling and explores their 

consequences. Examples are presented to show how these limitations lead to 

"unexplained" variations in choice and, therefore, the appearance of 

probabilistic choice behavior (i.e., choices that are made according to a 

deterministic utility model but that appear probabilistic to an analyst who 

has only partial knowledge of the relevant variables). These examples 

suggest the usefulness of probabilistic models to describe this behavior. 

3.3 Limitations of Analysts' Information 

Two types of limitations of analysts' information make deterministic 

utility models inadequate for practical mode choice analysis. First, 

travelers may not have exact knowledge of the attributes of the available 

alternatives. For example, a traveler choosing between ~us and car for a 

trip to a downtown shopping location is unlikely to know the exact travel 

25 



time by car or bus, the exact waiting time for the bus, whether he will get 

a seat on the bus, or the exact likelihood of finding a free or low-cost 

parking space near his destination. Consequently, the traveler's opinions 

or perceptions of these attributes are likely to differ from the objectively 

measured values of the attributes. An analyst often has no way of obtaining 

exact information about an individual's opinions and perceptions. However, 

without this information, the analyst will not be able to predict precisely 

the individual's choices. 

Second, the analyst may not know the true values of the travel 

attributes important to the individual, and he may not know the individual's 

utility function. These limitations of knowledge further restrict the 

ability of analysts to predict the travel behavior of individuals 

accurately. In the remainder of this section, five specific limitations of 

analysts' knowledge are discussed. Each of these limitations leads to the 

occurrence of unexplained variation in travel choices. The five limitations 

are: 

1. Omission of relevant variables from models: A model of mode choice 

may omit one or more variables that are important to the traveler. 

This may happen either because such omission achieves a useful 

simplification of the model or because the analyst does not have 

data on the omitted variables. For example, the utility function 

used in Module 2 includes only travel time and cost as attributes 

of modes. If travelers consider other factors, such as comfort, 

reliability, and privacy, in addition to travel time and cost, 

their mode choices will vary, even if travel time and cost do not, 

according to their perceptions of these other factors. 
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2. Measurement error: Analysts' information about service quality may 

be subject to measurement errors. For example, data on travel time 

may be obtained from network models that yield estimates of travel 

times between zone centroids. These estimates may be erroneous due 

to network coding errors, errors in the assumed volume-delay 

functions, or because the trips in question originate or terminate 

at locations other than zone centroids. Thus, the analyst's 

estimates of travel time may be substantially different from the 

travel times actually experienced by travelers. 

3. Proxy variables: It is often necessary in practical modeling to 

use variables that are different from the ones that are 

theoretically appropriate. For example, employment density may be 

used as a proxy for carpooling opportunities. If individuals' mode 

choices depend on carpooling opportunities, these choices will not 

be predicted precisely by a model that uses employment density 

in place of more precise indicators of carpooling opportunities. 

Another proxy variable commonly used in mode choice models is 

income as a proxy for automobile ownership. 

4. Differences between individuals may be ignored: Different 

individuals may evaluate alternatives differently. For example, 

differences in costs among alternatives may be less important to 

wealthy people than to poor people. Some models attempt to capture 

this difference by, for example, dividing the cost of travel by the 

individual's income or wage rate, as was done in Module 2. 

However, other differences are more difficult to represent in a 

model. For example, physical characteristics of the individual 

that may affect the importance of seating availability, walk 
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distance, or wait time may not be known to the analyst and, 

therefore, not included in a model. 

5. Day to day variations in the choice context may be ignored: The 

data customarily used in mode choice modeling do not include 

information on day-to-day variations in the choice context that may 

affect mode choice. Examples of such variations include short-term 

unavailability of a car due to repair needs or variations in the 

needs of another family member, the need to carry heavy packages on 

a particular day, or variations in the activities planned to be 

undertaken after work. 

Each of the foregoing limitations of analysts' knowledge can cause 

variations in mode choices, either among individuals or by the same 

individual on different occasions, that cannot be explained by the observed 

(or measured) attributes of travelers or modes. The next section presents 

several examples that illustrate how such unexplained variation in choices 

arise and show how it creates the appearance of probabilistic travel 

behavior. 

3.4 Examples of Unexplained Variation in Choice Behavior 

The examples in this section illustrate how the limitations of 

analysts' knowledge described in Section 3.3 lead to unexplained variation 

in choices and the appearance of probabilistc behavior. 

Example 3.1: Missing Variables 

Suppose, as in Example 2.1, that an individual can travel to work by 

driving alone, carpooling, or riding the bus. Suppose that the relevant 

attributes of these modes are travel time (T) and cost (C). However, 
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extending Example 2.1, let the relevant characteristics of the individual 

include both annual income (Y) and the number of automobiles owned by his 

household (A). The effect of automobile ownership is to increase or 

decrease the utility of the drive alone and carpool modes, depending on the 

number of automobiles owned. This effect is represented by the following 

equations for the utility function: 

UDA -T -DA 5CDA/Y + 0.4(A - 1) (3.la) 

UCP -T -GP 5ccp/Y + 0.2(A - 1) (3,lb) 

UB -T - 5CB/Y. (3.lc) 
B 

As in Example 2.1, suppose the values of travel time and cost are 

Time (T) Cost (C) 
Mode (Hours) ($) 

Drive Alone 0.50 2.00 

Carpool 0.75 1.00 

Bus 1.00 0.75 

If income is $15,000 per year (Y - 15), then the utilities of the three 

alternatives for households with no automobiles (A - 0) are: 

UDA -0.5 - 5(2.0/15) + 0.4(0 - 1) - -1.57 

-0.75 - 5(1.0/15) + 0.2(0 - 1) -1. 28 

-1.0 - 5(0.75/15) - -1.25. 

Using the same equations, the utility values of the three alternatives for 

three different levels of automobile ownership are: 
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Zero One Two 
Mode Cars ~ Cars 

Drive Alone -1. 57 -1.17 -0. 77 

Carpool -1. 28 -1.08 -0.88 

Bus -1. 25 -1.25 -1.25 

Mode Chosen Bus Carpool Drive Alone 

According to the principle of utility maximization, individuals in 

households without cars use bus, those in households with one car carpool, 

and those in households with two cars drive alone. 

Now consider what happens if the automobile ownership variable is not 

included in the data set and the analyst predicts choice with the utility 

function of Example 2.1. All individuals would be predicted to have 

utilities equal to -1.17 for drive alone, -1.08 for carpool, and -1.25 for 

bus, so all individuals would be predicted to travel by carpool.· However, 

if there were 20 zero-car households, 50 one-car households, and 30 two-car 

households, it would be observed that, in fact, 20% of the individuals 

choose bus, 50% choose carpool, and 30% drive alone. Thus, the omission of 

the automobile ownership variable from the uti.lity function causes 

variations in travel choices that are not explained by the model. These 

variations in choices among alternatives give the appearance of 

probabilistic choice behavior because they can be described by a probability 

distribution in which the probabilities that bus, carpool, and drive alone 

are chosen are 0.20, 0.50, and 0.30, respectively. 
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Example 3.2: Measurement Error 

Now consider the zero-car households in Example 3.1, but assume that 

different individuals have different travel times for the automobile modes. 

Specifically, assume that the true drive alone and carpool travel times for 

individuals are distributed according to the following relative frequencies: 

Percentage of Individuals 

Drive Alone Travel Time (hr.) 

Carpool Travel Time (hr.) 

20% 

0.40 

0.65 

50% 

0.50 

0.75 

20% 

0.60 

0.85 

10% 

0.70 

0.95 

In this table, the travel times in the second column are the same as those 

in Example 3.1. The travel times in the first column are lower than those 

in Example 3.1, and the travel times in the third and fourth columns are 

higher than in Example 3.1. Thus, the travel times in Example 3.1 are 

measured with error. Fifty percent of the individuals have travel times 

that are given correctly by Example 3.1, but 20% have travel times that are 

lower than those of Example 3.1 and 30% have travel times that are higher. 

Assume that the travel costs are the same as in Example 3.1. 

The utilities of the three modes can be obtained from the utility 

function of equations (3.1). For zero-car households with incomes of 

$15,000 per year (Y - 15), the utilities are: 
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Utilities Based on the Travel Time Based on 
Distributions in the Previous Table Ex. 3.1 

Percentage of Individuals 20% 50% 20% 10% 100% 

Drive Alone -1. 47 -1. 57 -1. 67 -1. 77 -1. 57 

Carpool -1.18 -1.28 -1. 38 -1. 48 -1.28 

Bus -1. 25 -1. 25 -1. 25 -1. 25 -1. 25 

Chosen Mode Carpool Bus Bus Bus Bus 

In this table, the first column gives the utilities for travelers whose 

drive alone and carpool travel times are less than those in Example 3.1, the 

second column gives the utilities for travelers with travel times equal to 

those in Example 3.1, and the third and fourth columns give the utilities 

for travelers with drive alone and carpool travel times greater than those 

in Example 3.1. It can be seen that 20% of the travelers (those with 

"lower" drive alone and carpool travel times) choose carpool, and the 

remaining 80% choose bus. However, if the distributions of travel time were 

ignored as in Example 3.1, 100% of these travelers would be predicted to 

choose bus. The choices of 20% of the travelers would be predicted 

erroneously because erroneous travel time data had been used. 

If the same travel time distributions were applied to one-car 

households with incomes of $15,000 per year, the utilities and mode choices 

would be: 
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Utilities Based on the Travel Time Based on 
Distributions Ex. 3.1 

Percentage of Individuals 20% 50% 20% 10% 100% 

Drive Alone -1.07 -1.17 -1. 27 -1. 37 -1.17 

Carpool -0.98 -1.08 -1. 18 -1. 28 -1.08 

Bus -1. 25 -1 25 -1. 25 -1. 25 -1.25 

Chosen Mode Carpool Carpool Carpool Bus Carpool 

In this case, 90% of the travelers would choose carpool and 10% would choose 

bus. However, if the distributions of travel time were ignored, all of 

these travelers would be predicted to choose carpool. In this case, the use 

of erroneous travel time data would cause erroneous predictions of the 

choices of 10% of the travelers. 

In summary, ignoring the distributions of travel times of zero- and 

one-car households results in predictions that do not reflect the true 

variations in mode choices. In other words, the actual choices vary in ways 

not explained by the model used to make the predictions. As in Example 3.1, 

the variations can be described by a probability distribution. 

In Exercise 3.2, you will be asked to determine the percentages of two­

car households choosing each mode when travel time is distributed as in this 

example. 

Example 3,3: Differences in Preferences among Individuals 

Examples 3.1 and 3.2 assume that the same utility function applies to 

every individual. However, it is possible that, for reasons not known to 

the analyst, different individuals have different preferences among the same 

sets of alternatives. When this happens, the preferences of different 

individuals are described by different utility functions. For example, 
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consider a population consisting of two groups in which time is valued 

differently. Suppose the preferences of one group are described by the 

utility functions: 

UDA 
(1) 

-0.75TDA - 5CDA/Y + 0.4(A - 1) (3.2a) 

UCP 
(1) 

-0.75TCP - 5ccp/Y + 0.2(A - 1) (3.2b) 

u (1) 
B -0.75TB - 5CB/Y. (3.2c) 

Suppose the preferences of the second group are described by the utility 

functions: 

UDA 
(2) 

-1. 5TDA - 5CDA/Y + 0.4(A - 1) (3.3a) 

UCP 
(2) 

-1. 5TCP - 5ccp/Y + o.2(A - 1) (3.3b) 

u (2) 
B -1. 5TB - 5CB/Y. (3.3c) 

Then the members of group two consider time to be twice as valuable as do 

the members of group 1. As a result, the utilities of the available modes 

will be different for members of the two groups and the choices of mode will 

be different. 

To illustrate this, suppose that the travel times and costs of Example 

3.1 are correct, and consider individuals whose incomes are $15,000 per 

year. The utility values for individuals in group 1 and owning zero cars 

are: 

UDA 
(1) -0.75(0.5) - 5(2.0/15) + 0.4(0 - 1) -1.44 

UCP 
(1) -0.75(0.75) - 5(1.0/15) + 0.2(0 - 1) -1.10 

u (1) 
B 

-0. 75 (1. 0) - 5(0.75/15) -1.00. 

The utilities for members of both groups and owning zero, one, or two cars 

are: 

34 



Zero Cars One Car Two Cars 
Group Group Group Group Group Group 

Mode 1 _2_ _1 _ _ 2_ 1 _2_ 

Drive Alone -1.44 -1. 82 -1.04 -1.42 -0.64 -1. 02 

Carpool -1.10 -1. 66 -0.90 -1.46 -0.70 -1. 26 

Bus -1.00 -1. 75 -1.00 -1. 75 -1.00 -1. 7 5 

Chosen Mode Bus Car- Car- Drive Drive Drive 
pool pool Alone Alone Alone 

Notice that for zero- and one-car households, the mode chosen by members of 

group 1 is different from the mode chosen by members of group 2. Thus, the 

proportions of individuals owning zero, one, and two cars choosing each mode 

depend on the proportions that belong to each preference group. However, if 

the analyst does not know that individuals belong to different preference 

groups, it will appear that "identical" individuals (i.e., individuals who 

have the same incomes and levels of automobile ownership) make different 

choices when faced with identical alternatives. This variation in choices 

will be unexplained by the information available to the analyst and will 

give the appearance of probabilistic choice. 

Example 3,4: Multiple Sources of Unexplained Variations in Choices 

The sources of unexplained variations in mode choices that have been 

illustrated in the Examples 3.1-3.3 can occur simultaneously in practice. 

That is, a choice model may be used that omits the automobile ownership 

variable even though automobile ownership affects mode choice, does not 

account for differences in preferences among individuals, and is based on 

data that include errors in measured travel time. As an example of this, 

suppose that the utility function used by the analyst is: 

U(T,C,Y) -T - SC/Y. (3.4) 

35 



Suppose, also, that the measured values of T and Care as in Example 3.1. 

Then for an individual whose income is $15,000 per year, the analyst would 

estimate the utilities of drive alone, carpool, and bus to be: 

Mode 

Drive Alone 

Carpool 

Bus 

Utility 

-1.17 

-1.08 

-1.25 

The analyst would predict that all of these individuals will choose carpool. 

However, the actual choices of a specific individual will depend on which 

preference group he is in, the number of automobiles owned by his household, 

and his true travel times. Therefore, the modes chosen will vary among 

individuals in ways that are not explained by the analyst's specification of 

the utility function (Equation 3.4). Choices will appear to be 

probabilistic to the analyst. 

The foregoing examples illustrate some of the ways in which unexplained 

variation in travel behavior can arise. As has been discussed, this 

variation causes travel behavior to appear to be probabilistic. The next 

two sections discuss in more detail how unexplained variation in travel 

behavior can be described in probabilistic terms. The use of a 

probabilistic representation of travel behavior enables models to reflect 

both the effects of variables that are included in the analyst's 

specification of the utility function and the effects of errors in the 

analyst's specification. 
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3.5 The Basic Formulation of Probabilistic Models 

In each of the examples of the preceding section, the correct utility 

function differs from that used by the analyst due to the omission of a 

variable that influences mode choice (Example 3.1), measurement error 

(Example 3.2), variations in preferences among individuals (Example 3.3), or 

all of these (Example 3.4). In each case, the correct utility function, U, 

can be written as the sum of the utility function specified by the analyst, 

V, and an error term, e. That is: 

U - V + e. (3.5) 

The specified utility functions (V) and error terms (e) for Example 3.1 are: 

Components of the Utility Function Example 3.1 

Mode Specified Utility Error Term 

Drive Alone -T -DA SCDA/Y 0.4(A - 1) 

Carpool -T -CP sccp/Y 0.2(A - 1) 

Bus -T - SCB/Y 0 
B 

The utilities of drive alone and carpool include an error term due to the 

omission of automobile ownership from the specified utilities. 

The specified utility functions and error terms for Example 3.2 are 

given in the following table. In this table T* denotes measured travel 

time, and T denotes true travel time. 

Components of the Utility Function Example 3.2 

Mode Specified Utility Error Term 

Drive Alone -T* -DA SCDA/Y TDA - T5A 

Carpool -T* -CP sccp/Y TCP - T~p 

Bus -T - SCB/Y 0 
B 
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In this case, the utilities of drive alone and carpool include an error term 

because the drive alone and carpool travel times of some individuals are 

measured with error. There is no error term in the utility of bus because 

bus travel time is measured without error. 

The components of the utility function for Example 3.3 are: 

Mode 

Components of the Utility Function 

Specified Utility 

Drive Alone 

Carpool 

Bus 

Example 3.3 

Error 

0.25TDA 

-0.SOTDA 

0.25TCP 

-0.SOTCP 

0.25TB 

-0.SOTB 

Term 

(group 

(group 

(group 

(group 

(group 

(group 

1) 

2) 

1) 

2) 

1) 

2) 

In this case, errors are present in all the utilities because the specified 

utilities ignore the differences between the two population groups. 

Of course, these examples are artificial. The true utility functions 

are known, and there is no need to use a representation such as Equation 

(3<5) that replaces part of the known utility function with an error term. 

In practice, however, an analyst never knows the true utility function. An 

analyst can hope to know the utility function only up to an error term. In 

effect, the analyst always measures or estimates utility with error, and an 

error term of unknown size is always present in the analyst's specification 

of the utility function. This error term accounts for variables that the 

analyst knows influence travel behavior but that are not included in his 

data set or that he chooses to omit from his model (e.g., because he cannot 
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forecast them well). It also accounts for any variables that influence 

travel behavior but are completely unknown to the analyst. 

It is customary to think of the error term as a random variable whose 

values are described by a probability distribution. The true utility 

function, U, is then also a random variable consisting of the sum of a 

deterministic component, V, and a random component, e. The deterministic 

component of the utility function is what the analyst can measure or 

estimate, and the random component is the difference between the true 

utility function and the deterministic component. 

When the true utilities of the alternatives are random variables, it is 

not possible to state with certainty which alternative has the greatest 

utility or which alternative is chosen. This is because utility and choice 

depend on the random components of the utilities of the available 

alternatives, and these components cannot be measured. The most an analyst 

can do is predict the probability that an alternative has the maximum 

utility and, therefore, the probability that the alternative is chosen. 

Accordingly, the analyst must represent travel behavior as being 

probabilistic. The need for a probabilistic representation is a consequence 

of the analyst's inability to make the utility measurements required to 

predict behavior with certainty. 

Of course, the probability that a particular alternative is chosen 

depends on the values of the deterministic components of the utilities, and 

the values of these components can be measured (or estimated). In general, 

the probability that a particular alternative is chosen either increases or 

stays the same when the deterministic component of its utility increases and 

either decreases or stays the same when the deterministic component 

decreases. This relation is illustrated by the following example. 
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Example 3.5: Dependence of Choice on the Deterministic Component of 

Utility 

Let the true utilities be given by equations (3.2) and (3.3), and let 

the deterministic (or specified) component of the utility function be given 

by equation (3.4). Thus, the effects of differences in automobile ownership 

and differences in preferences among population groups are not represented 

in the deterministic component of the utility function and are accounted for 

by the error term (i.e., the difference between true utility and the 

deterministic component of utility). Let the population be distributed over 

automobile ownership classes and preference groups according to the 

following percentages: 

Preference Group 1 

Preference Group 2 

Automobiles Owned 

.JL 

15% 

5 

_L 

25% 

30 

_2_ 

5% 

20 

Let income be $15,000 per year (Y - 15), and let the travel times and costs 

according to mode be as in Example 3.1. Then, the values of the 

deterministic component of the utility function are -1.17 for drive alone, -

1.08 for carpool, and -1.25 for bus. The values of true utility and the 

chosen modes according to automobile ownership and preference group are the 

same as in Example 3.3 (see the table on p. 34). The percentages of the 

population choosing each mode can be computed from the following table: 
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Percent of 
Autos Owned Preference Group Population Mode Chosen 

0 1 15 Bus 

2 5 Carpool 

1 1 25 Carpool 

2 30 Drive Alone 

2 1 5 Drive Alone 

2 20 Drive Alone 

The percentages of the entire population choosing each mode are 55% for 

drive alone, 30% for carpool, and 15% for bus. However, the deterministic 

component of the utility function for each mode has the same values for all 

preference groups and automobile ownership levels. Thus, the deterministic 

component of utility cannot account for the variations in choice within the 

population. Since an analyst knows only the deterministic components of 

utility, the population will appear to be choosing among the modes with 

probabilities 0.55, 0.30, and 0.15 for drive alone, carpool, and bus, 

respectively. This appearance of probabilistic choice is due to the fact 

that the analyst does not know the variations in preferences and automobile 

ownership levels that cause different individuals to choose difference 

modes. 

Now, suppose that in an effort to shift mode choice to high-occupancy 

modes, a parking tax of $0.50 is imposed on each single-occupant vehicle. 

Then, the cost of driving alone increases to $2.50 while the costs of 

carpooling and traveling by bus remain unchanged at $1.00 and $0.75, 

respectively. The deterministic component of drive alone utility decreases 

to -1.34 from its former value of -1.17. The values of the deterministic 
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components of the utilities of carpool and bus remain unchanged. The new 

values of the true utilities are: 

Zero Cars One Car Two Cars 
Group Group Group Group Group Group 

Mode 1 _2_ 1 _2_ 1 2 

Drive Alone -1. 61 -1. 99 -1.21 -1. 59 -0.81 -1. 19 

Carpool -1.10 -1. 66 -0.90 -1.46 -0.70 -1.26 

Bus -1.00 -1. 75 -1 00 -1. 75 -1 00 -1. 75 

Chosen Mode Bus Car- Car- Car- Car- Drive 
pool pool pool pool Alone 

The percentages of the population choosing each mode are now 20% for drive 

alone, 65% for carpool, and 15% for bus. Again, since the analyst knows 

only the values of the deterministic component of utility, the population 

will appear to be choosing among the modes with probabilities of 0.20, 0.65, 

and 0.15 for drive alone, carpool, and bus, respectively. 

The next table shows the value of the deterministic component of 

utility for drive alone and the percentages of the population choosing each 

mode for three different values of the parking tax on single-occupant 

vehicles: 

Deterministic Percentage of Population 
Component of Choosing 
Utility for Drive 

Tax Drive Alone Alone Carpool Bus 

$0.00 -1.17 55 30 15 

0.25 -1.25 15 65 20 

0.50 -1.34 15 65 20 
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Notice that as the parking tax increases, the deterministic component of the 

utility of drive alone decreases and the percentage of the population 

choosing to drive alone either decreases or stays unchanged. Since the 

analyst knows only the deterministic components of utility, mode choice will 

appear to be probabilistic. The probability that a given mode is chosen 

will be the percentage of the population choosing that mode divided by 100. 

Therefore, such an analyst will observe that as the deterministic component 

of the utility of drive alone decreases, the probability that drive alone is 

chosen either decreases or stays the same. 

3.6 The Probability of Observing a Specific Choice 

An important interpretation of probabilistic travel behavior can be 

obtained by considering a common procedure for collecting mode choice data. 

Consider a group of apparently similar travelers who make different choices 

when faced with the same alternatives. If observations of mode choice are 

obtained by sampling this group randomly, the probabilities of selecting 

travelers who choose drive alone, carpool, and bus are the same as the 

probabilities that individual travelers make these choices. In other words, 

the sampling probabilities and the individual choice probabilities are the 

same. 

To illustrate this, consider Example 3.1, in which the utility function 

specified by the analyst includes travel time, travel cost, and income but 

not automobile ownership. Assume that all travelers have incomes of $15,000 

per year and that the travel times and costs of drive alone, carpool, and 

bus for all travelers are as in Example 3.1. If 20% of the travelers' 

households own O cars, 50% own 1 car, and 30% own 2 cars, the probability 

that a randomly sampled traveler chooses bus is 0.20, the probability that 
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he chooses carpool is 0.50, and the probability that he chooses drive alone 

is 0.30. These sampling probabilities are the same as the choice 

probabilities obtained in Example 3.1 by considering a group of 20 zero-car, 

50 one-car, and 30 two-car travelers. Thus, one can think of the 

probability of a given choice as being the probability of sampling an 

individual who makes that choice. In fact, as will be discussed in Module 

6, this interpretation forms the basis of methods for calibrating or 

estimating probabilistic models of choice, 

3.7 Aggregate Prediction with Probabilistic Choice 

In Module 2, where the choices of individuals were predicted 

deterministically, predictions of aggregate travel behavior were obtained by 

summing the choices of the individuals comprising the aggregate group. 

Aggregate predictions when choices by individuals are predicted 

probabilistically are obtained in an analogous manner: the probabilities of 

choices by the individuals in the aggregate group are summed. 

Consider Example 3.1, where choice is influenced by automobile 

ownership but the analyst's specification of the utility function includes 

only travel time, travel cost, and income. Assume that the distribution of 

automobile ownership in different income classes is as follows: 
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Income % Zero- % One- % Two-
($000) Car Households Car Households Car Households 

17.5 40 so 10 

22.5 20 60 20 

27.5 15 60 25 

32.5 10 60 30 

37.5 5 55 40 

42,5 0 so so 

The choice of each traveler can be obtained by substituting the values of 

the travel time, travel cost, income, and automobile ownership variables 

into Equation (3.1). The chosen modes for each income and automobile 

ownership class are: 

Income Automobile Ownership 
($000) Zero Cars One Car Two Cars 

17.5 Bus Carpool Drive Alone 

22.5 Carpool Drive Alone Drive Alone 

27.5 Carpool Drive Alone Drive Alone 

32.5 Carpool Drive Alone Drive Alone 

37.5 Carpool Drive Alone Drive Alone 

42.5 Carpool Drive Alone Drive Alone 

Since the percentages of travelers in each income class owning 0, 1, and 2 

cars are known, the percentages of travelers choosing each mode according to 

income class can be computed. The results are: 
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Percent Choosing 
Income Drive 
($000) Alone Carpool Bus 

17.5 10 so 40 

22.5 80 20 0 

27.5 85 15 0 

32.5 90 10 0 

37.5 95 5 0 

42.5 100 0 0 

These percentages constitute the analyst's probabilistic predictions of mode 

choice for each income class. (Recall that the analyst's utility function 

does not include automobile ownership, so the analyst cannot predict choice 

deterministically.) Using these predictions of individual choice, 

predictions of aggregate choice are obtained in the following way. For each 

income class, the probability that an individual chooses a given mode is 

multiplied by the number of individuals in the class, thereby obtaining the 

number of individuals in the class who are predicted to choose the given 

mode. These predictions are then summed over all income classes to obtain 

the total numbe.r of individuals who are predicted to choose the given mode. 

As an example of this, suppose the numbers of individuals in the income 

classes are known, so the analyst has the following information available: 
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Percent Choosing 
Income Number of Drive 
($000) Individuals Alone Carpool Bus 

17.5 20 10 so 40 

22.5 60 80 20 0 

27.5 100 85 15 0 
® 

32.5 100 90 10 0 

37.5 80 95 5 0 

42.5 40 100 0 0 

Then, the nwnber of individuals predicted to choose drive alone is 0.10(20) 

+ 0.80(60) + 0.85(100) + 0.90(100) + 0.95(80) + 1.0(40) - 341. Similarly, 

the numbers of individuals predicted to choose carpool and bus are 51 and 8, 

respectively. 

3.8 Summary 

The utility maximization principle provides a valuable framework for 

the analysis of travel choice behavior. However, deterministic utility 

models are inadequate due to the inability of the analyst to know the exact 

utility function of an individual and to measure accurately all of the 

variables relevant to travel choice. This module has explained how 

limitations of the analyst's knowledge create unexplained variations in 

travel choices and the appearance of probabilistic behavior. In addition, 

the module has provided a basis for modeling travel choice probabilistically 

and has showed how aggregate travel behavior can be predicted when choices 

by individuals are predicted probabilistically. The next module describes a 

specific probabilistic choice model that can be used to predict individual 

choice probabilities. 
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EXERCISES 

3.1 In Example 3.1, show how the utility values for each mode are obtained 

for individuals in households with one or two cars. What are the 

corresponding set of utilities for individuals in housholds with three 

cars? 

3.2 Using Example 3.2, determine the mode choice percentages for two-car 

households? 

3.3 Combine Examples 3.1 and 3.2. Assume that the proportions of zero-, 

one-, and two-car households are 0.20, 0.50, and 0.30, respectively. 

Also assume that the distribution of travel times for each automobile 

ownership class is as shown in Example 3.2. Compute the mode choice 

for each automobile ownership-travel time group. Also compute the 

overall probability that each mode is chosen. 

3.4 Suppose that the distribution of individuals according to income class 

is: 

Income Number of 
($000) Individuals 

17.5 10 

22.5 20 

27.5 20 

32.5 30 

37.5 20 

42.5 3 

48 



Repeat the aggregate prediction of Section 3.7 using the above income 

distribution, thereby obtaining the total numbers of individuals 

predicted to choose each mode. 
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MODULE 4 

THE LOGIT CHOICE MODEL 

4.1 Introduction 

The preceding module showed that limitations of analysts' knowledge of 

the variables that influence individuals' mode choices make it necessary to 

predict these choices in terms of probabilities. This module introduces the 

most widely used mathematical model for making probabilistic predictions of 

mode choices. 

Before the model is introduced, it is worthwhile to identify some of 

the properties that a probabilistic choice model should have. These 

properties include: 

1. The probability of choosing a particular alternative should depend 

on the deterministic components of the utilities of all available 

alternatives. The chosen alternative is the one with the highest 

total utility. Therefore, it depends on the relative values of the 

total utilities of all alternatives. It depends on the 

deterministic components of the utilities of all alternatives 

because the total utilities depend on the deterministic components 

of utility. 

2. The probability that an alternative is chosen should increase when 

the deterministic component of its utility increases. It should 

decrease when the deterministic component of the utility of any 

other alternative increases. This property follows from the fact 

that increasing the deterministic component of an alternative's 

utility increases the probability that that alternative has the 



highest utility. Increasing the deterministic component of another 

alternative's utility decreases the probability that the first 

alternative has the highest utility. 

3. The model should accommodate choice sets containing any number of 

alternatives so that it can be applied regardless of the number of 

alternatives involved and can be used to predict the effects of 

changing the number of alternatives (e.g., as would happen when 

transit is initiated in an area that previously had none). 

4. The model should be easy to understand and to use in practice. 

4.2 The Binomial Lo~it Model 

Before considering how choices among arbitrary numbers of alternatives 

can be modeled, it is useful to consider a model of choice among only two 

alternatives. The most frequently used model of probabilistic choice among 

two alternatives is the binomial logit model. In this model, the 

probability that alternative 1 is chosen when the choice set consists of 

alternatives 1 and 2 is given by the following formula: 

Pr(l) (4.1) 

where Pr(l) is the probability that an individual chooses alternative 1, 

exp( ) is the exponential function, and v
1 

and v
2 

are the deterministic 

components of the utilities of alternatives 1 and 2, respectively. The 

exponential function transforms its argument (the expression in parentheses) 

as shown in Figure 4.i and as tabulated in Table 4.1. It can be seen from 

the figure and the table that the exponential function is monotonic (i.e., 

its value increases when the value of its argument increases) and that its 

value is always positive. 
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TABLE 4.1 -- THE EXPONENTIAL FUNCTION 

_z_ EXP(Z) 

-3.0 0.050 

-2.5 0.082 

-2.0 0.135 

-1.5 0.223 

-1.0 0.368 

-0.5 0.607 

0.0 1.000 

0.5 1. 649 

1.0 2. 718 

1.5 4.482 

2.0 7.389 

2.5 12.182 

3.0 20.086 

As was discussed in Section 3.6 of Module 3, Pr(l) is the probability 

that a randomly selected individual with deterministic utility components v1 

and v
2 

chooses alternative 1. Equation (4.1) implies that in the binomial 

logit model, this probability increases monotonically with the deterministic 

component of the utility of alternative 1 and decreases monotonically with 

the deterministic component of the utility of alternative 2. 

Since there are only two choices available to the individual, the 

probability that alternative 2 is chosen is one minus the probability that 

alternative 1 is chosen. Thus, 
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Pr(2) - 1 - exp(Vl) 

Pr(2) 

exp(V1) + exp(V
2

) 

exp(V1) + exp(V
2

) 

exp(V1 ) + exp(V
2

) 

(4.2) 

This probability increases monotonically with the deterministic component of 

the utility of alternative 2 and decreases monotonically with the 

deterministic component of the utility of alternative 1. 

The binomial logit model has three of the four desirable properties of 

probabilistic choice models that were listed in Section 4.1. The binomial 

logit choice probabilities depend on the deterministic components of the 

utilities of all alternatives (property 1); the probability of choosing a 

particular alternative increases when the deterministic component of the 

utility of that alternative increases, and the probability decreases when 

the deterministic component of the utility of the other alternative 

increases (property 2); and the model is easy to understand and apply 

(property 4). The binomial logit model cannot treat choice among more than 

two alternatives, so it does not have property 3. 

In the binomial logit model, the probabilities of choosing alternatives 

1 and 2 are equal when the deterministic components of the two alternatives' 

utilities are equal. Moreover, the choice probabilities are most sensitive 

to changes in the deterministic components of the utilities when these 

components are approximately equal and the choice probabilities are close to 

0.5. To see this, divide the numerator and denominator of Equation (4.1) by 

exp(V1) to obtain 

Pr(l) 1 (4.3) 
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Equation (4.3) shows that Pr(l) depends only on the difference between v
1 

and v
2

. Figure 4.2 shows a graph of Pr(l) as a function of this difference, 

and Table 4.2 tabulates Pr(l) for selected values of v1 and v
2

. 

TABLE 4.2 -- VALUES OF PR(l) IN THE BINOMIAL LOGIT MODEL 

Case Vl v2 Vl - V 2 
Pr(l) 

1 0.0 0.0 0.0 0.50 

2 0.5 0.0 0.5 0.62 

3 2.0 0.0 2.0 0.88 

4 2.5 0.0 2.5 0.92 

5 2.0 -0.5 2.5 0.92 

It can be seen from the table and figure that: 

1. The probabilities of choosing alternatives 1 and 2 are both equal 

to 0.5 when the deterministic components of the alternatives' 

utilities are equal (i.e., when v1 - v2 - 0). This is because 

exp(O) - 1 (see Table 4.1). 

2. The probability of choosing alternative 1 is more sensitive to 

changes in the deterministic component of the utility of either 

alternative when Pr(l) is close to 0.5 (i.e., when the 

deterministic components of utility are approximately equal) than 

when Pr(l) is close to O or 1. (The same statement applies to 

Pr(2).) For example, in Table 4.2, Pr(l) is equal to 0.5 in case 1 

but closer to 1.0 than to 0.5 in case 3. v1 increases by 0.5 from 

case 1 to case 2 and from case 3 to case 4. However, Pr(l) 

increases by 0.12 from case 1 to case 2 but by only 0.04 from case 
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3 to case 4. This property is illustrated in Figure 4.2, where 

the plot of Pr(l) is steeper when Pr(l) is close to 0.5 than when 

it is close to 0 or 1. 

Another property of the binomial logit model is that Pr(l) is affected 

equally by increases in the value of v
1 

and decreases in the value of v
2

. 

This property is illustrated in Table 4.2. The change in Pr(l) is the same 

in going from case 3 to case 4 (an increase of 0.5 in the value of V
1

) as in 

going from case 3 to case 5 (a decrease of 0.5 in the value of v
2
). This 

result follows from the fact that change in v1 - v2 is the same in going 

from case 3 to case 4 as it is in going from case 3 to case 5. 

4.3 The Multinomial Logit Model 

The binomial logit model can easily be extended to accommodate choices 

among more than two alternatives. To see how this is done, suppose, first, 

that there are three alternatives in the choice set and that the 

deterministic components of their utilities are v1 , v2 , and v3 . In the 

extended model, the probability that alternative 1 is chosen is 

Pr(l) (4.4) 

The additional alternative is incorporated by adding an additional 

exponential term to the denominator of the equation for Pr(l). The 

probability of choosing alternative 1 remains proportional to the 

exponential function of the deterministic component of its utility. In 

general, Pr(l) is smaller when there are three alternatives in the choice 

set than when there are only two (assuming that the values of v1 and v2 are 

the same in both cases). This is because the total probability of choosing 

any of the alternatives, ·which always equals one, must be shared among more 
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alternatives when there are three alternatives in the choice set than when 

there are only two. 

A model that accommodates any specified number of alternatives can be 

obtained by adding the appropriate exponential terms to the denominator of 

equation (4.4). Specifically, suppose there are J alternatives in the 

choice set, where J is any number greater than or equal to 2. Let the 

deterministic components of the utilities of the alternatives be v
1

, v
2

, 

... , VJ. Then the probability that alternative 1 is chosen is 

Pr(l) exp(Vl) . 
J 
L exp(V.) 
j-1 J 

The probability of choosing alternative 2 is 

Pr(2) 
J 
Lexp(V.) 
j-1 J 

(4.6) 

In general, the probability of choosing alternative i (i - 1, ... ,J) is 

Pr(i) exp(Vi). (4.7) 
J 
L exp(V.) 
j-1 J 

Equation (4.7) is called the multinomial logit model. In the 

multinomial logit model, as in the binomial logit model, the probability of 

choosing an alternative increases monotonically with the deterministic 

component of that alternative's utility and decreases monotonically with the 

determinsitic component of the utility of any other alternative. 

The multinomial logit model has all of the desirable properties of the 

binomial logit model and, in addition, can be applied to any number of 

alternatives. Thus, it has all of the desirable properties of a 

probabilistic choice model listed in Section 4.1. 
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An important additional property of both the binomial and multinomial 

legit models is that the choice probabilities depend only on the differences 

between the deterministic components of the alternatives' utilities. This 

property is illustrated in Equation (4.3) and Table (4.2) for the binomial 

legit model, where the probability of choosing either alternative depends 

only on v1 - v2 . The corresponding dependence for the multinomial logit 

model is illustrated by dividing the numerator and denominator of Equation 

(4.4) by exp(V1) to obtain 

Pr(l) 1 (4.8) 

In this case, the probability that alternative 1 is chosen depends only on 

the values of v1 - v2 and v1 - v3 . If there were J alternatives in the 

choice set, where J exceeds 3, then the probability that alternative 1 is 

chosen would depend only on v1 - v
2

, v1 - v3 , ... ,v1 - VJ. In the 

multinomial logit model, choice probabilities never depend on ra~ios of 

4.4 Application of the Multinomial Logit Model to Mode Choice Analysis 

The following example illustrates the application of the multinomial 

logit model to mode choice analysis. 

Example 4,1: Application of the Multinomial Legit Model 

Consider travel to work, and let there be three modes in the choice 

set: drive alone, carpool, and bus. Let the deterministic components of 

the utilities of these modes be: 
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Mode 

Drive Alone 

Carpool 

Bus 

...L 

2.5 

2.0 

1.0 

Then, the values of the terms exp(V.) and of their sum are 
J 

Mode 

Drive Alone 

Carpool 

Bus 

Sum 

exp{V) 

12.18 

7.39 

2 72 

22.29 

Substitution of these values into Equation (4.7) yields 

Pr(Drive Alone) 

Pr(Carpool) 

Pr(bus) 

12.18/22.29 0.55 

7.39/22.29 - 0.33 

- 2.72/22.29 - 0.12 

As expected, the mode with the highest deterministic component of utility 

(drive alone) has the highest probability of being chosen. Notice, also, 

that the sum of the probabilities over all available modes equals 1. This 

always happens in the multinomial logit model because one of the 

alternatives must be chosen. 

To verify that you understand the computation of multinomial logit 

choice probabilities, compute the probabilities of drive alone, carpool, and 

bus when the deterministic components of the utiliti_es are 2. 5 for drive 

alone, 1.5 for carpool, and 1.0 for bus. You can obtain the values of the 
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exponential function from Table 4.1. The correct probabilities are 0.63 for 

drive alone, 0.23 for carpool, and 0.14 for bus. 

4.5 Incorporation of Attributes of Alternatives and Individuals 

Example 4.1 assumed a fixed value of the deterministic component of 

each mode's utility. In practice, the deterministic component of a mode's 

utility depends on attributes of that mode (but not of other modes) and of 

the ind'ividual making the choice. The following example illustrates how 

choice probabilities can be made to depend on attributes of alternatives and 

individuals. 

Example 4.2: Choice Probabilities That Depend on Attributes 

Suppose that the deterministic component of the utility of mode j (j -

drive alone, carpool, or bus) is 

V. 
J 

-T. - 5C./Y, 
J J 

(4.9) 

where T. and C., ·respectively, are the travel time (in hours) and cost ( in 
J J 

dollars) of mode j, and Y is the annual income (in thousands of dollars) of 

the traveler. Suppose the travel time and cost values are: 

Mode 

Drive Alone 

Carpool 

Bus 

0.50 

0.75 

1.00 

2.00 

1.00 

0.75 

Then the deterministic components of the modes' utilities and their 

exponentials for individuals with incomes of $15,000 per year (Y - 15) and 

$30,000 per year (Y - 30) are: 
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y - 15 y - 30 
Mode _v_ exp(V) _v_ exp(V) 

Drive Alone -1.17 0.31 -0.83 0.44 

Carpool -1.08 0.34 -0. 92 0.40 

Bus -1. 25 0.29 -1.13 0.32 

Sum 0.94 1.16 

The corresponding choice probabilities are: 

Y - 15 Y - 30 
Mode Pr(Mode) Pr(mode) 

Drive Alone 0.33 0.38 

Carpool 0.36 0.34 

Bus 0 31 0.28 

Sum 1.00 1.00 

Note that the probabilities of choosing the relatively inexpensive modes 

(carpool and bus) are higher for the low-income individuals than for the 

high-income ones. 

Now suppose that it is desired to predict the effects of increasing the 

bus fare by $0.25. This fare change is represented in the multinomial logit 

model by increasing the value of Cb by $0.25. The resulting choice us 

probabilities are 
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Y - 15 Y - 30 
Mode Pr(Mode) Pr(mode) 

Drive Alone 0.34 0.38 

Carpool 0.37 0.35 

Bus 0.29 0.27 

Sum 1.00 1.00 

These probabilities reflect a shift away from the bus because of its 

increased cost and resulting lower utility. You should compute the 

probabilities yourself to make sure you understand how they were obtained. 

4.6 Alternative-Specific Constants 

In the legit model used in Example 4.2, two modes have equal 

probabilities of being chosen if they have equal travel times and travel 

costs. (As a check of your understanding of the logit model, explain why 

this is so.) In practice, however, other factors, such as comfort, 

reliability, and safety, may cause one mode to have a greater probability of 

being chosen than another, even if the two modes have equal travel times and 

costs. The best way to account for the effects of such other factors is to 

include variables representing them in the deterministic component of the 

utility function. However, this often is not possible in practice, since 

many of these factors are difficult to measure and predict. An alternative 

method that always can be implemented easily consists of adding appropriate 

constant terms to the deterministic components of the utility functions of 

all the modes except one. These constants are called alternative-specific 

constants. The mode whose deterministic utility component does not include 

such a constant is called the base mode. The alternative-specific constant 
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for a given mode is the average amount that factors not included in the 

deterministic component of the utility function contribute to the difference 

between the utilities of the given mode and the base mode. In other words, 

it is the average contribution of the error terms to the differences between 

the two modes' utilities. It does not matter which mode is selected as the 

base mode; the values of the choice probabilities will be the same for any 

base mode if the values of the alternative-specific constants are assigned 

correctly. (Alternative-specific constants are sometimes called bias 

constants since they seem to represent biases by travelers toward or against 

other modes compared to the base mode. However, this term is misleading. 

The constants do not represent biases. They represent the average effects 

of variables not present in the model.) 

The following example illustrates the use of alternative-specific 

constants. 

Example 4,3: Alternative-Specific Constants 

Suppose that the deterministic components of the utility functions of 

drive alone, carpool, and bus are 

0.8 - TDA - SCDA/Y 

0.2 - TCP - sccp/Y 

- TB - SC8/Y. 

(4.10a) 

(4.10b) 

(4.10c) 

In this case, bus is the base mode, and the alternative-specific constants 

for drive alone and carpool are 0.8 and 0.2, respectively. The signs and 

magnitudes of these constants indicate that on the average, factors other 

than travel time and cost that affect mode choice tend to favor drive alone 

over both carpool and bus and carpool over bus. 
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To illustrate the effects of alternative-specific constants on logit 

choice probabilities, suppose that the travel time and cost values are the 

same as in Example 4.2 and that Y - 30. Then the values of the 

deterministic components of utility with and without the alternative­

specific constants are: 

Without Constants With Constants 
Mode ..JL exp(V) _v_ exp(V) 

Drive Alone -0.83 0.44 -0.03 0.97 

Carpool -0. 92 0.40 -0.72 0.49 

Bus -1.13 0.32 -1 13 0.32 

Sum 1.16 1. 78 

The resulting logit choice probabilities with and without the alternative­

specific constants are: 

Without With 
Constants Constants 

Mode Pr(Mode) Pr(mode) 

Drive Alone 0.38 0.54 

Carpool 0.34 0.28 

Bus 0.28 0.18 

Sum 1.00 1.00 

The choice probabilities with the alternative-specific constants are very 

different from and more realistic than those obtained without the constants. 

Any mode can be selected as the base mode when alternative-specific 

constants are introduced into a model. It does not matter which mode is the 
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base. The choice probabilities will be the same, regardless of base, if the 

differences between the values of the alternative-specific constants for any 

two alternatives are the same for all choices of base. For example, suppose 

that drive alone, rather than bus, had been selected as the base mode in 

Example 4.3. Suppose, in addition, that the deterministic components of the 

utility functions had been 

VDA - T -DA SCDA/Y (4.lla) 

VCP -0.6 - T -CP sccp/Y (4.llb) 

VB -0.8 - T - SCB/Y. (4.llc) B 

Then, just as in equations (4.10), the difference between the alternative­

specific constants for drive alone and carpool is 0.6 (that is, 

0.0 - (-0.6)), the difference between the constants for drive alone and bus 

is 0.8 (that is, 0.0 - (-0.8)), and the difference between the constants for 

carpool and bus is 0.2 (that is, -0.6 - (-0.8)). You should verify that 

legit models based on Equations (4.10) and (4.11) yield the same choice 

probabilities by evaluating these probabilities for the values of the travel 

time, cost, and income variables used in Example 4.2. 

4.7 Independence from Irrelevant Alternatives 

One of the most important properties of the multinomial logit model is 

independence from irrelevant alternatives (IIA). The IIA property states 

that for any individual, the ratio of the probabilities of choosing two 

alternatives is independent of the availability or attributes of any other 

alternatives. For example, in a multinomial logit model of choice between 

drive-alone, carpool, and bus, the probabilities of choosing drive alone and 

carpool are 
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Pr(DA) exp(VDA) (4.12a) 
exp(VDA) + exp(VCP) + exp(V8 ) 

and 

Pr(CP) exp(VCP) (4.12b) 
exp(VDA) + exp(VCP) + exp(V8 ) 

The ratio of these probabilities is 

Pr(DA) exp(VDA) 
exp(VDA - VCP). 

Pr(CP) exp(VCP) 
(4.13) 

This ratio is independent of the attributes and availability of bus. The 

ratio is the same regardless of whether bus is an available alternative. 

In the general multinomial logit model, the probability of choosing 

alternative i when there are J alternatives in the choice set is given by 

Equation (4.7). Equation (4.7) implies that for any two alternatives i and 

k, 

Pr(i) 

Pr(k) 
(4.14) 

This equation shows that the ratio Pr(i)/Pr(k) depends only on Vi and Vk. 

The ratio is the same regardless of which other alternatives, if any, are in 

the choice set and regardless of the attributes of any other alternatives. 

The IIA property limits the responses to transportation changes that 

can be predicted by the multinomial logit model. For example, if the 

available modes are drive alone, carpool, and bus, a multinomial logit model 

predicts that the proportion of non-bus travelers choosing carpool (the 

ratio Pr(CP)/[Pr(DA) + Pr(CP)]) is independent of the quality of bus 

service. Therefore, an improvement in bus service would be predicted by a 

multinomial logit model to draw travelers from drive alone and carpool in 

proportion to the original shares of these modes. The improvement in bus 

service would not be predicted to draw travelers mainly from carpools, say, 

unless carpooling were the dominant non-bus mode. This is an important 
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consequence of the IIA property that will be discussed further in Subsection 

4. 7a. 

There are two other important practical consequences of the IIA 

property, in addition to the limitations it places on the predictions that 

can be made by multinomial logit models. These are: 

1. It greatly simplifies the process of predicting the consequences of 

adding a mode to the choice set. 

2. It provides great flexibility in the forms of data that can be used 

to calibrate models. 

The first of these consequences is discussed in Subsection 4.7b. Discussion 

of the second consequence is an advanced topic that will not be treated in 

this course. 

4.7a Limits on the Applicability of Multinomial Legit Due to IIA 

The IIA property limits the effectiveness of the multinomial logit 

model in predicting choices and changes in choices in certain circumstances. 

An extreme example of this problem is called the red bus/blue bus paradox. 

Example 4.4: The Red Bus/Blue Bus Paradox 

Suppose the modes available for travel between home and work are drive 

alone and a bus that is painted red (red bus or RB). Assume that the 

attributes of drive alone and red bus are such that VOA - VRB. Then the 

binomial legit formula (Equations (4.1) and (4.2)) implies that Pr(DA) 

Pr(RB) - 0.5. Now suppose a competing bus operator starts operating a bus 

painted blue (blue bus or BB) on the same route as the red bus. The blue 

bus uses exactly the same kind of vehicle, runs on exactly the same 

schedule, and serves exactly the same stops as the red bus. The only 
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difference between the red and blue buses is their color. If color does not 

affect choice of mode, then initiation of blue bus service should cause 

existing bus riders to divide evenly between the red and blue buses. The 

addition of blue bus to travelers' choice sets should have no effect on 

travelers who choose to drive alone because it does not affect the relative 

service quality of drive alone and bus. (The assumption that the red and 

blue buses have identical schedules implies that effective service frequency 

is unchanged by the initiation of blue bus service.) Therefore, the choice 

probabilities following the initiation of blue bus service should be Pr(DA) 

0.5, Pr(RB) - 0.25, and Pr(BB) - 0.25. 

Now consider the prediction made by the logit model. Since the red and 

blue buses are identical in all attributes relevant to mode choice, VRB = 

VBB" In addition, VDA - VRB by assumption. Therefore, the deterministic 

components of the utilities of the three modes drive alone, red bus, and 

blue bus are equal. Let V denote this common value. Then for any of the 

three modes 

Pr(mode) exp(V) 
1/3. (4.15) 

exp(V) + exp(V) + exp(V) 

According to this equation, introduction of the blue bus causes the share of 

drive alone to decrease from 1/2 to 1/3 of the travelers. That is, 1/3 of 

the original drive alone travelers are predicted to switch to bus. (To 

obtain this result, suppose that there are 30 travelers in all. Then before 

the initiation blue bus service, the number predicted to drive alone is 

0.5(30) - 15. If choices after the initiation of blue bus service are given 

by Equation (4.15), then the number of travelers choosing to drive alone 

after blue bus service starts is predicted to be 30(1/3) - 10. Thus 1/3 of 

the drivers alone are predicted to switch to bus.) This result is both 
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inconsistent with the expectations developed in the previous paragraph and 

unreasonable. 

The red bus/blue bus paradox provides an important illustration of the 

possible consequences IIA, but it is extreme. A more realistic example of 

the effects of IIA is the following: 

Example 4.5: Effects of the IIA Property 

Consider an individual who has a choice between drive alone, carpool, 

bus, and light rail. Let the deterministic component of the logit utility 

function be 

VDA 0.8 - T -DA 0.25CDA (4.16a) 

VCP 0.2 - TCP - 0.25CCP (4.16b) 

VB -0.2 - T B - 0.25CB (4.16c) 

VLR - T -LR 0.25CLR' (4.16d) 

where LR denotes light rail, and T and Care the travel time in hours and 

travel cost in dollars. Let the values of T and C be 

Mode Time Cost 

Drive Alone 0.50 2.00 

Carpool 0.75 1.00 

Bus 1. 20 0.50 

Light Rail 1.00 0.75 

Then the values of V and the choice probabilities are: 
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exp(V) Pr(Mode) 

Drive Alone -0.20 0.819 0.458 

Carpool -0.80 0.449 0.251 

Bus -1. 53 0.217 0.121 

Light Rail -1.19 0.304 0.170 

Sum 1.789 1.000 

Now suppose that the cost of traveling by light rail increases by 

$0.50. If bus and light rail operate in the same corridors, we would expect 

that most individuals diverted away from light rail would choose to travel 

by bus. However, according to the logit model, the new choice probabilities 

are: 

_v_ exp(V) Pr(Mode) 

Drive Alone -0.20 0.819 0.467 

Carpool -0.80 0.449 0.256 

Bus -1.53 0.217 0.123 

Light Rail -1, 31 0.270 0,154 

Sum 1. 755 1.000 

The logit model's prediction of change in the probability of choosing each 

mode is shown in the following table: 
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Pr(Mode) 
Before Cost After Cost 

Mode Increase Increase Change 

Drive Alone 0.458 0.467 +0.009 

Carpool 0.251 0.256 +0.005 

Bus 0.121 0.123 +0.002 

Light Rail 0,170 0.154 -0,016 

Sum 1.000 1.000 0.000 

Notice that the probability of choosing each mode other than light rail is 

predicted to increase in proportion to its original share. This is a 

consequence of the IIA property, which requires the ratios Pr(drive 

alone)/Pr(carpool) and Pr(drive alone)/Pr(bus) to stay constant when the 

cost of light rail travel increases (see equation (4.14)). In aggregate 

terms, the riders who stop using light rail when its cost increases are 

predicted to distribute themselves among the remaining modes in proportion 

to the initial probabilities of choosing the remaining modes. Therefore, 

most of the riders who leave light rail are predicted to drive alone since 

drive alone has the highest initial choice probability (0.458). However, 

such a result, though possible (e.g., if bus and light rail operate in 

different corridors so that bus is not a feasible alternative for light rail 

travelers), is not necessarily realistic. For example, it is not consistent 

with our expectations if bus is an alternative to light rail. This 

inconsistency between the predictions of the logit model and reasonable 

expectations limits the usefulness of the multinomial logit model in 

situations such as this one. 
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In most existing models, IIA problems involving trade-offs between 

competing transit modes are avoided through the simplifying assumption that 

transit travelers choose the transit mode that provides the fastest travel. 

Thus, the choice between bus and light rail is most commonly treated during 

the building of paths through the transit network, rather than in predicting 

mode shares. The mode choice model includes only a single, generic transit 

mode that involves bus travel for certain trips and light rail travel for 

others. 

Combining transit modes in this way, however, can lead to serious 

prediction errors. Moreover, the potential problems posed by IIA are not 

restricted to choices among transit modes. They can also arise in choices 

among automobile-based modes, such as drive alone and carpool. Therefore, 

it is worthwhile to consider how IIA problems can be avoided without 

combining modes. 

Frequently, it is possible to avoid unrealistic consequences of IIA by 

including additional variables in the deterministic component of the utility 

function. As an illustration of this, suppose that in Example 4.5 the light 

rail travelers are mainly individuals who do not have cars and, therefore, 

are highly unlikely to choose to drive alone. Then individuals who choose 

not to use light rail after the cost increases will switch mainly to carpool 

and bus. If carpooling is difficult for individuals who do not have cars 

available, then individuals who stop using light rail will switch mainly to 

bus. These effects can be accommodated within a multinomial logit model by 

including the variable automobile ownership in the deterministic component 

of the utility function. The following example illustrates this. 
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Example 4.6: Avoiding the Unrealistic Consequences of IIA 

Suppose, as in Example 4.5, that travelers choose between the modes 

drive alone, carpool, bus, and light rail. However, let the deterministic 

components of the utilities of these modes be 

VDA - -2.84 - TDA - 0.25CDA + 4.SA (4.17a) 

VCP - -2.17 - T - 0.25CCP + 3.SA (4.17b) CP 

VB -0.20 - T B - 0.25GB (4.17c) 

VLR - T -LR 0.25CLR' (4.17d) 

where A is the number of automobiles owned by the traveler's household. As 

in Example 4.5, let the values of travel time (T) and travel cost (C) be: 

Time Cost 
Mode ilill...) ilL 

Drive Alone 0.50 2.00 

Carpool 0.75 1.00 

Bus 1.20 0.50 

Light Rail 1.00 0.75 

Then the values of V and exp(V) for travelers whose households own 0, 1, and 

2 cars are: 

0 Cars 1 Car 2 Cars 
Mode V exp(V) V exp(V) _v_ exp(V) 

Drive Alone -3.83 0.022 0.664 1. 94 5.16 174. 

Carpool -3.17 0.042 0.334 1.40 3.83 46.2 

Bus -1. 53 0.217 -1.53 0.217 -1.53 0.217 

Light Rail -1.19 0.305 -1.19 0.304 -1.19 0.304 

Sum 0.586 3.86 221. 
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The multinomial logit choice probabilities according to automobile ownership 

level are: 

Pr(Mode) 
Mode 0 Cars 1 Car 2 Cars 

Drive Alone 0.0368 0.503 0.789 

Carpool 0.0720 0.362 0.209 

Bus 0,370 0.0562 0.0001 

Light Rail 0.521 0,0790 0,0014 

Sum 1,000 1.000 1.000 

Notice that bus and light rail are used mainly by 0-car owners and that 

drive alone and carpool are used mainly by 1- and 2-car owners. Suppose 

that 25% of the travelers under consideration own O cars, 50% own 1 car, and 

25% own 2 cars. Then the aggregate share of each mode in the population as 

a whole can be obtained by substituting the choice probabilities according 

to automobile ownership level into the formula 

Share(Mode) - 0.25Pr(Mode for A - 0) + O.SOPr(Mode for A - 1) 

+ 0.25Pr(Mode for A - 2). 

The results of this substitution are shown in the following table: 

Aggregate 
Mode Share 

Drive Alone 0.458 

Carpool 0.251 

Bus 0.121 

Light Rail 0.170 

75 

(4.18) 



Notice that these aggregate shares are exactly the same as the choice 

probabilities in Example 4.5. 

Now assume that the cost of light rail transit increases by $0.50. The 

following table shows the resulting values of V and exp(V) according to 

automobile ownership for each mode: 

0 Cars 1 Car 2 Cars 
Mode V exp(V) V exp(V) V exp(V) 

Drive Alone -3.83 0.022 0.664 1.94 5.16 174. 

Carpool -3.17 0.042 0.334 1.40 3.83 46.2 

Bus -1. 53 0.217 -1. 53 0.217 -1. 53 0.217 

Light Rail -1. 31 0.269 -1. 31 0.269 -1. 31 0.269 

Sum 0.550 3.83 221. 

The new choice probabilities according to automobile ownership level are: 

Pr(Mode) 
Mode 0 Cars 1 Car 2 Cars 

Drive Alone 0. 0392 0.508 0.789 

Carpool 0.0767 0.365 0.209 

Bus 0.395 0.0567 0.0001 

Light Rail 0,489 0,0704 0.0012 

Sum 1.000 1.000 1.000 

The changes in the choice probabilities according to automobile ownership 

level can be obtained by subtracting Pr(Mode) before the increase in light 

rail cost from Pr(Mode) after the increase. The results are: 
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Change in Pr(Mode) 
Mode 0 Cars 1 Car 2 Cars 

Drive Alone +0.0024 +0.005 0.000 

Carpool +0.0047 +0.003 0.000 

Bus +0.025 +O 0005 0.000 

Light Rail -0.032 -0.0086 -0.0002 

Notice that, as expected, the travelers who have changed mode are mainly 

those who own O cars and that the mode change by these travelers consists 

mainly of switching from light rail to bus. 

The aggregate shares following the increase in the cost of light rail 

travel can be obtained from Equation (4.17). These shares and the changes 

in shares caused by the cost increase are: 

Share 
Before Cost After Cost 

Mode Increase Increase Change 

Drive Alone 0.458 0.461 +0.003 

Carpool 0.251 0.254 +0.003 

Bus 0.121 0.127 +0.006 

Light Rail 0,170 0,158 -0.012 

Sum 1.000 1.000 0.000 

Notice that in contrast to the situation in Example 4.5, the bus share now 

increases by twice as much as either the drive alone or the carpool share. 

This result is consistent with expectations when light rail and bus serve 

the same corridors and the light rail travelers consist mainly of 

individuals without cars. (Recall that expectations under these conditions 

were developed in Example 4.5.) Thus, the change in the specification of 
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the deterministic component of the utility function has remedied the 

unreasonable consequences of the IIA property that were found in Example 

4.5. 

Example 4.6 has shown how the unreasonable consequences of the IIA 

property can be alleviated by including an additional variable in the 

deterministic component of the utility function. Another way to alleviate 

these consequences is to base predictions on a model, other than the 

multinomial logit model, that does not have the IIA property. Discussion of 

such models is beyond the scope of this course. Readers interested in 

learing about them should consult the book by Ben-Akiva and Lerman listed in 

the references at the end of Module 1. 

4.7b Introduction of New Modes 

An important problem in transportation analysis is the prediction of 

ridership on new travel modes. One of the advantages of the IIA property is 

that it greatly simplifies the process of predicting the effects of adding a 

new mode to the choice set. The following example illustrates how this is 

done. 

Example 4.7: Introduction of a New Mode 

Consider a traveler who can choose between drive alone and carpool. 

Let the probabilities with which these modes are chosen be given by a 

binomial logit model in which the deterministic component of the utility 

function is as in Equation (4.9). Let the the traveler•s income be $20,000 

per year, and let the values of the travel time and cost variables be: 
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Mode 

Drive Alone 

Carpool 

Time 
(Hours) 

0.5 

0.6 

Cost 
u.L 

2.00 

1.00 

Then, the values of V and the choice probabilities are 

Mode 

Drive Alone 

Carpool 

Sum 

_v_ 

-1.00 

-0.85 

exp(V) 

0.37 

0,43 

0.80 

Pr(mode) 

0.46 

0,54 

1.00 

Now suppose that bus service is initiated and that it has a travel time 

of 0.8 hr. and a fare of $0.60. The probability that a traveler will choose 

bus and the new probabilities that drive alone and carpool are chosen can be 

obtained from the multinomial logit model (Equation 4.7) if the value of the 

deterministic component of bus utility is known. This value can be obtained 

by substituting the values of T and C for bus into Equation (4.9) to obtain 

VB - -0.95. The resulting computation of the mode choice probabilities for 

the three-mode choice set is: 

Mode V exp(V) Pr(mode) 

Drive Alone -1.00 0.37 0.31 

Carpool -0.85 0.43 0.36 

Bus -0 95 0 39 0.33 

Sum 1.19 1.00 
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In Example 4.7, the deterministic component of the utility function 

does not contain alternative-specific constants. In practice, these 

constants usually are present, which makes it necessary to assign a value to 

the alternative-specific constant for the new mode before predictions of the 

effects of adding this mode can be made. This value usually must be 

assigned judgmentally in practice. Although guidance as to an appropriate 

range of values sometimes can be obtained by examining mode choice models 

developed for cities where the new mode already is in operation, there is 

almost always considerable uncertainty as to the best value to use. As a 

result, there is likely to be considerable uncertainty as to the effects of 

introducing the new mode. 

4.8 Summary 

This module has presented the binomial and multinomial logit models and 

has explained how they can be used to describe probabilistic choice 

behavior. Several examples have illustrated the properties of these models, 

including their sensitivity to changes in the deterministic components of 

utility, their dependence on utility differences, the importance of 

alternative-specific constants, the IIA property, and their ability to 

facilitate prediction of the effects of introducing a new mode. 

EXERCISES 

4.1 Use Equation (4.3) to compute the probability that alternative 1 is 

chosen for the following values of the deterministic components of 

utility: 
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Case _:i_ i 
6 1.0 -1.5 

7 0.5 -2.0 

8 3.0 -1.0 

9 0.0 -0.5 

10 0.0 2.5 

a. Referring to Table 4.2, compare cases 4, 5, and 7. What can you 

conclude about the importance of utility values as opposed to 

utility differences? 

b. Compare cases 4 and 10. What can you conclude about the relation 

between these cases? 

4.2 Repeat the analysis shown in Example 4.1 for the case where the 

deterministic component of the utility of carpool is 1.5. Repeat again 

using 1.0 as the deterministic component of the utility of carpool. 

4.3 Suppose that in Example 4.7 two new modes were added, bus and bicycle. 

Let the travel time and cost of bus be as in the example. Let the 

travel time of bicycle be 1.0, and let its cost be 0. 

a. Compute the choice probabilities of all four modes, drive alone, 

carpool, bus, and bicycle, using Equation (4.9). Assume that 

income is $20,000 per year. 

b. Predict the choice probabilities for all four modes using Equations 

(4.12) after adding an appropriate equation for the deterministic 

component of the bicycle utility function. Let the value of the 

alternative-specific constant for bicycle be -1.0. 
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MODULE 5 

VARIABLES OF MODE CHOICE MODELS 

5.1 

Probabilistic choice models generally, and legit models in particular, 

make it possible to develop useful mode choice models that do not include 

all of the variables that influence mode choice. This is a very important 

property of probabilistic choice models since, as was discussed in Module 3, 

the variables that influence mode choice are not all known to analysts and 

not all of the known variables can be measured in practice. It does not 

follow, however, that a model based on any subset of the influential 

variables will be useful. On the contrary, there are certain types of 

variables that must be included to obtain a useful model. This module 

identifies these classes of variables and explains the forms that the 

variables can take. 

This module also identifies variables that have been found useful in 

previously developed mode choice models. However, it does not provide a 

list of standard variables that always should be used in mode choice models 

or a standard procedure for selecting variables. No such list or procedure 

exists. The appropriate variables to use in a model depend on the purposes 

for which the model is to be used and on the available data. They also 

depend on behavioral relations that normally are revealed in the process of 

model development. In fact, the process of selecting variables for a 

practical mode choice model is as much an art as a science. It relies as 

much on judgment and experience as on statistical techniques. The purpose 

of this module is to provide information that will contribute to informed 



and sensible judgments in the selection of variables. Statistical 

techniques that can help to guide the selection of variables are discussed 

in Section 6.5 of Module 6. 

Throughout this module, the term "utility function" will mean the 

deterministic component of the utility function of a logit model. The 

modifier "deterministic component of the" will not be used. 

5.2 Classes of Variables That Must Be Included in Models 

There are three kinds of variables that must be included in a model to 

make it useful: (1) policy variables, (2) variables that affect mode choice 

and that identify any demographic characteristics or population groups of 

interest, and (3) other variables that influence mode choice and are 

correlated with either the policy variables or the variables used to 

identify demographic characteristics and population groups. 

In addition, the utility function of each mode except one should 

include an alternative-specific constant. The use of alternative-specific 

constants was discussed in Section 4.6 of Module 4. As was explained in 

Section 4.6, it does not matter which mode is the selected as the base mode 

whose utility function does not include an alternative-specific constant. 

(To minimize the complexity of the subsequent discussion, the utility 

functions in the examples presented in this module and in Module 6 do not 

all include alternative-specific constants. The omission of alternative­

specific constants from the examples is for reasons of expository clarity 

and should not be interpreted as contradicting the principle that these 

constants should be included in the utility functions of practical models.) 
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5.2a Policy Variables 

One of the most important uses of mode choice models is predicting the 

effects of policy measures. For example, a transportation planner may want 

to predict the change in bus ridership that will occur if bus fares change 

or bus travel becomes faster. Such predictions can be made only if the 

model includes explanatory variables, called policy variables, that 

represent the policy measures being considered. For example, policy 

variables such as bus fare and bus travel time must be included in a model 

to make it useful for predicting the effects of policy measures that would 

change fares or travel times. A model that will be used to predict the 

effects of measures to improve the reliability of bus service must include 

policy variables, such as the percent of on-time arrivals, that can 

represent the effects of the measures being considered. 

Example 5.1: Policy Variables 

Consider the following binomial logit model of work-trip mode choice. 

The available modes are automobile and bus, and the probabilities of 

choosing these modes are: 

p 
auto 

p 
bus 

where 

exp(-T - SC /Y) a a 
exp(-Ta - SCa/Y) + exp(-Tb - SCb/Y) 

1.0 - P t , au o 

Automobile and bus travel times in hours; 

Automobile and bus travel costs in dollars; 

(5.1) 

(5.2) 

Income of the traveler's household in thousands of dollars 

per year. 
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In this model, Ta' Tb, Ca' and Cb are policy variables since their values 

can be influenced by transportation policy measures. Y is not a policy 

variable since individuals' incomes are not directly influenced by 

transportation policy measures. 

The model of equations (5.1) and (5.2) can be used to predict the 

effects on mode choice of policy measures that change automobile or bus 

travel times and costs since travel times and costs are policy variables of 

the model. In contrast, comfort and safety are not policy variables of the 

model. The model cannot predict the effects of policy measures designed to 

influence these variables. 

5.2b Variables That Affect Mode Choice and Identify Demographic 

Characteristics or Population Groups 

Often, it is important to be able to predict the effects of policy 

measures on different groups in the population or to predict the effects of 

changes in demographic characteristics of the population. For example, it 

may be important to know whether increasing bus fares will be particularly 

burdensome to low-income travelers or whether a certain improvement in 

transit service will succeed in attracting members of multi-car households 

to transit. A model can answer questions such as these only if it includes 

variables that permit the effects of policy measures on different population 

groups of interest to be differentiated. In the example of bus fares just 

given, the variables income and automobiles owned would serve this purpose. 

The model discussed in Example 5.1 includes the variable Y (income) and, 

therefore, is capable of differentiating among the effects of changes in 

travel time (T) and travel cost (C) on different income groups. The model 

also is capable of predicting the effects on mode choice ~f any changes in Y 
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that may occur in the future. The model does not include a variable for 

automobile ownership and, therefore, is not capable of differentiating among 

households with different levels of automobile ownership or of predicting 

the effects of changes in automobile ownership. 

Example 5.2: Effects on Different Income Groups of a Change in Bus 

Suppose that the model of Equation (5.2) is used to predict the effects 

on bus ridership of increasing the fare from $0.50 to $1.00 on a certain 

route. Assume that Ca - $1.50, Ta - 0.50 hr., and Tb - 1.0 hr. for the 

affected travelers and that these travelers include individuals whose 

incomes are $20,000 and $40,000 per year. Then, before the fare increase, 

the probability that the lower-income travelers choose bus is 

exp[-1.0 - 5(0.5)/20] Pb (low, before) - ____________________ _ 

us exp[-0.5 - 5(1.5)/20] + exp(-1.0 - 5(0.5)/20) 

0.44, 

and the probability that the higher-income travelers choose bus is 

exp[-1.0 - 5(0.5)/40] Pb (hi, before) - ____________________ _ 
us exp[-0.5 - 5(1.5)/40] + exp[~l.O - 5(0.5)/40] 

0.41. 

After the fare increase, the probabilities of bus choice by the low- and 

high-income travelers are 

and 

Pb (low, after) us 
exp{-1.0 - 5(1.0)/20] 

exp[-0.5 - 5(1.5)/20] + exp[-1.0 - 5(1.0)/20] 

- 0.41, 

exp[-1.0 - 5(1.0)/40] Pb (hi, after) - ____________________ _ 
us exp[-0,5 - 5(1.5)/40] + exp[-1.0 - 5(1.0)/40] 

- 0.39. 
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Therefore, the fare increase is predicted to cause a reduction of 7 percent 

(lOOx0.03/0.44) in the probability that a low-income traveler chooses bus 

but only a 5 percent (lOOx0.02/0.41) reduction in the probability that a 

high-income traveler chooses bus. Accordingly, the fare increase is 

predicted to have a greater impact on the low-income travelers than on the 

high-income travelers. This prediction could not have been made if the 

model did not include the variable Y that enables income groups to be 

distinguished. 

5.2c Other Variables That Influence Mode Choice and Are Correlated 

with the Policy, Demographic, or Grouping Variables 

Frequently, it is possible to identify variables that are not of 

interest themselves but that affect mode choice and are correlated with one 

or more of the policy or grouping variables in a model. Such variables also 

must be included in the model or else the model will give incorrect 

predictions of the effects of the policy and grouping variables. For 

example, suppose that travel time (a policy variable) and income (a grouping 

variable) are included in a model of mode choice. Suppose, also, that the 

number of automobiles owned by a traveler's household -- a variable that is 

known to have a strong effect on mode choice -- is not of interest in a 

particular study but that multi-car households tend to have higher incomes 

and to live farther from their workplaces than do single-car and non-car­

owning households. Since automobile ownership has an independent effect on 

mode choice, apart from its association with travel time and income, a model 

that does not include automobile ownership as a variable will give incorrect 

predictions of the effects of travel time and income on mode choice. Such a 

model's predictions of the effects of travel time will reflect not only the 
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true effects of travel time but, also, the effects of differences in 

automobile 0~mership that are associated with differences in travel time 

through the tendency of households with large travel times to own many cars. 

In other words, the travel time variable will operate, in part, as a 

surrogate for automobile ownership and, therefore, will not correctly 

describe the true effects of changes in travel time alone. Similarly, the 

model's predictions of the effects of income on mode choice will reflect 

both the true effects of income and the effects of differences in automobile 

ownership that are associated with differences in income through the 

tendency of high-income households to own many cars. 

The prediction errors caused by omitting a variable that is correlated 

with a policy variable are further illustrated by the following example. 

Example 5,3: Effect of Omitting a Variable That Is Correlated with a 

Policy Variable 

Suppose a model of choice between the modes automobile and bus has the 

binomial logit form: 

p 
auto 

p 
bus 

exp(V) 
a 

exp(Va) + exp(Vb) 

exp(Vb) 

(5.3) 

(5.4) 

Let Va and Vb, the automobile and bus utility functions, have the forms 

V 
a 

-T + 0.5A 
a 

(5.5) 

(5.6) 

where Ta and Tb, respectively, are automobile and bus travel time in hours, 

and A is the number of automobiles owned by the traveler's household. 
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Substitution of Equations (5.5) and (5.6) into Equation (5.3), followed by 

some algebra, yields 

p 
auto (5 7) 

The solid lines in Figure 5.1 show graphs of P as a function of Tb - Ta auto 

for each of three different values of A. As expected, the graphs show that, 

given the same value of Ta - Tb, an individual whose household owns several 

automobiles has a higher probability of choosing automobile than does an 

individual whose household owns only one automobile. 

Now suppose that the available data consist of measurements of P auto' 

Tb - Ta' and A for three groups of individuals, as follows: 

Group 

1 

2 

3 

T - T 
b a 

0.25 

0.60 

0.75 

A 

1 

2 

3 

p 
auto 

0.68 

0.83 

0.90 

These data are plotted as large dots in Figure 5.1. Notice that increases 

in automobile ownership are associated with increases in Tb - Ta. In other 

words, automobile ownership is positively correlated with Tb - Ta. A model 

based on these data that included the policy variable Tb - Ta but not the 

automobile ownership variable A would conclude that the relation between 

P t and Tb - T is the one obtained by connecting the three dots. This au o a 

relation is shown by the dashed line in Figure 5.1. Notice that this line 

is much steeper than the solid lines. In other words, the model that omits 

the automobile ownership variable predicts that policy changes (i.e., 

changes in Tb - Ta) have larger effects on mode choice than they really 

have. The model makes this prediction error because, owing to the omission 
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Figure 5.1: P auto vs Tb - Ta for Example 5.3 

1 

0.9 
/ ----0 

0.8 

0.7 

\0 
o 0.6 

0 +-

o..
5 0.5J ~ Legend 

A A=1 

◊ A=2 
0.4 

D A=3 

0.3..J e Model 2 - - -

0.2 

0.1...J._-------.....-----,r------,-----,--
-0.75 -0.50 -0.25 0 0.25 0.50 0.75 1.25 1.50 

T b-T 0 {hr) 



of the variable A, the predicted effects of changes in Tb - Ta reflect not 

only the true effects of changes in this variable, but also the effects of 

the changes in A that are associated in the data with changes in Ta - Tb. 

5.2d Alternative-Specific Constants 

An alternative-specific constant is a constant that is added to the 

utility function of a mode and whose numerical value may be different for 

different modes. Example 4.3 in Module 4 illustrates the use of 

alternative-specific constants. For example, in the utility function 

0.8 - TDA - SCDA/Y 

0.2 - TCP - sccp/Y 

- TB - CB/Y' 

(5.8a) 

(5.8b) 

(5.8c) 

the alternative-specific constants are 0.8 for drive alone and 0.2 for 

carpool. 

Alternative-specific constants provide a convenient way to account for 

the average effects of all variables affecting choice that are not 

explanatory variables of the model. The number of alternative-specific 

constants in a model must not exceed the number of modes in the model minus 

one. The predictions of the model are the same, regardless of which mode is 

selected to be the one that has no alternative-specific constant in its 

utility function. The following example illustrates the prediction errors 

that can occur when alternative-specific constants are not included in a 

model. 

Example 5,4: Alternative-Specific Constants 

Suppose that choice among .the modes automobile and bus is described by 

a logit model. Let the logit utility function be 
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V 
a 

0.5 - T 
a (5.9a) 

(5.9b) 

where Ta and Tb, respectively, denote automobile and bus travel time, and 

0.5 is the value of the alternative-specific constant in the automobile 

utility function. The probability that automobile is chosen is 

exp(0.5 - T ) p a auto 
exp(0.5 - T ) + exp(-Tb) a 

(5.10) 

Equivalently, 

p 1 
auto 

1 + exp[-(Tb T ) - 0.5] - a 

(5.11) 

The solid line in Figure 5.2 shows a graph of P as a function of 
auto 

Now suppose that the available data consist of observations of the mode 

choices of individuals for whom Tb - Ta 0.50 hr. The probability that 

such individuals choose automobile can be computed from equation (5.11) and 

is 

p 
auto 

1 
0.73. 

1 + exp(-0.5 - 0.5) 

The point P t - 0.73, Tb - T - 0.50 is identified by the solid dot in au o a 

Figure 5.2. A logit model of choice between automobile and bus that did not 

include an alternative-specific constant would have the form 

p 
auto 

1 

where c is a positive constant. 

(5.12) 

According to this model, P - 0.5 when auto 

0. The open dot in Figure 5.2 identifies the point P t - 0.5, au o 

TB - TA - 0. The logit model without an alternative specific constant that 

fits the observed choices is the one illustrated by the dashed line in 

Figure 5.2. This line corresponds to equation (5.12) with c - 2.0. Notice 

that the dashed line is much steeper than the solid line. In other words, 
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the model without the alternative-specific constant predicts that changes in 

travel time have larger effects on mode choice_ that they really have. 

5.3 Functional Forms and Disaggregation of Variables 

An important aspect of selecting variables for a model is deciding how 

these variables should depend on the observed attributes of modes and 

individuals. For example, the attribute "travel time" might be represented 

in a model by the variable T (travel time measured in, say, hours) or it 

might be represented by the variable ln(T), the natural logarithm of T. 

Alternatively, T might be disaggregated into the components in-vehicle 

travel time, walk time, wait time, transfer time, etc., and each of these 

components (or possibly its logarithm or some other transformation) used as 

a separate variable of the model. The form in which an attribute such as 

travel time enters a model frequently has important behavioral implications, 

and it can have a large effect on the model's forecasts. 

Although the need to decide the relation between an attribute and the 

variable representing it can arise with virtually any attribute that might 

enter a model, the attributes that seem to cause the greatest difficulty in 

practical mode choice modeling are travel time, travel cost, income, and 

automobile ownership. This section describes the variables most frequently 

used to represent these attributes in practice and explains the implications 

of different choices of variables. 

5.3a Travel Time·· Disaggregation 

The most important decision that must be made with respect to travel 

time is whether it should be disaggregated into components (e.g., in-vehicle 

travel time, walk time, etc.) and, if so, what the components should be. 
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Disaggregation admits the possibility that equal changes in different 

components of travel time may have different effects on mode choice. For 

example, disaggregating travel time into in-vehicle and out-of-vehicle 

components admits the possibility that a 5 minute increase in in-vehicle 

travel time and a 5 minute increase in out-of-vehicle travel time have 

different effects on mode choice. (In fact, experience indicates that 

travelers consider out-of-vehicle travel time to be more burdensome than in-

vehicle travel time, so a 5 minute increase in out-of-vehicle travel time 

does have a greater effect on mode choice than does a 5 minute increase in 

in-vehicle travel time.) Similarly, disaggregating out-of-vehicle travel 

time into the components walk time and wait time admits the possibility that 

equal changes in the values of these components have different effects on 

mode choice. In contrast, representation of travel time by the single 

variable "total travel time" is equivalent to assuming that equal changes in 

the various components of travel time have equal effects on mode choice. 

Similarly, combining all of the components of out-of-vehicle travel time 

into the single variable "total out-of-vehicle travel time" is equivalent to 

assuming that equal changes in the various components of out-of-vehicle 

travel time (e.g., walk time, wait time, etc.) have equal effects on mode 

choice. 

Example 5,5: Components of Travel Time 

Consider the following two logit models of choice between automobile 

and bus: 

Model 1 -- P auto 
exp(-T) 

a 
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Model 2 -- P auto 
exp(-0.48Tia - l.21TOa) (S.l4 ) 

exp(-0.48Tia - l.21TOa) + exp(-0.48Tib - l.21TOb) 

Models 1 and 2 -- P - 1.0 - P bus auto (5.15) 

In these models, 

- Total travel time by auto and bus in hours; 

Tia' Tib - In-vehicle travel time by auto and bus in hours; 

TOa' TOb - Out-of-vehicle travel time by auto and bus in hours. 

Thus, Model 2 disaggregates travel time into the components in-vehicle 

travel time and out-of-vehicle travel time, whereas Model 1 does not 

disaggregate travel time. Equations (5.13) and (5.14) are equivalent to 

Model 1 

Model 2 

p 
auto 

p 
auto 

1/(l + exp[-0.48(Tib - Tia) - l.2l(TOb - TOa)]}. 

(5.16) 

Suppose that at present, Tib - 0.5 hr., Tia - 0.4 hr., TOb 

(5.17) 

0. 30 hr. , 

and TOb - 0.05 hr. (the base case). 

In Model 1, 

Then Tb - 0.80 hr., and T - 0.45 hr. 
a 

Pauto - 1/(1 + exp[-(0.80 - 0.45)]} - 0.59, 

and in Model 2, 

p 
auto 

1/{l + exp[-0.48(0.5 - 0.4) - 1.21(0.30 - 0.05)]} - 0.59. 

The probability that automobile is chosen is the same in both models. 

Now consider the effects of increasing Tib (in-vehicle travel time) by 

0.1 hr. while TOb (out-of-vehicle travel time) remains unchanged and of 

increasing TOb by 0.1 hr. while Tib remains unchanged. The values of TI 
a 

and TO remain as before. The following table shows the new values of P a auto 

obtained from the two models as well as the value of P in the base case: auto 
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p According to 
Change from Base Case auto 

Case Model 1 Model 2 Model 1 Model 2 

Base 0.59 0.59 0.0 0.0 

Increase Tib 0.61 0.60 0.02 0.01 

Increase TOb 0.61 0.62 0.02 0.03 

It can be seen that according to Model 1, which does not disaggregate travel 

time into its components, increasing Tib by 0.1 hr. and increasing TOb by 

0.1 hr. have the same effect on mode choice -- they both increase P by 
auto 

0.02. However, in Model 2, which does disaggregate travel time, increasing 

Tib by 0.1 hr. increases P by only 0.01, whereas increasing TOb by 0.1 auto 

hr. increases Pauto by 0.03. In other words, in Model 2, the increase in 

out-of-vehicle travel time has three times the effect of the same increase 

in in-vehicle travel time. In Model 1, travelers are equally sensitive to 

changes in in-vehicle and out-of-vehicle travel time. In Model 2, travelers 

are more sensitive to changes in out-of-vehicle travel time than to changes 

in in-vehicle travel time. 

The differences between Models 1 and 2 have practical policy 

consequences. For example, suppose that Model 2 is correct. Then use of 

Model 1 overstates the importance of in-vehicle travel time savings and 

understates the importance of out-of-vehicle travel time savings. Use of 

Model 1 will cause a bus operator trying to increase service quality and 

ridership to place too much emphasis on in-vehicle travel time and too 

little on out-of-vehicle travel time. 

5.3b Travel Time -- Mode-Specific Representation 

An issue that is related to the disaggregation issue is whether travel 

time (or one or more of its components) should be represented as a generic 
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or a mode-specific variable. Travel time (or one of its components) is 

generic if it is represented by the same variable in all modes. It is mode­

specific if it is represented by different variables in different modes. 

For example, automobile travel time and bus travel time might be represented 

by separate variables in the utility function, with the value of the 

automobile travel time variable being zero for the transit mode and the 

value of the transit travel time variable being zero for the automobile 

mode. 

Use of a mode-specific variable to represent an attribute admits the 

possibility that travelers evaluate that attribute differently for different 

modes. Use of a generic variable excludes this possibility. In-vehicle 

travel time is a travel time component that sometimes is represented by a 

mode-specific variable in mode choice models. The behavioral rationale for 

this is that transit travelers often can spend their in-vehicle time reading 

or sleeping, whereas automobile travelers (particularly if they are drivers) 

may not be able to do these things. Therefore, travelers may perceive 

transit in-vehicle travel time as being less burdensome than automobile in­

vehicle travel time. 

Example 5.6: Generic and Mode-Specific Travel Time Variables 

Consider the following two models of choice between automobile and bus: 

Model 1 -- P -auto 
exp( -T ) 

a (5.18) 

Model 2 -- P auto 

exp(-Ta) + exp(-Tb) 

1/(1 + exp[-(Tb - Ta)]} (5.19) 

exp(-4.2TAa - 2.8TBa) (5.20) 

exp(-4.2TAa - 2.8TBa) + exp(-4.2T¾ - 2.8TBb) 

1/{l + exp[-4.2(T¾ - TAa) - 2.8(TBb -· TBa)]}. (5.21) 
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Models 1 and 2 -- P - 1.0 - P bus auto (5.22) 

In these models, 

Value of the generic variable "total travel time" for 

automobile (a) and bus (b). 

TAa' T¾ - Value of the mode-specific variable "automobile travel 

time" for automobile (a) and bus (b). T¾ - 0 always 

since no time is spent traveling by automobile if bus is 

chosen. The value of TA is the same as the value of T . 
a a 

TBa' TBb - Value of the mode-specific variable "bus travel time" for 

automobile (a) and bus (b). TB - 0 always since no time 
a 

is spent traveling by bus if automobile is chosen. The 

value of TBb is the same as the value of Tb. 

Ta, and TBb - Tb' Model 2 is equivalent to 

Model 2 -- P - 1/[l + exp(4.2Ta - 2.8Tb)]. auto (5.23) 

The difference between Models 1 and 2 is that in Model l, travel time is a 

generic variable, whereas travel time is a mode-specific variable in Model 

2. 

Suppose that at present, Tb - 0.80 hr. and Ta - 0.45 hr. (the base 

case). Then in Model 1, 

Pauto - 1/{l + exp[·(0.80 - 0.45)]} - 0.59, 

and in Model 2, 

p 
auto 

1/{l + exp[4.2(0.45) - 2.8(0.80)]} - 0.59. 

The probability that automobile is chosen is the same in both models. 

Now consider the effects of increasing Tb by 0.1 hr. while Ta remains 

unchanged and of decreasing Ta by 0.1 hr. while Tb remains unchanged. The 

following table shows the new values of P obtained from the two models auto 

as well as the value of P t in the base case: au o 
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p 
auto According to Change from Base Case 

Case Model 1 Model 2 Model 1 Model 2 

Base 0.59 0.59 0.0 0.0 

Increase Tb 0.61 0.65 0.02 0.06 

Decrease T 0.61 0.68 0.02 0.09 a 

It can be seen that according to Model 1, in which travel time is a generic 

variable, increasing Tb by 0.1 hr. and decreasing Ta by 0.1 hr. have the 

same effect on mode choice -- they both increase P by 0.02. However, in 
auto 

Model 2, which treats travel time as a mode-specific variable, increasing Tb 

increases P by 0.06, whereas decreasing T increases P by 0.09. In auto a auto 

other words, the change in automobile travel time has a 50 percent larger 

effect than an equal but opposite change in bus travel time. In Model 1, 

travelers are equally sensitive to changes in automobile and bus travel 

time. In Model 2, travelers are more sensitive to changes in automobile 

travel time than to changes in bus travel time. 

5.3c Travel Time -- Functional Form 

The final decision that must be made about travel time variables is 

what the functional form of the relation between the variables and the 

physically measured attributes should be. Two functional forms are used 

frequently in practice, the linear and the logarithmic. In the linear form, 

the travel time variable is simply measured travel time (T), and in the 

logarithmic form, the variable is the natural logarithm of measured travel 

time (ln(T)). T can represent either total travel time or any component of 

travel time. Adoption of the linear form is equivalent to assuming that 

travelers find a given increase in T equally burdensome regardless of the 

current value of T. For example, if T denotes total travel time, use of 
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the linear form means that adding 5 minutes to a 1-hr. trip is perceived by 

travelers as being just as burdensome as adding 5 minutes to a 10-min. trip. 

In the logaritmic form, travelers find a given percentage increase in T to 

be equally burdensome regardless of the current value of T. Thus, for 

example, adding 5 minutes to a 10-min. trip -- a 50 percent increase in 

travel time -- is perceived as being just as burdensome as adding 30 minutes 

to a 1-hr. trip. 

The linear and logarithmic forms of travel time yield predictions of 

mode choice that may be very different from one another, as is illustrated 

by the following example. 

Example 5.7: Linear and Logarithmic Forms of Travel Time 

Consider the following two models of choice between two modes that will 

be called mode 1 and mode 2: 

Model 1 -- P1 exp(-T1) + exp(-T2) 

- 1/{l + exp[-(T2 - T1)]) 

Model 2 -- P1 -
exp(-ln T1) 

- 1/{1 + exp[-ln(T2/T1)]} 

- 1/(1 + T1/T2) 

Models 1 and 2 P2 - 1.0 - P1 , 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

where T
1 

and T
2 

denote total travel time in hours by modes 1 and 2. Figure 

5.3 shows a graph of the relation between P1 and T2 for each model when T1 -

0.5 hr. It can be seen from the figure that when mode 1 is the faster mode, 

the two models yield similar values of P
1

. However, the values of P1 
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obtained from the two models differ greatly when T2 is less than about 0.3 

hr. 

5.3d Travel Cost and Income 

Like travel time, travel cost can be divided into components (e.g., 

automobile fuel and maintenance costs, parking costs, tolls and fares, etc.) 

and can be represented as either a generic or mode-specific attribute. In 

most mode choice models, however, travel cost is treated as generic and is 

not divided into components. 

An important consideration in the selection of travel cost variables is 

their interaction with income. Economic theory and everyday experience both 

suggest that a traveler's sensitivity to changes in travel costs may depend 

on his income, with high-income travelers being less sensitive than low­

income ones. To represent this income dependence, the travel cost variable 

in mode choice models often takes the form C/Y, where Y is the total or 

after-tax income of the traveler's household. (After-tax income is the 

better variable to use, because only after-tax income can be allocated among 

travel and non-travel uses at the discretion of the household. After-tax 

income can be computed from total income -- the only type of income data 

normally available to transportation planners -- if the proportion of total 

income paid in taxes as a function of income level is known. Average values 

of this proportion are published in Vital Statistics of the United States.) 

Income also can be used as a surrogate for unobserved personal 

attributes that affect choice. For example, suppose that commuters whose 

households have high incomes have jobs or tend to engage in other activities 

that cause them to particularly value the schedule flexibility provided by 

the automobile. This tendency can be represented in a model of choice 
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between automobile and transit by adding to the utility function of the 

automobile mode a variable equal to the income (or, possibly, the logarithm 

of the income) of the traveler's household. Such an income variable then 

acts as a surrogate for unobserved attributes, such as a preference for 

schedule flexibility, that tend to make the automobile mode particularly 

attractive to high-income travelers. Either total income or after-tax 

income can be used for this purpose. 

When income is used in this way, it always is a mode-specific variable, 

and there must always be at least one mode whose utility function does not 

contain such a variable. Thus, for example, in a model of choice between 

automobile and transit, income can be a variable of either the automobile or 

the transit utility function but not of both utility functions. In a model 

of choice between drive-alone, carpool, and transit, income can enter the 

utility functions of any two of the three modes. The model yiel9s the same 

predictions of mode choice, regardless of which alternatives are assigned 

the mode-specific income variables and which alternative has no such 

variable. 

The following example illustrates the use of income as a surrogate for 

unobserved personal attributes that affect mode choice. 

Example 5.8: Use of the Income Variable 

In a logit model of choice between automobile and bus, let the utility 

function be: 

V - -T - SC /Y + O.OOlY a a a 
(5.30a) 

(5.30b) 

where T, C, and Y, respectively, denote travel time in hours, travel cost in 

dollars, and after-tax income in thousands of dollars per year. Notice that 
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the additive income term O.OOlY is present in the utilities of both modes. 

The probability that automobile is chosen is 

p -auto 
exp(-T - SC /Y + O.OOlY) a a (5.31) 

Dividing the numerator and denominator of equation (5.30) by exp(-T - SC /Y 
a a 

- O.OOlY) yields the equivalent model 

p 
auto 

1 (5.32) 

Notice that the additive income term is no longer present in the model: it 

has cancelled out in the division and, therefore, has no effect on the 

probability that auto is chosen or the probability that transit is chosen. 

Income affects the choice probabilities only through the term 5(Ca - Cb)/Y 

in which income interacts with travel cost. 

Now suppose that the utilities are 

V -b 

(5.33a) 

(5.33b) 

In this case the additive income term is present in the utility function of 

only one of the two modes. The probability that automobile is chosen is 

p 
auto 

exp( + O.OOlY) 

Dividing the numerator and denominator of (5.34) by exp(-T - SC /Y + a a 

O.OOlY) yields the equivalent model 

1 p 
auto 

1 + exp[-(Tb - Ta) - S(Cb - Ca)/Y - O.OOlY] 

(5.34) 

(5.35) 

Notice that the additive income term is present in equation (5.35). It has 

not cancelled in the division. Its form is such that P t increases when Y au o 

increases, as is to be expected from the form of equations (5.33) for the 

utility function. Thus, the additive income term affects the choice 
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probabilities when it is excluded from the utility function of one mode but 

not when it is included in the utility functions of all modes. 

5.3e Automobile OwnershiR 

The automobile ownership variable in mode choice models usually takes 

one of the following three forms: 

l. A Total number of automobiles owned by the traveler's 

household 

2. A/LD -- Number of automobiles per licensed driver in the 

3. A/W 

traveler's household 

Number of automobiles per worker in the traveler's 

household. 

The second two forms represent the possibility that as the number of 

licensed drivers or workers in a household increases, the likelihood that 

any particular individual can have the use of an automobile decreases. 

Regardless of which form of the automobile ownership variable is used, 

it is usually mode-specific and enters the utility function additively. As 

with additive income variables, there must be, at most, one fewer additive 

automobile ownership variables than there are modes in the model. 

The following example illustrates the use of automobile ownership in a 

mode choice model. 

Example 5.9; Automobile Ownership Variables 

Suppose that choice among the modes drive alone, carpool, and bus is 

described by a trinomial logit model. Let the utility function be 

VDA • -TDA • 5C0AfY + 0.lA/W 

VCP - ·Tep· 5Ccp/Y + 0.05A/W 
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(5.36c) 

where T and C, respectively, denote travel time in hours and travel cost in 

dollars, Y denotes the after•tax income of the traveler's household in 

thousands of dollars per year, and A/W denotes the number of automobiles per 

worker in the traveler's household. Notice that A/w is mode specific (that 

is, its coefficient is different for different modes) and that it enters the 

utility functions of only two of the three modes. The choice probabilities 

are: 

PDA 
exp(VDA) 

exp(VDA) + exp(VCP) + exp(VB) 
(5.37a) 

PCP 
exp(VCP) 

exp(VDA) + exp(VCP) + exp(VB) 
(5.37b) 

PB - exp(VB) 

exp(VDA) + exp(VCP) + exp(VB) 
(5.37c) 

5.4 Other Variables 

Many other variables, in addition to those already discussed, can be 

included in disaggregate mode choice models. Table 5.1 lists some of the 

variables that have been used in such models in the past. 

As an illustration of the use of some of these variables (no model 

includes all of them), Table 5.2 shows the utility function of a mode choice 

model that was developed using data from the San Francisco area. (This 

model includes more variables than do many mode choice models, which is why 

it was picked for this illustration.) There are three mode~ in the model: 

drive alone, carpool, and transit. Access to transit can be either on foot 

or by automobile. The table shows the variables of the model and the values 
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of their coefficients in the utility function. Thus, the utility function 

for mode i is 

V. 
l 

-4.697Xi,DA - 3.658Xi,CP - 21.43C/Y - 0.0122IVTT 

+ 0.0327NW + 0.0000137YD. (5.38) 

The roles of the variables of the model that have not previously been 

discussed in this course are as follows. HDl and HD2 represent the 

inconvenience of having to wait for transit. These variables account for 

the effect of headway on wait time and, through its effect on wait time, on 

mode choice. The choice of headway variables is based on the assumption 

that an increase in transit headway when the headway exceeds 8 min. is less 

onerous than an equal increase when the headway is less than 8 min. (e.g., 

because when the headway exceeds 8 min., additional waiting time can be 

spent at home or the office, rather than at the transit stop). The relative 

magnitudes of the coefficients of HDl and HD2 support this assumption. CBDl 

and CBD2 represent the effects of variables other than in-vehicle travel 

time and walk time that may make automobile travel to the CBD particularly 

difficult. Examples of such variables are the need to drive in heavily 

congested traffic and the difficulty of finding a parking space. CA 

accounts for the possibility that the random components of the utilities of 

transit with auto access and transit with walk access not have the same 

average values. PW captures the possibility that the "primary worker" in a 

household may have a greater claim to an automobile than do other household 

members. NW captures the possibility that members of a multi-worker 

household can form a carpool among themselves, thereby reducing the 

difficulty of carpool formation and increasing the probability that the 

carpool mode is chosen. 
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5.5 The Selection of Choice Sets 

A problem related to that of selecting explanatory variables for a 

model is that of selecting the choice set. In principle, a traveler's 

choice set consists of every mode whose probability of being chosen exceeds 

zero. In practice, this can include a large number of infrequently chosen 

modes for which data acquistion may be difficult (e.g., walk, bicycle, 

boat). Except in studies where these modes are of particular interest, 

little is lost by excluding them from the choice set (i.e., making the 

approximation that they are never chosen). Thus, in practice, the choice 

set contains every mode whose probability of being chosen is large enough to 

be practically significant. 

Even when obviously infrequently used modes (e.g., boat) are excluded, 

selecting choice sets can present difficult decisions. For example, should 

drive alone be included in the choice set of a traveler whose household does 

not own an automobile? The answer is no if there is no significant 

likelihood that such a traveler has access to an automobile. However, it 

may be yes if substantial numbers of non-automobile-owning travelers borrow 

or lease cars or drive cars provided by their employers. (The difficulty of 

deciding whether drive alone should be included in the choice set is greatly 

reduced if the data include information on the number of cars available to a 

household, including cars not owned. Drive alone usually can be safely 

excluded from the choice set of a traveler whose household has no car 

available.) 

There are no rigorous analytic methods for assigning choice sets to 

travelers. The assignment must be based mainly on the experience and 

judgment of the analyst. This judgment should be exercised carefully since, 

as is illustrated by the following example, the choice set can have a 
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substantial effect on a model's choice probabilities. The method used to 

assign choice sets in applying a model must be the same as the method used 

in developing it. 

Example 5.10: The Effect of the Choice Set on Choice Probabilities 

Suppose that for travelers who have access to all three modes, choice 

among the modes drive alone, carpool, and bus is described by a multinomial 

logit model in which the utility function is 

VDA - -T - SCDA/Y + 0.lA/W (5.39a) 
DA 

VCP - -T - sccp/Y + O.OSA/W (5.39b) 
CP 

VB -T B - SCB/Y' (5.39c) 

where T. is the travel time (in hours) by mode i, C. is the cost (in 
i i 

dollars) of travel by mode i, Y is the income of the traveler's household in 

thousands of dollars per year, and A/Wis the number of automobiles that the 

traveler's household owns per worker in the household. Then, the choice 

probabilities are 

exp(VDA) + exp(VCP) + exp(VB) 

exp(VCP) 

exp(VDA) + exp(VCP) + exp(VB) 

exp(V) 

exp(VDA) + exp(VCP) + exp(VB) 

(5.40) 

(5.41) 

( 5 ~-42..) 

It is a consequence of the IIA property of the logit model that if 

Equations (5.40) - (5.42) describe mode choice by a traveler with access to 

all three modes, then mode choice by a traveler who lacks access to drive 

alone (i.e., a traveler whose choice set consists of carpool and bus but not 

drive alone) is described by the following binomial logit model: 
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(5.43) 

(5.44) 
exp(VCP) + exp(VB) 

In this model PDA - 0. 

Now suppose that for a particular traveler, TOA - 0.50 hr., TCP - 0.60 

hr, TB - 1.0 hr., CDA - $1.00, CCP - CB - $0.50, Y - 20, and A - 0. The 

traveler's household owns no car. If drive alone is included in this 

traveler's choice set, the choice probabilities are 

exp[-0.5 - 5(1/20)) 

exp[-0.5 - 5(1/20)] + exp(-0.6 - 5(0.50/20)] + exp[-1.0 - 5(0.50/20)] 

- 0.37 

exp[-0.6 - 5(0.50/20)] 

exp[-0.5 - 5(1/20)] + exp[-0.6 - 5(0.50/20)] + exp[-1.0 - 5(0.50/20)] 

- 0.38 

exp(-1.0 - 5(0.50/20)] 

exp(-0.5 - 5(1/20)] + exp[-0.6 - 5(0.50/20)] + exp[-1.0 - 5(0.50/20)] 

- 0.25. 

If drive alone is not included in the choice set, the choice probabilities 

are 

exp[-0.6 - 5(0.50/20)] 
PCP -

exp[-0.6 - 5(0.50/20)] + exp[-1.0 - 5(0.50/20)] 

- 0.60 

exp[-1.0 - 5(0.50/20)] 

exp(-0.6 - 5(0.50/20)] + exp[-1.0 - 5(0.50/20)] 

- 0.40. 
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In this case, the decision whether to include drive alone in the choice set 

makes a difference of 0.37 in the probability that drive alone is chosen, 

0.22 in the probability that carpool is chosen, and 0.15 in the probability 

that bus is chosen. 

5.6 Summary 

This module has been concerned with the problem of selecting variables 

and choice sets for multinomial logit mode choice models. It can be seen 

that the analyst has considerable flexibility in making these selections. 

To a large extent, the analyst must rely on judgment and past experience in 

deciding which variables to include in a model. However, there also are 

systematic, empirical procedures for testing models. These procedures help 

to guide the selection of variables by enabling the analyst to determine 

whether a particular selection is seriously inconsistent with the available 

data. Procedures for testing models in this way are discussed in Section 

6.5 of Module 6. 
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TABLE 5 .1 

VARIABLES THAT HAVE BEEN USED IN MODE CHOICE MODELS 

Total travel time 

Logarithm of total travel time 

In-vehicle travel time 

Logarithm of in-vehicle travel time 

Out-of-vehicle travel time 

Out-of-vehicle travel time divided by 

travel distance 

Walk time 

Walk distance 

Wait time 

Transit headway 

Wait time for transfers 

Number of transfers 

Total travel cost 

Total travel cost divided by income 

of traveler's household 

Auto mileage-related cost divided by 

income of traveler's household 

Auto parking cost divided by income 

of traveler's household 

Auto tolls divided by income of 

traveler's household 

Bus fare divided by income of 

traveler's household 
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Income of traveler's household 

Size of traveler's household 

Number of automobiles (automobiles 

per worker, automobiles per 

licensed driver) owned by the 

traveler's household 

Number of licensed drivers in the 

traveler's household 

Employment density at traveler's 

workplace 

Dummy variable indicating whether 

the traveler's workplace is 

in the CBD 

Dummy variable indicating whether 

traveler is the "primary worker" 

in household or head of household 

Number of workers in traveler's 

household 

Sex of traveler 

Age of traveler 



TABLE 5.2 

VARIABLES AND COEFFICIENTS OF WORK-TRIP A MODE CHOICE MODEL 

FOR THE SAN FRANCISCO AREAa 

Symbol of 
Variable 

C/Y 

IVTT 

w'T 

HDl 

HD2 

CBDl 

Definition of Variable 

Dummy variable equal to 1 if 

i - DA and O otherwise 

Dummy variable equal to 1 if 

i • CP and O otherwise 

Travel cost (round trip cents) 

divided by household 

income (annual dollars) 

In-vehicle travel time 

(round trip minutes) 

Walk time (round trip minutes) 

Transit headway up to 8 minutes 

(round trip minutes) 

Transit headway greater than 8 

minutes 

Transfer wait time (round trip 

minutes) 

Dummy variable equal to 1 for 

drive alone if the traveler's 

workplace is in the CBD, and 

equal to O for other modes and 

workplaces 
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Coefficient 

-4.697 

-3.658 

-21. 43 

-0.0122 

-0.0335 

-0.0155 

-0.0107 

-0.0302 

-1.067 



Symbol of 
Variable 

CBD2 

AWDA 

AWCP 

AWTA 

CA 

PW 

Definition of Variable 

Dummy variable equal to 1 for 

carpool if the traveler's 

workplace is in the CBD, and 

equal to O for other modes and 

workplaces 

Automobiles per worker in the 

traveler's household for 

drive alone, and O otherwise 

Automobiles per worker in the 

traveler's household for 

carpool, and O otherwise 

Automobiles per worker in the 

traveler's household for 

transit with auto access, 

and zero otherwise 

Dummy variable equal to 1 for 

transit with auto access, 

and O otherwise 

Dummy variable equal to 1 for 

drive alone if the traveler 

is the primary worker in his 

household, and O otherwise 
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Coefficient 

-0.347 

1. 958 

1. 763 

1.389 

-1. 237 

0.677 



a 

Symbol of 
Variable 

NW 

YD 

Definition of Variable 

Dummy variable equal to the number 

of workers in the traveler's 

household for carpool, and 0 

for other modes 

Disposable income (dollars) of the 

traveler's household for drive 

alone and carpool, and zero for 

transit 

Coefficient 

0.327 

0.0000137 

Source: Cambridge Systematics, Inc. (1978), Analytic Procedures for 

Estimating Changes in Travel Demand and Fuel Consumption, Report 

DOE/PE/8628-1, Vol. II, U.S. Department of Energy, Washington, D.C. 
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EXERCISES 

5.1 Suppose you want to predict the effects on transit ridership of 

improving the reliability of transit service. Give three examples of 

policy variables that could be used to represent transit reliability in 

a mode choice model. 

5.2 Suppose the utility function of a mode choice model is 

V -T
2

, 

where Tis travel time in hours. According to this utility function, 

is adding 5 minutes to a 15-minute trip more or less burdensome to 

travelers than adding 5 minutes to a 1-hour trip? What would your 

answer be if the utility function were 

V - -Tl/2? 

(Note: T112 is the square root of T.) 

5.3 Let T, C, and Y, respectively, denote travel time in hours, travel cost 

in dollars, and after-tax income in thousands of dollars per year. For 

each of the following utility functions, determine whether high-income 

travelers are more sensitive, equally sensitive, or less sensitive to 

changes in travel cost than are low-income travelers: 

a. V -T - O.OlCY 

b. V - -0.0STY - 0.025C 

c. V -T + Sln(Y - C) 

d. V -T - 0.0lC + 0.2Y 

e. V -T - O.OlC - 4C/Y 

5.4 Suppose, as in Example 5.9, that the utility function of a logit model 

of choice between drive alone, carpool, and bus is 
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VDA - -TDA - SCDA/Y + O.lA/w 

VCP - -TCP - sccp/Y + O.OSA/w 

VB - -TB - SCB/Y. 

Show that if the coefficients b1and b 2 have appropriate values, 

you obtain the same choice probabilities from the logit model whose 

utility function is 

VDA - -TDA - SCDA/Y 

VCP - ·Tep - sccp/Y + blA/W 

VB - -TB - SCB/Y + b2A;'w. 

Also, show that by choosing b
3 

and b4 appropriately, you obtain the 

same choice probabilities from the logit model whose utility function 

is 

VOA - -TDA - SCDA/Y + b3A/W 

VCP - -TCP - sccp/Y 

VB - -TB - SCB/Y + b4A;'w. 

What are the appropriate values of the b's? 
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MODULE 6 

ESTIMATING TH~ UTILITY FUNCTIONS OF CHOICE MODELS 

6.1 Introduction 

In practice, the deterministic component of a logit model's utility 

function (called simply the utility function in this module) is never known 

a priori. In fact, an analyst who is in the initial stages of developing a 

logit model typically has very little information about the utility 

function. At best, he is likely to have a list of variables that he thinks 

should be present in the utility function. But he may not be certain that 

all of the variables are needed, and he is highly unlikely to know how the 

variables should be transformed (if at all) or the numerical values of any 

parameters that enter the utility function. For example, the analyst may 

believe strongly that a logit model of choice between automobile and bus 

should include the variables in-vehicle travel time (IVTT), out-of-vehicle 

travel time (OVTT), and travel cost (C). But he is less likely to have 

strong a priori beliefs about such matters as: 

a. Whether OVTT should be subdivided into walking time and waiting 

time. 

b. Whether log(IVTT) gives a better representation of the effects of 

in-vehicle travel time than does IVTT. 

c. The values of the numerical coefficients that enter the utility 

function. For example, suppose it has been determined that the 

appropriate form of the utility function is 

V a1IVTT + a 20VTT + a 3c. 

What numerical values should be assigned to the coefficents a
1

, a 2 , 

and aJ? 



These questions must be answered empirically by fitting one or more models 

to appropriate data and then testing and comparing the models to see which 

one best describes the data. This module describes methods for fitting and 

testing logit models. 

The need to fit a model to data arises in the process of developing 

virtually any travel demand model, not just logit models. This fitting 

process is often called calibration. However, the words "estimation" and 

"testing" give a more precise description of the process that will be 

discussed in this module since this process consists of estimating the 

values of the numerical coefficients of models and testing different models 

to determine which one best explains the available data. 

6.2 Acquisition of Data 

The first step of any estimation and testing process is acquistion of 

appropriate data. The data needed to develop a logit mode choice model are: 

a. Observations of actual mode choices by a random sample of 

individuals who made the types of trips to which the model will 

apply. For example, if a model of work-trip mode choice is being 

developed, observations of mode choices by a sample of travelers to 

work are needed. This sample is called the estimation sample. 

b. The corresponding values of all attributes of both the chosen and 

the non-chosen modes that may be used as variables of the model. 

For example, suppose that total travel time is being considered for 

use as a variable of the model. Then for each individual in the 

estimation sample, the data must include the observed value of 

total travel time for each mode available to that individual. A 

logit model cannot be developed if the attribute data pertain only 
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to the chosen mode. (In practice, modes that are highly unlikely 

to be chosen can be considered unavailable and ignored in the data­

acquisition step.) 

c. The values of any attributes of individuals that may be used as 

variables of the model. For example, if automobile ownership is 

being considered for inclusion in the model, then the data must 

include the number of automobiles owned by the household of each 

individual in the estimation sample, 

Observations of the choices and attributes of individuals usually are 

obtained from home-interview or telephone-interview surveys of randomly 

sampled individuals or households. Data on the attributes of modes (e.g., 

travel times and costs) can be obtained from analyses of highway and transit 

networks and transit schedules. Since it is necessary to have data on 

individual travelers, aggregate data sets, such as the U.S. Census, cannot 

be used as sources of travel data unless special procedures are implemented 

to remove the biases caused by aggregation of the data. These procedures 

are quite complex, and discussion of them is beyond the scope of this 

course. 

The size of the sample needed to develop a logit mode choice model 

usually is in the range 1000-3000 individuals, not counting non-respondents 

and unusable responses. Although the upper end of this range is preferable 

to the lower, a mode choice model usually can be developed satisfactorily 

from a sample of 1000 observations if cost or other considerations prohibit 

acquisition of a larger data set. 

The data used for developing a logit model must consist of observations 

of choices by individuals, and the attribute data must pertain to these 

individuals. Use of aggregate data, such as mode shares according to 
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traffic zone and average values of attributes according to traffic zone, 

can result in the development of a highly erroneous model unless special 

procedures are used to remove the effects of aggregation bias. 

Table 6.1 illustrates the data needed to develop a simple model of 

choice between the modes drive alone, carpool, and bus. The attributes of 

modes and travelers that will be used to form the variables of this model 

are total travel time and the number of automobiles owned by the traveler's 

household. The entry NA for the travel time of a mode signifies that this 

mode either is not available to the traveler or is so unlikely to be chosen 

that it can be treated as unavailable without making a serious error. Of 

course, in practice, many more attributes would be included in the data set 

than are shown in Table 6.1, and the data table would be correspondingly 

larger. However, its form and structure would be as shown in Table 6.1. 

TABLE 6.1 -- DATA FOR DEVELOPMENT OF A SIMPLE MODE CHOICE MODEL 

Autos Chosen Travel Time (Min.) By 
Person Owned Mode Drive Alone Carpool Bus 

1 1 Drive Alone 20 30 45 

2 0 Bus NA 25 35 

3 2 Drive Alone 15 22 60 

4 l Carpool 30 35 55 

5 l Carpool 10 12 25 

6 l Bus 20 30 15 

7 0 Carpool NA 20 15 

8 3 Drive Alone 30 40 75 

9 2 Carpool 10 12 8 
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TABLE 6.1 (cont) 

Autos 
Person Owned 

10 1 

6.3 Specifying the Model 

Bus 

Chosen 
Mode 

Travel Time (Min.) By 
Drive Alone Carpool Bus 

50 60 40 

After the data have been acquired, the next step in developing a legit 

model consists of specifying, tentatively, one or more forms of the 

utility function. This specification step usually includes identifying the 

variables of the utility function, including any transformations of the 

attribute data, and the functional form of the relation between the 

variables and the deterministic component of utility. It usually does not 

include specifying the numerical values of the constant coefficients that 

enter the utility function. For example, in developing a logit mode choice 

model from the data shown in Table 6.1, the following two alternative forms 

of the utility function might be specified: 

Form 1: VOA alTDA + a2A + a3 (6.la) 

VCP alTCP + a4A + as (6.lb) 

VB al TB. (6.lc) 

Form 2: VOA - bl log(TDA) + b2A + b3 (6.2a) 

VCP - b1log(TCP) + b4A + b5 (6.2b) 

VB bl log(TB). {6.2c) 
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In these equations, T denotes travel time in minutes, A denotes automobiles 

owned by the traveler's household, and a
1

-a
5 

and b
1

-b
5 

are constant 

coefficients. The specification of the forms (6.1) and (6.2) at this stage 

does not imply that the analyst necessarily believes either to be correct. 

Rather, (6.1) and (6.2) are forms that the analyst believes are worthy of 

estimation and testing. During the process of estimation and testing, 

information will be obtained that helps to determine whether these forms 

should be modified (e.g., by deleting one or more variable from either or 

both) and that provides a way to determine which form best explains the 

observed choices of the individuals in the estimation sample. 

6.4 Estimation -- The Maximum Likelihood Method 

The third step of model development consists of estimating the 

numerical values of the models' coefficients (e.g., the values of a
1 

to a
5 

and b1 to b 5 in equations (6"1) and (6.2)) by fitting the models to the 

available data. The fitting technique that is usually used in practice is 

called the maximum likelihood method. This consists of choosing the values 

of the coefficients so as to maximize the likelihood (or probability) 

according to the model being developed of observing the choices made by the 

individuals in the estimation sample. It can be shown that the maximum 

likelihood method yields estimates of the coefficients and predictions of 

choice probabilities that have the greatest possible accuracy. 

The values of the coefficients obtained by the maximum likelihood 

method are called estimates because they are based on a data set that is a 

random sample of all travelers who might make the choices being modeled. 

Re-estimation of the coefficients using a different random sample from the 

same population of travelers would give different values of the coefficients 
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owing to the effects of random sampling error. The "true" coefficient 

values could be found only if estimation were carried out using all 

individuals in the population of interest. This is never possible in 

practice. Therefore, the values of the coefficents can be known in practice 

only up to the effects of random sampling error. This is why the numerical 

values of the coefficients are called estimates. 

The following example illustrates the maximum likelihood method. 

Example 6.1: The Maximum Likelihood Method 

Suppose a logit model of choice between the modes automobile and bus is 

being developed. The only variable of the model is total travel time, T. 

The deterministic component of the model's utility function is specified as 

V aT, (6.3) 

where a is a constant coefficient. Suppose that the estimation sample 

consists of observations of the mode choices of three individuals. Of 

course, a sample size of three is far too small to be useful in practice, 

but it is convenient for illustrative purposes because it enables all the 

necessary computations to be performed with a desk calculator. Maximum 

likelihood estimation with a sample of realistic size requires the use of a 

digital computer. Let the choices and travel times for the individuals in 

the estimation sample be: 

Person 

1 

2 

3 

Chosen Mode 

Auto 

Auto 

Bus 

Travel Time (Min.) 
Automobile Bus 

so 

10 

30 

30 

20 

40 

According to the model~ the probabilities of the observed mode choices are 
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Individual 1: P(Auto) 

Individual 2: P(Auto) 

Individual 3: P(bus) 

[exp(50a)]/[exp(50a) + exp(30a)] 

[exp(l0a)]/[exp(l0a) + exp(20a)] 

[exp(40a)]/[exp(30a) + exp(40a)]. 

Equivalently, the probabilities are 

Individual 1: P(Auto) - 1/(1 + exp(-20a)] 

Individual 2: P(Auto) - 1/(1 + exp(l0a)] 

Individual 3: P(Bus) - 1/(1 + exp(-l0a)]. 

The probability of the entire estimation sample is 

L - P(person 1 chooses auto) x P(person 2 chooses auto) 

x P(person 3 chooses bus). 

Therefore, 

L -
1 X 

(1 + exp(-20a)] 
1 x ___ l ___ _ 

(1 + exp(l0a)] [l + exp(-l0a)] 
(6.4) 

Lis called the sample likelihood. In practice it is customary to work with 

the natural logarithm of L, which is called the log likelihood and is 

denoted by log L. In this example 

log L - -{log[l + exp(-20a)] + log[l + exp(l0a)] 

+ log[l + exp(-l0a)]}. (6.5) 

The likelihood of a logit model is always a number whose value is between 

zero and one (because the likelihood is a probability). Therefore, the log 

likelihood is always a negative number. 

The maximum likelihood method chooses the value of a so as to maximize 

Lor, equivalently, log L. Although this usually requires the use of a 

digital computer, it can be done graphically in this case. Figure 6.1 shows 

the graph of log Lin Equation (6.5) as a function of a. It can be seen 

that the maximum occurs at a - 0.08. This value is called the maximum 

likelihood estimate of a. 
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The only difference between the use of the maximum likelihood method in 

the foregoing example and the use of the method in actual practice is that 

in practice, the model being estimated has many unknown coefficients (e.g., 

the work trip mode choice model for San Francisco discussed in Section 5.4 

of Module 5 has 17 coefficents) and the estimation data set contains many 

more than three observations. As a result, the values of the coefficients 

that maximize the likelihood and log likelihood functions cannnot be found 

graphically; they must be found using a digital computer. Software for 

carrying out maximum likelihood estimation of logit models is available for 

both mainframe computers (e.g., the subroutine ULOGIT in the UTMS system) 

and microcomputers (e.g., the MDA software package). 

6.5 Interpreting the Estimation Results -- Testing the Model 

The outputs of logit estimation software include, in addition to the 

estimated values of the model's coefficients, a variety of information that 

is useful for interpreting the estimated coefficients, deciding which 

variables should be included in the model, and comparing one model with 

another to determine which best describes the data. 

6.Sa The Precision of the Estimates -- Standard Errors of the 

Estimates 

The outputs of most logit estimation software include, along with the 

estimated values of the coefficients, a set of numbers called the standard 

errors of the estimates. The standard error of the estimate of the value of 

a particular coefficient is an indicator of the amount by which the 

estimated value of the coefficient is likely to differ from the true value 

as a result of random sampling error. Thus, the standard error of the 
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estimate is an indicator of the precision with which the coefficient has 

been estimated. If the model is correctly specified, then there is a 

probability of 0.95 that the true coefficient value is within l.96x(standard 

error of the estimate) of the estimated value. In other words, if b is est 

the estimated value of a coefficient, bt is its unknown true value, ands rue 

is its standard error of estimate, the following inequality holds with 

probability 0.95: 

(6.6) 

Changing the number 1.96 to 1.645 or 2.575 causes the inequality to hold 

with probability 0.90 or 0.99. The interval b est 1.96s to b + 1.96s is est 

called a 95 percent confidence interval for b . The analogous intervals true 

formed by replacing 1.96 by 1.645 and 2.575 are called 90 percent and 99 

percent confidence intervals. 

Example 6,2 -- Confidence Intervals 

Suppose the estimated value of a particular coefficient is 2.337 and 

its standard error of estimate is 0.875. Then a 95 percent confidence 

interval for the true value of the coefficient is 0.622 to 4.052. In other 

words, the interval 0.622 to 4.052 contains the true value of the 

coefficient with probability 0.95. 

6.Sb Deciding Whether to Retain a Variable -- The t Statistic 

In addition to the standard errors of the coefficient estimates, most 

logit software reports numbers called t statistics of the coefficients. The 

t statistic of a coefficent is simply the estimated value of the coefficient 

divided by the standard error of the estimate. 
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The t statistic of a coefficient is useful for deciding whether the 

variable associated with that coefficient contributes significantly to the 

ability of the model to describe or explain the data. This makes the t 

statistic useful for deciding whether a variable should be retained in the 

model or dropped. Variables with significant explanatory power should be 

retained, whereas variables with little explanatory power should be dropped. 

In general, variables whose coefficients have large positive or negative t 

statistics have greater explanatory power than variables whose coefficients 

have t statistics that are close to zero. Thus, variables whose 

coefficients have large positive or negative t statistics should be 

retained, whereas variables whose coefficients have t statistics close to 

zero may be dropped from a model. There is no single "correct" dividing 

line between t values that indicate a variable should be retained and t 

values that indicate a variable can be dropped. However, experience 

suggests that it is a good policy to retain variables whose coefficients 

have t statistics that are greater that 1.0 or less than -1.0. Failure to 

retain variables whose coefficients have t statistics outside of the range 

-1"0 to 1.0 may cause the estimates of the remaining coefficients to be 

seriously biased and the resulting model to be highly erroneous. 

Variables whose coefficients have t statistics between -1.0 and 1.0 can 

be considered candidates for being dropped from the model. Before such 

variables are dropped, however, it is necessary to take account of certain 

qualifications that will be discussed later in this subsection and in 

subsection 6.Sc. In addition, the analyst may have strong reasons for 

believing a variable has an important influence on choice, even if its t 

statistic is close to 0. In such a case, the analyst may decide to retain. 

the variable, despite its low t statistic. However, the coefficient of the 
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variable and, therefore, its influence on choice will be known very 

imprecisely. It will not be possible to conclude with confidence that 

predictions obtained from a model that includes the variable are more 

accurate than predictions obtained from a model that excludes it. 

Example 6.3 -- t Statistics 

Suppose that in a model of choice between automobile (A) and bus (B) 

for travel to work, the utility function is specified as 

V -B 

(6.7a) 

(6.7b) 

where IVTT denotes in-vehicle travel time, OVTT denotes out-of-vehicle 

travel time, C denotes travel cost, A denotes the number of automobiles 

owned by the traveler's household, and D equals 1 if the traveler's 

workplace is in the central business district and O otherwise. Let the 

estimation results be: 

Estimated Standard Error 
Coefficient Variable Value of Estimate t Statistic 

bl Intercept 1.45 0.390 3. 72 

b2 IVTT -0.00897 -0.00632 -1.42 

b3 OVTT -0.0308 -0.0106 -2. 91 

b4 C -0.115 -0.0262 -4.39 

bS A 0.770 0.244 3.16 

b6 D -0.561 0.783 -0. 716 

The t statistic of b
6 

is between -1.0 and 1.0, which suggests that the 

variable D has little explanatory power and that this variable can be 
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dropped from the model. None of the other coefficients have t statistics 

between -1.0 and 1.0, so none of the other variables can be dropped. 

The fact that a coefficient has a low t statistic does not 

automatically mean that the corresponding variable should be dropped from 

the model. Errors in specifying the model's utility function can cause one 

or more coefficients to have low t statistics even if the attributes their 

variables represent are important to mode choice. For example, if the 

correct way to represent a certain attribute is with the variable x2 but in 

the estimated model the attribut~ is represented incorrectly by X, then the 

coefficient of X may have a low t statistic, even if the attribute 

represented by Xis important to mode choice. In this case, if the model 

were re-estimated with the variable x2 in place of X, the coefficient of x2 

might be found to have a very hight statistic. Thus, it is often useful to 

experiment with different transformations of an attribute before concluding 

on the basis oft statistics that the attribute need not be represented in 

the utility function. 

Another situation in which a low t statistic may not indicate that a 

variable should be dropped is when two or more coefficients have low t 

statistics. It is possible for the t statistics of several coefficients to 

be low even though the variables associated with these coefficients 

collectively have significant explanatory power. In other words, it is 

possible for individual variables to have low explanatory power while a 

group of such variables has high explanatory power. In this case, it would 

be undesirable to drop any of the variables, despite the low t statistics of 

their coefficients. A method for identifying the occurrence of this 

situation is presented in the next subsection. 
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There is one situation in which at statistic outside of the range -1.0 

to 1.0 indicates that a model is erroneously specified. If a coefficient 

has at statistic outside this range and its sign is inconsistent with well­

established theory, then the model involved is almost certainly incorrect. 

For example, the coefficient of travel cost in a mode choice model should be 

negative. Thus, for example, if estimating a particular model yields a 

travel cost coefficient of +0.50 with at statistic of 2.7, the model is 

almost certainly incorrect and should be reformulated. 

6.Sc Deciding Whether to Retain a Group of Variables -- The 

Likelihood Ratio Test 

Most logit estimation software reports the value that the sample log 

likelihood has when the values of the coefficients equal the maximum 

likelihood estimates. This maximum value of the log likelihood provides the 

basis of a procedure for deciding whether a group of variables can be 

dropped from a model. The procedure is called a likelihood ratio test. 

Intuitively, it works as follows. If the group of variables in question has 

little explanatory power, then dropping them from the model should have 

little effect on the maximum value of the log likeliood. Dropping one or 

more variables always will cause the maximum value of the log likelihood to 

decrease, but it will not decrease by much if the variables that have been 

dropped have little explanatory power. In other words, if the group of 

variables in question has little explanatory power, the difference between 

the log likelihoods of models estimated with and without these variables 

will be close to zero. 

The likelihood ratio test is carried out quantitatively as follows: 
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a. Estimate the model with all variables included. Let log L
1 

denote 

the resulting maximum value of the log likelihood. 

b. Drop the variables in question and re-estimate the model. Let 

log L2 denote the resulting maximum value of the log likelihood. 

c. Compute the quantity LR - 2(log L1 - log L2). LR is called the 

likelihood ratio test statistic. It usually must be computed by 

hand using the value of log L1 and log L2 reported by the logit 

estimation software. LR is always a positive number. 

d. If LR exceeds an appropriately determined critical value, CV, then 

the variables being tested should be retained in the model, even if 

all of their coefficients have t statistics in the range -1.0 to 

1.0. If LR is less than C, then it may be desirable to drop the 

variables from the model. 

The critical value, CV, for the likelihood ratio test statistic depends 

on the number of variables being tested. Table 6.2 shows the appropriate 

values of CV for testing 2 to 5 variables. A likelihood ratio test of one 

variable is equivalent to the t-test procedure described in subsection 6.Sb. 

Thus, there is no need to carry out a likelihood ratio test of a single 

variable. 

The group of variables to which the likelihood ratio test is applied 

should be selected before looking at the variablest t statistics. It is an 

incorrect use of the test to define the group as the set of variables whose 

t statistics are between -1.0 and 1.0. 
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TABLE 6.2 -- CRITICAL VALUES OF THE LIKELIHOOD RATIO TEST STATISTIC 

Number of Variables 
Being Tested 

2 

3 

4 

5 

Critical 
Value 

2.408 

3.665 

4.878 

6.064 

The use of the likelihood ratio test is illustrated by the following 

example. 

Example 6.4: The Likelihood Ratio Test 

Suppose that estimation of the logit model of Example 6.3 (i.e., the 

model whose utility function is specified in Equations 6.7) had yielded the 

following results: 

Estimated Standard Error 
Coefficient Variable Value of Estimate t Statistic 

bl Intercept 1.45 0.390 3. 72 

b2 IVTT -0.00897 -0.0163 -0.549 

b3 OVTT -0.0308 -0.0106 -2.91 

b4 C -0.115 -0.0262 -4.39 

bS A 0.770 0.244 3.16 

b6 D -0.561 0.783 -0.716 

log L - -374.4 
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Suppose, also, that it is uncertain whether the variables IVTT and D 

contribute significantly to the explanatory power of the model. To 

determine whether these variables can be dropped, re-estimate the model 

using the utility function 

V -B 

bl+ b30VTTA + b 4 CA + b5A 

b30VTTB + b4CB. 

Suppose the results are as follows: 

Estimated 
Coefficient Variable Value 

bl Intercept 2.67 

b3 OVTT -0.0291 

b4 C -0.175 

bS A 0.567 

log L - -377.2 

Standard Error 
of Estimate t 

0.438 

-0.0143 

-0.0482 

0.163 

(6.8a) 

(6.8b) 

Statistic 

6.10 

-2.04 

-3.63 

3.48 

Then the likelihood ratio test statistic is LR - 2[(-374.4) - (-377.2)] -

5.60. There are two variables being tested. According to Table 6.2, the 

critical value of the likelihood ratio statistic for testing two variables 

is 2.408. Since LR exceeds this value, the variables IVTT and DX together 
a 

have significant explanatory power, even though neither has at statistic 

outside of the range -1.0 to 1.0. Although the influence of each variable 

on choice can be estimated only very imprecisely, neither variable should be 

dropped from the model. Doing so may seriously bias the remaining 

coefficients and lead to large prediction errors. In other words, it is not 

possible with this model to make accurate predictions of the effects on mode 

choice of changes in in-vehicle travel time or workplace location. However, 
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it is necessary to retain these variables in the model to prevent 

predictions of the effects of changes in the other variables from being 

biased. 

6.Sd Other Uses oft Statistics and Likelihood Ratio Tests 

Other important uses oft statistics and likelihood ratio tests are to 

determine whether attributes such as travel time should be decomposed into 

components and to determine whether such attributes are generic or mode 

specific. The following examples illustrate how these determinations can be 

made. 

Example 6.5: Determining Whether Out-of-Vehicle Travel Time Should Be 

Subdivided into the Components Walk Time and Wait Time 

Consider, again, the logit mode choice model of Example 6.3 whose 

utility function is given by Equations (6.7). If walk time and wait time 

are evaluated differently by travelers, then the variable OVTT should be 

replaced by its components 'WK (walk time) and WT (wait time). The term 

b
3

0VTT in the utility function should be replaced by b
3

'WK + aWT, where b 3 

and a are constant coefficients. But 

b
3

'WK + aWT - b 3 ('WK +WT)+ (a - b 3 )WT. (6.9) 

Since OVTT is the sum of 'WK and WT, 

b
3

'WK + aWT b
3

0VTT + (a - b 3 )WT. (6.10) 

Let b7 - (a - b3). Then 

b
3

'WK + aWT - b 30VTT + b7WT. (6.11) 

Therefore, the utility function for the model in which out-of-vehicle travel 

time is decomposed into the components walk time and wait time can be 

written in the form 
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(6.12a) 

(6.12b) 

To determine whether the decomposition is worthwhile, estimate the logit 

model using the utility function (6.12). If the t statistic of the 

coefficient b7 is outside of the range -1.0 to 1.0, then the separate 

variable WT should not be dropped from the model. The decomposition of out­

of-vehicle travel time into components adds significant explanatory power to 

the model. If the t statistic of b7 is between -1.0 and 1.0, then WT does 

not have significant explanatory power and probably can be dropped. In 

other words, if the t statistic is between -1.0 and 1.0, decomposition of 

out-of-vehicle travel time into its components is unnecessary. 

Example 6.6: Generic or Mode-Specific Travel Time and Cost Variables 

Refer, again, to the mode choice model of Example 6.3. Suppose it is 

desired to determine whether in-vehicle travel time and cost should be 

represented as mode-specific variables. If in-vehicle travel time is mode-

specific, then Equations (6.7) should be replaced by 

VA - bl+ b 2IVTTA + b 30VTTA + b4CA + b 5A + b 6D 

VB b 7IVTTB + b 30VTTB + b4CB' 

(6.13a) 

(6.13b) 

where b
7 

is a constant coefficient. This representation causes the in­

vehicle travel time term of the utility function, b
2

IVTT for auto and b
7

IVTT 

for bus, to be mode specific. If, in addition, travel cost is mode 

specific, the utility function becomes 

VA - bl+ b2IVTTA + b30VTTA + b4CA + b 5A + b6D 

VB - b7IVTTB + b 30VTTB + bSCB' 

(6.14a) 

(6.14b) 

where b
8 

is a constant coefficient. Equations (6.14) are equivalent to 

(6.15a) 
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b 2IVTTB + b 30VTTB 

+ b4CB + (b 7 - b 2)IVTTB + (b 8 - b4 )CB. 

Define new coefficients b
9 

and b
10 

by 

b9 b7 - b2 

blO b8 - b4. 

(6.15b) 

(6.16a) 

(6.16b) 

Then the utility function with mode specific in-vehicle travel time and 

travel cost variables can be written in the form: 

bl+ b 2IVTTA + b 30VTTA + b4cA + b 5A + b 6o 

b 2IVTTB + b 30VTTB + b4CB 

+ b 9 IVTTB + b10cB. 

(6,17a) 

(6.17b) 

To determine whether the mode-specific representation of in-vehicle 

travel time and travel cost is worthwhile, estimate the logit model whose 

utility function is given by Equations (6.17). Then use a likelihood ratio 

test to determine whether the terms b9IVTTB and b10cB add significant 

explanatory power to the model. If they do not, then the mode-specific 

representation is unnecessary. If they do, then at least one of the 

attributes in-vehicle travel time and cost should be represented as a mode 

specific variable in the model. If only one of the coefficents b
9 

and b
10 

has at-statistic between -1.0 and 1.0, then the corresponding attribute can 

be represented by a generic variable. If neither or both coefficients have 

t-statistics in this range, then both attributes should be represented by 

mode-specific variables. (If the likelihood ratio test indicates that the 

mode-specific representations of travel time and cost add significant 

explanatory power to the model, then at least one of the variables travel 

time and travel cost must be treated as mode specific, regardless of the 

values of the t statistics of b
9 

and b10 . If, in addition, b 9 and b10 both 

have t statistics between -1.0 and 1.0, it is not possible to determine 
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whether one of the variables -- either travel time or travel cost -- can be 

treated as generic.) 

6,Se Comparisons of Non-Nested Models -- The Modified Likelihood Ratio 

Test 

All of the tests of models that have been discussed so far have been 

formulated as tests of whether a particular variable or group of variables 

should be dropped from a model. Not all tests can be formulated this way. 

For example, suppose that two logit models of mode choice are under 

consideration. It is desired to determine which model best explains the 

available data. Let the deterministic components of the utility functions 

of these models be 

Model 1: 

Model 2: 

V -

V 

a 1T + a 2c 

b1log T + b 2C, 

(6.18) 

(6.19) 

where T and C, respectively, denote travel time and travel cost, and the a's 

and b's are constant coefficients. The t and likelihood ratio test 

procedures discussed in the preceding subsections cannot be used to 

determine which model is best because neither model can be obtained by 

adding variables to or dropping variables from the other. Models that 

cannot be obtained from one another by addition or deletion of variables are 

said to be non-nested. 

Intuitively, one might expect that if one of two non-nested models 

explains the available data better than the other model does, then the 

better model should yield a larger maximum value of the sample log 

likelihood. Thus, one might expect that a test similar to a likelihood 

ratio test can be developed for testing non-nested models against one 

another. This expectation is correct. 
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The modified likelihood ratio test procedure is as follows. Let the 

non-nested ~odels be called models 1 and 2. Let log L1 and log L2 , 

respectively, denote the maximum values of the sample log likelihood for 

models 1 and 2, and let K
1 

and K
2 

denote the numbers of estimated 

coefficients in the two models. (For example, in the models represented by 

equations (6.18) and (6.19), K1 - K2 - 2.) Assume that log L1 ~ log L2 , 

which suggests that model 1 is preferred to model 2. (If log L1 < log L
2

, 

then renumber the models to make log L1 ~ log L2 .) Define the modified 

likelihood ratio test statistic, MLR, by 

MLR (6.20) 

If MLR > 1.35, then model 1 explains the available data substantially better 

than does model 2. Moreover, model 2 almost certainly is misspecified and 

should be dropped from further consideration. 

The following example illustrates the comparison of two non-nested 

models· using the modified likelihood ratio test. 

Example 6.7 -- Comparison of Non-Nested Models 

Consider the logit mode choice models whose utility functions are as 

follows: 

Model 1: V 

Model 2: V 

a
1

log IVTT + a
2
log OVTT + a 3c 

b1T + b2C, 

(6.21) 

(6.22) 

where T, IVTT, OVTT, and Care total travel time, in-vehcle travel time, 

out-of-vehicle travel time, and travel cost, respectively, and the a's and 

b's are constant coefficients. Suppose that maximum likelihood estimation 

of the two models yields the results log L1 -437.7 and log L2 - -440.2. 

There are 3 estimated coefficients in model 1 and 2 in model 2. Therefore, 
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K1 - 3 and K2 - 2. The value of the modified likelihood ratio test 

statistic is 

MLR (-437.7 - 3/2) - (-440.2 - 2/2) 2.00. 

Since MLR exceeds 1.35, model 1 explains the data better than model 2 does, 

and model 2 is almost certainly incorrect. 

6.6 Some Estimation Problems and How to Avoid Them 

There are certain kinds of specification errors that make maximum 

likelihood estimation of logit models impossible. If one or more of these 

specification errors occurs, estimation software will terminate abnormally 

and, possibly, produce an error or warning message. Any estimates that are 

obtained under these conditions will be meaningless. The most frequently 

arising specification errors that make estimation impossible will now be 

described. 

a. Use of too many alternative-specific constants: In most practical 

situations, the utility functions of logit mode choice models include 

alternative-specific constants. As was discussed in Section 4.6 of Module 

4, the number of such constants that are included in a model must not exceed 

the number of modes in the model minus one. If the number of alternative­

specific constants equals the number of modes, there will not be a unique 

set of coefficient values that maximizes the sample log likelihood. This 

usually will cause estimation software to terminate abnormally or to produce 

a message indicating that an estimation problem has occurred. 

b. Incorrect specification of socioeconomic variables: Socioeconomic 

variables, such as income and automobile ownership, have the same values for 

all alternatives. As was discussed in Section 5.3 of Module 5, these 

variables can enter a logit model only if they are mode-specific or are 
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multiplied or divided by an attribute variable whose values differ across 

alternatives. Socioeconomic variables have no effect on choice 

probabilities if they enter a logit model's utility function as generic 

variables that do not interact with variables whose values vary across 

alternatives. As a result, when generic socioeconomic variables that do not 

interact with other variables are present in a logit model, there is not a 

unique set of coefficient values that maximizes the sample log likelihood, 

and abnormal termination of estimation software occurs. 

As was also discussed in Section 5.3, the number of mode-specific 

socioeconomic variables must not exceed the total number of modes in the 

model minus one. Violation of this rule will cause coefficient estimation 

to fail and logit estimation software to terminate abnormally or produce an 

error message. 

c. Perfect Collinearity of Variables: Perfect collinearity is a 

condition in which one or more variables of the utility function are exact 

linear combinations of other variables. For example, suppose that T, IVTT, 

and OVTT denote total travel time, in-vehicle travel time, and out-of­

vehicle travel time, respectively. Let the utility function of a logit mode 

choice model be specified as 

V (6.23) 

Then perfect collinearity exists because Tis an exact linear combination of 

IVTT and OVTT. Specifically, T - IVTT + OVTT. The problem that perfect 

collinearity poses for estimation can be seen be rewriting (6.24) in the 

form 

V b
1

(IVTT + OVTT) + b
2

IVTT + b
3

0VTT + other terms 

(bl+ b 2)0VTT +(bl+ b 3)IVTT + other terms. 
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Equation (6.26) shows that predictions of choice depend only on the values 

of b1 + b 2 and b 1 + b 3 . But there are infinitely many combinations of b
1

, 

b 2 , and b3 that yield the same values of b1 + b 2 and b
1 

+ b
3

. As a result, 

it is not possible to find a unique set of b values that maximizes the 

model's log likelihood, and attempts to estimate the coefficients will 

result in abnormal termination of the software. 

Perfect collinearity always causes there to be infinitely many 

combinations of coefficient values that maximize the log likelihood and, for 

this reason, logit estimation software terminates abnormally or produces an 

error message when it occurs. 

d. Models with one or more unbounded coefficients: It is possible to 

create models in which some of the variables, when multiplied by an infinite 

coefficient, perfectly explain the choices of a subset of the travelers 

in the estimation data set without affecting the estimated choice 

probabilities for the other travelers. For example, suppose a certain 

variable always equals one for observed transit users and always equals zero 

for other travelers. (Such a variable might represent a special preference 

for transit that only transit users are thought to have.) Then, if the 

utility function coefficient of this variable is infinity, the predicted 

probability of choosing transit will be 1 for all observed transit users, 

but the variable will have no effect on the choice probabilities of 

travelers not observed to choose transit. 

When this condition occurs, estimation software will not be able to 

find a set of coefficient values that maximizes the log likelihood (i.e., 

because a computer cannot represent an infinite constant). The estimation 

software will terminate abnormally, possibly after reporting a series of 

numerical overflows and usually with an indication that the coefficient 
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values that maximize the log likelihood have not been found. Restarting the 

estimation procedure will consume computer time but will net produce 

successful maximum likelihood estimates of the coefficients. 

6.7 Conclusions 

This module has explained the method normally used to estimate the 

coefficients of logit mode choice models. It has also described statistical 

procedures that can guide the selection of variables for and testing of 

logit models. The statistical procedures are invaluable aids in model 

development, but it is important to understand that the use of statistical 

methods alone cannot guarantee the development of a satisfactory model. As 

was discussed in Section 5.1 of Module 5, model development is as much an 

art as a science, and judgment and experience are important elements of the 

art. 

The need for judgment and experience, even when "objective" statistical 

methods are available, arises mainly from the fact that statistical tests 

cannot determine when a model is correct (or, at least, sufficiently free of 

serious errors to be satisfactory for its intended uses). They can only 

determine that a model is wrong. If a model is found to be wrong, 

statistical methods rarely provide useful insight into why it is wrong or 

how to correct it. The analyst must use judgment and experience to identify 

likely sources of error in the model and to formulate modifications of the 

model that might remove the errors. The modified models then can be 

subjected to statistical tests to determine whether they are seriously 

erroneous. Thus, practical model development always involves alternating 

between statistical analysis and judgmental activites. 
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EXERCISES 

6.1 Suppose you want to develop a binomial legit model of choice between 

automobile and bus for the work trip. The utility function of the 

model is 

V - aT, 

where Tis total travel time in minutes, and a is a constant 

coefficient. Suppose that the estimation sample consists of the 

following three observations: 

Person 

1 

2 

3 

Chosen Mode 

Auto 

Auto 

Bus 

Travel Time (Min.) 
Automobile Bus 

20 

25 

30 

25 

40 

40 

(Of course a real model would have a much more complicated utility 

function and would be estimated using a much larger data set. However, 

this simple model and small data set are exactly right for this 

exercise.) 

a. What is the log likelihood of this sample according to the 

specified model? (Hint: Refer to Example 6.1.) 

b. Evaluate the log likelihood for a - -0.025, -0.045, and -0.065. 

Which value of a yields the largest value of the log likelihood? 

c. Can you find a value of a that yields a larger value of the log 

likelihood? (Hint: Evaluate the log likelihood using two new 
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values of a, one that is slightly larger and and one that is 

slightly smaller than the value that yielded the largest log 

likelihood in part b.) 

6.2 In a logit model of choice between automobile and bus for travel to 

work, the utility function has the form 

where IVTT denotes in-vehicle travel time, OVTT denotes walk time, LC 

denotes linehaul cost (e.g., cost of automobile fuel and maintenance, 

bus fare), PC denotes parking cost, and the a's are constant 

coefficients. The values of the coefficients were estimated by maximum 

likelihood, and the following results were obtained: 

Estimated Standard Error 
Coefficient Variable Value of Estimate 

al IVTT -1.72 0.79 

a2 OVTT -2.36 0.52 

a3 LC -0.79 0.55 

a4 PC -0.84 0.41 

Log likelihood: -179.37 

a. Do the estimation results suggest that there are variables of the 

model that do not significantly affect mode choice and, therefore, 

are candidates for being dropped? If so, which one or ones? 

b. Since the estimated values of a
3 

and a
4 

are close, you would like 

to determine whether LC and PC can be combined into the single 

variable, total travel cost. What model should be estimated in 

order to make this determination? Write the utility function of 
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the model. What estimation results will you use to decide whether 

to retain the decomposition travel cost into separate components? 

c. A second analyst has suggested adding two additional variables to 

the model: CBD, which is a variable equal to 1 for the automobile 

mode if the traveler works in the CBD; and TR, the number of 

transfers required if transit is used. If the second analyst's 

suggestion is accepted, the utility function will be 

Log 

V a1IVTTa + a 20VTTa + a 3LCa + a4PC + a
5

CBD 
a 

Vb a1IVTTb + a 20VTTb + a 3Lcb + a
6

TR, 

where the subscripts a and b denote automobile and bus, 

respectively, and it is assumed that there is no parking cost if 

bus is chosen. Estimation of this model yielded the results: 

Estimated Standard Error 
Coefficient Variable Value of Estimate 

al IVTT -1. 65 0.83 

a2 OVTT -2.53 0.61 

a3 LC -0.73 0.52 

a4 PC -0. 72 0.59 

as CBD -0.23 0.47 

a6 TR -0.09 0.39 

likelihood: -178.22 

Based on these results, do you believe the variables suggested by 

the second analyst should be retained in the model? 

148 



d. A third analyst thinks that travelers may find out-of-vehicle 

travel time less onerous for long trips than for short ones. This 

analyst has proposed specifying the utility function as 

Log 

where DIST denotes travel distance. Estimation of this model 

yielded the results: 

Estimated Standard Error 
Coefficient Variable Value of Estimate 

al IVTT -1.43 0.69 

a2 OVTT/DIST -0.27 0.10 

a3 LC -0.64 0.43 

a4 PC -0.89 0.38 

likelihood: -177.53 

Based on the estimation results, does the model with OVTT/DIST 

explain the data significantly better than does the model with 

OVTT? 
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MODULE 7 

PREDICTION WITH DISAGGREGATE MODELS 

7.1 Introduction 

One of the main objectives of transportation analysis is to support the 

evaluation of transportation plans and policies and, thereby, to aid the 

transportation decision-making process. The evaluation is based, in part, 

on the predicted effects of alternative capital investment and operating 

decisions on travel flows, levels of service, and external or non-user 

impacts. The decision process requires information about aggregate travel 

volumes because these are important measures of system performance and they 

affect travel service and external impacts. Thus, aggregate travel volumes 

are important outputs of travel demand prediction models. 

The preceding modules have described the formulation and estimation of 

models of individual travel behavior. The decision to use models of 

individual behavior, or disaggregate models, is based on theoretical and 

empirical evidence that such models reduce data collection costs and are 

necessary to properly capture the effects of changes in population 

characteristics and transportation service attributes on travel behavior. 

To use these models for making predictions of aggregate travel volumes, a 

method is needed to aggregate the model's predictions of the behavior of 

individuals. This module describes methods for obtaining aggregate 

forecasts from disaggregate models. 

Figure 7.1 summarizes the principal steps involved in developing a 

disaggregate model and using it to make predictions of aggregate travel. 

The main flow of activities is shown on the lower line. The first block on 
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Figure 7.1 
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the left represents model formulation, which includes identification of the 

set of alternatives and selection of variables. The next block represents 

estimation of the model using a disaggregate data set. The results of the 

estimation process may lead to revisions of the model formulation as 

indicated by the broken feedback arrow. The next block represents the 

process of prediction using the estimated disaggregate model and predicted 

values of the model's variables. The predicted values of the variables 

describe anticipated future conditions, including the effects of policy 

measures. The final block represents the output of the modeling and 

prediction process: predicted aggregate travel volumes conditional on the 

predicted values of the model's variables. 

The preceding modules have discussed the formulation and estimation of 

disaggregate mode choice models. This module is concerned with methods for 

using an estimated disaggregate model to make aggregate predictions. 

Section 7.2 reviews the reasons for estimating disaggregate rather than 

aggregate models. Section 7.3 describes the relations between aggregate and 

disaggregate travel behavior. Section 7.4 describes and evaluates three 

methods that can be used to make aggregate predictions with disaggregate 

models, and Section 7.5 presents an example of the application of one of 

these procedures. 

7.2 Reasons for Estimating Disaggregate Models 

Since a special methods are needed to obtain aggregate predictions from 

disaggregate models, it is reasonable to ask why disaggregate models should 

be used for making such predictions. It may seem that a better procedure 

would be to estimate models directly from aggregate data and use the 

resulting aggregate models to make aggregate predictions. There are two 
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important reasons for not basing aggregate predictions on models estimated 

from aggregate data. First, estimation of models from aggregate data does 

not use the data efficiently. It wastes some of the information contained 

in the data. For example, aggregate data sets often are obtained by 

computing average values of demographic characteristics and travel behavior 

of individuals living in the same geographical area (usually a traffic zone 

or district). The use of such average values discards information about 

differences among individuals within the same district or zone. The loss of 

such information, which is expensive to collect, is a waste of resources. 

It is particularly important to avoid this waste in an era when data 

collection costs are high and the resources available for transportation 

studies are limited. The use of disaggregate models, which use data more 

efficiently than do aggregate models, makes it possible to collect less data 

than otherwise would be needed and, thereby, to conserve planning resources. 

The second important reason for estimating disaggregate models rather 

than aggregate ones is that estimation of models from aggregate data often 

yields parameter estimates that do not correctly reflect the relations that 

influence travel behavior. Such incorrect estimation will lead to an 

improper understanding of travel behavior and may result in the design and 

selection of transportation alternatives that are not effective in meeting 

public objectives. 

The incorrect estimation of parameters when aggregate data are used 

results from complicated statistical relations in the data. These relations 

are difficult to explain in non-technical terms. As an alternative, two 

examples will used to illustrate the types of errors that can occur. The 

first example is based on estimation of a linear regression model of 

household trip generation as a function of automobile ownership. The second 
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example is based on estimation of a logit model of choice between automobile 

and bus. The linear regression example illustrates the effects of data 

aggregation in a familiar context. The mode choice example illustrates 

these effects in the travel prediction context that is the subject of this 

course. 

Each example assumes the existence of an underlying relation that 

describes the behavior of the individual or household. This relation is 

used to generate simulated data about individuals or households. The data 

are then aggregated in various ways, and the aggregated data are used to 

estimate models of trip generation and mode choice. Finally, the models 

estimated from the aggregated data are compared with the original models to 

determine the extent to which the aggregate models recover the true 

parameter values. 

Example 7,1: A Linear Regression Model of Trip Generation 

Assume that the number of daily trips made by the members of a 

household is related to the number of automobiles owned by the household as 

follows: 

Trips 2 + 2A + U, (7.1) 

where A is the number of automobiles owned, and U is a random term that 

represents the effects on trip generation of variables other than automobile 

ownership. Assume that the probability distribution of U is: 
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..JL Probability 

+2 0.1 

+l 0.2 

0 0.4 

-1 0.2 

-2 0.1 

This distribution makes it possible to compute the probability that the 

number of trips made by a household is 2 + 2A - 2, 2 + 2A - l, and so forth 

up to 2 + 2A + 2. For example, the probability that the number of trips is 

2 + 2A - 2 is 0.1. 

Suppose that the following data on trip generation by a sample of 

households residing in 3 traffic districts have been obtained: 

District 1 District 2 District 3 · 
Autos Trips Autos Trips Autos Trips 

1 2 1 4 1 5 

1 3 1 4 1 5 

1 3 1 4 1 6 

1 4 2 6 2 7 

2 4 2 6 2 7 

2 5 2 6 2 8 

2 5 2 6 3 8 

3 6 3 8 3 9 

3 7 3 8 3 9 

3 7 3 8 3 10 
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If linear regression is used to estimate the relation between trips and 

automobiles owned from the individual data, the resulting estimated model 

is 

Trips - 2 + 2A. 

Thus, the dependence of trip generation on automobile ownership that is 

given by the original model is recovered exactly. This dependence is 

illustrated by the solid line in Figure 7.2. 

Now suppose that the data are summarized by district average values as 

follows: 

Total 

Average 

District 1 
Autos Trips 

19 

1.9 

46 

4.6 

District 2 
Autos Trips 

20 

2.0 

60 

6.0 

District 3 
Autos 

21 

2.1 

Trips 

74 

7.4 

If linear regression is used to estimate average trips per household from 

these aggregated data, the resulting estimated model is 

Trips -22 + 14A. (7.2) 

This relation is illustrated by the dashed line in Figure 7.2. Although the 

aggregate model correctly replicates the district averages, as illustrated 

by the points in Figure 7.2, it incorrectly predicts that increases in 

automobile ownership increase trips at the rate of 14 trips per automobile 

on the average rather than two trips per automobile. An error of this 

magnitude would cause seriously erroneous predictions of future travel under 

conditions of changed automobile ownership. 

The result just obtained is specific to the districts that were used 

for aggregating the data. The use of different districts produces different 

estimation results. For example, if the boundaries of the districts are 
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changed in a way that causes the first 5 households in district 2 to be 

reassigned to district 1 and the last 5 to be assigned to district 3, the 

total and average values of the data become: 

Total 

Average 

District 1 
~ 

26 

1. 73 

Trips 

70 

4.67 

District 3 
Autos Trips 

34 

2.27 

llO 

7.33 

Application of linear regression to these aggregate data yields the 

estimated relation 

Trips -4 + SA. (7. 3) 

This relation is illustrated by the dashed line in Figure 7.3. Although 

Equation (7.3) is closer than is Equation (7.2) to the original model, it 

still seriously overestimates the effect of automobile ownership on trip 

generation. 

In practice, it is not possible to know how close a particular set of 

parameter values estimated from aggregate data is to the true parameter 

values. Therefore, it is not possible to select districts or other 

groupings of the data that can be certain of producing parameter estimates 

that are close to the true values. 

A similar pattern of bias in parameter estimates occurs when aggregate 

mode share models are estimated instead of disaggregate mode choice models. 

Bias in aggregate mode share models is illustrated by the following example. 
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Example 7.2: Aggregate Mode Share Models 

Let choice between automobile and bus for travel to work be described 

by the binomial logit model whose utility function is 

V - 1.5 - O.lT 
a a 

V -b 

(7 .4) 

(7. 5) 

where the subscripts a and b signify automobile and bus, respectively, and T 

is travel time in minutes. Substitution of these utility functions into the 

formula for binomial logit choice probabilities (Equation (4.3) of Module 4) 

yields the following probability that automobile is chosen: 

p 
a 

(7.6) 

In a large sample, the proportion of individuals with a given value of 

Tb - Ta who choose automobile is approximately equal to the probability that 

a single individual with the same value of Tb• Ta chooses automobile. The 

following simulated data set is based on these relations with individuals 

assigned to two traffic districts: 

District 1 District 2 
T - T b a 

Number Choosing T • T b a Number Choosing 

(min.} Auto Bus !min, l Auto Bus 

20 49 1 15 47 3 

15 48 2 10 45 5 

10 48 3 5 42 8 

5 46 4 0 39 11 

0 43 7 -5 34 16 

-5 39 11 -10 31 19 
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Estimation of the utility functions for automobile and bus using the methods 

described in Module 6 and the foregoing individual data yields 

V - 1.496 - 0.101T a a 

V -b 

(7. 7) 

(7. 8) 

The estimated utility function is almost identical to the original one given 

in Equations (7.4) and (7.5). 

Now suppose that the travel times and mode choices are averaged 

according to district to yield: 

District 1 District 

Average Value of Tb - T (min.) 7.5 2.5 a 

Auto Volume 273 238 

Bus Volume 27 62 

Auto Share 0.910 0.793 

Bus Share 0.090 0.207 

2 

The estimated utility function corresponding to this aggregate data set is 

V 
a 

0.861 - 0.194T 
a 

(7. 9) 

(7.10) 

The model based on this utility function is illustrated in Figure 7.4. As 

in the linear regression example, use of aggregate data to estimate a model 

has yielded seriously biased parameter estimates. 

As in the linear regression case, grouping the data into different 

geographical areas produces differently biased parameter estimates. For 

example, the districts that have been defined can be divided into two 
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traffic zones each such that the average time differences and mode shares 

are as shown in the following table and Figure 7.5: 

Zone Zone Zone 
---1L --1]_ 2A 

Average Value of Tb - T (min) 12.5 5.0 5.0 
a 

Auto Volume 97 176 128 

Bus Volume 3 24 22 

Auto Share 0.970 0.880 0.853 

Bus Share 0.030 0.120 0.147 

The estimated utility function based on the zonal data is 

V 
a 

0.987 - 0.187T 
a 

Zone 
..21L 

0.0 

110 

40 

0.733 

0.267 

(7 .11) 

(7 .12) 

This estimate is different from the one obtained using the district data and 

from the original model of Equations (7.4) and (7.5). Still different 

estimates would be obtained using different groupings of the data. 

This example shows that, as with linear regression models, use of 

aggregate data to estimate mode choice models is likely to produce incorrect 

parameter estimates. The errors in parameter estimation depend on the 

grouping of observations. The resulting models will give incorrect 

predictions of the effects of changes in automobile or bus travel times. 

This failure to properly represent the effects of changes in travel time 

occurs despite the fact that the estimated model accurately replicates the 

aggregate mode shares in the data (as shown in Figures 7.4 and 7.5). The 

estimation errors that are caused by use of aggregate data typically 

increase in severity as explanatory variables are added to the model. 
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Despite these problems in estimating models from aggregate data, 

planning practice requires information on the aggregate share of individuals 

choosing each mode. Thus, it is necessary to develop methods for correctly 

estimating models of travelers' responses to service changes and to 

correctly predict aggregate mode shares and volumes. The preceding modules 

have described the formulation and estimation of disaggregate models that 

correctly describe travelers' responses to service changes. The following 

sections of this module describe how to use disaggregate models of 

individual choice to predict aggregate shares and volumes. 

7.3 Relation between Individual Choices and Mode Shares 

If the choices of individuals are known with certainty, the number of 

individuals choosing a given mode can be obtained by simple counting. The 

aggregate share of the mode is obtained by dividing the total number of 

individuals choosing the mode by the total number of individuals in the 

sample. This is what was done to obtain the mode shares in Example 7.2. 

For example, in the two-district case, the automobile share for district 1 

was obtained by counting the individuals choosing car (273 in district 1) 

and dividing by the total number of individuals in the district 1 sample 

(300), thereby obtainng the share of 0.910. 

When only probabilities of choices are known, rather than actual 

choices, the number of individuals predicted to choose a mode is the sum of 

the probabilities of choosing that mode for all of the individuals in the 

population of travelers. Thus, for example, if the available modes are 

automobile and bus, the numbers of individuals predicted to choose each are 

N auto LPauto(n)' 
n 

(7. 13) 
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and 

N bus 

where P (n) and Pb (n), respectively, are the probabilities that auto us 

(7.14) 

individual n chooses automobile and bus. The corresponding mode shares are 

obtained by dividing the predicted numbers choosing each mode by the total 

number of individuals in the population. That is 

and 

s auto 

s bus 

(1/N) '°" P (n) 
L.., auto (7.15) 
n 

(7 .16) 

where S and Sb , respectively, denote the automobile and bus shares, auto us 

and N is the total number of travelers by both modes combined. Thus, the 

predicted share of a mode is the average value of its choice probability in 

the population of travelers. 

The following example illustrates this prediction process using a 

binomial logit model of choice betwe~n automobile and bus. 

Example 7.3: Aggregate Prediction with a Disaggregate Model 

Let the logit model's utility function be 

V 
a 

0.5 - O.lT + O.SA 
a 

(7.17) 

(7 .18) 

where the subscripts a and b denote automobile and bus, respectively, T 

denotes travel time in minutes, and A is the number of automobiles owned by 

the traveler's household. Substitution of this utility function into 

Equation (4.3) yields the following formula for the probability that 

automobile is chosen: 
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p 
a 

1 (7.19) 

The following table gives the values of P corresponding to various 
a 

values of Tb - Ta and A: 

Tb - Ta 

(min.) 

10 

5 

0 

-10 

-15 

A - 1 
No. of 

Cases 

20 

20 

20 

20 

20 

20 

p 
a 

0.881 

0.818 

0.731 

0. 6.22 

0.500 

0.378 

Tb - Ta 

(min.) 

30 

25 

20 

15 

10 

5 

A - 2 
No. of 

Cases 

20 

20 

20 

20 

20 

20 

p 
_a_ 

0.989 

0. 982 

0.971 

0.953 

0.924 

0.881 

The number of individuals predicted to choose automobile is obtained by 

multiplying the number of cases for each time difference and automobile 

ownership level by the corresponding probability that automobile is chosen 

and, then, summing over all time differences and automobile ownership 

levels. The predicted automobile share is obtained by dividing the number 

of individuals predicted to choose automobile by the number of individuals 

under consideration. The results of these computations are: 

Number predicted to choose auto: 192.6 

Predicted auto share: 0.802. 

The method used in the foregoing example to obtain aggregate 

predictions from a disaggregate model is straightforward. However, to use 

this method in practice, it would be necessary to compute mode choice 
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probabilities for each individual in the population of interest. In the 

example, this computation was easy because the numbers of travel time 

differences and automobile ownership levels were small. In practice, there 

would be many more levels, and an impractically large data set would be 

needed to compute choice probabilities for every individual. Therefore, it 

is necessary in practice to have procedures that do not require enumerating 

the entire population to obtain aggregate predictions from disaggregate 

models. Several practical procedures are described and evaluated in the 

next section. 

7.4 Methods for Aggregate Prediction with Disaggregate Models 

This section describes the three most frequently used methods for 

making aggregate predictions with disaggregate models. The first is the 

naive method, which is popular because of its simplicity and its similarity 

to methods used in prediction with aggregate models. The second is the 

market segmentation method, which is also easy to apply and can give 

substantially improved predictions using a small quantity of additional 

data. The third is the sample enumeration method, which provides very good 

estimates of aggregate behavior when adequate data are available. 

7.4a The Naive Method 

This method consists of substituting average values of all of the 

explanatory variables into the utility equations of the logit mode choice 

model. The resulting average utility values then are substituted into the 

logit formula to obtain estimates of mode shares. This method, however, 

does not yield the same aggregate share estimates that would be obtained by 

computing the choice probabilities of individuals and averaging these 
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probabilities according to Equation (7.15). The difference between the two 

estimates is a consqequence of the fact that the average of a nonlinear 

function (in this case the average of logit choice probabilities) is not 

equal to the function evaluated at the average values of its variables (in 

this case the logit choice probabilities of an individual with the average 

values of the explanatory variables). The errors associated with the naive 

method are illustrated in the following example. 

Example 7.4: Errors of the Naive Aggregation method 

Consider the choice between automobile and bus for travel to work. 

Assume that the logit model of Equation (7.19) applies and that all of the 

individuals of concern own one car (A - 1 in Equation (7.19)). Suppose that 

the difference between bus and automobile travel time, Tb - Ta, is 10 min. 

for one half of the individuals and -5 minutes for the other half. Then the 

probabilities P that automobile is chosen for the two groups of individuals a 

are as follows: 

Group 1 Group 2 
T - Tb (min.) 10 -5 a 

Vb - V -2.0 -0.5 a 

p 0.881 0.622 
a 

The true aggregate share of automobile in this case is the weighted average 

of the choice probabilities of the individuals in the two groups, where the 

weights are proportional to group size. Since, in this example, the sizes 

of the groups are equal, the weights are 0.5 for each group and the 

aggregate share is 0.5(0.881) + 0.5(0.622) - 0.752, as shown in Figure 7.6. 
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However, when the naive method is used, the aggregate share is based on the 

average difference between the utilities of bus and automobile. In this 

example, the average difference is 0.5(-2.0) + 0.5(-0.5) - -1.25. The value 

of P corresponding to this utility difference is 1/[l + exp(-1.25)] 
a 

0.777, as is also shown in Figure 7.6. The naive method produces an error 

of 0.026 in the predicted shares of automobile and bus. The percentage 

errors are 100(0.777 - 0.752)/0.752 3.3% for the automobile share and 

100(0.223 - 0.248)/0.248 - -10.1% for the bus share. 

Now consider the data used in Example 7.3. As was shown in that 

example, the correct aggregate automobile share is 0.802. The naive 

aggregation method sets the aggregate share equal to the logit automobile 

choice probability at the average values of the variables. In Example 7.3, 

the average value of Tb - Ta is 7.5 min. and the average value of A is 1.5. 

Accordingly, the aggregate automobile share predicted by the naive method is 

1/{1 + exp[-0.5 - 0.1(7.5) - 0.5(1.5)]} - 0.881. The correct share and the 

share predicted by the naive method differ by 0.079. The corresponding 

percentage errors are 10% for the automobile share and 40% for the bus 

share. Thus, in this case the naive method makes very large prediction 

errors. 

In practice, the sizes of the prediction errors made by the naive 

method depend on the distributions of utility values in the population for 

which the predictions are being made. The foregoing example shows that the 

errors can be large. Large errors also have been found in actual practice. 

The errors made by the naive method generally reduce the predicted shares of 

low probability modes and increase the predicted shares of high probability 

modes. Such prediction errors may seriously affect the evaluation of 
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transportaion policy options. Therefore, it is important to seek other 

methods of aggregate prediction that reduce these prediction errors. 

7,4b The Market Segmentation Method 

This method divides the population for which a forecast is required 

into segments within which individuals are similar but not necessarily 

identical in terms of the values of important explanatory variables. 

Separate mode share predictions are made for each segment using the naive 

method, and the mode share for the entire population is obtained by weighted 

averaging of the shares for the ~egments using weights proportional to the 

segment sizes. In most cases, this method substantially improves the 

accuracy of the aggregate predictions relative to applying the naive method 

to the entire population. As an illustration of this, suppose that in 

Example 7.3 the market segments consist of the different levels of 

automobile ownership. The market segmentation method predicts the aggregate 

mode shares for each group by substituting into the logit utility functions 

the true automobile ownership levels and the average travel time differences 

for each of these levels. The results of this computation are summarized in 

the following table: 

Average value of Tb - Ta (min.) 

Number of cases 

Auto choice share 

A - 1 
-2.5 

120 

0.679 

A - 2 
17.5 

120 

0.963 

The market segmentation method's prediction of the automobile share for the 

entire population is [120(0.679) + 120(0.963))/240 - 0.821. This prediction 
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is considerably closer to the true share of 0.802 than is the prediction of 

the naive method. 

The accuracy of the market segmentation method can be increased by 

increasing the number of market segments. For example, in the case just 

described, the prediction accuracy could be improved by dividing the 

district into geographical subareas so as to reduce the variation of travel 

times within segments. The variables used to define market segments also 

influence the accuracy of the method. It is best to select variables whose 

variation is likely to have large effects on mode choice in the 

circumstances being modeled. 

7.4c The Sample Enumeration Method 

The ultimate extension of the market segmentation method is to continue 

subdividing the population until each segment consists of a single 

individual. However, data on the explanatory variables of models usually 

cannot be obtained for every individual in a population of practical 

interest. A practical alternative is to base predictions on a random sample 

of individuals from the population. This method, called the sample 

enumeration method, predicts the mode choice probabilities for each 

individual in the sample and averages these as in Equation (7.15) to obtain 

an estimate of the mode share for the population. The sample can be drawn 

from the same data used for model estimation. Again using the data from 

Example 7.3, a sample of 20 individuals might be: 
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A - 1 A - 2 
Tb - T No. of Tb - T No. of a p a 

(min.) Cases (min,) Cases 
p __ a_ __a_ 

10 1 0.881 30 1 0.989 

5 3 0.818 25 2 0.982 

0 1 0.731 20 2 0. 971 

-5 2 0.622 15 1 0.953 

-10 2 0.500 10 3 0.924 

-15 1 0.378 5 1 0.881 

To estimate the automobile mode share by the sample enumeration method, 

multiply each probability by the corresponding number or cases, add the 

products, and divide the sum by the total number of cases. The resulting 

share is [1(0.881) + 3(0.818) + + 3(0.924) + 1(0.881)]/20 0.809. This 

estimate is very close to the correct share of 0.802. 

In general, the error made by the sample enumeration method depends on 

the size and representativeness of the sample. However, for random samples 

consisting of 20-30 individuals per traffic zone or district, the method 

usually gives predictions that are very close to the true shares. 

The following table compares the shares predicted by the naive, market 

segmentation, and sample enumeration method for the data in Example 7.3: 

Percent Error in 
Auto Share Bus Shar~ Auto Share Bus Share 

True value 0.802 0.198 0.0% 0.0% 

Naive method 0.881 0.119 9.9 -39.9 

Market segmentation 0.821 0.179 2.4 - 9.6 

Sample enumeration 0.809 0.191 0.9 - 3.5 
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In this case, as in most applications, the error associated with the naive 

method is large, particularly in percentage terms for the bus mode share. 

This error is smaller for the market segmentation method and is negligible 

for the sample enumeration method. As suggested by these results and 

confirmed by other, more complete studies, the sample enumeration method 

should be used whenever the required data are available. When the data are 

not available, the market segmentation method should be used. The naive 

method should not be used except in cases where data limitations preclude 

the use of the other methods. In such cases, the potential errors 

associated with the naive method should be recognized, and the uncertain 

accuracy of the resulting predictions should be considered in decision 

making. 

In cases where the 20-30 observations per traffic zone or district 

needed to implement the sample enumeration method are not available, a 

modified procedure called pseudosample enumeration often can be used. This 

procedure consists of using estimates of the distributions of the relevant 

variables to generate artificially a sample of individuals in each zone or 

district. The sample enumeration method then is applied to this 

pseudosample. 

7.5 Summary 

This module has described methods for making forecasts of aggregate 

choice shares and traffic·volumes using disaggregate models. The module has 

explained the need for using disaggregate models even when the objective is 

to predict aggregate travel. The module has also explained the theoretical 

basis for making aggregate predictions with disaggregate models. Three 
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practical methods for making aggregate predictions have been described and 

their accuracy discussed. 

This module concludes the core of the course. The course has been 

designed to provide you with an introduction to and general understanding of 

the estimation and use of disaggregate mode choice models. The 

microcomputer-based exercises in the supplement to the course will help you 

to solidify your understanding of these models. The references listed at 

the end of Module 1 provide additional resources if you wish to further 

enhance your understanding of these models. 
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SOLUTIONS TO EXERCISES 

MODULE 2 

2.1 

Utility 
Mode X - 40 y - 10 

Drive Alone 2.25 1. so 
Carpool 2.12 1. 75 

Bus 1. 91 1.62 

The choices are the same as in Example 2.1 

2.2 

Utility 
Mod§! y - 40 y - 10 

Drive Alone -1.50 -2.85 

Carpool -1.99 -2.56 

Bus -2 37 -2 73 

Choice Drive Alone Carpool 

2.3 W - 10 - 20U, and X - -u2 The values of U, V, W, and X 

corresponding to the travel times and costs in Example 2.1 and two 

different values of Y are: 

Mode 

Drive Alone 

Carpool 

Bus 

Mode 

Drive Alone 

Carpool 

Bus 

X - 40 

-0.75 

-0.88 

-1.09 

Y - 40 

-30.0 

-35.0 

-43.75 

177 

u 
X - 10 

-1.50 

-1. 25 

-1.38 

V 
Y - 10 

-15.0 

-12.5 

-13.75 



Mode 

Drive Alone 

Carpool 

Bus 

Mode 

Drive Alone 

Carpool 

Bus 

Y - 40 

-5.0 

-7.5 

-11. 88 

Y - 40 

-0.56 

-0. 77 

-1.20 

w 
Y - 10 

-20.0 

-15.0 

-17.5 

V 

Y - 10 

-2.25 

-1. 56 

-1. 89 

All of the utility functions predict that the individual with Y - 40 

will choose drive alone and that the individual with Y - 10 will choose 

carpool. 

2.4 The utility values and mode choices according to income group are: 

Income 

14 

18 

22 

26 

30 

34 

Utility 
Drive Alone Car11ool, 

-1. 39 -1. 20 

-1.19 -1.10 

-1.07 -1.03 

-0.98 -0.99 

-0.91 -0.96 

-0.87 -0.93 

Bus Choice 

-1.18 Bus 

-1.14 Carpool 

-1.14 Carpool 

-1.11 Drive Alone 

-1.10 Drive Alone 

-1.07 Drive Alone 

The aggregate mode shares are 55% for drive alone, 40% for carpool, and 

5% for bus. 

The average utility values are -1.03 for drive alone, -0.96 for 

carpool, and -1.11 for bus. According to the average utilities, all 

travelers are predicted to choose carpool, which is incorrect. 

After the reduction in bus travel time, the utilities and mode 

choices according to income are: 
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3.1 

Utility 
Income Drive Alone Car12ool ____fu!_L Choice 

14 -1. 39 -1.20 -1.13 Bus 

18 -1. 19 -1.10 -1. 09 Bus 

22 -1.07 -1.03 -1.06 Carpool 

26 -0.98 -0.99 -1.05 Drive Alone 

30 -0.91 -0.96 -1.03 Drive Alone 

34 -0.87 -0.93 -1. 02 Drive Alone 

The new aggregate mode shares are 55% for drive alone, 25% for carpool, 

and 20% for bus. Thus, the reduction in bus travel time has caused the 

mode share of carpool to decrease and that of bus to increase. 

The average utilities after the reduction in bus travel time are 

-1.03 for drive alone, -0.96 for carpool, and -1.06 for bus. Using 

average utilities, one predicts, erroneously, that all travelers choose 

carpool and, therefore, that the reduction in bus travel time has 

caused no change in the mode shares. 

MODULE 3 

One car: -0.5 - 5(2/15) + 0.4(1 - 1) 

-0.75 - 5(1/15) + 0.2(1 - 1) 

- -1.0 - 5(0.75/15) 

Two cars: UDA - -0.5 - 5(2/15) + 0.4(2 - 1) 

UCP - -0.75 - 5(1/15) + 0.2(2 - 1) 

UB - -1.0 - 5(0.75/15) 

- -1.17 

-1.08 

-1. 25 

-0. 77 

-0.88 

-1.25 

Three cars: UDA - -0.5 - 5(2/15) + 0.4(3 - 1) - -0.37 

UCP - -0.75 - 5(1/15) + 0.2(3 - 1) -0.68 

UB -1.0 - 5(0.75/15) -1.25 
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3.2 

Percentage of Individuals 

Drive Alone 

Utilities Based on the Travel Time 
Distributions in Example 3.2 
20% 50% 20% 10% 

Based on 
Ex. 3.1 

100% 

-0.67 

Carpool -0,78 

Bus -1. 25 

Chosen Mode 

3.3 0 cars: 

-0. 77 -0.87 -0.97 

-0.88 -0.98 -1.08 

-1. 25 -1. 25 -1. 25 

Drive alone in all cases 

Utilities Based on the Travel Time 
Distributions in Example 3.2 

Percentage of Individuals 20% 50% 20% 10% 

Drive Alone -1.47 -1.57 -1.67 -1.77 

Carpool 

Bus 

Chosen Mode 

% of All Travelers 

One car: 

Percentage of Individuals 

Drive Alone 

Carpool 

Bus 

Chosen Mode 

% of All Travelers 

Two cars: 

Percentage of Individuals 

Drive Alone 

Carpool 

Bus 

Chosen Mode 

% of All Travelers 

-1.18 

-1. 25 

CP 

4 

-1.28 

-1.25 

Bus 

10 

-1. 38 

-1.25 

Bus 

4 

-1.48 

-1.25 

Bus 

2 

Utilities Based on the Travel Time 
Distributions in Example 3.2 
20% 50% 20% 10% 

-1.07 -1.17 -1.27 -1. 37 

-0.98 -1.08 -1.18 -1. 28 

-1. 25 -1,25 -1, 25 -1. 25 

CP CP CP Bus 

10 25 10 5 

Utilities Based on the Travel Time 
Distributions in Example 3.2 
20% 50% 20% 10% 

-0.67 -0. 77 -0.87 -0.97 

-0.78 -0.88 -0.98 -1.08 

-1.25 -1. 25 -1,25 -1, 25 

DA DA DA DA 

6 15 6 3 

-0. 77 

-0.88 

-1. 25 

Aggregate mode shares: 30% (drive alone), 49% (carpool), 21% (bus). 
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Percent Choosing 
Income Number of Drive 

3 .4 (~0002 Individuals Alone Carpool Bus 

17. 5 10 10 50 40 

22.5 20 80 20 0 

27.5 20 85 15 0 

32.5 30 90 10 0 

37.5 20 95 5 0 

42.5 3 100 0 0 

Number Choosing 
Income Number of Drive 
rnooo2 Individuals Alone Carpool Bus 

17.5 10 1 5 4 

22.5 20 16 4 0 

27.5 20 17 3 0 

32.5 30 27 3 0 

37.5 20 19 1 0 

42.5 3 3 0 0 

Total 103 83 16 4 

MODULE 4 

4.1 Case Vl v2 Vl-V2 fi;,:(1} 

6 1.0 -1.5 2.5 0.92 

7 0.5 -2.0 2.5 0.92 

8 3.0 -1.0 4.0 0.98 

9 0.0 -0.5 0.5 0.62 

10 0.0 2.5 -2.5 0.08 

181 



4.2 Carpool utility - 1.5: 

Mode _v_ Exn(V2 _f_L_ 

DA 2.5 12.18 0.63 

CP 1.5 4.48 0.23 

Bus 1.0 --2.....ll 0.14 

19.38 1.00 

Carpool utility - 1.0: 

Mode _v_ Ex12(V} Pr 

DA 2.5 12.18 0.63 

CP 1.0 2.72 0.155 

Bus 1.0 ...1:..J..1.. 0.122 

19.38 1.000 

4.3 a. Mode T C _v_ EX]2(V2 _f_L_ 

DA 0.5 2.0 -1.0 0.37 0.237 

CP 0.6 1. 0 -0.85 0.43 0.276 

Bus 0.8 0.6 -0.95 0.39 0.250 

Bike 1.0 0.0 -1. 0 0,37 0,237 

1. 56 1.00 

4.3 b. Alternative-specific constant for bicycle is -1.0: 

Mode T C _v_ Exn(V2 Pr 

DA 0.5 2.0 -1.0 0.37 0.278 

CP 0.6 1.0 -0.85 0.43 0.323 

Bus 0.8 0.6 -0.95 0.39 0.293 

Bike 1.0 0.0 -2.0 0,14 0.105 

1. 33 1.00 
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MODULE 5 

5.1 (1) Percentage of runs that arrive at a given point within 3 minutes 

of schedule. 

(2) Percentge of runs that arrive at a given point no more than 3 

minutes late. 

(3) Root-mean-square deviation from scheduled arrival time. 

5.2 When v 

When V 

trip. 

-T2 , adding 5 minutes is more burdensome for the 1-hour trip. 

-T112 , adding 5 minutes is more burdensome for the 15-minute 

5.3 a. High- income travelers are more sensitive. 

b. Equally sensitive 

c. Low income travelers are more sensitive 

d. Equally sensitive 

e. Low income travelers are more sensitive. 

5.4 For the first group of utility functions,use b1 - -0.05, b2 - -0.10. 

For the second group, use b 3 - 0.05, b4 - -0.05. 

MODULE 6 

6.1 a. log L - -log[l + exp(5a)] - log[l + exp(l5a)] - log[l + exp(-lOa)] 

b. a log L 

-0.025 -L98 

-0.045 -1.94 

-0.065 -1. 93 

c. To 2 significant figures, there is no value of a that gives a log L 

larger than -1.93. 
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6.2 a. Variable t statistic 

IVTT 

OVTT 

LC 

PC 

-2.18 

-4.54 

-1.44 

-2.05 

The t statistics indicate that none of the variables should be 

dropped. 

b. Estimate the model whose utility function is 

V - a
1

IVTT + a
2

0VTT + a3 (LG +PC)+ a4PC, 

and use the t statistic of a4 to determine whether the last term 

can be dropped. 

c. The likelihood ratio test statistic is 

LR - 2((-178.22) - (-179.37)] - 2.30. 

This is below the critical value for two variables, so the two 

additional variables can be dropped. 

d. The value of the modified likelihood ratio test statistic is 

MLR (-177.53 - 4/2) - (-179.37 - 4/2) - 1.84. 

Since this exceeds the critical value for MLR, the model with 

OVTT/DIST is significantly better. 
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