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Introduction1 

In fall 1983, spring 1984, and fall 1984, PAT (the 

Pittsburgh regional transit authority) conducted intensive ride 

checks on selected routes. Data from these ride checks were 

used to explore issues that remained unresolved by the Bus 

Tr ans it Monitoring Study, whose 

Data Collection Design Manual 

final product was the Transit 

(TDCDM) 2 • This report is 

divided into sections, each covering one of the following areas: 

1. Multi-Year Use of Conversion Factors 

2. Optimal Sizing of Baseline Sample for Conversion 

Factors: More Flexibility than TDCDM 

3. Effect of Cluster Sampling 

4. Default Formulas for Estimating Correlation 

5. Evaluation of PAT's Proposed Approach toward Meeting 

Section 15 Requirements 

1. The author is Peter G. Furth. Valuable technical 
assistance from Jim Wensley and the cooperation of Rich Feder 
of PAT are gratefully acknowledged. 

2. P. G. Furth et. al., Transit Data Collection Design Manual, 
Final Report DOT-I-85-38, UMTA, June, 1985. 
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1. MULTI-YEAR USE OF CONVERSION FACTORS 

Problem Description 

Monitoring of transit data can be made much less expensive 

through the use of conversion factors. A conversion factor is 

a ratio between the means of two data items, an "inferred item" 

(in the numerator) and an "auxiliary item" (denominator). By 

measuring the mean of the auxiliary item and multiplying it by 

the conversion factor, the mean of the inferred i tern can be 

estimated. Usually the auxiliary item is chosen to be an item 

that is easily collected and that bears a stable statistical 

relationship to other desired items that are more difficult or 

expensive to measure. In this way, one need only measure one 

data item to get estimates of several. 

In the classical application of conversion factors (better 

known as "ratio estimates"), the conversion factor and the mean 

of the auxiliary i tern are measured in the same time frame. A 

sample of size n 2 of the auxiliary item is measured, and for 

a randomly selected subset of n
1 

observations, the auxiliary 

item is measured simultaneously. From the paired sample of 

size n1 , 

sample of 

measured. 

the conversion factor is estimated, and from the 

size n 2 the mean of the auxiliary item is 

Their product is the estimated mean of the inferred 

item. The accuracy of this product depends on both n
1 

(which 

determines the accuracy of the conversion factor) and on n 2 
(which determines the accuracy of the auxiliary item's mean). 

Minimizing data collection costs to achieve a desired accuracy 

for the inferred i tern (or for both the auxiliary and inferred 

item) yields a formula that balances the cost and resulting 

accuracy of the paired sample with that of the auxiliary item 

sample. Th is minimum cost can then be compared with the cost 

of directly estimating the inferred item (i.e. without a 

conversion factor) to determine whether the conversion strategy 

should be used. 
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The approach taken in the Transit Data Collection Design 

Manual (TDCDM) differs from this classical approach in that the 

conversion factor and the mean of the auxiliary item are 

estimated in 

non-overlapping 

different 

samples). 

time 

As 

frames 

suggested 

(and therefore with 

by TDCDM, a paired 

sample of size n1 is taken in a "baseline year" (year 0), 

yielding a conversion factor, and then the auxiliary item is 

measured with a sample of size n 2 in each of the "monitoring 

years" 1, 2, ••• , yielding a current estimate of the mean of 

the auxiliary item which, when multiplied by the conversion 

factor, yields a current estimate of the mean of the inferred 

item. Given the number of years one plans to use the 

conversion factor (before reestimating it with a paired sample) 

and other pertinent parameters, the total cost of data 

collection, encompassing the baseline year and the monitoring 

years, can be minimized, yielding the formula given in TDCDM. 

However, the ratio of the inferred to auxiliary item (e.g. 

of boardings to load) is not guaranteed to be unchanging over 

the years. Therefore, as the number of years since the 

baseline year increases, the reliability of the conversion 

factor estimated in that baseline years becomes more doubtful. 

In recognition of this phenomenon, TDCDM makes this 

recommendation: that conversion factors be reestimated whenever 

there is a significant change in the route, the level of 

service offered, or in the demand. Demand will usually be 

monitored regularly by some passenger-use related item, and 

TDCDM recommends reestimating conversion factors when this item 

changes by 25% from its baseline level. No explicit maximum 

life of a conversion factor is spelled out, although we feel 

that in no case should a conversion factor be used for more 

that 5 years without being reestimated. 

The meager recognition that TDCDM gives to the problem of 

the conversion factor that loses its precision over time 

prompted this study. Two methods of dealing with this loss of 

precision are studied. The first is a test of the 25% change 

threshhold for the monitored passenger use item. The second is 
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a model to explicitly account for this growing uncertainty. 

The data used in this study is a set of ride checks 

performed on selected routes in Pittsburgh. The data were 

supplied by the local transit agency, PAT. Checks were made in 

Fall '83, Spring '84, and in Fall '84, with roughly the same 

routes checked each time. Sample sizes vary from route to 

route in each dataset. Our study uses load at the peak load 

point as the auxiliary item, and boardings as the inferred 

item. The data permit analysis of a 1-year change at most, so 

that some questions cannot be adequately answered. The data 

also permit some testing of seasonal change of conversion 

factors. 

Relationship of Change in Conversion Factor to Change in 
Passenger Demand 

Our first analysis was to test the hypothesis that R (the 

conversion factor) changed between Fall '83 and Fall '84 on the 

R/D/TP's (route/direction/time period combinations) that are in 

both the Fall datasets. R/D/TP' s were also classified 

according to how much peak load had changed in that year. Our 

goal was to see whether R changed more frequently on R/D/TP' s 

that experienced greater changes in peak load. 

The test used was the standard difference of means test. 

The conditions for the test are not met exactly, as R (the 

measured estimate of R) is not normally distributed. However, 

its distribution is close to normal, and by virtue of the 

Central Limit Theorem the difference in R's between the two 

years is still closer to normal. The test variable is 

D = R - R 
1 2 

where R1 and R2 are the estimated convertion factors in 

Fall '83 and Fall '84 respectively. Under the null hypothesis 

H
0

, the mean of D is O and its estimated variance is sJ 
= Var ( R1 ) + Var ( R2 ) . The estimated variances of the 

conversion factor estimates were calculated using the formula 

given in TDCDM. For a given confidence level c, H
0 

is 
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rejected if Dis too far from O, that is, 

Reject H
0 

if 

where t it the critical t-value for the confidence level c. 
C 

The confidence level was set at 9 0% r and of the 61 R/D/TP' s 

common to the Fall datasets, Ho was rejected for 12, or 20% 

of them. 

Table 1 shows the incidence of acceptance/rejection of 

H
0 

for R/D/TP's classified by percentage change in peak 

load. Of the R/D/TP' s experiencing a change in peak load of 

+25% or more, H
0 

is rejected for 17%, while H
0 

was rejected 

for 20% of the R/D/TP's with a smaller relative change in peak 

load. In this case, then, large changes in peak load do not 

indicate a greater incidence of change in R. However, if the 

threshhold for change in peak load is altered to be .±_20%, the 

opposite result occurs: H is rejected for 33% of the 
0 

R/D/TP's with a change of +20% or more in peak load, compared 

to 15% for the R/D/TP's with less change. Taken together, 

these results offer weak support, if any, of the idea that big 

changes in monitored demand indicate significant changes in R. 

We also explored the possibility that changes in R are 

more related to absolute (rather than percentage) changes in 

peak load. The results are shown in Table 2. They show at 

best a very weak relationship between absolute change in demand 

and change in R. The threshhold yielding the sharpest 

difference is +4 passengers per trip; below that threshhold, 

H
0 

is rejected on 12% of the routes, while the rejection rate 

is 37% above it. But threshholds are rather arbitrary, and not 

easily transferable to other systems, and with a different 

threshhold, the difference in rejection rates is small. So 

while rejection rates seem better related to absolute change in 

demand than to percentage change, the relationship still seems 

to weak to justify differing trea·tment of routes with little 

change vs. greater change. 
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Fall 

The 

'83 

same 

and 

analysis was 

Spring '84. 

done to test for changes 

Of the 101 R/D/TP' s found 

between 

in both 

datasets, 22, or about 22%, showed significant change in R. 

When broken down according to percentage and absolute change in 

peak load, the relationship is again very weak. If the 

threshholds that yielded the sharpest division (:_20% and .±.4) 

are applied, virtually no difference in rejection rates is 

found between the sets above and below the threshhold, (The 

threshholds yielding the sharpest distinction for this case are 

:!:_ 2 5 % and +6 • ) 

The results of this analysis indicate that change in 

monitored demand level is at best a very rough and inefficient 

indicator of change in R, both for 1-year and the seasonal 

changes. While there were no data to test the usefulness of 

this indicator for multi-year changes, there is no reason to 

expect the results to be any different. 

Relationship Between Rand Change in R 

Another potential indicator of a changing conversion 

factor that was considered was the value of the conversion 

factor itself. 

recognizing that 

This 

the 

can 

ratio 

perhaps best be explained by 

(boardings)/ (peak load) cannot be 

less that 1, and that therefore there is little room for change 

when R is near 1. The 61 R/D/TP' s appearing in both Fall 

datasets were ordered by increasing value of R (as measured in 

Fall '83), and the rejection rates of H (the hypothesis that 
0 

R changed between the two years, as described above) was noted 

for low, medium, and high values of R. The data, summarized in 

Table 3, show no correlation between Rand the rejection rate. 

Modeling the Increase in Uncertainty 

This approach recognizes that the true conversion factor 

can change from year to year. If the true conversion factor is 
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}l O in the baseline year and is )) t t years after the 

baseline year, the change in the true mean from year t-1 to 

year t can be called ~t' as shown below: 

where 

jJ 1 "" j O -t Sl 

JJ. 2 '° /\ + ~2 =- Jo t ~ 1 t ~ 2 
-t 

} ! ""} -t2.f :;: IJ +D 
t O i-•/ i Fo t 

l) t 

( 1) 

( 2) 

is the cumulative change overt years. 

Because E [RO] = Jo I ;t (for t i 0) ' Ro is a 

"biased" estimator of }t· The bias is -Dt' since E [R
0

] = 
!\ Dt • In making predictions about a route in the 

absence of special information on how its conversion factor 

changes, this bias is unknown. There is no reason to believe 

that it is systematically positive or negative; in this sense, 

the baseline conversion factor is "neutral biased". 

Treating b - for a particular R/D/TP as a random variable, 
l 

the following assumptions are made: 

1) Si is independent of Sj for ifj; i.e., the 

change in the true conversion factor is 

independent from year to year. 

2) E [ f.] = 0, otherwise there would be an upward or 
l 

downward trend in Rover time. 

3) Var [ r; i] = er/ for all i (i.e. the variance is 
the same in every year). 

From these assumptions it follows that 
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When using a biased estimator, instead of its variance the 

proper measure of its accuracy is its mean squared error (MSE), 

given by 

MSE t ( Ro ) = E [ ( Ro - p. t) 2 ] 

= E [ ( Ro - I o + o t l 2 l 

= Var [R0 J + Dt 2 

which is the well-known result that the MSE of an estimator is 

the variance of the estimator (about its own mean) plus the 

square of the bias. But since we are treating the bias itself 

as a random variable, we shall use the expected mean squared 

error, given by 

This 

variance 

A 
MSEt = E[MSEt) = Var[R0 J + t~s 

expected MSEt should 

of R, and instead of 

now 
v2 

R 

( 3) 

of variation, or c.o.v., of R), 
used is v 2 , given by 

t ,... 

the 

be used instead of the 

(the squared coefficient 

quantity that should be 

vt2 = MSEt / R6 = vft + t~2 ( 4 ) 

where ~ = Os /Ro is the relative standard deviation of the 
annual shift in the conversion factor. 

The confidence interval for R is determined by the c.o.v. 
of the estimate of R. When using a biased estimator, it 

depends instead on vt, which rises with t, reflecting the 

increasing uncertainty in where the current true mean is when 

the only measured statistic is the baseline year mean. Figure 

1 illustrates how the confidence interval grows wider over time. 

The 

baseline 

v 2 (as 
R 

sample size 

conversion 

TDCDM has) • 

and accuracy 

factor should 

The effect 

formulas that depend on a 

also use v2 
t instead of 

of this change is to 

increase the monitoring phase sample size year by year to 

achieve a desired accuracy (because the conversion factor 

becomes less accurate, and so the monitoring sample must be 

more accurate to compensate). This formula becomes 

-8-



-::. 

( 5 ) 

Equation (5) applies only if the denominator is greater than 

zero. A zero or negative denominator indicates that the 

desired accuracy cannot be achieved. 

Equation (5) replaces TDCDM equation (6 .15) (under this 

approach) for determining the monitoring phase sample size. 

Two remaining and related issues are determining how many years 

to use the conversion factor (before reestimating it) and the 

size 

factor. 

the baseline sample for estimating the conversion 

The mathematics involved in answering these questions is 

rather complex, which serves as a drawback to the approach. 

The answers cannot be expressed with a formula, and instead 

they were tabulated. For a given set of parameters, different 

values of n1 are tried, beginning with the minimum allowed 

sample size of 10. For subsequent monitoring years 1,2,3,4, 

and 5, the necessary monitoring sample size n 2 is calculated 

from equation (5). Then the average yearly cost of data 

collection was calculated assuming the conversion was used 

1,2,3,4, or 5 years. The combination of the value of n1 and 

the number of years that yields the smallest average yearly 

cost is then the preferred stategy. To cover the expected 

range of parameter values, 40 such tables were generated, using 

two different values of ~l. These tables are shown in Appendix 

B. They show that as the desired tolerance in the monitoring 

phase becomes narrower and as the inherent variability in the 

data items increases, necessary sample size increases and the 

life of the conversion factor decreases. 

These tables indicate that for the lower 

for tolerances down to ~20%, the recommended 

conversion factor is the full five years, and 

value of tJ 2 , 

life of the 

the baseline 

sample size is most often the same as the TDCDM baseline sample 
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size (i.e. 

overtime). 

without 

Likewise, 

adjustment 

with the 

for increasing 

larger value of 
+ tolerance of -30%. 

uncertainty 

~
2

, little 

difference is found down to a 

The use of these tables is illustrated with the same 

example found in Section 6.4.2 of TDCDM. 

parameters are given: 

The following 

vx = 0.410 = c.o.v. of peak load 

Vy= 0.369 = c.o.v. of boardings 

rxy = 0.95 = correlation coefficient 

dm = 0.3 = desired tolerance for boardings 

service frequency= 5 trips per hour (12 min headway) 

cycle time= 84 min 

C = 0.28 = ratio of monitoring sample unit cost to 

baseline sample unit cost 

2 2 = 0.017 = VX + Vy - 2rXYVXVY 

= .41 2 + .369 2 - 2(.95) (.41) (.369) 

2 2 
CVX = 0.048 = 0.28(.41) 

The per unit monitoring sample cost c is explained as follows. 

In the monitoring phase, point checks will be used, requiring 

one checker-hour to observe 5 trips, or O. 2 checker-hrs per 

trip. (If the same checker observed both directions of travel, 

then only 0.1 checker-hrs per trip would be needed.) In the 

baseline phase, a checker is needed for each trip, and since 

each trip (one-way) takes 42 min, the cost is 42/60 = O. 7 

checker-hrs per trip. Therefore the ratio c is 0.2/0.7 = 0.28. 

The 

determined 

table 

by 

chosen within Appendix B is Table ( b) , 

0.015). 

For ~
2 

the desired tolerance (0.3) and Cxy (near 
~ 

An assumption about the value of 

= 0.0024, enter the table with 

~ must be made. 
2 cvx (near 0.060), 

and find that the minimum cost stategy is to have a baseline 

sample of 10 trips and for the resulting conversion factor to 

have a life of 5 years. Assuming ~ 2 = .00064 yields the same 

result. Because the smallest permissible baseline sample size 

is 10 and the maximum recommended life of a conversion 
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factor is 5 years, modeling the increasing 

this case, affect the 

uncertainty over 

baseline sampling time did not, in 

strategy. (It may still be that n 2 rises somewhat over the 5 

conversion factor, in accordance with eq. year life of the 

( 5) • ) 

4 
Estimating O-c5: 

< 
An estimator of ~ is 

where r = number of R/D/TP combinations 

Rli, R0 i = estimated conversion factor for R/D/TP i in 

fall '84, fall '83 

= sample variance of the estimated 

conversion factor for R/D/TP i in fall '84, fall '83 

The proof is given in Appendix A. Basically, s} compares 

the squared change in the estimated conversion factor with the 

change expected due to sampling error. 

factor underwent no annual change, then 

If the true conversion 

E [ s~ 1 = 0 • 

On the other hand, if some (or all) of the conversion 

factors changed so that if the average squared change in the 

true conversion factor is :r}~ ~ tb,2, -the" E&I1=- ,yz·. Then given this 

estima~or of a-J , an estimator of ~• ~ crJ/f< is ~2
:. s}/R.' 

where R is the average conversion factor for the sample. 
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:;, 
We calculated s5 based on the 61 R/D/TP' s with at least 

10 paired observations in each of the 

results were ~ = .00106. The average R 

= 1.31, yielding the estimate b 2 = .00062. 

Fall datasets. The 

for the sample was R 

We also classified the R/D/TP's according to the magnitude 
2 z - 2 of R (from Fall '83}. Because b = ss/ R , a greater 

R should imply a smaller b 2 if ~S is the same for high and 

low R. Our results, shown in Table 3, indicate that~} is not 

independent of R, but rises with R. In the group with low R 
,t.. 2 • (R - 1.15), !;! was slightly negative, indicating no change in 

estimated conversion factors for this group that could not be 

more than explained by sampling error along. For the middle 
2 

group (1.15 L. R ~ 1.35), Sb = .00064, 
,! 

1.35), S £ = .0024. The 

than compensates 

increases with R. 

for an 

Our 

increase 

increase 

estimates 

and for the 

in ~S as R 

in R , so 

are 

high group (R > 
increases 

that b 2 

more 

also 

category (since 
• 00039 for the 

category. 

a negative value would 
middle category, and b 2 

b 2 = 0 for the low 

be meaningless), b 2 = 
= • 0011 for the high 

Overall Recommendations 

Ideally, if cost did not matter, conversion factors would 

be estimated in every year. 

conversion factor estimated 

If this cannot be done, and the 

in 

method described above provides 

increased uncertainty. 

should be recognized. 

However, 

First, 

a previous year is used, the 

a way for compensating for the 

the drawbacks of this approach 

it will yield the desired 

accuracy only in an "average" sense. That is, while the annual 

change is more on some routes than on others, this approach 

models an equal change for all (within a category). Therefore, 

some routes will have greater accuracy than needed; other 

routes will have less accuracy. Second, there is very little 

basis for selecting a value of b 2• The Pittsburgh data cover 

one year's change only, apply only to conversion from load to 

boardings, and are not necessarily transferable to other 

systems. Finally, the calculations become more complex. 
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Our general recommendations on the multi-year use of 

conversion factors are as follow: 

1.) New conversion factors should be estimated when a 
route undergoes a significant change. However, a 
change in measured demand alone should not force the 
reestimation of a conversion factor. 

2.) The maximum life of a conversion factor should be 5 
years after the baseline year. 

3.) There is no need to apply the increasing uncertainty 
model when: (1) the desired tolerance is +30%, or (2) 
the desired tolerance is +20% and the- conversion 
factor is in the range [0.75 to 1.35]. For other 
cases, ignoring the effects of increasing uncertainty 
will lead to systematically worse-than-desired 
accuracy. 

4.) Because no good indicator of a change in conversion 
factor was found, regular estimation (i.e. annual or 
biennial) of conversion factors is recommended when 
the budget permits, until it can be determined that a 
conversion factor is stable. This approach could be 
applied to conversions that fail the criteria of 
recommendation (3) above as an alternative to applying 
the increasing uncertainty model. 

The reader is reminded, however, that the above 

recommendations are tentative because the data examined covered 

only one city, one year's span, and one conversion (load to 

boardings). 
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Table 1 

Change in R vs. Percentage Change in Average Peak Load 

Percent change in average peak load 

-25 -20 -15 -10 -5 0 5 10 15 20 25 
l'otal ' ' I . ' . . 

' I . . . 
' 

. ' ' 
Total# 2 1 5 4 10 13 6 3 3 2 2 10 61 

# 0 1 1 1 1 1 2 0 1 0 2 2 12 
Changed 

Table 2 

Change in R vs. Numerical Change in Average Peak Load 

Numerical change in average peak load 

-10 -8 -6 -4 -2 0 2 4 6 8 10 

' . ' . ' 
Total 

' ' I I . I ' ' ' 
Total# 1 3 0 4 9 18 8 7 4 4 1 2 61 

# 0 2 0 1 0 2 2 1 2 2 0 0 12 
Changed 

Table 3 

Change in R vs. R 

Range of R 1.00 - 1.15 1.16 - 1.35 1.36+ Total 

Total # 18 20 22 61 
# changed 4 3 5 12 
% changed 22% 15% 23% 20% 
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Figure l 

Confidence Interval Growing With Time 
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2. EFFECT OF CLUSTER SAMPLING 

Sample size formulas, both in the Transit Data Collection 

Design Manual (TDCDM) and elsehwere, typically assume simple 

random sampling. But because of the nature of transit service, 

it is far more convenient and inexpensive to sample in natural 

groups (or "clusters") than to sample the same number of 

unrelated, randomly selected units. Examples of natural 

clusters are: 

for ride checks: cluster of trips= all the trips 
belonging to a run on 
a given day 

for point checks: cluster of trips= all the trips passing 
the check point in a 
given time period on a 
given day 

for passenger surveys: cluster of individuals= 
all the individuals on 
a given vehicle or at 
a given transfer point 
at a given time on a 
given day 

"Cluster sampling" is defined to mean random selection of 

clusters, and then sampling every element in the selected 

clusters. Thus, for ride checks, runs would be selected at 

random from a list of runs, and then every trip belonging to 

the run would be measured in the sample. 

One way of comparing simple random sampling with cluster 

sampling is the quantity known as Kish's deff (for design 

effect), given by 

deff -sample size under cluster sampling 
sample size under simple random sampling 

Note that the numerator should be number of elements sampled 

(rather than the number of clusters sampled). 

If deff ) 1, cluster sampling will require that more 

elements be sampled than will random sampling. Nevertheless, 

the cost advantages of cluster sampling can make it the 

preferred alternative even if deff is significantly above 1. 
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Formulas for deff will be given for three types of 

estimates: means, ratios (i.e. conversion factors), and 

proportions. The following notation will be used, following 

Cochran (1977), whose text is the basis of the theory presented 

here: 

N = number of clusters 

Mi= size of cluster i 

M = average cluster size 

~~A 2 , vM = (C.O.V.) of cluster size= 

M
0 

= Nfil = total number of elements in sample 

Y = name of variable being measured 

~i~ = value for the j'th observation in cluster i 
a /f/. 

~ 1 , 1 . j <:::l U • 
;.i; = mean per e ement 1n c uster 1 = ;;-_<::: -ui• 
0, nl fol 4 

Y = overall mean per element = J_ Z.2 li. · 
fvlo dtJ 

s 2 = overall variance of Y = [~(~,· -"ff']//flc-1) 
ff Mi "I· J _ _ 

(CPS) =crossproduct sum= 2.. i z. i:_ (~,--~)/~--1.,-Y) 
l"•I ~~ I (,~ti ~ l' 

(NCPS) = normalized cross product sum= (c~J 
( "'itj-,)~2 

e = intracluster correlation 

- E. [ ( ~ ,j - y) ( ~i:c -i lJ ~ ~ a ,,_ { 
S' 

-=. (NU~) 
M ( 1+vJ1)-1 

The cross product sum (CPS) can be calculated another way 

which may be simpler in some situations: 

2 where swi is the variance of Y within cluster i, i.e. 

(Notice that CPS entails the "between cluster" and "within 

cluster" elements of the first BTMS manual.) 
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Cluster Sampling for Means 

If the item being estimated is 'y , the mean per element 

(or the grand total, .111 11 ) ) , then 

deff = 1 + (NCPS) (la) 

( lb) 

Note that deff can be larger or smaller than 1.0, depending on 

the sign of the intracluster correlation ~- If clusters tend 

either to consist primarily of large values of Y or to consist 

primarily of small values of Y, Q will be positive, while if 

clusters tend to have an even mix of high and low Y f will be 

negative. In the former case ( ~ / 0 ), cluster sampling 

demands that more elements be sampled, while in the latter case 

( f < 0 ) , cluster sampling calls for fewer elements. Factors 

that tend to raise e in different situations are: greater 

ridership on some days than others, one route or run having 

generally higher ridership than another, and homogenaity of the 

population aboard a vehicle during an on-board survey. Factors 

that tend to lower ~ are: low load trips following high load 

trips due to "bunching", runs including trips that span (within 

a time period) times of greater and lesser utilization, and 

long radial trips whose population is a cross-section of 

society at large. Overall, we expect the positive-contributing 

factors to dominate in most applications, leading to larger 

samples than those demanded by simple random sampling. 

Cluster Sampling for Category Proportions 

Here the variable of interest is 

P = proportion of the population in a given category 

Define 

P. = proportion of the cluster i population in the given 
l 

category 
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Then 

Then 

deff = 

~ Pt /r/i 
N ((\ 

2.(~L-f)'Jl)i< 
Nfrl f(J-f) 

( 2) 

Equation (2) is equivalent to equations (la) and (lb) if Y is 

defined to be l if the individual belongs to the given category 

and zero otherwise. Then ~ will be positive, implying deff > 
1, if individuals in the given category tend to be clustered 

together while individual outside the category are also 

clustered (but in different clusters) . Conversely, ~ will be 

negative and deff < l if clusters tend to be representative of 

the population distribution. 

Cluster Sampling for Ratio Estimates 

Here the variable of interest is the ratio 

R = Y/X 

-where Y and X are the overall mean per element of the inferred 

and auxiliary variables, respectively. (The sample is a paired 

sample, with a value of both X and Y being recorded at each 

observation). Define the variable 

Because R = Y/X, the overall mean of d-- is O. Then if d--lJ lJ 
is substituted for Yij 

(la) yields the design 

as the variable of interest, equation 

effect deff for the ratio estimate 

deff = l + (NCPS)d ( 3) 

where (NCPS)d is the normalized cross product sum for the 

variable d. Applying the definitions given earlier and the 

relationship ~ = 0, we get 

( 4) 
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d_ili. 

2 
where sdwi 

--::. l +-

is the variance of d within cluster 

i I /1/t . ;2. \J. ··· =: A.1 - ? ( Jli -Jl ) 
w, I'll 1-:.1 0 

l 4) 

i, i.e. 

where 

deff 

of d, 

dz is the mean value of d within cluster i. 

can also be formulated using the intracluster correlation 

as in ( lb) : 

deff = 

While e~ is more cumbersome to compute than 

equation (3)), this formulation permits 

understanding of deff Define Ri = ~i I icl 

( 5) 

is deffr (using 

an intuitive 

= ratio for a 

particular cluster. 

expect than all the 

Of course, 

R, = R. 
l. 

due to randomness, no one would 

If the cluster elements are 

independent of each other, the degree to which the R-'s 
l 

should vary about R can be determined from the variation from 

observation to observation. If the Ri' s vary less than this 

amount, i.e. if most of the R/ s are very close to R, e; 
will be negative, implying deff < 1. However, if the Ri's 

vary a lot, with some clusters having high Ri' s and other low 

Ri' s, eJ will be positive and deff ) 1. 

Application of Cluster Sampling Theory 

The only obstacle to applying the foregoing theory is 

estimating the design effect (or the intracluster 

correlation) • (The term uiri~ can easily be computed by 

simulating cluster selection, and is often small enough 

compared to O as to be insignificant.) Transit systems that 

have practiced cluster sampling can estimate deff and deffr 

from historical data. For systems that lack the data or the 

ability to estimate these factors, a set of default values 

would be useful. 
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The PAT data afforded an opportunity to estimate the 

design effect of cluster sampling for the case of data 

collected by run, as ride checks usually are. The data allowed 

us to calculate the effect on the estimates of means and ratios 

(but not on category proportions). 

We looked at clusters for statistics measured at two 

levels: at the level of route/direction/time period (R/D/TP), 

and at the level of route only. In both cases, a cluster 

consists of a set of trips checked on the same run on the same 

date for a particular R/D/TP or route. 

Sampling by Run for Route/Direction/Time Period Level Statistics 

In the case of R/D/TP level data, cluster sampling by run 

had nearly no effect because cluster size was so small. 

Weekday time periods are only a few hours in length, and most 

runs have a very small number of trips in a given direction 

during a single time period. In the PAT data, 94% of the 

R/D/TP clusters (n=l283) had only 2 or 3 trips. And because 

trips of the same run within a R/D/TP tend to cover "peak" and 

"shoulders" of a time period evenly, there is some basis to 

expect a beneficial effect of sampling by run. Larger 

clusters, and consequently a negative clustering effect, were 

expected for the Saturday and Sunday periods, which last all 

day. 

The PAT data had 69 R/D/TP' s with at least 8 clusters 

apiece. Each cluster consisted of 2 or more trips. Since most 

of the clusters were very small, mean cluster size was only 2.3 

trips. We calculated the design effect for the boardings/ 

maximum load ratio for each R/D/TP. (Maximum load = max load 

on a trip, not load at a prespecified point.) A statistical 

summary of the results is presented in Table 2. The overall 

average deff was 1.0, indicating a neutral effect of sampling 

by run. As expected, a larger design effect was observed in 

the all-day weekend periods (average deff = 1. 19 for Saturday, 

1. 10 for Sunday). The greatest deff for a single R/D/TP was 
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Table 2 

Design Effect Due to Sampling by Run for 

Route/Direction/Time Period Statistics 

Statistic= ratio of boardings/maximum load 

mean cluster size= 2.3 (minimum= 2, maximum= 8, c.o.v. = 0.18) 

mean number of clusters per R/D/TP = 13.6 (min= 8, max= 33) 

Time Number of Mean Std dev Minimum Maximum Mean 
Period R/D/TP' s deff of deff deff deff rho* 

early am 4 0.96 0.18 0.78 1. 21 -0. 03 

am peak 5 0.60 0.35 0.40 1.22 -0. 40 

base 25 1.00 0.33 0.52 1.60 -0.01 

pm peak 3 1.29 0.36 1.00 1.69 0.29 

evening 7 0.71 0.33 0.16 1.10 -0.22 

Saturday 15 1.19 0.43 0.56 1.75 0.11 

Sunday 10 1.10 0.29 0.62 1.72 0.06 

OVERALL 69 1.01 0.38 0.16 1.75 -0.01 

* rho= intracluster correlation 
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1.75. A further test showed no difference between the average 

deff for better patronized R/D/TP' s {mean load ~ 25) and less 

well patronized R/D/TP's. 

Based on these results, it seems safe to say that cluster 

sampling for R/D/TP level statistics can be considered to be 

just as good as simple random sampling for weekday time 

periods. For all-day weekend periods, sample size should be 

increased by 20%. This additional burden is small enough that 

it probably is outweighed by the benefits of sampling by run in 

most cases. 

Because of the small cluster sizes and neutral design 

effect found for the R/D/TP-level boardings/maximum load ratio, 

no further investigation for R/D/TP-level statistics was done. 

Sampling by Run for Route Level Statistics 

We also tested the effect of sampling by run for route 

level statistics. Aside from an interest in route level 

statistics~~• PAT's proposed method for calculating system 

level Section 15 statistics involves the expansion of route 

level statistics. 

For this analysis, only clusters of 4 or more trips (done 

on the same route, run, and date) were admitted. There were 18 

routes with at least 8 clusters {mean = 40 clusters per 

route). The mean cluster size was 5.0, as 4- and 5-trip 

clusters accounted for 75% of all the clusters with at least 4 

trips. This average seems to indicate either a practice of 

sampling not entire runs (which last over 7 hrs and contain 

about 10 trips) but pieces of runs that last 3-4 hours, or that 

runs are interlined and therefore each run produces two 

half-run clusters. The results should therefore be interpreted 

with caution for systems intending to sample entire 

non-interlined runs. 

Table 3 summarizes the results. Two ratios, boardings/ 

maximum load and passenger-miles/maximum load, were examined, 

along with one mean, boardings. The average design effect is 
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Table 3 

Design Effect Due to Sampling by Run for 

Route Level Statistics 

Mean cluster size= 5.0 (minimum= 4, maximum= 16, c.o.v. = 0.26) 

Mean number of clusters per route= 39.8 (min= 10, max= 97) 

Number of routes= 18 

Mean std dev minimum maximum mean 
Statistic deff of deff deff deff rho* 

ratio: boardings/ 1.24 0.31 0.70 l. 84 0.056 
maximum load 

ratio: pass-mi/ 1.10 0.40 0.38 1.80 0.018 
maximum load 

mean boardings 1.32 0.67 0.12 3.20 0.065 

* rho= intracluster correlation 
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moderate, calling for sample size increases of 10% to 32 %. 

However, the variation is quite wide, especially for mean 

boardings, where deff varies from 0. 12 for one route to 3.20 

for another. The range for the ratios is smaller, with the 

highest deff calculated to be 1.84. 

Our results were extended to cover situations in which the 

average cluster size differs from 5. The average design effect 

was calculated using the measures of intracluster correlation 

(rho) and c.o. v. of cluster size calculated from the PAT data. 

The resulting figures were then inflated a little to make them 

somewhat conservative, considering the large amount of 

variation between routes. The resulting recommended design 

effects are tabulated in Table 4. As an example, suppose a 

transit system will sample entire runs, averaging 10 trips per 

day on each run on a single route. If sample sizes are 

calculated using formulas that assume simple random sampling, 

they should be inflated by 60% for the boardings/maximum load 

ratio, by 25% for the pass.-mi/maximum load ratio, and 75% for 

mean boardings. 

With the necessary increase in sample size, is sampling by 

run a cost-effective strategy? The cost of simple random 

sampling is probably twice the cost of sampling by run (compare 

the cost of sampling 4 randomly chosen trips on a route on 

randomly chosen days to that of sampling 8 trips on a single 

run on a single day}, suggesting that sampling by run is 

probably cost-effective notwithstanding the greater sample 

sizes. Sampling pieces of runs appears to be the most 

efficient option, as it captures most of the efficiency of 

sampling by run, but has a smaller design effect than sampling 

entire runs. 
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Table 4 

Recommended Design Effect for Sampling by Run 

for Route Level Statistics 

Recommended design effect for: 

Average number of ratio of ratio of 
one-way trips boardings/ pass-mi/ mean 
sampled per run maximum load maximum load boardings 

3 1.15 1.10 1.20 

5 1.30 1.15 1.40 

10 1.60 1.25 1.75 

15 2.00 1.35 2. 2 0 

-26-



3. DEFAULT FORMULA FOR LOAD-BOARDINGS CORRELATION 

An important 

conversion factors 

determinant of sample size when using 

is the estimated correlation coefficient 

rXY between the inferred and auxiliary variables. The 

Transit Data Collection Design Manual (TDCDM) presents the 

formula for calculating rxy• However, the data required by 

this formula, namely a paired set of at least 10 observations 

of the two variables, may not be available prior to data 

collection. This section reports on efforts to develop a 

reliable formula for estimating the correlation coefficient for 

a particular pair of inferred and auxiliary items, peak load 

and boardings. (It doesn't matter which one is the auxiliary 

and which the inferred variable, since rXY = ryx•> 

First, the intrinsic relationship between peak load and 

boardings was exploited to yield a theoretical estimate of 

Because this estimate, 

assumption that does not 

called axy' is 

hold perfectly, 

based on an 

a systematic 

discrepancy still remained between aXY and rxy• 

regression was then used to get a better, unbiased 

Polynomial 

fit. The 

result is a formula for rXY whose standard error is small 

enough to make it useful in data collection design. 

The data used in this analysis were the Pittsburgh ride 

checks described elsewhere in this report. 

Formulas for Theoretical Estimate of rXY 

People who are on board the bus at the peak load point (or 

any other point, for that matter) are a subset of the people 

who board the bus anywhere on the route. Let 

X = load (at the peak point) 

Y = boardings 

p = X/Y = ratio of mean peak load to mean boardings 

vx' vy = c.o.v. of load, of boardings 

rXY = correlation coefficient between X and Y. 
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Each of the Y persons boarding the bus can be considered a coin 

toss with the two possible outcomes being "on board at the PLP 

(peak load point)" and "not on board at the PLP" (heads or 

tails). If each person is assumed to have the same probability 

p of being on board at the PLP (remember, 

knowledge of where people board or alight), and 

assumed to behave independently (e.g. negligible 

then X can be considered a Binomial random 

parameters p and Y. 

Based on the above assumptions, the 

we assume no 

if people are 

group travel), 

variable with 

theoretical 

correlation coefficient between X and Y can be expressed as a 

relationship between Y, p, and vy: 

I]"'( 

i 
tr '( 

(Note that pis the estimated conversion factor if the inferred 

item is peak load, and that (1/p) is the conversion factor if 

the inferred item is boardings.) Notice that this equation 

uses information about Y (boardings) but not X. An alternative 

theoretical estimate is 

I 

a. )( '( = 

These formulas are derived in Appendix C. These theoretical 

estimates are consistent in that axy and aXY' like rXY' 

cannot be greater than 1, and equal l when p=l (i.e., when X=Y). 

Plotting either axy or 

same trend in both the Fall 
a'xy versus 

'83 and Fall 
revealed 

datasets. 

the 
As 

Figure 2 illustrates, the relationship is strong, but aXY and 

a'xy systematically overestimate rxy• Therefore, a 

statistical fit between axy and rxy was sought. The fit 

was constrained to pass through the point (axy=l, rxy=l). 
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Several functional relationships were explored, including 

linear, log-linear, exponential, and reciprocal. Only 

route/direction/time periods with at least 10 observations were 

allowed. The best fit was found to be the polynomial expression 

(1-~,c'/) ,:: k1 I 1- °'xY) ~ b_} 1-0.xy)< 

which simplifies to 

where c 0 = l-b
1

-b
2

, c
1 

= b
1

+2b
2

, and c
2 

= -b
2

• 

The results from the Fall '83 dataset are 

co cl c2 std. error n mean rXY 
0.28 -0.53 1.25 0.046 108 0.941 

Similar analysis using I instead of yielded aXY aXY 
these results: 

std. error 

0.037 

n 

108 
mean rXY 

0.941 

Based 
. I ) using aXY 

on standard error, the load-based 

was slightly preferred over the 

approach (i.e. , 

boardings-based 

approach. 

Figure 2 shows the curve relating the load-based estimate 

against rxy• 

when r XY is 

Because the 

The plot shows a tendency to overestimate r XY 

low, and to underestimate it when it is high. 

most serious error we would like to avoid is 

overestimating rXY when it is low, we restimated rXY using 

only points where rXY i 0.95. The results are: 

n 

42 

std. error for entire 
dataset (n=l08) 

0.041 

This relationship is also shown in Figure 2. 
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In summary, the correlation coefficient r XY between peak 

load (X) and boardings (Y) can be estimated using default 

formulas when a set of paired data for direct estimation is 

unavailable. This default rXY can thus be used in the 

equations for determining the size of the baseline paired 

sample. After the sample is taken, however, rXY should be 

estimated directly from the baseline data (using the TDCDM 

formula) and compared with rxy• If rXY rXY' the sample 

size may have been larger than necessary; if rXY rxy' it 

may have been too small. The formulas for rXY are slightly 

conservative in that they offer a chance of about 30% of the 

sample being too large and a chance of about 20% of the sample 

being too small. The transit system that desires to be more 

conservative in its sample size determination can subtract 0.04 

from rxy• Our results suggest that with this adjustment, the 

sample size will be adequate about 90 % of the time, though it 

may be excessive 40% of the time. 
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4. OPTIMAL SIZING OF BASELINE SAMPLE FOR CONVERSON FACTORS: 

MORE FLEXIBILITY THAN CURRENT TDCDM 

In the Transit Data Collection Design Manual (TDCDM), the 

baseline sample size for estimating conversion factors is given 

by equations (6.13) and (6.14). These formulas are based on an 

optimizing framework in which the costs of the baseline phase 

are balanced against those of the monitoring phase. For 

simplicity's sake, the optimizing framework is omitted from the 

manual, and equations (6.13) and (6.14) are the results for 

what we considered to be a "typical" application. However, 

Pittsburgh's situation differs substantially from this 

"typical" prototype, and differing scenarios will undoubtedly 

appear. Therefore, it seems important to expand on the 

treatment of this subject so that TDCDM users have more 

flexibility for applying its procedures to their situation. 

The remainder of this section could replace the top half 

of page 93 of TDCDM, or serve as a supplement. 

In achieving the desired tolerance of an inferred item in 

the monitoring phase, the transit agency controls two 

variables: 

determines 

the size of the baseline paired sample (which 

accuracy of the conversion factor), and n
2

, 

the size of the monitoring sample (which 

accuracy of the auxiliary item). There is a 

i.e., the greater n
1 

is, the smaller n
2 

minimize its over all cos ts, both should 

together. Three cases are examined. 

determines the 

cost tradeoff, 

need be. To 

be considered 

Case A: perfect accuracy (complete sample) of auxiliary 

item. If the auxiliary item will be known with complete 

accuracy because it is routinely collected on every trip, 
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then the only factor affecting the accuracy of the 

inferred i tern in the monitoring phase is n1 • To ensure 

that the inferred estimate will have a desired tolerance 

am, the number of paired observations in the baseline 

sample should be: 

Case b: the auxiliary item will be sampled. If the 

auxiliary item will be sampled at some cost (e.g. through 

point checks), then the auxiliary item will have less than 

perfect accuracy, and so the quantity given by (6,14a) is 

strictly a lower limit on the baseline sample size; that 

is, a greater sample size will likely be needed. The 

formulas given below yield the minimum cost plan, 

accounting for data collection costs in both the baseline 

and monitoring phases. 

Let 

c = ratio of the unit cost of a monitoring sample to 

the unit cost of a baseline sample. 

F = number of times during the life of the conversion 

factor that a monitoring sample will be taken.j 

For example, 

checks, with 

if monitoring 

the checker 

is to be 

monitoring 

done with point 

trips in both 

directions, and if the service headway is h minutes, then 

the monitoring sample requires h checker-minutes per pair 

of trips. And if the baseline sample is to be done with 

ride checks, and if ride checks are to be done in both 

directions and round trip running-time (including layover) 

is T minutes, the unit baseline cost is T checker-minutes 

per trip pair. Thus, in this case 
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h 
::::: 

T 

The variable F can be determined by multiplying the 

expected life of the conversion factor (in years) by the number 

of times per year the auxiliary item is estimated. For 

example, if the conversion factor will be used for 4 years 

before it is reestimated (with another baseline sample), and if 

the monitoring phase is repeated twice a year, then F = 8. 

The relative overall cost of the data collection program 

will then be 

Total Cost= n1 + Fcn2 

Using the relationship between n 2 and n1 (given in 

equations (6.15) and (6.10)), the total cost is minimized when 

To simplify the computation, a dummy variable L may be first 

computed: 

{(.Is) 

Then 

L+ 1.1 + 

Case c: a "typical" case: baseline ride checks, monitoring 

point checks. Following the example cited in Case (b) above, 

if ride checks are used in the baseline phase (both directions 

are sampled) and if point checks are used in the monitoring 

phase (both directions monitored by a single checker), then 
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c = h/T. Applying the fundamental fleet size relationship that 

the number of buses needed on a route is the cycle time divided 

by the headway, we get c = 1/B where 

B = number of buses operated full-time on the route 

(during the relevant time period} 

Then if the conversion factor will be applied quarterly for 4.5 

years, F = 4(4.5) = 18 and equation (6.14b} becomes 

L + I. 7 + 7- l 
JY'I V g 

/ L 14t) 

Please note that equation (6.14c) is TDCDM equation (6.14). 
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5. EVALUATION OF PITTSBURG'S PROPOSED SAMPLING PLAN 

FOR SECTION 15 PASSENGER-MILES 

Pittsburgh's transit authority PAT is fortunate in that 

its longstanding pol icy is for drivers to count boardings on 

every trip, every day. Therefore, there is no need for 

sampling to estimate systemwide boardings. PAT's proposed 

approach to estimate passenger-miles {PM) is to make ride 

checks on a sample of trips, compute an average trip length 

(ATL) from this sample, and then expand it by total boardings. 

ATL, being the ratio of mean PM to mean boardings, is a 

conversion factor as described in the Transit Data Collection 

Design Manual (TDCDM). 

In PAT's sampling plan proposed in 1982, 2 routes are 

selected each week For each selected route, 2 runs are 

selected on a single weekday, one run being an early run, the 

other a late run. Weekends are sampled separately; 1 route is 

selected every other week, and for the selected route one 

weekend run is chosen. The annual results is that of PAT's 150 

or so routes, 100 are sampled on weekdays, and of the 100 

routes that operate on weekends, 25 are sampled. 

As it began its ride check program, however, PAT found the 

ride checks so useful for internal purposes that they nearly 

doubled their overall sample size. Now every route is sampled 

annually on weekdays, and the weekend rate is higher than 25% 

(but still below 100%). 

For a sampling strategy to be acceptable to UMTA, it must 

be unbiased and sufficiently accurate (±_10% tolerance at the 

95% confidence level). Bias is dependent on sample selection; 

accuracy on sample size. These issues are discussed separately 

below. 

Sample Selection Procedure 

The PAT proposed method has several departures from simple 

random sampling. Simple random sampling means that every 
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unsampled trip is selected with 

independent of which other trips are 

equal probability and 

selected. PAT' s sample 

selection procedure has the following features: 

1. Trips are sampled by run. This is cluster sampling, and 

will yield an unbiased estimate if runs are selected at 

random and if the results are expanded and combined 

2. 

properly. The proper 

results is to sum the 

the boardings over all 

way to expand and combine the 

PM over all the sampled runs, sum 

the sampled runs, and then take 

their ratio. Multiplying this ratio (ATL) by total route 

boardings then yields total route PM. 

Swing runs (runs with a long break between an a.m. piece 

and a p.m. piece) and trippers are omitted. This kind of 

omission biases the sample. The omitted runs tend to 

include mainly peak period trips, and so their omission 

biases the sample in favor of off-peak travel patterns. 

(If data are collected by time period, so that a separate 

ATL is calculated for each time period and each time 

period is 

disappears. 

expanded separately, the bias largely 

However, this is not what PAT has proposed.) 

3. Interlined runs are omitted. Their omission probably does 

not compromise route totals on routes with little 

interlining, because trips belonging to interlined runs 

are usually well scattered in a route's schedule. To 

maintain unbiasedness in a structure of sampling by run, 

however, a "dummy route" should be created consisting of 

all interlined runs. (If there are many interlined runs, 

they should be grouped into several dummy routes, so that 

each dummy route has the total ridership of an average 

route.) 

4. In the proposed plan for weekdays, and in the proposed and 

actual plan for weekends, not all routes are sampled. 

Thus we have two-stage sampling: first, routes are 

selected, then runs are selected within routes. 

-37-



5. By selecting one early and one late run, PAT is 

stratifying the sample. They select randomly within each 

stratum (''early" and "late"), which is proper, but they do 

not expand the strata separately, biasing the result in 

favor of the smaller stratum. Proper expansion entails a 

separate ATL for each stratum, and expansion to total PM 

for each stratum by multiplying by the total boardings in 

the stratum. 

The bias 

expanding 

resulting from combining the 

(i.e. calculating a single ATL 

strata before 

for the route) 

vanishes if the strata are of the same size, i.e. have the 

same total boardings. PAT could therefore equalize 

stratum size by moving some runs to the smaller stratum. 

This mignt mean, for example, putting a few early runs in 

the "late" stratum. There is a chance then, for this 

example, that the run selected from the "late" stratum is 

in fact an early run. 

In summary, PAT should either equalize the sizes of the 

two strata, or expand the strata separately. 

Another effect of stratifying runs into an early and late 

group is to alter the accuracy of the results. Both PAT 

and we expect that the accuracy increases slightly by this 

stratification. For lack of data, however, this effect is 

not further explored. 

6. Weekday and weekend runs are separated, again stratifying 

the sample. Here there is no doubt that weekday and 

weekend figures should be expanded separately, as they are. 

7. When fewer than 100% of the routes are to be covered, 

routes are selected at random, with this exception: 

routes not covered the previous year have priority over 

those covered the previous year. As long as the previous 

year's selection was random, this approach does not 

introduce any bias. 

8. Routes are selected with equal probability, regardless of 

their "size", i.e. their total boardings. With this 
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sampling plan, the routes should be expanded separately 

before combining. That is, an ATL should be calculated 

for each route, then multiplied by total route boardings 

to yield total route PM. Suppose this is done for 25 

routes that were sampled, and the results are then to be 

expanded to the system level involving 100 routes. A 

system level ATL should be calculated by summing the 

(estimated) total PM of the 25 sampled routes, and 

dividing this sum by the total boardings of those 25 

routes. This ATL is then multiplied by system boardings 

to yield system PM. 

9. When all the routes are not sampled, what ATL should be 

used for the unsampled routes? Point 8 above shows one 

proper approach, which is to find the overall ATL for the 

set of sampled routes, and expand it to all routes. This 

approach is unbiased if the selected routes were selected 

at random. 

PAT suggested a different approach that uses prior 

information about the routes. They suggested using the 

ATL of a similar sampled route (similar in length, type, 

level of usage, etc.) on an unsampled route. This can be 

considered a stratification into route group (groups of 2 

routes), where an ATL is estimated for each stratum. This 

approach has 2 drawbacks: first, the strata are not 

defined objectively, and may change from year to year, and 

from analyst to analyst; and second, the strata are 

designed to fit the sampling plan rather than vice versa. 

We agree that the use of prior information can add to the 

accuracy of an estimate (though we have not been able to 

estimate how much), and so we suggest how this might 

properly be done. Routes should be grouped, based on 

prior information, to maximize within-group homogenaity of 

ATL. Group size may vary; some groups may have 1 route, 

others several. If the sampling fraction is f (i.e. a 

fraction f of all routes are to be sampled), then groups 

should preferably contain at least 2/f routes (affording a 
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sample of at least 2 routes per group). Then routes 

should be selected at random within each group, with each 

group employing the same sampling fraction (as much as 

possible). An ATL can then be calculated separately for 

each group and expanded to group total PM, as described in 

point (8) (with "group" replacing "system"). Group PM 

totals are then summed to yield the system total. 

10. PAT proposed a still different way of inferring ATL for 

unsampled weekend routes, based on prior information about 

the relationship between a route's weekday ATL and its 

weekend ATL. For many routes, past data showed them 

nearly the same. The approach would then be to get the 

ratio of the weekend ATL to the weekday ATL from some past 

year in which both were measured, and then multiply it by 

the current year's weekday ATL to yield an estimate of the 

current year's weekend ATL. We have no information on how 

stable these ATL ratios are over time, and therefore 

cannot evaluate the accuracy of an estimate so obtained. 

Until such data is made available and analyzed, PAT should 

expand weekend routes similarly to but entirely separately 

from weekday routes, OR it should combine them all into 

one sampling frame, so that weekends and weekdays are not 

distinguished. ( If weekends are combined with weekdays, 

weekday runs should be given 5 times the probability of 

being selected relative to a weekend run.) 

Sample Size and Tolerance 

Several correct procedures were outlined above. Necessary 

sample size will be calculated for the principal procedure. 

This procedure is to do weekday ride checks on a sample of 

routes, yielding an ATL for each sampled route, which is then 

expanded to total weekday PM for each sampled route. Those 

route totals are summed, yielding a total called "total sample 

weekday PM." This total is divided by total sample weekday 

boardings, yielding a system-level weekday 

multiplied by system total weekday boardings 
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total weekday PM. The same procedure is applied independently 

for weekends, yielding system total weekend PM. The weekday 

and weekend subtotals are then summed to yield overall total PM. 

11. Calculating the c.o.v. 
For a group such as weekend routes or weekday routes, the 

squared c.o.v. of the group ATL, and hence of the group 

total PM, is 

where N = 

n = 

r -t,t/ll{T)-

E (1J}i) = 

I 
➔ 

J\ 

number of routes 

number of routes sampled 

between-route c.o.v. of total boardings, total 

passenger-miles 

between route correlation coefficient of total 

boardings and PM 

average squared c.o.v. of an estimated 

route-level boardings-to-PM conversion factor 

The first term represents the variance contribution from 

estimating a system-level ATL from a sample of n routes, 

assuming perfect accuracy on the sampled routes; the 

second term accounts for the fact that PM is not known 

perfectly on the sampled routes, but is estimate using 
2 route-level ATL' s. E (vRi) is best estimated by 

estimating the route-level ATL for each route (or a sample 

or routes) using the following formula and then averaging 

over the routes: 
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where the subscript (t) indicates a trip-level statistic, 

n1 is the number of paired samples (ride checks), and 

deff is the design effect from sampling for a ratio by 
2 run. For an estimate, E[ Ril can be calculated by 

using average values of and 

in equation (5). 

Applying these formulas to PAT with 100 sampled weekday 

routes (out of 150), we obtain, using the conservative 

estimates of the statistics shown below, 

N = 150 n = 100 

VB (T) = LO avg VB (t) = 0.5 

VPM (T) = 1.0 avg V = 0.5 
PM (t) 

rB,PM(T} = 0.95 avg rB ,PM (t) = 0.90 

deff = 1.5 

n = number of trips in two half-runs= 10 
1 

0.0010 

lOO 

~ o. 0 27 

0.0001b 

For weekends, the same values are used except N = 100 

(operating routes}, n = 25 (sampled routes}, n
1 

= 8 (one 

full run is sampled}, and deff = 1.75, yielding 

O.D1~ 
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12. Computing tolerance. The tolerance for tdal PM, at the 

95% confidence level, is simply 

d = 2v 
PM 

Therefore, to get a +10% tolerance, it is necessary that 

the system-level vPM be no larger than 0.05. However, 

if system-level PM is obtained by summing subtotals for 

different groups, the group tolerance may be broader than 

_±10%, and the group vPM greater than o. 05, as long as 

their total meets the requirement, as explained below. 

For the PAT example, we get 

weekday: d = .054 or +5.4% 

weekend: d = .118 or +11.8% 

13. Combining group subtotals. When group subtotals (e.g. a 

weekday subtotal and a weekend subtotal) are summed to 

yield system-level total PM, TDCDM equation (5.2) can be 

applied: 

where d = system-level tolerance, di = tolerance of sys 
group i, and T, = total PM for group i. Ti can be 

1 

measured on a relative scale; for example, if group 1 

accounts for 80% of the system total and group 2 for 20%, 

use T1 = a.a and T2 = 0.2. 

Continuing the PAT application, we combine PAT' s weekday 
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and weekend subtotals with the assumption that weekday 

service accounts for 85% of the system total PM, obtaining 

So the system-level 

the required ±10%. 

=-0.091 

tolerance is ±4.9%, far better than 

In fact, the number of weekday routes 

sampled annually could be reduced to 26 (one route every 

other week, same as the weekend sampling plan} and the 

system-level tolerance achieved would be +10%. 

Summary 

Our analysis shows that PAT' s sample size is more than 

adequate. However, some of its sample selectin procedures 

introduce bias and some of its expansion procedures make it 

impossible to assess the accuracy. If PAT does not want to 

adopt the recommended procedures for its entire ride check 

program, it should at least use the recommended procedures in 

selecting a sample large enough to meet UMTA' s requirements, 

and then add whatever further ride checks they want for 

internal purposes. 
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Appendix A 
.;l. 

Proof for the Estimator ~l 

Assume Rii independent of Roi (because they are taken 
for different samples). Then take expected values: 

E[ sp' ~ !, j E[(~1,-R.,,)'J - t-[,~)- E[st0J~ 

- t i, l [ E lfl1i -R,,)) \ Voe Ui.· -Ro,1 - ir/,' -ir~,1 
-r 

1 ~~ + ( u-• I- er; . ) ~ ~ ~ - l :z_ - (TR_I l. - (JR.OL - llit D<. (" t 
l-'"'- l 

-- l f s/ - v~J [ s 1 - '( 
[-:. I 
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cv2 
X 

0.002 
0.006 
0.010 
0.020 
0. o::,o 
0.040 
0.060 
0.080 
0. 120 
0.200 

b. 

cv2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
0.120 
0.200 

Notes: 

Appendix B 

Least Cost Baseline Sample Size and Conversion Factor 
Life with Adjustment for Increasing Uncertainty 

no 

no 

Desired tolerance = + 30% 

CXY = 0.005' 

adjustment \22 = 0.00064 ei2 = 0.0024 

nl nl • years nl • years 

10 10 5 10 5 
10 10 5 1 (I 5 
10 10 5 10 c-

'-' 
10 10 5 10 5 
10 10 5 10 c-

~' 
10 10 5 10 5 
10 10 5 10 c· 

J 

10 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 

Desired tolerance = +30 % 

CXY = o.OIS 

adjustment 52 = 0.00064 g,2 = 0.0024 

nl nl • years nl t years 

10 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 
1 (i 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 
10 10 5 10 5 
10 10 5 1 (I 5 

vx, vy • c.o.v. of auxiliary item, of inferred item 
rXY = correlation coefficient 

2 2 
Cxy = vx + vy - 2rxyvxvy 

= annual increment in conversion factor c.o.v. 
c = (unit monitoring cost)/(unit baseline cost) 

B-1 



c.. Desired tolerance = + 30% 

CXY = 0.03 

no adjustment e,2 = 0.00064 ~2 = 0.0024 
cv2 

X nl nl # years nl • years 

0.002 1 (i 10 5 10 5 
0.006 1 (I 10 5 10 5 
0.010 1 (I 10 5 10 5 
0.020 10 1 (I 5 10 5 
0.030 10 10 c· 

..J 10 5 
0.040 10 10 5 10 5 
0.060 10 10 5 10 5 
0.080 10 10 5 10 5 
o. 120 10 10 5 10 5 
0.200 10 10 5 1 (I 5 

J, Desired tolerance = .± 80 % 

CXY = 0.05 

no adjustment t2> 
2 = 0.00064 ~2 = 0.0024 

cv 2 
X nl ~ # years nl # years 

0.002 10 10 c· 
..J 10 5 

0.006 10 10 5 10 5 
0.010 10 10 5 10 5 
0.020 1 (I 10 5 10 5 
o. o:~;o 1(• 10 5 10 5 

0.040 10 10 5 10 5 
0.060 10 10 5 10 5 
0.080 10 10 5 10 5 
o. 120 10 10 5 10 c· 

..J 

0.200 10 10 5 10 5 

e Desired tolerance = .± 30, 
CXY = o., 

no adjustment B2 = 0.00064 (2 2 = 0.0024 

cv2 
X nl nl " years nl • years 

0.002 10 10 5 10 5 
0.006 10 10 5 10 5 
0.010 10 10 5 10 5 
0.020 1C> 1 (l 5 10 5 
0.030 10 10 5 10 4 
0.040 10 10 5 10 4 
0.060 10 10 5 15 5 
0.080 10 10 5 15 5 
o. 120 10 10 5 15 5 
0.200 10 10 5 15 5 
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f . Desired tolerance = .:t.30 % 

CXY = 0 .;;t 

no adjustment f> 2 .. 0.00064 ~2 = 0.0024 

cv2 
nl nl f years nl I years X 

0.002 10 10 5 15 5 
0.006 10 15 5 15 4 
0.010 10 15 5 15 4 
0.020 10 15 5 20 5 
0,030 15 15 5 20 5 
0.040 15 15 5 20 5 
0.060 15 15 5 20 5 
0.080 15 15 5 25 5 
o. 120 15 15 5 25 5 
0.200 15 20 5 25 C" ..., 

~ 
Desired tolerance = +3::> % . 

CXY = o.3 

no adjustment e, 2 = 0.00064 ~2 = 0.0024 

cv 2 
X nl nl f years nl # years 

0.002 15 15 c· 
CJ 20 4 

0.006 15 15 5 25 5 
0.010 15 15 5 25 5 
0.020 15 20 5 25 5 
0.030 15 20 5 25 5 
0.040 15 20 5 30 5 
0.060 20 20 5 30 5 
0.080 20 20 5 30 5 
o. 120 20 20 5 30 c· ..., 
0.200 20 25 5 40 5 

h 
Desired tolerance = ±3o% . o.5 CXY = 

no adjustment ~2 = 0.00064 e, 2 .. 0.0024 

cv2 
X nl ~ • years "1 f years 

0.002 20 r:,c-.,__, 5 30 4 
0.006 25 25 5 40 5 
0.010 25 25 5 40 5 
0.020 25 25 5 40 5 
0.030 25 30 5 40 5 
0.040 -,c-.... ..., 30 5 40 5 
0.060 25 30 5 50 5 
0.080 25 30 5 50 5 
0.120 30 30 5 50 5 
0.200 30 40 5 50 5 
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cv 2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
0. 120 
0.200 

cv 2 
X 

0.002 
0.006 
0.010 
0.020 
0. o::so 
0.040 
0.060 
0.080 
o. 120 
0.200 

cv2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
o. 120 
0.200 

no 

no 

no 

adjustment 

nl 

10 
10 
10 
10 
10 
1 (I 

10 
10 
10 
10 

adjustment 

nl 
10 
1 (I 

10 
10 
10 
10 
10 
10 
10 
10 

adjustment 

nl 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

Desired tolerance = 
CXY = 0.005 

e,2 = 0.00064 

nl f years 

10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 

Desired tolerance = 
CXY = 0.015' 

e 2 = 0.00064 

nl t years 

10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 5 

Desired tolerance = 

CXY = 0.O3 

~2 = 0.00064 

nl t years 

10 5 
10 5 
10 5 
10 5 
10 5 
10 5 
10 C' .., . 
1 (I 5 
10 5 
15 5 
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+J.o, 

ei 2 = 0.0024 

nl f years 

10 4 
10 4 
10 4 
10 3 
10 -,--· 
10 -,-·-· 
10 -,-·-· 
10 -,-

·-· 
10 3 
10 2 

+J.0% 

e,2 = 0.0024 

nl t years 

10 4 
10 ..,, -· 
10 -,--· 
10 ..,, 

·-· 
10 ~ ..;, 

10 3 
10 2 
10 2 
10 2 
10 2 

+c).o % 

e,2 = 0.0024 

nl t years 

10 ~ _, 
10 .... -· 10 ~ _, 
10 ,., .... 
10 2 
10 2 
10 2 
15 2 
15 2 
15 2 



R. - Desired tolerance = +~ % 

CXY = 0.05 

adjustment ~ 2 0.00064 e, 2 0.0024 no = = 

cv 2 
X nl nl f years nl t years 

0.002 10 10 C' 10 ,., ..., .... 
0.006 10 10 5 10 ,.., 

..:. 

0.010 10 10 c· 10 ,., 
.J .... 

0.020 10 10 5 15 ,.., 
..:. 

0.030 10 10 5 15 2 
0.040 10 15 5 15 ,., .,__ 

0.060 10 15 5 15 2 
0.080 1 (I 15 5 15 2 
0.120 10 15 5 20 2 
0.200 15 20 5 20 ,., .,__ 

7l1· Desired tolerance = .:!: .,20 % 

CXY = o. I 

no adjustment e> 2 = 0.00064 e>2 = 0.0024 

cv2 
X nl nl * years nl * years 

0.002 15 15 c· 
.J r-,c 

.:...J 3 
0.006 15 15 5 20 2 
0.010 15 15 5 20 2 
0.020 15 20 5 20 2 
0. 0'.30 15 20 5 25 2 
0.040 15 20 5 25 2 
0.060 15 20 5 25 ,.., .... 
0.080 15 25 5 25 2 
o. 120 20 25 5 30 2 
0.200 20 30 5 30 ,.., 

.:. 

n. Desired tolerance = +,;J.() % 

CXY = o. d-

no adjustment ~2 = 0.00064 ~2 = 0.0024 

cv2 
nl nl t years nl f years X 

0.002 20 -,c- 5 ::,.o ,.., 
.::.J .,__ 

0.006 20 30 5 30 2 
0.010 20 30 5 40 2 
0.020 ,...,.,. 

30 5 40 ,..., 
.L. •• J .:. 

0.030 25 30 5 40 2 
0.040 ,.,.,. 

~..J 30 5 40 2 
0.060 25 40 5 40 ,., .... 
0.080 30 40 5 50 2 
0.120 30 40 5 50 2 
0.200 30 50 5 50 2 
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C"". Desired tolerance = +J.o % 

CXY = 0. '3 

adj us trnen t e> 2 0.00064 {2 2 0.0024 no = = 

cv 2 
nl nl f years nl f years X 

0.002 3() 40 5 50 2 
0. 0•.)6 30 40 5 50 ,.., 

~ 

0.010 :;o 40 5 50 2 
0.020 30 40 5 50 2 
0.030 40 50 5 50 2 
0.040 40 50 5 50 2 
0.06(! 40 50 5 75 2 
0.080 40 50 5 75 

,, 
.,;_ 

0.120 40 50 5 75 2 
().200 50 75 5 75 2 

Desired tolerance = .±.t-0% 1· 
CXY = o.5 

no adjustment ~ 2 = 0.00064 e, 2 = 0.0024 

cv2 
X nl nl f years nl t years 

0.002 5(, 75 5 75 2 
0.006 50 75 5 75 2 
0.010 50 75 5 7~i 2 
0.020 50 75 C' 

,.J 75 2 
0. 0:50 5(i 75 5 100 2 
0.040 50 75 5 100 2 
0.060 50 75 5 100 2 
0.080 75 75 5 100 2 
0.120 75 75 5 100 

,, 
.,;_ 

0.200 75 100 5 100 2 

Desired tolerance = + 10, 
'b - -

CXY = o.oos 

adjustment ~ 2 0.00064 ~ 2 0.0024 no = = 

cv2 
X nl nl t years nl f years 

0.002 1 (I 10 _::, 15 1 
0.006 10 10 2 15 1 

0.010 10 10 2 20 1 

0.020 10 10 2 25 1 

0.030 10 10 2 25 1 

0.040 10 15 
,.., 30 1 .,_ 

0.060 10 15 2 30 1 

0.080 10 15 2 40 1 

o. 120 10 20 2 40 1 

0.200 15 20 2 50 1 
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r. 

cv2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
0. 120 
0.200 

.J. ' 

cv 2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
o. 120 
0.200 

-t, 

cv2 
X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.080 
o. 120 
0.200 

no 

no 

no 

Desired tolerance = 

CXY = 0.015 

adjustment t? 2 0.00064 = 
nl nl f years 

10 15 2 
10 15 ,.., .,_ 

10 15 2 
15 20 2 
15 20 2 
15 25 2 
15 25 2 
20 30 2 
20 30 2 
25 40 2 

Desired tolerance = 

CXY = o.03 

adjustment ~2 = 0.00064 

nl nl t years 

15 ,....,c:-
..:.. ..... 1 2 

15 ~= .:._a 2 
20 30 ~. 

..;. 

20 30 
,.., .,_ 

20 40 ~. 
..:. 

-,= 
.::..J 40 2 
.--,c:· 
.::.. ..... • 40 2 
25 50 2 
:.:;o 50 -. .,_ 
40 75 2 

Desired tolerance = 

CXY = o.os 

adjustment e, 2 0.00064 = 

nl nl i years 

20 40 2 
25 40 2 
25 40 ,.., .,_ 

30 50 2 
30 50 2 
30 50 2 
40 50 ,.., .,_ 
40 75 2 
40 75 2 
50 75 2 

B-7 

±.Io % 

(?2 = 0.0024 

nl t years 

30 1 
40 1 
40 1 
50 1 
50 1 
50 1 
75 1 
75 1 
75 1 

100 1 

± 10 % 

~2 = 0.0024 

nl f years 

50 1 
75 1 
75 1 
75 1 

100 1 
100 1 
100 1 
100 1 
100 1 
100 1 

+ 10 % 

f22 = 0.0024 

nl i years 

100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 



u .. 

no 
cv2 

X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.04(1 
0.060 
0.080 
o. 120 
0.200 

u-_ 

no 
cv 2 

X 

0.002 
0.006 
0.010 
0.020 
0.030 
0.040 
0.060 
0.08(1 
0.120 
0.200 

no 
cv2 

X 
0.002 
0.006 
0.010 
0.020 
0.030 
0.04() 
0.060 
0.080 
0.120 
0.200 

Desired tolerance = :!:. Io % 

CXY = o. I 

adjustment ~ 2 0.00064 = 
nl 
40 
40 
50 
50 
50 
50 
50 
75 
75 
75 

adjustment 

nl 

75 
75 
75 

100 
100 
100 
100 
100 
100 
100 

adjustment 

nl 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

nl I years 

75 2 
75 2 
75 2 
75 2 

100 2 
100 2 
100 ~ .:. 

100 ,.., ,,__ 

100 r., 
;... 

100 2 

Desired tolerance = + - ID% 

CXY = 0. ct--

~ 2 = 0.00064 

nl I years 

100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 
100 1 

Desired tolerance = :!:. 10 % 

CXY = 0 • ~ 

~ 2 
= o. 00064 

i years 
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2 

= 0.0024 
n1 I years 

e:? 2 = 0.0024 

n1 t years 

C:Al'M'V.A,{pr\ 

r1t-t 
ifo~,& 

~ 2 = 0.0024 
t years 

~ 

rui 
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Appendix C 

Derivation of Theoretical Correlation Coefficient Estimates 

The relationship between boardings and peak load is such 

that it is possible to consider each boarding passenger a 

Bernoulli trial with the possible outcomes "on board at the 

the peak point" peak point" (success) or "not on board at 

( failure) • If passenger behavior in this 

across passengers and consistent across 

which are not perfectly net, which is 

regard is independent 

trips (assumptions 

why the derived 

quantities are estimates), then peak load can be modeled as a 

binomial random variable, leading to the following deviations. 

Let 

y = boardings on a single trip 

X = peak load on a single trip 

y = mean boardings (per trip) 

X = mean peak load 

p = X/Y 

exy = correlation coefficient between X and y 

Under our assumptions, Xi"" Binomial (Yi' p). 

it follows that, for a given trip with Yi boardings, 

E[x.l Y-1 = pY. 
l. l. l. 

var[xil YJ = p(l-p)Yi 

E[x?IY,] = p(l-p)Y. + p 2Y? 
l. l. l. l. 

E [x. Y. I Y .] = Y. E [x. I Y -1 = pY~ l. l. l. l. l. l. l. 

Averaging now over all trips, 

C-1 

Thence 



E[x] = f. (pY)fy(y)dy = pE[Y] = pY 

mY 
E[x2] = f p(l-p)Yfy(y)dy + } p2y2fy(y)dy 

~y 6}fy 
= p(l-p) y + p2E[Y2] 

= p(l-p)Y + p2y2 + p2u2 
y 

Var[x]= E[x2j - (E[X])2 = p(l-p)Y + p2cr2 (C.l) 
'f 

E [xY]= } py2fy (y) dy = pE(y2J = p(Y2 + cr:2) 
Jy r 

-2 · -2 ~ 

Cov[xY) = E[XY1 - E[X]E[Y] = f~t- fO'~ -('{ '° fuy 

f 1<'( = Orv [ X ~ J -:: f u,/ "' _5_ 
ltx cr-'( trx u'( f o-x 

Making the substitutions 

('Y y 

lix X 

= _5 
v-X 

= 

-
<r~ :: \[~ ~ 

f 1)) y 
\TX 1 y 

and 

CC. J) 

This formula for estimating e xy relies on the c. o. V. Is 

of both X and Y, which are likely to be rough estimates 

themselves. Since transit systems often have far better data 

on one variable (i.e. X or Y) than on the other, two variations 

of equation (C.2) were derived, using the following two 

substitutions. The first substitution follows from equation 

(C. l); the second follows from the first. The substitutions 

are: 

f (1 -r) y t- r2 u~ 

f 2 9 2 

C-2 

:: 



(Notice the implication that the C, o. V. of peak load should 

exceed the c.o.v. of boardings.) The resulting formulas for 

~xy are: 

J z .ti 
v-x: -+ x 
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