The Impact of Various Land Use Strategies on Suburban Mobility

HE
371 . N5 145
1992

17271
NON 17 '93

1. Report No. FTA-NJ-08-7001-93-1	2. Government Accession No.		3. Recipient's Coralog ${ }^{\text {No. }}$	
The Impact of Various Land Use Strategies on Suburban Mobility			5. Report Dore 1992	
			6. Performing Orgonization Code	
7. Author's) Middlesex Somerset Mercer Regional Council (MSM)			8. Performing Organixation Reporino.	
Middlesex Somerset Mercer Regional Council (MSM) 621 Alexander Road Princeton, NJ 08540			10. Work Unir No. (TRAIS)	
			$\begin{array}{\|l\|} \hline \text { 11. Eontroct or Grant No. } \\ \mathrm{NJ}-08-7001 \\ \hline \end{array}$	
			13. Type of Raport ond Period Covered	
12. Sponsoring Agency Name ond Address Federal Transit Administration Office of Technical Assistance and Safety 4007 th Street, SW Washington, DC 20590				
15. Supplementory Notes Contact: Effie Stallismith Transportation Management Specialist Capital Development Division, FTA (202) 366-5653				
16. Abstract This is a report on a study of the interaction between suburban land use trends and regional traffic conditions. Three different models of high density, mixed-use centers designed to fit in the Middlesex Somerset Mercer Region of New Jersey were developed. The three models examined -- transit construct, short drive construct, and walking construct -- placed residents' homes closer to their working and shopping destinations. The models incorporated residential and employment growth expected in the region by 2010 , but reshaped the growth into different land use configurations. The projected growth was located in the cities and in a small number of newly created suburban centers instead of in low density developments spread throughout the region. Based on the study it is concluded that concentrating new suburban development into higher density, mixed-use centers will slow the growth of regional vehicular use.				
17. Kay Words land use, mobility, suburban development transportation modeling, growth management, mixed use development		18. Distribution Siatement This document is available to the public through the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 (703) 487-4650		
29. Socurity Clessif. (of this report) unclassified	20. Security Clessif. (of thim poge) unclassified		21. No. of Poge:	22. Price

THE IMPACT OF VARIOUS LAND USE STRATEGIES ON SUBURBAN MOBILITY
 Final Report

Prepared by:
MIDDLESEX SOMERSET MERCER REGIONAL COUNCIL 621 Alexander Road
Princeton, NJ 08450
and
HOWARD/STEIN-HUDSON ASSOCIATES, INC.
38 Chauncy Street
Boston, MA 02111
in association with:
ACUTECH, INC.
DOUGLAS AND DOUGLAS, INC. MOORE-HEDER ARCHITECTS, INC.

NOTICE:

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse manufacturers or products. Trade names appear in the document only because they are essential to the content of the report.

Middlesex Somerset Mercer Regional Council (MSM)

621 Alexander Road, Princeton, NJ, 08540. (609) 452-1717

MSM is an independent, non-profit civic planning and research organization. Established in 1968, MSM concentrates on land use, transportation, housing, environmental conservation, and related issues in the 500 -square-mile central New Jersey region situated between the Delaware and Raritan Rivers. MSM's research and advocacy programs are supported primarily by individual and corporate members who share a concern for the future of their region. MSM receives funding from foundations and the state and federal governments to carry out special projects.

ACKNOWLEDGMENTS

The preparation of this report has been financed by the Urban Mass Transportation Administration's Office of Technical Assistance and Safety, the New Jersey Department of Transportation, the Fund for New Jersey, and the Hyde and Watson Foundation, and the members of Middlesex Somerset Mercer Regional Council.

The contents of this report reflect the views of the MSM staff and their consultants, who are responsible for the facts and accuracy of the information presented herein. The contents do not necessarily reflect the views of any of the above funding sources.

The MSM staff and their consultants would like to acknowledge the assistance and guidance given them by the study's Steering Committee and Peer Review Panel. In addition, MSM would like to give special recognition to Edward Thomas, Director of Technical Assistance and Safety of the Urban Mass Transportation Administration in Washington, DC, for his vision and support for this project.

The Steering Committee included the following individuals:
Chairman: David J. Goldberg, Esq., Cohen, Shapiro, Polisher, Sheikman \& Cohen, and Chairman, NJ Turnpike Authority
William S. Beetle, New Jeisey Department of Transportation
Ronald Berman, Esq., DKM Properties, and MSM Board of Directors
Martin Bierbaum, Esq., New Jersey Office of State Planning
Hon. Carolyn Bronson, Freeholder, Mercer County
Jack Claffey, Delaware Valley Regional Planning Commission
Hon. David B. Crabiel, Freeholder, Middlesex County
Robert Dunphy, Urban Land Institute
Carl Hintz, AICP, ASLA, Hintz Associates, Inc.
David Knights, Princeton Forrestal Center
Jack Lowenstein, FMC Corporation
William Swain, MSM Board of Directors
Joel S. Weiner, North Jersey Transportation Coordinating Council
Jeffrey Zupan, Transportation Consultant, Regional Plan Association

The Peer Review Panel included the following:
Frederick Ducca, Federal Highway Administration
Robert Dunphy, Urban Land Institute
Kevin Hooper, JHK Associates
Patrick Kane, Architect
Richard Pratt, Consultant
Richard Tustian, Lincoln Institute of Land Policy
Jeffrey Zupan, Transportation Consultant, Regional Plan Association

Staff of MSM who worked on this project included:
Administrative Project Manager:
Dianne Brake, President, MSM
Technical Project Manager:
Melvin R. Lehr, P.E., Principal, M. R. Lehr \& Associates, and
Secretary, MSM Board of Directors
Senior Research Director:
Donna Bender, AICP/PP, Vice-President, MSM

Consultant Team included:
Howard/Stein-Hudson Associates, Inc.
Jane Howard, Principal
Arnold J. Bloch, Ph.D., Project Manager
Alfred R. Howard, P.E., Sr. Project Engineer
Douglas \& Douglas, Inc.
G. Bruce Douglas, Ph.D., P.E., Principal

Barry Zimmer, Transportation Planner
Acutech, Inc.
Ruby Siegel, President
Heder Architects, Inc.
Lajos Heder, Principal

Staff members of the Bureau of Local Transportation Planning of the New Jersey
Department of Transportation also made important contributions to this project. MSM gratefully acknowledges the technical and administrative assistance of:

William S. Beetle, Manager, Bureau of Local Transportation Planning
Helene K. Rubin, PP/AICP, Principal Planner, Bureau of Local Transportation Planning
James B. Lewis, PP, Supervising Planner
James Pivovar, Manager, Bureau of Transportation and Corridor Analysis

THE IMPACT OF FUTURE LAND USE SCENARIOS ON SUBURBAN MOBILITY

EXECUTIVE SUMMARY

MSM Regional Council and its team of technical consultants have completed an 18 -month study on the interaction between suburban land use trends and regional traffic conditions. The results of the study verify what had previously been only a theoretical viewpoint: that concentrating new suburban development into higher density, mixed-use centers will slow the growth of regional vehicular use.

The study tested the traffic impact of locating the region's new employees in Trenton and New Brunswick, as well as in tightly clustered suburban employment centers. Under scenarios proposed in the study, new residents would work and shop closer to their homes. Their living environment would be conducive to walking and reduced auto use. Those who still commute longer distances would have transit and ridesharing opportunities available to them, and a significant number would take advantage of these choices because of incentives provided by regional demand management policies. The study demonstrated that this approach to land use would create a significant reduction in the growth in traffic.

Background:

MSM began this study in the summer of 1989 by reviewing the published data on the relationship between suburban development and transportation, as well as by evaluating various analytic tools for the study. A consultant team joined MSM in February 1990, and a steering committee and peer review panel comprised of transportation and land use professionals (listed in Acknowledgments) provided oversight for the project.

Constructs of Higher Density, Mixed-Use Centers:

The study team developed and tested three models -- or "constructs" -- of higher density, mixed-use centers designed to fit within the suburban setting of the MSM region. These constructs incorporated residential and employment growth expected in the region by $2010-$ - a 30 percent increase in population (187,905 new residents) and a dramatic 54 percent increase in employment (182,581 new jobs) -- but reshaped that growth into different land use configurations. The new growth was located in the cities and in a small number of newly created suburban centers instead of in low density developments spread throughout the region.

Three construct types were used: a Transit Construct, a dense development that could house a minimum of 12,000 people and employ over 13,000 , while maximizing transit, ridesharing and walking access; a Short Drive Construct, a somewhat less dense area of at least 6,700 residents and 9,500 employees, with ridesharing and walking as the main travel alternatives to the single occupant vehicle (SOV); and a Walking Construct, a dense, pedestrian-oriented residential village of about 4,500 persons with only minimal service and retail employment opportunities.

Developing a Transportation Modeling Procedure:

A transportation modeling package called TransCAD was used for its capacity to incorporate important land use elements in a Geographical Information System (GIS). This allowed the project team to utilize transportation models similar to those used in prior regional studies (e.g., Route 1 Corridor Study, NJDOT, 1986) in combination with land use/demographic data bases and models that will have long-range applications for MSM, the counties, and the municipalities.

A key part of the modeling process was to determine quantitatively how much less auto travel could be expected from the constructs. Using case study data, the study team determined that Transit Constructs would create 28 percent fewer vehicle trips than the same amount of development dispersed in less dense, single-use configurations. For Short Drive and Walking Constructs, the corresponding numbers were 24 percent and 18 percent fewer vehicle trips, respectively.

Scenarios and Results

Two scenarios were developed. Scenario 1 assumed that all new regional development between the year 1988 and 2010 would be distributed in two ways. First, much of it would be absorbed into suburban constructs located throughout the region. Second, a major resurgence of growth would occur in Trenton and New Brunswick. In Scenario 2, no major resurgence of the region's cities was assumed. Instead, all growth would be absorbed into the suburban constructs, making them larger than those in Scenario 1.

The results for two key criteria are described and displayed in the discussion below.

Vehicle Trips

The figure on the right examines the growth rate of vehicle trips occurring in the suburban portion of the MSM region between 1988 and 2010. Under "non-construct," trend conditions, new daily vehicle trips in the suburban area would be expected to grow by nearly 1.8 million. In Scenario 1 , the combination of constructs and strong urban growth reduces that suburban growth to under 700,000 daily trips. In Scenario 2, where there is no significant new urban growth, new suburban vehicle tripmaking still declines to about 1.2 million daily trips.

When adding the large number of existing trips to these varying levels of new trip growth, the results for 2010 are as follows:
o There would be 18 percent fewer total daily suburban vehicle trips in Scenario 1, compared to the trend;
o and 10 percent fewer total daily suburban vehicle trips in Scenario 2, compared to trend.

Vehicle Miles Traveled

As seen at right, the growth of new vehicle miles traveled (VMT) on the suburban regional highway network declines in the alternative scenarios. Under trend conditions, VMT grows by about 300,000 miles during the morning peak hour trip to work. Under Scenario 1, the growth of AM peak hour VMT is under 170,000 miles. In Scenario 2 , the growth is slightly more than 200,000 miles.

When the existing VMT are added to these varying levels of new VMT growth, the results are as follows:
o In the year 2010, there would be 12 percent less total VMT in the morning peak under Scenario 1, compared to the trend;
o and 9 percent less total VMT in Scenario 2, compared to the trend.

Conclusions

Four basic conclusions can be drawn from the analyses performed in this study:

1. Mixed-use centers can produce significant regional transportation benefits.
2. Mixed-use centers are a viable concept for suburban settings.
3. Mixed-use centers, through design and function, can have tangible transportation benefits at the site.
4. Promoting strong urban growth along with suburban mixed-use centers gives the best regional transportation results.

Note: These dramatic results are based on the assumption that all new development locates in cities or in higher density, mixed-use constructs. Only to the extent that we can change our current land use patterns, will we approach these results. Success within the next twenty years is unlikely because of the number of new developments in the region that already have planning permits for traditional, low density, single-use patterns. Success in the future will be achieved by carefully planning uncommitted lands and by redeveloping existing sites over a much longer period of time.

Next Steps:

In this study, the project team has worked to see whether higher density, mixed-use suburban development can achieve traffic impact reduction on a regional level. The conclusion is that indeed it can. During the next phase of our Land Use/Transportation Study, once again funded by the Urban Mass Transportation Administration, MSM will present this evidence to local officials, employers, developers, and residents and relate it to their efforts to achieve the goals and objectives of the New Jersey State Development and Redevelopment Plan and the federal Clean Air Act. Phase Two is expected to be completed by December, 1992.

Financial and time constraints on the first phase of the study forced the project team to ignore several key technical issues. Our regionwide trip generating formulas concentrated on suburban practices and do not provide a good reflection of urban tripmaking conditions. During the next phase of study, in order to understand better the full regional and subregional consequences of constructs and strong urban growth, new formulas will be developed and urban area vehicle trip reduction factors devised. In addition, a more detailed network and zone structure for the urban areas will be built to better distribute tripmaking within and around the periphery of the cities.

THE IMPACT OF FUTURE LAND USE SCENARIOS ON SUBURBAN MOBILITY

TABLE OF CONTENTS

Page
I. INTRODUCTION
A. Impetus for the Study 1
B. The Study Area 2
C. Goals and Objectives of the Study 2
D. Methodology 2

1. Study Participants 2
2. Study Process 4
II. BUILDING BASIC CONSTRUCTS OF MIXED-USE CENTERS 7
A. Suburban Development Trends and Alternatives 7
3. The Constructs as Alternatives to Present Development Trends 7
4. The Problems with Existing Development Trends 7
5. The Princeton Forrestal Center Area: An Attempt to Achieve Mixed-Use Center Objectives 7
6. Why Propose Alternative Development Patterns? 8
B. Defining Alternative Development Patterns: The Construct Approach 11
7. Three Basic Construct Types 11
8. Urban Design Components of the Three Constructs 16
9. Key Characteristics of the Constructs 22
C. The Role of Constructs in Reducing Vehicle Traffic:
Local Level Analysis 24
10. Assumptions 24
11. Methodology 25
12. Construct Land Use and Transportation Relationships 25
13. Determination of Vehicle Trip Reduction Factors 26
14. Producing a Vehicle Trip Reduction Factor: An Example 29
III. DEVELOPING THE REGIONAL TRANSPORTATION MODEL 32
A. Basic Components of the Regional Transportation Model 32
15. Building the MSM Network with Reliance on Previous Efforts 32
16. Using the GIS-Based TransCAD Package 32
17. Accounting for the Traffic Reduction Effects of Construct Development in the Regional Model 33
B. Building the MSM Network with Reliance on Previous Efforts 33
18. Building the 1988 Network 33
19. Building the 2010 Network 35
20. Building Traffic Zones 36
21. External Trips 36
C. Using the GIS-Based TransCAD Package 36
D. Accounting for the Traffic Reduction Effects of Construct Development in the Regional Model 37
IV. FORECASTING DEVELOPMENT SCENARIOS 39
A. Developing 1988 Baseline Conditions 39
B. Year 2010 Trend Conditions 39
C. Alternative Development Scenarios 41
22. Scenario 1: Constructs and Major Urban Growth 41
23. Scenario 2: Constructs With Only Trend Urban Growth 43
V. ANALYZING THE TRANSPORTATION IMPACTS OF CONSTRUCT SCENARIOS 49
A. Defining the Study Area 49
B. Regional Impacts of the Scenarios 49
24. Total Vehicle Trips on the Regional Network 49
25. Total Vehicle Miles on the Regional Network 51
26. Travel Speeds 55
27. Travel Time 56
VI. CONCLUSIONS AND NEXT STEPS 58
A. Conclusions 58
28. Mixed-Use Centers Can Produce Significant Regional Transportation Benefits 58
29. Mixed-Use Centers are a Viable Concept for Suburban Centers 59
30. Mixed-Use Centers, Through Design and Function, Can Have Tangible Transportation Benefits at the Site 60
31. Promoting Strong Urban Growth Along with Suburban Mixed-Use Centers Gives the Best Regional Results 60
B. Next Steps 60
32. Technical Improvements to the MSM Model and the Regional Network 61
33. Quantifying the Public and Private Costs and Benefits of the Study Findings 61
34. Seeking Public Support for Changing Regional Development Patterns 62

REFERENCES

APPENDICES:

Appendix A. Calculation of Vehicle Trip Reduction Factors
for Walking, Transit, and Short Drive Constructs
Appendix B. MSM Region Traffic Zones and 1988 Calibration Network
Appendix C. TransCAD Package Steps and Trip Generation Equations
Appendix D. Development of Land Use Data for Municipalities and Zones
Appendix E. MSM Employment and Housing Projections, Vehicle Trip
Productions and Attractions, Daily Trip Ends, and Jobs/Housing
Ratios: 1988, 2010 Trend, Scenario 1, Scenario 2
Appendix F. Vehicle Trips, Speeds, and Vehicle Miles of Travel for Study Area Municipalities: 1988, 2010 Trend, Scenario 1, Scenario 2

Appendix G. Suburban Mixed-Use Centers and Transportation:
Current Research and Issues,
MSM Regional Council Report, June 1990

LIST OF TABLES

Page
Table 1: \quad MSM Land Use Construct Comparison 23
Table 2: \quad Summary of Trip Reduction Factors 30
Table 3: 1988 Baseline Conditions for MSM Region Municipalities 40
Table 4: $\quad 2010$ Trend Conditions for MSM Region Municipalities 42
Table 5: \quad Location of Constructs in Both Scenarios 1 and 2 45
Table 6: \quad Current and Projected Employment Under Different Scenarios 47
Table 7: \quad Current and Projected Households Under Different Scenarios 48
Table 8: \quad Vehicle Trips in the MSM Construct Study Area 52Table 9: \quad A.M. Peak Hour Vehicle Miles Travelled (VMT)in the MSM Construct Study Area54
Table 10: A.M. Peak Hour Vehicle Speeds in the MSM Construct Study Area55
Table 11: A.M. Peak Hour Vehicle Travel Minutes in the MSM Construct Study Area56

LIST OF FIGURES

Page
Figure 1: The MSM Region 3
Figure 2: \quad Representative Recent Development - Forrestal Center 9
Figure 3: Forrestal Village - Existing Development 10
Figure 4: Transit Construct City Diagram 13
Figure 5: Short Drive Construct City Diagram 14
Figure 6: Walking Construct Village Diagram 16
Figure 7: Transportation Components of Constructs - Generalized 17
Figure 8: Diagrammatic Cross Section - Town Center 18
Figure 9: Diagrammatic Cross Section at Railroad Station and Main Street 19
Figure 10: Diagrammatic Cross Section - Highway Edge 20
Figure 11: Ratio of Construct Total Trips Compared to Same Construct with Trend Rate 31
Figure 12: Chart of Study Process 36
Figure 13: Location of Constructs in the MSM Region 44
Figure 14: Employment and Household Projections for Trenton and NewBrunswick for the Year 2010 under Scenarios 1 and 246
Figure 15: Growth in Daily Trip Ends 1988 to 2010 - MSM Construct Study Area: Trend Versus Alternative Development Scenarios 50
Figure 16: Growth in AM Peak Hour Vehicle Miles of Travel 1988-2010 MSM Construct Study Area: Trend Versus Alternative Development Scenarios53
Figure 17: \quad Growth in Travel Time 1988-2010 (Vehicle Minutes of Travel) MSM Construct Study Area: Trend Versus Alternative Development Scenarios

CHAPTER I: INTRODUCTION

A. Impetus for the Study

The continued growth of the nation's suburban areas as residential and employment centers places a strain on the transportation infrastructure and services available in these areas. As the 1989 report by the Institute of Transportation Engineers entitled A Toolbox for Alleviating Traffic Congestion pointed out, the growing trend of suburban congestion is due to 1) more people traveling in metropolitan areas (with most of that growth occurring in suburban settings); 2) more people traveling by car (and, overwhelmingly, in single occupant vehicles); 3) more people traveling to dispersed locations; and 4) more people traveling where necessary highway capacity has not been provided.

The strain that this creates is manifested by added energy use and regional air pollution, added congestion and delay; and the increasing conflict between preserving suburban/rural lifestyles and the need for more highway capacity and traffic controls.

Suburban growth represents a 40-year trend, and there is no expectation of any significant reversal leading to reconcentrated urban areas. In that light, the focus among planners has turned to determining how to redistribute and redesign suburban development to conserve open lands, preserve the unique local character of villages and towns, and reduce growth in traffic congestion, while continuing to serve the diverse needs of residents and employees.

In its April, 1989 report to the Urban Land Institute entitled Suburban Mobility and Growth Management: Initiatives in Central New Jersey, Middlesex Somerset Mercer (MSM) Regional Council concluded that "concentrating growth in higher density, mixed-use centers" would be "expected to reduce the growth in vehicular traffic" in this suburban New Jersey setting. The report pointed out that concentrating growth would create other related advantages:
$0 \quad$ The reduction of highway congestion by internalizing trips within mixed-use areas;
o making transit or paratransit more feasible; and
o reducing the length of necessary trips.

The report acknowledged that "the real impact of these centers on traffic reduction has yet to be tested." The MSM Land Use/Transportation Project provides the evidence to document the transportation advantages of centers.

B. The Study Area

The MSM region served as the study area for the Land Use/Transportation Project. It is a 523 -square-mile area, consisting of 32 municipalities covering all of Mercer County and the southern portions of Middlesex and Somerset Counties in central New Jersey (see Figure 1 on page 3). Virtually halfway between New York City and Philadelphia, the MSM region is largely suburban, although its northeast and southwest borders are anchored by the cities of New Brunswick (about 40,000 people) and Trenton (about 90,000 people), respectively. The Borough of Princeton (about 12,000 people) is at the center of the MSM region.

The MSM region is bisected -- northeast to southwest -- by Route 1, a four-lane regional commuter highway characterized by some strip development, stop lights, shopping centers and office parks. New Jersey's Department of Transportation has a long-term plan to improve Route 1 to six lanes and to replace most of the lights with grade-separated intersections. The Northeast Corridor Rail Line, used both by New Jersey Transit commuter trains and AMTRAK intercity lines, parallels Route 1.

In 1988 -- the year used in this report as the base year because of data availability -- it was estimated that the region included more than 617,000 residents and nearly 338,000 jobs (source: New Jersey Department of Labor). Growth by the year 2010, as projected in the 1989 New Jersey Preliminary State Development and Redevelopment Plan, is dramatic - 187,905 new residents (a 30% increase), and 182,581 new jobs (a 54% increase).

C. Goals and Objectives of the Study

The goal of the MSM Land Use/Transportation Study was to rigorously test the concept of higher density, mixed-use centers in the suburban setting, in order to assess the type and level of transportation benefits that might occur.

The specific questions that this study addressed are as follows:
o Can higher density, mixed-use centers produce noticeable, beneficial effects on the regional highway network, when compared to the effects of typical single purpose suburban development as characterized by current trends?
$0 \quad$ What intensities of development and mixes of land use patterns can realistically be developed that reduce vehicular trips made to, from and within the centers?
o Can higher density, mixed-use centers be located realistically in the MSM region, given expected growth in employment and population levels?

D. Methodology

1. Study Participants

The study was conducted in a collaborative effort by MSM Regional Counci', its consultant team, and staff members of the Bureau of Local Transportation Planning of the New Jersey Department of Transportation (see Acknowledgments).

A steering committee was created early in the study and was convened four times during the course of the study (November 27, 1990; June 13, 1990; January 23, 1991; and April 10, 1991). The committee had the opportunity to review and comment on interim products, as well as to ask questions of and make comments to the project team at the committee's meetings.

Figure 1

In addition, a peer review process was built into the study at two important junctures of the project. First, on May 14-15, 1990, a meeting was held between the project team and a peer review panel. At this meeting, the overall methodological direction of the study was discussed, highlighting the following key issues (discussed in detail later in this report):
o The TransCAD software used for modeling transportation impacts;
o The "constructs" and "scenario" approach for testing land use patterns;
o Site planning to reduce vehicular use; and
o Travel demand management policies and effectiveness.

At the second juncture -- during November and December of 1990 -- a key interim document describing the capabilities of constructs to reduce single occupant auto tripmaking was circulated for comment among peer reviewers (Appendix A).

The comments of the peer review panel, as well as steering committee members, were a valuable resource to the project team during the course of the study.

2. Study Process

The study consisted of five major tasks, which are briefly described below and described in more detail later in this report.

a. Suburban Mixed-Use Centers and Transportation: Current Research. (Appendix G)

To test the hypothesis that concentrating growth in mixed-use centers would yield regional transportation benefits, the project team began by exploring published research for evidence of interaction between land use and transportation in general, and more specifically, the travel behavior associated with different facets of existing suburban mixed-use centers. Documented parameters for mixed-use centers, such as proper density, scale, design and mix of activities, were gathered as an empirical foundation for the analysis.

In addition, effective demand management techniques were examined to determine the extent to which the benefits of changing land use might be enhanced by implementing transportation management programs (a reciprocal enhancement was expected).

Although the literature search did not uncover any hard and fast rules, a number of case studies emerged which served as the basis for crafting the prototype mixed-use centers.

b. Building Basic Constructs of Mixed-Use Centers. (Chapter II)

The theoretical concept of a higher density, mixed-use center was formalized into a set of land use models, or "constructs." These constructs were meant to be ambitious, yet realistic representations of suburban centers which include good planning and design features, especially a pedestrian environment, while meeting the region's needs for residential and employment growth.

Three types of constructs were formulated:
o The Transit Construct: A high density, mixed-use center with a high concentration of employment. It is designed to maximize the use of transit services and provide significant pedestrian amenities.

0 The Short-Drive Construct: A high density, mixed-use center, somewhat lower in density than the transit construct, but also with a high concentration of employment. Although there are minimal transit services, there are significant pedestrian amenities in this construct as well.
o The Walking Construct: A tightly clustered, mixed-use village or town, with a high level of residential development and only minimal employment opportunities.

c. Modeling the New Land Use/Transportation Relationships (Chapter III)

A regional transportation model was developed for the purpose of testing the effects of the constructs on travel in the MSM region. The typical modeling system has four steps: 1.) trip generation: uses formulas to generate total trips; 2) distribution: distributes trips throughout the region; 3) mode split: defines the proportion of trips using different forms of transportation; and 4) assignment: it assigns vehicle trips to appropriate routes for traveling from place to place.

The modeling system used in this study is the TransCAD software package which combines a geographic information system (GIS) with a traditional four-step transportation planning model. This GIS capability has a number of benefits. It provides numerous procedures for processing land use data, constructing and subdividing traffic zones, calculating the precise location and adjustment of transportation network links, and summarizing traffic characteristics by geographic area. It is also capable of storing present and future land use and demographic data at the parcel, census block and municipality level, a feature which is attractive to the long-term planning efforts of MSM.

The modeling system was further adjusted by consideration of some key tripmaking characteristics of the constructs, as distinct from the other subareas of the region. For the region as a whole, auto trip generation rates were developed using formulas developed by previous NJDOT studies in and around the MSM region. But these rates were adjusted for the different construct types -- based on case studies and the team's planning judgment to develop "trip reduction factors" -- to reflect the enhancing effect of density, demand management, mixed uses and transit services on reducing regional auto use to and from these constructs.

d. Forecasting Development Scenarios (Chapter IV)

A 1988 baseline of employment and population conditions in the MSM region was established. A forecast year of 2010 was selected for evaluation and a " 2010 Trend Scenario" was developed, projecting conditions similar to those in the base year to the year 2010. These forecasts represent the trend of what is likely to occur in land use and transportation conditions without any change in policy direction.

In addition, two alternative land use scenarios were developed for the year 2010 to compare with the trend:

Scenario 1: a combination of suburban development in constructs and increased employment and population growth in the region's major cities;

Scenario 2: the replacement of all trend suburban development with development in suburban constructs, and only trend growth in the cities.

The two scenarios differ by the amount of growth which is allocated to urban vs. suburban areas.

e. Analyzing the Transportation Impacts of Construct Scenarios (Chapter V)

The impact of construct vs. trend development was analyzed, focusing on four key indices of transportation conditions at the regional and subregional level:
o The number of vehicle trips;
o The level of vehicle miles traveled (VMT);
o The level of delay experienced; and
o The average speed.
These measures were then assessed in aggregate terms -- what happens in the suburban portion of the region overall -- and in disaggregate terms, for their effects on suburban municipalities.

CHAPTER II:

BUILDING BASIC CONSTRUCTS OF MIXED-USE CENTERS

A. Suburban Development Trends and Alternatives

1. The Constructs as Alternatives to Present Development Trends

The constructs were devised as a means for exploring and illustrating alternative development patterns for central New Jersey. The dominant features of recent growth are large, single-use private developments: office parks, shopping centers and subdivisions. These developments are planned only within their property boundaries, and are related to each other only by existing road connections, and are almost entirely limited to automobile access.

The basic premise of the study is that integrated, multi-use and better planned development can significantly reduce auto travel needs. Underlying this premise are basic convictions that more integrated land use planning and design is both desirable in terms of aesthetic, social and environmental goals, and marketable to developers and consumers.

2. The Problems With Existing Development Patterns

The rapid growth of the 1980's tended to create large-size single purpose developments on assembled tracts of previously rural land. These suburban developments -- office parks over 6 million square feet, shopping centers approaching 1 million square feet, residential complexes over 3,000 units -- are much larger in scale than the existing fabric of small towns in the area. They lack an effective integration of uses and have no community framework to support them.

This land use pattern forces total dependence on automobile travel. By maximizing the need for cars and parking spaces at each destination, this pattern causes each facility to be surrounded and isolated by roads and parking lots, thereby reducing accessibility by walking, transit or bicycle. These single function private developments, although the size of small towns, lack a town's public institutions such as schools and government facilities. The resulting absence of public spaces and foot traffic not only aggravates transportation problems, but prevents the evolution of community life.

3. The Princeton Forrestal Center Area: An Attempt to Achieve Mixed-Use Center Objectives

The Princeton Forrestal Center is a major multi-use center owned by Princeton University that, in 1975, set the standard for development along the Route 1 Corridor. The center was selected by the project team to illustrate some key design issues for this study. The center is known for its ecologically sensitive site planning, as well as its excellent examples of architectural design. It contains all three of the major land use functions -- office, retail and residential -- and has the potential for creating a more integrated community environment, such as that presented in the constructs.

Forrestal Village, a retail and office development within Forrestal Center, offers a concrete illustration of how the comparative advantages of mixed-use constructs can be evaluated against the best efforts of single function development. In addition, Forrestal Village represents a movement toward a mixed-use and town center type environment, and, although it does not fully incorporate the concepts of integrated land use proposed in the constructs, it can provide some useful lessons.

The plan of the Forrestal Center area contains three basic elements (as shown in Figure 2):
o The Forrestal Center office park, with 4.9 million square feet of space already completed, and an eventual 8.6 million square feet at build-out;
o Princeton Landing and several other residential clusters (the latter not part of the development, but physically proximate) totaling about 1,200 dwelling units;
o Forrestal Village, a regional shopping center with upper-floor offices and a hotel, totaling about 1.5 million square feet, of which 822,000 square feet has been built, with the remainder designated as office space.

The office buildings are driving oriented. The housing complexes are exclusively residential, with only minimal community recreation facilities, and are only accessible at a minimal number of points. Even though the distances among the various facilities are not great (many under a mile), there are no local connections other than a very few regional roads.

Forrestal Village embraces some of the ideas of mixed-use developments and traditional pedestrian- oriented town centers. It contains a "Main Street," a "Village Square" and a "Market Plaza." Its environment fairly convincingly recreates the environment of traditional town centers. In appearance the town center and main street in one of the constructs might be very similar.

An aerial view of Forrestal Village (Figure 3), however, reveals a very different place. It is isolated in a sea of parking lots and, although it is located on a huge overpass of Route 1 , it is virtually inaccessible from anywhere else. The "Main Street" and "Village Boulevard" terminate in parking lots within a block of the center. Although an attempt was made to provide walkways and bikepaths, it is inconvenient to walk or bike to the office park or the residential neighborhood. There is no school or city hall nearby. Forrestal Village is revealed from this view as simply a regional shopping center with the marketing theme of a "village" without the urban design and land use connections to make it real.

4. Why Propose Alternative Development Patterns?

The causes of the development trend favoring large single function compounds are easy to trace. Land use regulations, created a century ago to protect residential property from noxious industry, generally favor single purpose zoning. In addition, developers and the financing institutions they depend upon tend to develop their business expertise in one functional area (i.e., housing, office parks or shopping centers) and for the most part do not welcome the complexities of mixed-use town development.

New regulatory measures have been enacted in towns in the region to reduce the impact of these large developments on their environment and infrastructure. But there has been little effort to change the underlying zoning to encourage new developments to enhance the existing community or to become a complete community in their own right.

Figure 2: REPRESENTATIVE RECENT DEVELOPMENT - FORRESTAL CENTER

Figure 3: FORRESTAL VILLAGE - EXISTING DEVELOPMENT "VILLAGE CENTER" - ISOLATED BY DISTANCE AND PARKING LOTS FROM HOUSING, EMPLOYMENT AND OPEN SPACE PRESERVES

As shown through the analyses and reports produced for the emerging New Jersey State Development and Redevelopment Plan, and the 1987 MSM REGIONAL FORUM, such large, single function development patterns consume enormous amounts of land, tax the transportation infrastructure through their auto dependence, force up the cost of housing, and degrade the environment and community character of the region. Both planning documents call for a regional approach to growth management and the creation of regional mixed-use centers as an alternative development pattern.

The professional planning community is now promoting many of these changes under the banner of "neo-traditional" planning techniques. However, the federal Clean Air Act, with its powerful mandate to reduce vehicle miles traveled (VMT), as well as auto emissions, will force New Jersey regulators -- under threat of losing major federal funding -- to use land use plans to help achieve these targets. Demand management techniques, largely an effort to mitigate the damage that auto-dependent land use patterns have created, will not be successful enough on their own. The underlying land use patterns must change as well.

B. Defining Alternative Development Patterns: The Construct Approach

1. Three Basic Construct Types

In this study, the construct approach was adopted to show that, as an alternative to current land use trends, reasonable models of higher density, mixed-use centers could fit within the geographical and socioeconomic settings of the suburban MSM region. The constructs take into account that there is a continuing demand for residential and employment opportunities within the region, albeit at a slower pace than in the 1980's. They also take into account some basic transportation assumptions of the region, namely:
o The automobile will remain the dominant mode of travel for employees and residents.
$0 \quad$ Because of the proximity of the NJ Transit/AMTRAK rail line and the relative proximity of New York City and Philadelphia, employees and residents have some receptivity to transit services.
o There is a basic familiarity with ridesharing, particularly for commuting purposes.
o Polls have demonstrated that people like the pedestrian amenities and opportunities that "small town" aesthetics offer.

These attributes were accepted by both the steering committee and the peer review panel.
Three basic construct types were identified to represent three transportation environments: the Transit Construct, the Short Drive Construct, and the Walking Construct. These are further defined below.

a. The Transit Construct

This construct represents the largest, densest and most complex of the three construct types. It is anchored between a transit hub (e.g., a rail station or convenient bus route) and a major highway. (See Figure 4.) Commercial and residential land uses are mixed to provide a jobs/dwelling unit ratio of at least 2.18 .

The Transit Construct shows a high density concentration of employment and transportation services near a rail station, and a second high density of employment and retail activity at the highway connection point. The Main Street of the Transit Construct and its access roads connect the two transportation nodes and create a pedestrian and transit focused spine. Transit facilities may include shuttles along Main Street and regional and local collector bus service providing service from the residential areas to the employment facilities and the Transit Hub.

The focal point of the Transit Construct is the Town Square, which is near the construct's geographic center and houses its primary local institutions and civic facilities.

As found in the other two constructs, the Transit Construct, as do the other two constructs, has strong public and private sector demand management policies in place. It has restricted, preferential parking and a transportation coordinator on site.

b. The Short Drive Construct

The Short Drive Construct has a structure similar to the Transit Construct, but is somewhat less dense and lacks direct access to a transit hub as a second transportation anchor (see Figure 5). Main Street still acts as an important spine, but now it is shorter and only connects the Regional Shopping and Market Square area of the Town Center.

Since the Short Drive Construct is not well served by convenient public transit, the denser residential areas are clustered near enough to the center to permit access on foot. The less dense parts are spread somewhat further and require a short drive to shopping and employment opportunities either by private auto or shuttle buses. The jobs/housing ratio here is 3.39 .

In comparison to an ordinary office park, a reduction in trips in the Short Drive Construct is produced by having more housing and retail services near the employment site and by the use of strong demand management policies. There is restricted and preferential parking, and a transportation coordinator on site.

c. The Walking Construct

The Walking Construct is basically a higher density residential village, with minimal employment opportunities, located off the main highway network. It is sufficiently compact to permit access on foot to the center from most of the residential areas (see Figure 6). The cluster pattern of the neighborhoods facilitates vanpools and ridesharing to regional employment centers.

The Town Square is the focus of this more limited mixed-use area and is almost completely locally oriented. If the Primary Connecting Road is not overwhelmed by high speed traffic and can bring some additional clientele from surrounding communities, the Town Square may develop into a kind of Main Street. Many of the existing village centers could evolve into this pattern. While there is some commercial employment within the walking construct, its jobs/housing ratio is only 0.14 .

Figure 4: TRANSIT CONSTRUCT CITY DIAGRAM

Figure 5: SHORT DRIVE CONSTRUCT CITY DIAGRAM

Figure 6: WALKING CONSTRUCT VILLAGE DIAGRAM

2. Urban Design Components of the Three Constructs

The Transit Construct, the Short Drive Construct and the Walking Construct show basic differences of size, scale, organization, focus and pattern. On the other hand, all three represent a major departure from prevailing patterns of development and are made up of similar components of successful urban design for viable towns with a full complement of community functions. These components are in most ways traditional prototypes drawn from successful cities and towns of the past, updated to accommodate today's functional requirements.

The visual imagery of these components can vary. The key to success is that the basic density and functional layout requirements needed for a sound transportation and land use plan are accompanied by massing, zoning, and street environment concepts that support a pedestrian environment and the community life of the town. Thus, we illustrate general scale, proximity and massing relationships on the plan and cross section diagrams (Figures 7-10), but avoid advocating particular architectural vocabularies.

The following are some of the key design components. Refer to the plan and cross section diagrams for their illustration.
o Streets: To function properly, streets must be committed to full-time civic use. By contrast, malls, drives, cul-de-sacs, and other contemporary devices tend to serve single, semi-private purposes and restrict the public life of a town. The best streets allow for some mix of livable and interesting uses, such as cars, pedestrians, service vehicles, bicycles, baby carriages, etc.

The use of the street and adjacent relationships of private properties should be regulated by public code. Grids of streets serve multiple functions and civic purposes by creating an open-ended, continuously connected system with enough redundancy to be adaptable and flexible.

The actual shape of the open grid can vary with topography, density, and design intent, but its basic integrity should be consistently maintained. Older, traditional towns have many examples of successful streets.
o Main Streets: The traditional center of American cities and towns is "Main Street," characterized by a mix of uses and transportation modes and a high level of pedestrian activity and interaction. Dense, mid-rise buildings (3-5 story) with retail uses on the ground floor, and small offices, workshops and apartments on the upper floors usually create the right mix.

The scale and density of the "Main Street" at Forrestal Village would be quite appropriate for the constructs. However, unlike the one at Forrestal Village, Main Street needs to be connected to and become the focal point of the street grid in order to attract pedestrians from surrounding neighborhoods. Vehicles should be allowed on Main Streets, but their volume and speed controlled to maintain a pedestrian orientation.

Main Street should connect to the principal squares of the town and should be within walking distance from most residential blocks. In the Transit Construct, shuttle transit should run along the length of Main Street.
o Squares: Squares are special spaces in the street network where functional, civic, recreational, and ceremonial activities of the city or town can be focused. In the larger constructs, the functions can be split -- i.e., one square devoted primarily to

Figure 7: TRANSPORTATION COMPONENTS OF CONSTRUCTS - GENERALIZED

Figure 8: DIAGRAMMATIC CROSS SECTION - TOWN CENTER

Figure 9: DIAGRAMMATIC CROSS SECTION AT RAILROAD STATION AND MAIN STREET

Figure 10: DIAGRAMMATIC CROSS SECTION - HIGHWAY EDGE
institutions, another to markets, a third to transportation -- but these definitely need to be in close relationship to each other. Pedestrian emphasis and connection among the squares is essential.
o Parking Design: The large amount of area required for parking in these towns where employment and retail are concentrated (roughly a $1: 1$ ratio of space devoted to parking and all other uses), necessitates a very careful design approach to parking.

It is assumed for the constructs that in order to create the density and continuity required for mixed-use centers, most of the parking for employment and Main Street related activity will be in multi-level structures. This will be an economic burden for the developers, but recent developments -- such as Forrestal Village, Carnegie Center in West Windsor and the proposed Metroplex office park in South Brunswick -- have set the precedent by including multi-level parking garages.

The key design principle is to make these parking structures easily accessible from the main connector and service roads, but to prevent them from dominating the streetscape of Main Street, the Squares, or the residential streets. Ideally, garages should be located at the center of commercial blocks, faced with stores at the ground level and other uses above.

Parking for the residential areas should generally be absorbed in driveways, garages, or carports on a small scale directly adjacent to the units, as shown in the site diagrams and Town Center cross section. But controlled street parking should not be prohibited.
o Residential Neighborhoods and Streets: Neighborhoods need a greater level of privacy and protection from heavy traffic than other, more public uses. Residential streets can be designed to enhance, but not dominate the neighborhood, and still remain connected to the public street grid that ties the town or city together.

Traffic management should insure that these streets carry primarily local traffic at low speeds. Front doors and parking and front doors should generally occur at or near the street to keep an active community character. Density, proposed in the 10 to 15 dwelling units per acre range (on average), should be highest near Main Street and diminish toward the edges. These densities are equivalent to traditional single-family neighborhoods, and recent townhouse and apartment complexes in the region.
o Institutions: Government buildings, schools, colleges, day care centers, and public recreation facilities need to be provided in prominent public locations, easily accessible on foot and by all other modes of transport. Schools and recreation facilities need to be directly connected to the city's open space system.
o Open Space Networks: Streets, provided with sidewalks that are scaled to the amount of pedestrian activity, are the most used part of the public open space network, and should be landscaped with trees and enhanced with other planting on the adjacent private properties.

Walkways other than sidewalks are needed primarily in the densest commercial areas, where arcades and through block passages are a welcome and valuable enrichment, and in the undeveloped periphery, where public walkways should give access to natural attractions.

3. Key Characteristics of the Constructs

Specific characteristics of the three constructs were developed by the project team and were reviewed and revised by the initial peer group and the steering committee. The density and size of the Transit Construct were designed to maximize the use of transit and paratransit services while maintaining the suburban fabric of the development. However, for the Short Drive and Walking Constructs, the characteristics were based on standards put forth for "regional centers" and "towns and neighborhoods" as defined by MSM's REGIONAL FORUM in 1985-87 and followed by the Preliminary State Development and Redevelopment Plan.

The FORUM convened regional public and private sector leaders, as well as interested citizens, to address ways to better manage growth in the region. This consensus-building effort developed a set of recommendations for efficiently concentrating growth into mixed-use centers. (See An Action Agenda for Managing Growth, Final Report of the MSM Regional Forum, 1987.)

Table 1 shows the key characteristics used in the Land Use/Transportation Study for all three constructs. These are presented as minimum thresholds rather than absolute dimensions of the constructs. (The estimates in Table 1 were used for Scenario 1. Scenario 2's estimates were larger in order to accommodate more suburban growth.) A summary of major points follows:

a. Population

The number of residents ranges from 12,000 in the Transit Construct to 6,700 in the Short Drive Construct, to 4,500 in the Walking Construct. Residential density ranges from 15 dwelling units per net residential acre (average) for the Transit Construct, to 10 dwelling units per net residential acre (average) for both the Short Drive Construct and the Walking Construct.

b. Employment

Employment opportunities are significant in the Transit Construct (13,100 jobs) and the Short Drive Construct (9,500 jobs), but negligible for the Walking Construct (230 jobs). The commercial land use floor area ratio is 2.0 in the Transit Construct, 1.1 in the Short Drive Construct and 0.4 in the Walking Construct.

Both the Transit Construct and the Short Drive Construct have regional retail anchors, while the retail component of the Walking Construct is assumed to be a neighborhood center.

MSM LAND USE CONSTRUCT COMPARISON			
Characteristic	Transit Construct 'TC'	Short Drive Construct "SD"	Walking Construct 'W'
COMMERCIAL COMPONENTS:			
Comm. Floor Area(SF) Comm. Employment Commercial FAR Comm.Net Acres	$\begin{array}{r} 4,000,000 \\ 12,000 \\ 2.0 \\ 45.9 \end{array}$	$\begin{array}{r} 3,000,000 \\ 9,000 \\ 1.1 \\ 62.6 \end{array}$	$\begin{array}{r} 10,000 \\ 30 \\ 0.4 \\ 0.6 \end{array}$
RETAIL COMPONENTS:			
Retail Floor Area(SF) Retail Employment Retail FAR Retail Net Acres	$\begin{array}{r} 550,000 \\ 1,100 \\ 1.00 \\ 12.6 \end{array}$	$\begin{array}{r} 250,000 \\ 500 \\ 0.40 \\ 14.3 \end{array}$	$\begin{array}{r} 50,000 \\ 200 \\ 0.23 \\ 5.0 \end{array}$
NON-RESIDENTIAL TOTALS:			
Total Employment Total Net Non-Res. Acres	$\begin{array}{r} 13,100 \\ 58.5 \end{array}$	9,500 77.0	$\begin{aligned} & 230 \\ & 5.6 \end{aligned}$
RES:DENTIAL COMPONENTS:			
Population People per D.U. Dwelling Units D U. per Net Res. Acre Net Residential Acres	$\begin{array}{r} 12,000 \\ 2.0 \\ 6,000 \\ 15 \\ 400.0 \end{array}$	$\begin{array}{r} 6,700 \\ 2.4 \\ 2,800 \\ 10 \\ 280.0 \end{array}$	$\begin{array}{r} 4,500 \\ 2.8 \\ 1,600 \\ 10 \\ 160.0 \end{array}$
TOTAL CONSTRUCT FACTORS:			
Jobs per D.U. Workers per D.U. RESERVE AREAS: Open Space Roads/Utilities Public Buildings, etc. GROSS DIMENSIONS: Area in Acres Area in Sq. Mi. Radius if Circular (FT.)	$\begin{array}{r} 2.18 \\ 1.0 \\ \\ 15 \% \\ 25 \% \\ 10 \% \\ \\ \\ 917 \\ 1.43 \\ 3,566 \end{array}$	$\begin{array}{r} 3.39 \\ 1.5 \\ \\ 15 \% \\ 28 \% \\ 10 \% \\ \\ 759 \\ 1.19 \\ 3,245 \end{array}$	$\begin{array}{r} 0.14 \\ 1.5 \\ \\ \\ 15 \% \\ 28 \% \\ 10 \% \\ \\ \\ 352 \\ 0.55 \\ 2,210 \end{array}$

c. Jobs to Dwelling Units Ratio

This ratio reflects the mixed-use elements of the Transit Construct (2.18) and the Short Drive Construct (3.39), while indicating that the Walking Construct (0.14) is simply a residential center.

d. Gross Dimensions

In order to accentuate the potential for walking trips among land uses, an attempt was made to concentrate each construct into a relatively compact area. As a result, the Transit Construct represents an area of over 900 acres, the Short Drive Construct represents an area of over 750 acres, and the Walking Construct represents an area of over 350 acres. This includes not only the residential, commercial and retail land uses, but open space, roads, utilities and public buildings as well.

C. The Role of Constructs in Reducing Vehicle Traffic: Local Level Analysis

Each of the three constructs was designed to reflect a "package" of land use mix, density, transportation, and demand management attributes which in combination reduce automobile usage. In this step of the study, the effects of each construct on reducing auto travel were quantified by the type of development in each construct for peak hours, off-peak hours and daily trips. The analysis was designed both to identify the specific traffic reduction benefits of constructs at the local level, and to show the overall effects on the regional network. The regional analysis discussed in Chapters III \& IV was conducted only for the more general measure of daily travel.

1. Assumptions

The analysis was based on a number of assumptions about the trip types considered and their trip rates, and the effects of the different constructs on tripmaking, as follows:
o As the target of the study was the reduction of automobile trips, the trip generation dealt with vehicle trips. The effect of changes in modal shifts to transit, carpools or walking was thus expressed as an estimated change in vehicle trips.
o The product of the trip generation was vehicle trips with an origin or destination external to the construct, as intra-construct trips do not impact the area roadways to any significant extent. Traffic zones in the model were not smaller than a construct.
o Tripmaking generated by each construct was accounted for in three categories:

- commercial (represented mainly by office rates),
- retail; and
- residential uses.
o The time periods considered were:
- AM Peak Hour
- PM Peak Hour
- Off-Peak periods
- Average Weekday (ADT)

Travel behavior description and analyses for the constructs required inclusion of all such periods. For determination of off-peak period trip rates, twice the sum of the AM and PM peak hour rates (to determine the peak period) was subtracted from the ADT rate.

2. Methodology

Construct-level analysis was based on the premise that the constructs chosen reduce (external) vehicle trips. These vehicle trip reduction factors were developed for each construct, trip type and time period compared to basic trip rates. Comparison among the constructs is possible by looking at the differences in construct-to-trend ratios. (See Appendix A.)

3. Construct Land Use and Transportation Relationships

A review of the literature in land use/transportation relationships, transportation demand management, and of case studies of suburban activity centers indicated that the general effects in terms of land use and travel relationships can be summarized in five areas, as follows:
a. Internal Vehicle Trips increased by:

- Greater employment opportunities for residents. (Jobs/Housing ratio more balanced within zone.)
- More retail/services for residents or employees. (Mixed-use enhanced.)
b. Internal Walking Trips increased by:
- Combination of jobs, retail/services and residences in close proximity with one another. (Density and mixed-used enhanced.)
- Pedestrian oriented site planning and design.

c. Internal Transit Trips increased by:

- Presence of local transit service, i.e., shuttle/feeder buses. (Density enhanced.)
- Greater variety of trip purposes served. (Mixed-use enhanced.)
- Transit oriented site planning and design.
d. External Trip Shift to Transit increased by:
- Good transit available to serve remote residents working in construct and construct residents working in remote job centers. (Density and mixed-use enhanced.)
- Transit incentives, such as transit pass subsidy by employers, etc. (Demand management enhanced.)
e. External Trip Shift to Carpools increased by:
- Greater carpool matching potential, i.e., convenience of association at both ends of trip. (Density and mixed-use enhanced.)
- Carpooling incentive through parking management and pricing at destination. (Demand management enhanced.)

Of course, each one of the features listed above has a varying influence on the reduction of vehicle trip making, and, in most cases, the features' interaction with each other complicate estimating. In addition, similar end results can be caused by the varying interaction of different factors in different constructs.

4. Determination of Vehicle Trip Reduction Factors

Once basic land use and transit relationships were established, specific vehicle trip reduction factors for each construct were determined through the steps below. The project team developed the factors and had them reviewed by the peer group. All land use based reduction factors were applied to Institute of Transportation Engineers average vehicle trip rates for the AM peak hour, PM peak hour, off-peak period and the average daily traffic (ADT) conditions, while the values for the regional analysis were limited to daily (ADT) vehicle trips.

a. The Factors Influencing Trip Reduction

The vehicle trip reductions from the constructs result from a combination of factors:

- overall office/retail/housing mix;
- jobs/housing ratio;
- total employment;
- design integration;
- proximity to rail transit;
- presence of radial bus service;
- presence of internal bus service;
- constrained, and in the case of the Transit Construct, priced parking supply for commercial uses; and
- increased residential density.

b. How the Factors Operate on Travel Behavior

As discussed above, these factors in various combinations can bring about varying degrees of reduction of single occupant vehicles, due to:

- internalization of vehicle trips, whether by vehicle, transit, or walking; and/or
- reduction of extemal vehicle trips by shifts to transit or rideshare modes.

c. Using NCHRP \#323

In looking for case study data to use in measuring the vehicle trip reduction effects of these characteristics, one of the best sources, containing the largest, most recent and most consistent data set is NCHRP \#323, Travel Characteristics at Large-Scale Suburban Activity

Centers (October, 1989) by Kevin Hooper ${ }^{1}$. As shown in his report and in other studies such as Cervero's, ${ }^{2}$ existing "suburban activity centers" or "suburban employment centers" typically exhibit some of the above characteristics, but not all. Existing centers exhibit some land use mixing (particularly office/retail), but generally, with the possible exception of Bellevue, Washington, do not have the level of residential development, the parking restraints, the clustering, rail service, internal transit service, or pedestrian amenities included in our constructs.

The literature indicates that many of the suburban activity centers are actually more like "trend" development than the constructs. Individual cases where higher transit use or walking rates have been achieved are those, like Bellevue, where there is transit, more housing units, better integrated design, or pedestrian walkways, etc.

Beyond the NCHRP \#323 report, other case studies are useful insofar as they measure effects of transportation demand management measures, individual land use or transit service characteristics. These others do not consider the land use mixing.

d. Basic Trip Reduction

Thus, a decision was made to use the average values from NCHRP \#323 as a base indicator of trip reductions which can be achieved through a limited amount of mixing land uses and increasing density in suburban activity centers which would otherwise be dispersed in a "trend" (sprawl) pattern. The case study data provided the benchmark values and empirical evidence which were used as the starting point for the regional testing.

It should be noted that the base trip reductions are fairly substantial in themselves. Their impact, regionally, could be fairly significant without full construct development.

e. Enhanced Trip Reduction Factors in Constructs

Then, for each land use under each construct, additional case studies and the experience of observed behavior were used to estimate added reductions which could be attributed to the particular features assumed for our constructs. Some of these reductions are tied to the Hooper data for Bellevue and other case study data of developments which are most like our constructs.

Others are estimates, based on work/non-work trip percentages, ratios of employment to housing, etc. For some trip types there are no further trip reductions beyond those indicated in the Hooper cases. (As noted in Appendix A.)

The exception is the walking construct, which is not really a "suburban activity center" as currently defined, and for which there is. the least case study data. The most comparable data, if available, would probably be from new towns such as Reston or the new "neo-traditional suburbs." In this case, the project team reached a decision that the base

1. Hooper, Kevin G. Travel Characteristics at Large-Scale Suburban Activity Centers, National Cooperative Highway Research Program Report 323, (October, 1989).
2. Cervero, Dr. Robert. America's Suburban Centers: A Study of the Land Use/Transportation Link, Prepared for Office of Policy and Budget, Urban Mass Transportation Administration, Report No. DOT-T-88-14, Washington, D.C. (January, 1988).
case trip type values could not be achieved in all cases, since the walking construct had the least similarity to the mixed-use centers studied, notably its lack of employment opportunities. Therefore, in the case of the walking construct, smaller base reductions were made for some trip types through negative adjustments.

f. Factoring to Avoid Double Counting

The resulting trip reductions were then combined for each construct through factoring. In this way the values for the individual components were combined as the ${ }^{*}$ product of sub-factors for each percentage. This was done to avoid double counting. For example, transit users produced by construct conditions are not available for carpools, and vice versa. If individual trip reductions of 15 percent and 10 percent might be estimated for transit mode shift and carpooling, respectively, the reduction factor would be 0.765 (0.85 x 0.90), implying a lesser reduction of $1-0.765=0.235$ or 23.5 percent.

Table 2 on page 30 summarizes the total vehicle trip reductions by construct. The table shows that compared to the trend vehicle trip generation rate, the number of vehicle trips generated and attracted to that construct will be reduced by that factor. (See Section 5 on the following page, for example. Detailed tables showing calculations of vehicle trip reductions for each construct are included in Appendix D.)

It is difficult to substantiate every factor as applied to every trip type. However, it is possible to see how each construct compares to the current suburban activity centers for each type of trip. Looking at the literature, the values chosen for use in the analysis are within ranges which have been measured in other case studies such as those presented in the ITE 1987 Trip Generation Manual ${ }^{1}$ and the Stover and Koepke text Transportation and Land Development. ${ }^{2}$

Similarly, the February, 1990 FHWA resport, Evaluation of Travel Demand Management Measures to Relieve Congestion ${ }^{\text {, }}$, states that by instituting programs of Transportation Demand Management (TDM) measures, "trip reductions in the range of 20\% to 40% can be the norm, rather than the exception." Although our study purposely does not attempt to isolate TDM program effects from land use factors, TDM programs such as constrained and priced parking, TMA activity, rideshare incentives, and staggered work hours are considered part of each construct "package" along with the land use mix, density, and design features which are the focus of this analysis.

Land use based vehicle trip reduction factors were later converted to Home BasedWork, Home Based-Other, and Non-Home Based categories in the AM peak hour, as required by the network model used in the TransCAD package. Figure 11 shows the travel reduction factor for each construct type for the four key time periods, compared to the same land use developed under trend conditions. The model was run for 1988 conditions, the 2010 "trend" scenario, and two construct scenarios (ADT), as explained in Chapter IV.

1. Institute of Transportation Engineers. Trip Generation, 4th Edition (1987) pp.17-21.
2. Stover, Virgil G. and Frank J. Koepke, Transportation and Land Development, Institute of Transportation Engineers, Englewood Cliffs, New Jersey (1988) pp. 47-48.
3. Kuzmyak, J. Richard, Eric N. Schreffler, and Harold Katz, et al. Evaluation of Travel Demand Management (TDM) Measures to Relieve Congestion, Report No. FHWA-SA-90-005, prepared for Federal Highway Administration, Washington, D.C. (February, 1990), p. 28.

5. Producing a Vehicle Trip Reduction Factor: An Example

An example of how this method is applied, related to office trips, follows. The numbers correspond to those shown in Table 2 on the next page.
o For office use in the AM peak hour, NCHRP \#323 shows that for "smaller centers," (those most similar in size to the constructs), an average of 10 percent of employees make a stop within the activity center. Mode shift data from NCHRP for the nonBellevue suburban centers ${ }^{1}$ show that, on average, 1 percent use transit, walk or bike, and 7 percent carpool. These values were put into the matrix as base case study values. It was assumed that these reductions would be achieved as a minimum vehicle trip decrease from the trend values in any of the constructs. Result: 0.90 x $0.99 \times 0.93=0.83$ net vehicle trip reduction factor.
o Then, for the transit construct, an additional 2 percent internal trip reduction was estimated, due to the internal transit system and improved walking conditions. An additional 12 percent transit use was estimated, based on Bellevue's 10 percent transit mode share (with radial bus system), plus an estimated 2 percent reduction due to the rail access. Reductions due to ridesharing were not increased over the case study value. Result: 0.83 (from base case, above) $\times 0.98 \times 0.88=.71$ net vehicle trip reduction factor.
o For the short drive construct, reductions due to increased internal walking were increased by 1 percent, and carpooling was increased 8 percent over the base values, based on Cervero's findings of 15 percent carpool rates for large and medium mixed use centers. Result: 0.83 (from base case, above) $\times .99 \times .92=.75$ net vehicle trip reduction factor.
o For the walking construct, office trips represent a much smaller proportion of total travel, but, due to their location, they attract a large proportion of employees and visitors from within the construct. Thus, the 10 percent internal trip reduction from the base case was deemed valid for office uses in this construct. However, no external transit use or carpooling increases were predicted for the walking construct, due to the absence of new regional services and the low proportion of use in commercial space, which would not justify adding local bus service. Thus, these values were listed as negative values (translated into factors greater than one) in the table. Result: $0.83 \times 1.01 \times 1.07=0.90$ net vehicle trip reduction factor.

Vehicle trip reduction factors were then applied to vehicle trip generation numbers that the basic model produces. By this method, the special vehicle trip reduction characteristics of constructs as opposed to land uses in the region were taken into account.

1. For the transit use value, Bellevue is excluded from the base case value due to its atypical, higher level of transit service which would raise the base value too high to be used in all cases.

Table 2
Summary of Vehicle Trip Reduction Factors

Trip Type
Trend

COMMERCIAL:

Average Daily	1.00	0.69	0.73	0.81
AM Peak Hour	1.00	0.71	0.75	0.90
PM Peak Hour	1.00	0.71	0.75	0.90
Off-Peak Periods	1.00	0.67	0.71	0.75

RETAIL/RESTAURANT:

Average Daily	1.00	0.73	0.76	0.81
AM Peak Hour	1.00	0.83	0.85	0.86
PM Peak Hour	1.00	0.83	0.85	0.86
Off-Peak Periods	1.00	0.67	0.70	0.77

RESIDENTIAL:

Average Daily	1.00	0.73	0.78	0.82
AM Peak Hour	1.00	0.59	0.69	0.77
PM Peak Hour	1.00	0.59	0.69	0.77
Off-Peak Periods	1.00	0.82	0.84	0.86

Note: Compared to the development pattern expected to occur in the MSM region by the year 2010 (if Trend conditions continue), constructs would produce fewer vehicle trips on the regional highway network. As this chart shows, if the Trend represents the expected level of vehicle tripmaking, then the constructs produce daily trip levels between 0.59 and 0.90 of what would be expected to occur, depending upon trip types and construct types.

Figure 11

CHAPTER III:
 DEVELOPING THE REGIONAL TRANSPORTATION MODEL

A. Basic Components of the Regional Transportation Model

In MSM's Land Use/Transportation Project, a regional transportation model was developed to provide a platform for evaluating the traffic impacts of alternative land use forms in the MSM study area. In particular, it was designed as a means for testing the hypothesis that placing future development in constructs would have a positive impact on traffic in central New Jersey.

The modeling procedure involved three methodologies of particular interest:
o Building the MSM network with reliance on previous efforts;
o Using the GIS-based TransCAD package; and
0 Accounting for the traffic reduction effects of construct development in the regional model.

These are briefly described below and more extensively in the remainder of this chapter. More detailed descriptions and tables are included in Appendix B.

1. Building the MSM Network with Reliance on Previous Efforts

The MSM area presented a particularly intriguing modeling challenge. The region lies at the edge of two regional planning agency boundaries: Philadelphia to the south and New York City/Northern New Jersey to the north. Although parts of the three counties were included in previous transportation modeling projects, there was no uniform network and no calibrated model covering the four standard transportation planning steps (trip generation, trip distribution, modal choice, and network assignment) for all three counties. Thus, the project team was faced with piecing together data and information from other studies and regional planning efforts.

2. Using the GIS-Based TransCAD Package

The demands placed on the regional transportation model were similar for this study to those for any regional study, but with the added desire to control and manipulate land use and demographic data more easily. Because of this goal, enhanced capabilities compared to typical transportation packages were needed.

The TransCAD package, which combines the normal battery of transportation models with a Geographic Information System (GIS), provides these capabilities and thus was used in this study.

3. Accounting for Traffic Reduction Effects of Construct Development in the Regional Model

Another challenge for this project was the fact that the typical four-step travel demand models used throughout the nation generally are not capable of reflecting land use variables related to density/cluster development attributes or accessibility by walking and other non-motorized means. The regional transportation model used in this study was geared toward a more typical urban/suburban setting, and it dealt exclusively with vehicle trips.

As a result, a two-step process for defining and accounting for the traffic reduction features of the constructs was undertaken, as illustrated in Figure 12. The first step, distinct from the TransCAD package and described in Chapter II, was undertaken by the project team with input from the peer review panel and the steering committee.

As discussed, and because the regional models dealt only with vehicle trips, this process first analyzed the specific effects of each construct's land use density, mix, and design and its transit service availability on mode choice, trip length, and auto occupancy for each individual construct. This provided the detailed zone-level analysis of specific construct impacts for various time periods.

Then, to enable input into the regional model, these effects were translated into vehicle "trip reduction factors," which could be input directly into the regional model by traffic zone at the vehicle trip generation stage to modify construct tripmaking relative to "trend." In regional aggregation, this provided the means to compare each construct scenario to the "trend" scenario development trips.

It should be noted that the basic vehicle trip reduction factors used to adjust trend rates for each construct were initially formulated on the basis of ITE Trip Generation rates on a land use basis, as described in Chapter II. For application to the trip generation categories of the regional model, it was necessary to convert the basic factors to apply to the model categories of separate productions and attractions by varying purpose definitions. This will be discussed further in Section D below.

B. Building the MSM Network with Reliance on Previous Efforts

1. Building the 1988 Network

To conduct the travel demand portion of this study, it was necessary to assemble a data base reflecting the highway and demographic conditions of the study area. The highway portion of the data base was used to simulate traffic flows for a given year. In this study, a calibration year of 1988 and a future year of 2010 were used. The demographic data used as inputs to the traffic models were also estimates for the years 1988 and 2010.

Data sources for the highway data base consisted of four networks supplied by the New Jersey Department of Transportation (NJDOT) from studies it had completed. The networks supplied were from the North Jersey Regional Transportation Model Development Project and the Route 1, Route 130 and Route 571 studies. Three of the four networks (Routes 1, 130 and 571) consisted of existing and future links, although not representing the same years. The North Jersey network supplied only the links for 1988 because the future network for that study was still in development. These four networks were used because they covered the majority of the MSM study area with the exception of Hopewell
A. CONSTRUCT DEVELOPMENT \& ANALYSES

Figure 12: CHART OF STUDY PROCESS
and a portion of Ewing Township. No individual network provided complete coverage of the study area, so the four networks were "stitched" together. (NOTE: Although Trenton and New Brunswick were covered, the network was not fine-grained enough to accurately describe urban travel behavior. Because of time and financial constraints, refinements of the cities' network and zone system were not attempted in this study, and the results are therefore limited to suburban analyses.)

To simplify this process, all four networks were loaded over a common base map in TransCAD. By doing this, the consultant team was able to eliminate any portion of a given network that was covered by another. By first establishing the Route 1 network as the base to build from, the other three networks were reduced by deleting where they overlapped the Route 1 network.

The link detail, zone size and coarseness of the Route 130 network closely matched that of the Route 1 network, so it was retained and the Route 571 network was dropped. In addition, although much of the Route 130 network was dropped because of duplicate coverage with Route 1, its network was used to complete the eastern portion of Mercer County and fill in areas of sparse coverage on the eastern fringe of the Route 1 network.

The North Jersey network supplied coverage for the southern halves of Somerset and Middlesex counties. This was the southern-most extent of the North Jersey network and was stitched to the northern limits of the Route 1 network. Each of the older networks had somewhat different attribute conventions since the Route 1 study used UTPS, the Route 130 study used a MINUTP network and the North Jersey network was developed using Tranplan. For the MSM network, the consultant team needed to transfer the number of lanes, initial speeds and per lane capacity (facility and type) from the parent network. This was done by using the TransCAD package, which has superior capabilities for defining link length and location with greater accuracy than the parent systems.

The project team developed new networks and a zone system for Hopewell and Ewing Townships. Speed and capacity classifications for these new links were defined using the facility and area classification table from the Route 1 Corridor Study Report.

2. Building the $\mathbf{2 0 1 0}$ Network

The calibration network was used as a base from which the future network, used in the Trend and Scenarios 1 and 2, was constructed. Both the Route 1 and Route 130 Studies contained future networks. The differences between the calibration and future networks of these two studies represent the proposed projects in the MSM Region. Since the completion of the Route 1 and Route 130 Studies and since the start of this study, a number of highway projects assumed to be constructed are either under further study or lack funding to implement. These projects include Route 92 through Middlesex County and the widening of Routes 27 and 130. Therefore, they were not included in this study.

Discussions with NJDOT revealed four highway facility changes to the MSM calibration network that could be completed by 2010: 1) extension of Route 29 from the Trenton Freeway to the I195/295 Trenton Complex in western Washington Township, Trenton and Hamilton Township; 2) extension of I-295 from the Trenton Complex into Bucks County, Pennsylvania (this extension functions as an external connector in the network); 3) the Hightstown Bypass; and 4) the widening of the New Jersey Turnpike by two lanes from Cranbury Road to State Highway 18.

These changes were incorporated into the existing (calibration) 1988 network to form the 2010 network used for this analysis. It should be stressed, however, that these projects are not necessarily included in NJDOT's committed capital programs.

3. Building Traffic Zones

The MSM region was divided into nearly 200 geographic zones, within which population, employment and other relevant land use/demographic data was stored. Trips originating from or destined to each zone link up to the regional network from each zone centroid via a centroid connector to the highway links. Zones were built as an amalgam of census blocks, a process expedited by TransCAD's GIS capabilities. There is some correspondence between the zones built for this effort and those used in the other modeling efforts described earlier. (Appendix B shows the zonal layout for the MSM region.)

Constructs for the year 2010 were assigned either to an existing traffic zone or to a new zone created from segments of one or more existing zones. Placing a construct in an existing zone(s) meant that any existing development in the zone (as of 1988) would be absorbed in and take on the behavior pattern of the construct development. This implies that the existing development served as a foothold upon which the construct was built. All but four of the constructs created in this study were assumed to be developed in this so-called "piggyback" fashion. In the four new zones, the travel behavior is characterized by the construct factors, but the persons in the surrounding zones with trend-type development would not change as a result of proximity to the construct development.

4. External Trips

The model accommodates external trips. There are two types of such trips: first, trips that pass through the MSM region without origins or destinations in the area; and second, trips that either originate from or are destined to the region, but with destinations or origins outside the region. The Route 1 model had to be adjusted to account specifically for the trip generation of zones that the original model treated as external points, but which were now contained within the larger MSM network.

C. Using the GIS-Based TransCAD Package

The GIS-based TransCAD package contains a gravity model and an equilibrium traffic assignment model among its battery of procedures. It also provides numerous procedures for processing land use data, constructing/subdividing traffic zones, calculating the precise location and adjustment of transportation links, and summarizing traffic phenomena by geographic area. Thus, it provided most of the models necessary for the current study, and allowed for direct entry and manipulation of the land use database by the MSM professional staff. A spreadsheet model calculated the daily person trip ends. A complex combination of case study results provided the modal choice (reduction) percentages for each type of construct. Constructs were easily accommodated by creating new zones or altering zone boundaries.

Because they were based on vehicle trip generation rates by individual land use, the traffic reduction effects of the constructs were taken into account in the Trip Generation step of the standard four-step transportation modeling process. To be used in the model, however, the rates had to be converted from land use based rates (i.e. vehicle trips per 1,000 square feet of floor space) to rates which could be applied to the different trip categories used in the model. This procedure is discussed below.

This study used a simplified set of vehicle trip generation equations in order to reduce the need for detailed zone level land use forecasts. The relationships in the parent studies required estimates of housing units by type (single family, low-rise multi-family, high-rise), or household size and income. It should be noted that the North Jersey study, which used income and household size, did not forecast dwelling unit levels for any future year.

This study developed a simplified set of vehicle trip generation rates from the Route 1 Study rates, as shown in Appendix C. Where land uses combined (e.g., single family and multi-family dwelling units), the new rates were calculated as the weighted averages of the rates from the parent study. Thus, they contained an implicit assumption that the relative mix of dwelling types would remain the same in the future for the basic trip generation equations. In a similar fashion, new factors for trip attractions were weighted functions of various employment categories which have been aggregated into retail and non-retail categories.

The trip generation formulas used generated vehicle trips for three basic trip types:
o Home-based-work trips, meaning trips made from home to work or work to home;
o Home-based-other trips, meaning trips made to or from home, to or from another, non-work destination; and
o Non-home-based trips, meaning a trip not made either to or from home.

The formulas generated these vehicle trips for four different land use types (reduced from the 16 land use types used in the Route 1 Study) namely:
o one residential type, combining various density types;
o two employment types, one being retail and the other non-retail, which includes office, industrial, hospital, etc.; and
o one for university students.

All vehicle trips to (i.e., trip attractions) and from (i.e., trip productions) zones were generated. A daily vehicle trip rate represents the sum of attraction and productions for three trip types and four land use types.

The vehicle trip generation formulas developed were applied to all scenarios studied. The trip modification effects of the special land use constructs were incorporated by applying construct trip reduction factors (ITE/land use derived) as described in Chapter II, converted to the model trip categories described on the previous page, and applied to traffic zones where constructs are located.

The factor conversion or adaptation was done by analogy or combination. Among the assumptions made were those that peak hour travel, particularly AM, is home-based and work oriented, and that off-peak non-retail commercial trips are dominantly non-home-based. For example, the factor for residential AM peak hour trips is appropriate for home-based-work productions, as virtually all of such trips leave home and are destined principally to work. Similarly, the off-peak commercial (nonretail) trip factor is appropriate for application to non-home-based productions or attractions, as such trips are unlikely to be going to or from home.

Once the vehicle trip reduction factors were converted to the model categories, they were input into the model to reduce average daily vehicle trips going to or from each construct zone in each of the two scenarios analyzed. The results of the trend analysis, and the analyses of the two alternative construct development scenarios are discussed in the following chapters.

CHAPTER IV:
 FORECASTING DEVELOPMENT SCENARIOS

A key element in testing the effectiveness of constructs of higher density, mixed-use centers is to develop a forecast of future land use patterns in the MSM region. In fact, multiple forecasts must be developed: one representing the best estimate of current land use development patterns without any shift to construct-type development; and one or more forecasts representing the presence of construct centers in the MSM region. A 2010 forecast year was used, representing the latest year in which reasonable estimates of regionwide development can be projected and the earliest year in which to expect constructs to become a significant presence in the region.

Prior to developing these forecasts, however, it is important to build a consistent set of baseline conditions, using the most recent estimate of current land use and demographic characteristics in the region. The year 1988 was designated as the latest year in which existing conditions can be determined with any reasonable accuracy.

A. Developing 1988 Baseline Conditions

MSM staff developed 1988 conditions for the following key indices:

- Total number of households;
o Total retail employment;
o Total non-retail employment; and
o Total university student population.

The 1988 estimates were based on 1980 census data, more recent estimates from the various municipalities in the region, and knowledge of recent site specific developments from MSM's annual Current Development Survey (MSM Regional Data Book). The 1988 levels were estimated for each of the nearly 200 traffic zones. Table 3 shows the various estimates aggregated at the municipal level.

B. Year 2010 Trend Conditions

The total growth increment from 1988 to the year 2010 for the MSM region was based on county projections prepared for New Jersey's Cross-Acceptance Process. This process required counties to help develop the New Jersey State Development and Redevelopment Plan, by soliciting input from municipal officials, interest groups and community leaders. The expected growth levels in the MSM region for the year 2010 as published in the 1988 Preliminary Plan are:

Table 3
1988 Baseline Conditions for MSM Region Communities

o A growth of 182,581 new jobs, of which 14,292 are expected to be retail jobs and 168,287 are expected to be non-retail jobs; and
o A growth of 187,905 new residents, or 92,016 new households.
Once again, year 2010 estimates at the zonal level are based on projections of municipalities, knowledge of "pipeline" projects and judgment of likely growth areas. Table 4 shows the various estimates for the year 2010 aggregated at the municipality level.

C. Alternative Development Scenarios

The basis for alternatives to the expected trend development was the substitution of construct centers for typical suburban land use development. Chapter II introduced the three construct types: the Transit Construct, the Short Drive Construct, and the Walking Construct. All three are projected to be utilized in the MSM region under alternative scenarios. In fact, this study assumes in its alternative growth scenarios that all suburban growth will take the form of constructs.

A major undertaking was to assign the appropriate number of constructs to the region in particular geographic locations. The purpose of this effort should be carefully understood: Placing constructs in actual sites is done to indicate that such development could reasonably fit within the region. However, the sites selected are not meant to be actual recommendations for construct development, but merely representative locations. The project team has not performed any of the necessary detailed planning, environmental or design analyses that would be required to recommend particular development sites.

Two alternative scenarios of construct development were used in this analysis. Scenario 1 tests the effects of channeling some of the growth which would occur in suburban areas under trend conditions into the urban areas of New Brunswick and Trenton, on the hypothesis that placing more development in the urban areas with higher land use densities and more transit services would help reduce auto travel. It is also a policy goal of the emerging New Jersey State Development and Redevelopment Plan.

Scenario 2 assumes that the cities will grow only at their expected trend rates, with suburban constructs absorbing all the remaining growth. Both scenarios take as given the regional projections of employment and household growth. Therefore, the total growth projected for the year 2010 in the Trend, Scenario 1 and Scenario 2 are all the same. It is the disaggregate distribution of development that differs among the Trend and two scenarios. (NOTE: The analysis of the data published in this report does not include the cities. See Chapter V, Defining the Study Area).

1. Scenario 1: Constructs and Major Urban Growth

a. The Urban Growth Component

Preceding the assignment of constructs, it was necessary to make some assumptions about the major urban centers in the region, New Brunswick and Trenton. Their projected growth rates

Table 4 2010 Trend Conditions for MSM Region Communities

Municipality Non-Retail Employment Retail Employment Households

East Windsor	12,097	1,403	13,562
Ewing	30,949	2,791	14,512
Hamilton	27,722	6,568	40,394
Hightstown	3,680	1,000	7,819
Hopewell Township \& Borough	4,426	394	11,231
Lawrence	22,170	7,180	1,113
Pennington	3,510	40	13,295
Princeton Township \& Borough	28,263	1,837	39,619
Trenton	65,644	4,256	4,159
Washington	3,340	600	9,327
West Windsor	23,392	2,128	
			156,266
Mercer County	225,193	28,197	
			23,293
	24,221	2,389	14,249
Franklin	9,311	1,339	4,133
Hillsborough	3,347	283	187
Manville	191	19	5,548
Millstone	9,961	1,149	1,669
Montgomery \& Rocky Hill	1,011	69	49,079

Cranbury	7,360	316	2,165
East Brunswick	22,211	10,551	17,768
Helmetta	214	11	986
Jamesburg	2,270	433	2,215
Milltown	2,615	242	14,006
Monroe	9,913	2,391	16,461
New Brunswick	34,002	3,013	15,223
North Brunswick	30,665	3,667	13,566
Plainsboro	32,097	1,452	15,645
South Brunswick	42,262	1,801	5,504
South River	2,829	423	3,354
Spotswood	2,508	454	
Middlesex County (part)	188,946		
		24,754	110,102

for the year 2010 are shown in Table 4, and are taken from the State Plan's prediction (not policy) of little growth in those areas. These became our 2010 Trend levels for the cities.

MSM's REGIONAL FORUM, discussed in Chapter II, developed a growth policy scenario which placed much higher employment and population in these two cities than did the trend estimates. These became our Scenario 1 levels for the cities.

The remaining regional growth was distributed among constructs.

b. The Construct Component

The assignment of constructs was performed by the project team, with input from the steering committee. As a first step, three Transit Constructs were found to be a reasonable number for the region. Two were located on the Northeast Corridor rail line (at Princeton Junction in West Windsor and the projected station for Monmouth Junction in South Brunswick), and one was positioned near Exit 8 of the New Jersey Turnpike, where there is convenient bus service to New York City.

Next, eight Short Drive Constructs were assigned, absorbing virtually all the remaining regional employment growth not picked up by the cities and the Transit Constructs. Short Drive Constructs were placed where employment centers are already emerging, and/or there is some major highway access.

Finally, the remaining population growth (and a small amount of employment growth) was distributed into eight Walking Constructs. Figure 13 shows a map of the locations of these constructs, while the municipalities in which they are located are listed in Table 5.

2. Scenario 2: Constructs with Trend Urban Growth

In Scenario 2, the year 2010 Trend growth assumptions for New Brunswick and Trenton were assumed to prevail, meaning that the Regional FORUM's goal for a major resurgence of the cities is not met. Instead, the same level of suburban growth as projected in the Trend is expected in this scenario, and all of the 1988-2010 growth increment (except for the small amount predicted for the cities) is absorbed by the constructs. Figure 14 shows how employment and population levels in Trenton and New Brunswick differ among the Baseline 1988, the 2010 Trend, and Scenarios 1 and 2.

It was assumed that the same number of constructs would be sited in the region in Scenario 2 as in Scenario 1, at the same locations. But in order to absorb the larger amount of suburban growth, a number of the constructs have been increased in size. It should be noted, however, that although the land area was increased, the land use density (i.e. average dwelling units per acre) was maintained.

Finally, Tables 6 and 7 show the differences in the total level of employment and households among the Baseline 1988, the year 2010 Trend, Scenario 1 and Scenario 2, aggregated at the municipal level. Detailed descriptions of these forecasts by traffic zone are included in Appendices D and E.

Figure 13

Table 5

Location of Constructs in Both Scenarios 1 and 2

Number of Constructs in Each Municipality of this Type:

Municipality	Transit Construct	Short-Drive Construct	Walking Construct

East Windsor	1 (bus)	-	-
Hopewell Township	-	1	2
Lawrence	-	1	-
Washington	-	1	1
West Windsor	-	-	-
Franklin	-	1	1
Hillsborough	-	1	-
Montgomery	-	-	1
Cranbury	-	1	-
North Brunswick	-	1	1
Plainsboro	1 (rail)	1	1

NOTE: The sites selected are not meant to be actual recommendations for construct development, merely representative locations. The project team has not performed any of the necessary detailed planning, environmental or design analyses that would be required to recommend particular development sites.

Figure 14
Employment and Household Projections for Trenton and New Brunswick for the Year 2010 Under Scenarios 1 and 2

EMPLOYMENT

DWELLING UNITS

奴 1988	

Table 6
Current and Projected Employment Under Different Scenarios

Municipality	Construct Types	Total Employment:			
East Windsor	T	8,463	13,500	21,563	27,031
Ewing		28,660	33,740	28,660	28,660
Hamilton		27,925	34,290	27,925	27,925
Hightstown		2,855	4,680	2,855	2,855
Hopewell Twnshp/Boro	D,2W	3,467	4,820	13,427	17,656
Lawrence	D	21,301	29,350	30,301	34,006
Pennington		1,636	3,550	1,636	1,636
Princeton Twnshp/Boro		22,262	30,100	22,262	22,262
Trenton		54,847	69,900	87,817	69,900
Washington	D, W	2,101	3,940	11,830	15,959
West Windsor	T	12,162	25,520	25,262	30,731
Mercer County		185,679	253,390	273,538	278,621
Franklin	D, W	23,942	26,610	33,672	37,801
Hillsborough	D	4,380	10,650	13,880	17,899
Manville		1,279	3,630	1,279	1,279
Millstone		54	210	54	54
Montgomery/Rocky Hill	2W	7,980	11,110	8,440	8,660
South Bound Brook		495	1,080	495	495
Somerset County (part)		38,130	53,290	57,820	66,188
Cranbury	W	6,703	7,676	6,933	7,043
East Brunswick		25,319	32,762	25,319	25,319
Helmetta		165	225	165	165
Jamesburg		2,082	2,703	2,082	2,082
Milltown	W	2,657	2,857	2,657	2,657
Monroe		1,946	12,304	1,942	1,942
New Brunswick		35,252	37,015	68,223	37,015
North Brunswick	D	15,775	34,332	25,275	26,311
Plainsboro	D	6,999	33,549	16,499	20,518
South Brunswick	T	12,686	44,063	35,516	45,115
South River		2,237	3,252	2,237	2,237
Spotswood		2,174	2,962	2,174	2,174
Middlesex County (part)		113,995	213,700	189,022	175,561
MSM Region Total		337,804	520,380	520,380	520,380

$\mathrm{T}=$ transit construct, $\mathrm{W}=$ walking construct, $\mathrm{D}=$ short-drive construct

Table 7

Current and Projected Households Under Different Scenarios

Municipality	Construct Types	1988	Total Ho 2010 Trend	eholds: 2010 Scen. 1	2010 Scen. 2
East Windsor	T	8,666	13,562	14,666	17,994
Ewing		12,541	14,512	12,541	12,541
Hamilton		31,336	40,394	31,336	31,336
Hightstown		1,818	1,819	1,818	1,818
Hopewell Twnshp/Boro	D,2W	4,673	7,231	10,673	13,976
Lawrence	D	8,616	11,235	11,416	12,958
Pennington		872	1,113	872	872
Princeton Twnshp/Boro		8,804	13,295	8,804	8,804
Trenton		33,952	39,619	53,359	39,619
Washington	D, W	2,250	4,159	6,650	9,073
West Windsor	T	4,436	9,327	10,436	13,764
Mercer County		117,964	156,266	162,571	162,755
Franklin	D, W	13,502	23,293	17,902	20,325
Hillsborough	D	9,165	14,249	11,965	13,507
Manville		3,868	4,133	3,868	3,868
Millstone		180	187	180	180
Montgomery/Rocky Hill	2W	3,290	5,548	6,490	8,253
South Bound Brook		1,502	1,669	1,502	1,502
Somerset County (part)		31,507	49,079	41,907	47,635
Cranbury	W	913	2,165	2,513	3,394
East Brunswick		13,555	17,768	13,555	13,555
Helmetta		439	986	439	439
Jamesburg		1,688	2,215	1,688	1,688
Milltown	W	2,412	3,000	2,412	2,412
Monroe		8,640	14,215	8,640	8,640
New Brunswick		12,682	16,461	32,090	16,462
North Brunswick	D	10,730	15,223	13,530	15,072
Plainsboro	D	6,833	13,566	9,633	11,175
South Brunswick	T	8,341	15,645	18,741	24,493
South River		4,823	5,504	4,823	4,823
Spotswood		2,904	3,354	2,904	2,904
Middlesex County (part)		73,960	110,102	110,968	105,057
MSM Region Total		223,431	315,447	315,447	315,447

$\mathrm{T}=$ transit construct, $\mathrm{W}=$ walking construct, $\mathrm{D}=$ short-drive construct

CHAPTER V:
 ANALYZING THE TRANSPORTATION IMPACTS OF CONSTRUCT SCENARIOS

A. Defining the Study Area

In analyzing the results of the constructs, a somewhat smaller study area was selected from the MSM region. For technical reasons, the cities of New Brunswick and Trenton are excluded. The reasons for examining this smaller, non-urban study area are twofold:
o First, the study was funded to analyze suburban land use trends and alternatives. Although a key assumption is made in Scenario 1 regarding the growth of the cities, it was not within the scope of this analysis to assess the specific impacts of that growth.

0 Second, the vehicle trip generation rates used in the analysis represent the suburban qualities of the region, not its two urban centers. As a result, the transportation model within the TransCAD package over-predicts auto trips in both New Brunswick and Trenton by a considerable amount (since auto trip rates are significantly higher in suburban vs. urban areas). The results showed worse auto congestion in the cities, neither the intent nor a realistic outcome of the planning goals for the cities.

In order to adequately include New Brunswick and Trenton in future analyses, either of two future methodological steps should be taken:

1) Fine tune the network to allow for a greater number of zones within the two urban areas; and
2) Develop specific urban area vehicle trip generation formulas, or urban area vehicle trip reduction factors, similar to those developed for the constructs.

Neither of these steps was within the purview of this study.
The study area, excluding the cities of New Brunswick and Trenton, is referred to as the MSM Construct Study Area.

B. Regional Impacts of the Scenarios

1. Total Vehicle Trips on the Regional Network

Figure 15 shows the effect of constructs on the growth of vehicle trips in the MSM
Construct Study Area. The Trend represents a growth of 1.74 million daily vehicle trips from the 1988 baseline, or an increase of 43 percent. In Scenario 1, the growth is just under 687,000 daily

Figure 15

Growth in Daily Trip Ends: 1988-2010 MSM Construct Study Area: Trend Versus Alternative Development Scenarios

trips, growth of 17 percent from the 1988 baseline. In Scenario 2, the growth is 1.18 million daily trips, an increase of 29 percent from the 1988 baseline.

Table 8 shows the total number of vehicular trips (existing, plus growth related) on the network in 1988, Year 2010 Trend, Scenario 1 and Scenario 2, disaggregated by jurisdiction. For this table (and in subsequent Tables 9-11), some of the smaller municipalities have been grouped together with larger ones to create a set of 17 jurisdictions (MCD's) as mapped in Appendix F. This was done because the limited size of smaller jurisdictions did not allow for substantial network building within them, producing skewed estimates of vehicle miles traveled, speeds and travel time. (However, the full breakout of vehicle trips for all municipalities and zones can be found in Appendix E.) The combined jurisdictions are as follows:

0	Hopewell includes Pennington
0	East Windsor includes Hightstown
0	East Brunswick includes Milltown, South River and Spotswood
0	Monroe includes Helmetta and Jamesburg
0	Hillsborough includes Manville and Millstone
0	Franklin includes South Bound Brook

In addition, as previously discussed, the cities of New Brunswick and Trenton are not shown in the tables or reflected in the accompanying figures.

Table 8 indicates that Scenario 1 produces an 18 percent reduction in total Year 2010 vehicle trips on the regional network, while Scenario 2 produces nearly a 10 percent reduction in total vehicle trips. The higher impact of Scenario 1 is due to the combined effects of channeling more growth into the two urban areas (where higher overall densities and better transit service lead to lower vehicle trip generation), and channeling the remaining suburban growth into constructs. Scenario 2, on the other hand, keeps all trend growth (except a nominal level in the cities) in the suburban areas.

2. Total Vehicle Miles on the Regional Network

Figure 16 shows the effect of constructs on the growth of vehicle miles traveled (VMT) during the AM peak hour on the regional highway network in the MSM Construct Study Area. The trend represents a growth of 299,000 VMT from the 1988 baseline, or a growth of 38 percent. (Baseline VMT in the AM Peak is just over 918,000.) In Scenario 1, the growth is just under 168,000 VMT, or an increase of 21 percent from the 1988 baseline. In Scenario 2, the growth is 202,000 VMT, an increase of 26 percent.

Table 9 shows total AM Peak hour VMT on the network in 1988, Year 2010 Trend, Scenario 1 and Scenario 2, disaggregated by jurisdiction. Scenario 1 causes a 12 percent reduction in the level of year 2010 VMT on the regional network, while Scenario 2 produces nearly a 9 percent reduction.

Table 8
Vehicle Trips in the MSM Construct Study Area

Jurisdiction	Daily Vehicle Trip Ends (Total In and Out):				Percentage Difference From 2010 Trend for:	
	$\begin{aligned} & 1988 \\ & \text { Base } \\ & \hline \end{aligned}$	2010 Trend	2010 Scen. 1	2010 Scen. 2		
					Scen. 1	Scen. 2
Washington	46,697	74,273	127,177	169,591	71.2\%	128.3\%
Ewing	339,907	378,957	328,756	328,756	-13.2\%	-13.2\%
Lawrence	372,560	434,553	375,431	400,411	-13.6\%	-7.9\%
Hopewell	87,780	132,168	183,871	235,956	39.1\%	78.5\%
Princeton	257,165	335,439	249,691	249,691	-25.6\%	-25.6\%
West Windsor	130,647	263,981	216,928	271,722	-17.8\%	2.9\%
Hamilton	608,927	721,057	578,606	578,606	-19.8\%	-19.8\%
East Windsor	206,673	296,117	303,654	358,426	2.5\%	21.0\%
Cranbury	41,837	65,079	57,003	66,956	-12.4\%	2.9\%
Plainsboro	135,014	326,649	183,302	215,762	-43.9\%	-33.9\%
South Brunswick	167,383	404,977	348,622	445,840	-13.9\%	10.1\%
North Brunswick	243,498	410,384	278,127	310,587	-32.2\%	-24.3\%
East Brunswick	640,491	776,287	610,623	610,623	-21.3\%	-21.3\%
Monroe	145,211	313,060	136,739	136,739	-56.3\%	-56.3\%
Montgomery	87,275	135,090	120,435	140,350	-10.8\%	3.9\%
Hillsborough	199,948	288,157	246,814	279,274	-14.3\%	-3.1\%
Franklin	331,006	439,748	383,140	425,554	-12.9\%	-3.2\%
MSM Construct						
Study Area	4,042,019	5,795,976	4,728,919	5,224,844	-18.4\%	-9.9\%

Figure 16
Growth in AM Peak Hour Vehicle Miles of Travel 1988 to 2010 MSM Construct Study Area: Trend Versus Alternative Development Scenarios

Table 9

AM Peak Hour Vehicle Miles Traveled (VMT) in the MSM Construct Study Area

Jurisdiction	Peak Hour VMT:					
			2010 Scen. 1	2010 Scen. 2	Percentage Difference From 2010 Trend for:	
	1988	2010				
	Base	Trend			Scen. 1	Scen. 2
Washington	91,926	109,419	106,211	102,221	-2.9\%	-6.6\%
Ewing	51,551	55,055	57,756	50,929	4.9\%	-7.5\%
Lawrence	74,568	96,545	102,519	99,980	6.2\%	3.6\%
Hopewell	25,494	32,276	33,776	37,927	4.6\%	17.5\%
Princeton	39,966	56,184	42,922	43,845	-23.5\%	-22.0\%
West Windsor	45,731	72,124	59,708	65,460	-17.2\%	-9.2\%
Hamilton	34,764	45,624	47,844	51,608	4.9\%	13.1\%
East Windsor	25,986	36,666	35,761	41,203	-2.5\%	12.4\%
Cranbury	40,201	53,285	45,217	48,301	-15.1\%	-9.4\%
Plainsboro	19,634	37,605	21,786	24,772	-42.1\%	-34.1\%
South Brunswick	71,936	134,703	104,437	118,289	-22.5\%	-12.2\%
North Brunswick	35,178	54,081	50,225	48,668	-7.1\%	-10.0\%
East Brunswick	77,835	88,530	77,480	76,117	-12.5\%	-14.0\%
Monroe	31,246	50,256	32,738	33,026	-34.9\%	-34.3\%
Montgomery	27,441	39,015	30,887	34,152	-20.8\%	-12.5\%
Hillsborough	32,948	46,970	37,555	40,980	-20.0\%	-12.8\%
Franklin	56,065	72,939	63,207	67,221	-13.3\%	-7.8\%
MSM Construct Study Area	782,019	1,081,277	950,099	984,699	-12.1\%	-8.9\%

3. Travel Speeds

As a result of Trend growth between the years 1988 and 2010, speeds on a number of the region's highway links deteriorate. As Table 10 shows, average regionwide . 4 M Peak speeds on the network (which represents only a subset of the region's key highway links), would fall by 4 miles per hour, or a 16 percent decline. Under Scenario 1, there would be virtually no change in speed from 1988 levels. Under Scenario 2, average speed would decline by less than 2 miles per hour, or a 7 percent decline. In both cases, therefore, construct development has a key beneficial effect upon travel speeds, relative to trend development patterns.

Table 10

AM Peak Hour Average Vehicle Speeds in the MSM Construct Study Area

Jurisdiction	AM Peak Hour Average Vehicle Speeds (miles per hour):					
					Percentage Difference From 2010 Trend for:	
	1988	2010	2010	2010		
	Base	Trend	Scen. 1	Scen. 2	Scen. 1	Scen. 2
Washington	29.4	30.6	32.9	31.8	7.7\%	4.2\%
Ewing	12.2	11.0	13.1	15.1	19.3\%	37.4\%
Lawrence	35.6	31.2	33.1	35.6	6.0\%	13.9\%
Hopewell	34.0	32.6	31.5	29.9	-3.2\%	-8.3\%
Princeton	14.5	14.2	14.9	13.8	4.7\%	-3.1\%
West Windsor	32.2	17.9	30.3	27.6	69.0\%	53.8\%
Hamilton	47.4	44.7	45.5	44.7	1.7\%	-0.2\%
East Windsor	29.4	28.7	27.2	25.1	-5.1\%	-12.3\%
Cranbury	44.3	42.0	44.8	44.7	6.6\%	6.3\%
Plainsboro	29.2	19.1	27.6	23.5	44.4\%	22.7\%
South Brunswick	33.4	21.2	28.9	22.1	36.2\%	4.2\%
North Brunswick	28.6	23.8	27.8	24.8	16.8\%	4.0\%
East Brunswick	21.6	19.8	21.5	21.5	9.0\%	8.9\%
Monroe	24.5	22.5	24.7	25.0	9.8\%	11.2\%
Montgomery	32.3	26.4	31.3	30.5	18.5\%	15.5\%
Hillsborough	15.8	8.8	15.3	8.8	75.2\%	0.8\%
Franklin	18.8	17.5	18.5	16.9	5.7\%	-3.1\%
MSM Construct Study Area						
	24.6	20.6	25.0	22.9	21.4\%	11.1\%

4. Travel Time

Figure 17 shows the effect of constructs on vehicle travel time in the AM peak hour. This represents an increase in the total number of minutes required to traverse the highway network as a result of additional tripmaking in the year 2010. The total new minutes of delay experienced in the trend would mean a growth of more than 65 percent. In Scenario 1, the growth in minutes of delay is only 20 percent from the 1988 base year. In Scenario 2, the growth in minutes of delay is 36 percent.

Table 11 shows total vehicle travel time during the AM peak hour on the network in 1988, Year 2010 Trend, Scenario 1 and Scenario 2, disaggregated by jurisdiction. It indicates that Scenario 1 produces a 28 percent reduction in the level of year 2010 travel time on the regional network, while Scenario 2 produces an 18 percent reduction.

Table 11
AM Peak Hour Vehicle Travel Minutes in the MSM Construct Study Area

Jurisdiction	AM Peak Hour Vehicle Travel Minutes:				Percentage Difference From 2010 Trend for:	
	1988	2010	2010	2010 Scen. 2		
	Base	Trend	Scen. 1		Scen. 1	Scen. 2
Washington	187,404	214,849	193,563	192,672	-9.9\%	-10.3\%
Ewing	253,058	301,650	265,206	203,020	-12.1\%	-32.7\%
Lawrence	125,680	185,458	185,864	168,561	0.2\%	-9.1\%
Hopewell	44,966	59,492	64,337	76,233	8.1\%	28.1\%
Princeton	165,878	236,602	172,901	190,643	-26.9\%	-19.4\%
West Windsor	85,344	241,125	118,129	142,297	-51.0\%	-41.0\%
Hamilton	43,983	61,178	63,073	69,337	3.1\%	13.3\%
East Windsor	53,100	76,750	78,907	98,322	2.8\%	28.1\%
Cranbury	54,467	76,032	60,521	64,811	-20.4\%	-14.8\%
Plainsboro	40,351	118,028	47,364	63,374	-59.9\%	-46.3\%
South Brunswick	129,393	381,204	216,929	321,286	-43.1\%	-15.7\%
North Brunswick	73,928	136,191	108,273	117,800	-20.5\%	13.5\%
East Brunswick	216,182	268,745	215,810	212,109	-19.7\%	-21.1\%
Monroe	76,501	133,951	79,485	79,150	-40.7\%	40.9\%
Montgomery	50,962	88,626	59,201	67,154	-33.2\%	-24.2\%
Hillsborough	125,204	321,775	146,884	278,466	-54.4\%	-13.5\%
Franklin	179,020	250,563	205,342	238,193	-18.0\%	-4.9\%
MSM Construct Study Area	1,905,421	3,152,219	2,281,789	2,583,448	-27.6\%	-18.0\%

Figure 17

Growth in Travel Time (Vehicle Minutes of Travel) 1988 to 2010 MSM Construct Study Area: Trend Versus Alternative Development Scenarios

CHAPTER VI:
 CONCLUSIONS AND NEXT STEPS

A. Conclusions

The questions that were asked as the impetus of the study, as outlined in Chapter I, have now been addressed. We have examined the suburban character of higher density, mixed-use centers and measured the potential results that can be achieved by changing our current practice of creating lowdensity, single-use development.

The extent to which these results can be achieved in the MSM region will depend on our ability to implement construct-like development. Although the total implementation of these constructs is ambitious, several current initiatives are pushing practice in the construct direction: the concept of "communities of place" in the emerging New Jersey State Development and Redevelopment Plan; the federal Clean Air Act mandating significant reductions in vehicle miles traveled (VMT), as well as in emissions in New Jersey; and the struggle in which many towns are engaged to reduce the impact of recent growth on their character and infrastructure.

Four main conclusions can be drawn from this study, and these are discussed below.

1. Mixed-Use Centers Can Produce Significant Regional Transportation Benefits

The results of the previous chapter are clear: Constructs can have significant effects on slowing the growth of trips, VMT, and the deterioration of highway speeds normally associated with growing suburban areas. In the year 2010, construct scenarios have the following effect, relative to the trend:
o 10-18 percent reduction in total projected regional automobile trips -- and a 30-60 percent reduction in the incremental impacts of forecasted growth;
o 9-12 percent reduction in total projected regional vehicle miles traveled (VMT) -and a 33-45 percent reduction in the incremental impacts of growth;
o little, if any, change in regional speeds; and
o $\quad 18-28$ percent reduction in added travel time.

All of these regional network impacts have far-reaching consequences in many areas:
o The continued deterioration of air quality is retarded;
o Energy utilization growth rates are lessened;

0
o The rapid pace of degradation of highway surface and capacity conditions is curtailed, with consequent cost savings implications for funding agencies;
o Less land is required for new roads and parking areas to accommodate the automobile; and
o The overall amenities of suburban life can be better preserved for all the region's inhabitants, while still accommodating the demand for further growth.

NOTE: The scenarios outlined in this study place the entire 1988 to 2010 growth increment either into a city or a higher density, mixed-use, carefully planned construct. No sprawling, dispersed suburban development was projected. Achieving this level of success in planning and implementing new development patterns by the year 2010 is unlikely because of the number of new developments that already have planning permits for traditional, low density, single-use patterns. Success in the future will be achieved by working with uncommitted lands and by redesigning existing development over a much longer time frame. The extent to which we can achieve these goals will depend on the extent to which we can change current land use practices.

2. Mixed-Use Centers Are A Viable Concept For Suburban Centers

As conceived in this study, constructs of higher-density, suburban mixed-use centers assume continued reliance on automobiles for most forms of travel. At the same time, their design is based upon familiarity with and general acceptance of transit and ridesharing alternatives. Further, they incorporate the types of pedestrian amenities and interaction that are often lacking in suburban settings. Finally, the construct design assumes that, given the opportunity to work and shop near home, and encouraged to take advantage of this opportunity by demand management policies, a number of suburban dwellers will opt to do so.

With this understanding as background, it is possible to define constructs that are clearly suburban in nature, but which draw on the efficiencies of density and variety to make them active and successful places to live and work. Constructs can take advantage of nearby rail stations or regional highway links as a way of supporting their higher densities (i.e., 10-15 dwelling units per acre; commercial floor area ratios of 1.1 to 2.0), while reducing (but by no means eliminating) the typical suburban dependence upon the automobile. Walking constructs can offer residential amenities that help support other nearby constructs which have higher densities and significantly more employment opportunities.

Constructs of limited size (i.e., from 350 to 900 acres) can be sited in a suburban area and expected to absorb development pressures for employment and residential growth without converting the suburban setting into an urban one. They can incorporate some of the better features of current suburban single-use centers and make them work to better advantage for residents and employees.

3. Mixed-Use Centers, Through Design and Function, Can Have Tangible Local Transportation Benefits

The nature of higher density, mixed-use centers around the nation has made them more efficient places to travel from, to and within. Constructs encourage more internal tripmaking -- where the trip never reaches the regional highway network -- because of greater employment opportunities for residents and more retail/services to attract residents and employees. Furthermore, a number of these internalized trips are not made by automobile, since 1) pedestrian-oriented site planning and design, as well as density itself, encourages pedestrian tripmaking, and 2) densities allow greater reliance on internal transit shuttle systems.

External vehicular tripmaking is reduced as well, due to the availability of transit services and the encouragement of transit modes through the Travel Demand Management (TDM) policies and programs of employers and government. In addition, densities enhance ridesharing opportunities, while active TDM policies bring ridesharing into reality.

All these factors have the effect of reducing vehicular tripmaking during all periods of the day and in each type of construct, relative to typical suburban development patterns. During the peak commuting hour, the Transit Construct produces a 28 percent reduction in vehicles accessing the regional highway network for some trip types. In the Short Drive Construct, reductions on the order of 24 percent are likely, while even in Walking Constructs, reductions of up to 18 percent are likely. Off peak reductions are typically less, but can have an impact.

4. Promoting Strong Urban Growth Along With Suburban Mixed-Use Centers Gives the Best Regional Results

The type of strong urban resurgence that the Regional Forum set as a goal for New Brunswick and Trenton has beneficial effects on the region as a whole, particularly when combined with suburban constructs. As shown in Chapter V, major urban growth in employment and households, combined with the suburban constructs, reduces the growth in total trips by nearly 20 percent. Without that type of urban growth -- meaning that it must be absorbed into the suburban constructs -- the overall growth in regional trips is reduced by only 10 percent. Similar differences occur for the other impact criteria. This points out, as the Regional Forum previously indicated, that strong urban development policies must be in effect and that they can support suburban development.

B. Next Steps

Three areas are indicated for further analysis as a result of this study: making technical improvements to the first study, addressing more questions relevant to the relationship of land use and transportation; and developing a methodology to encourage land use change by those entities which control the development process.

1. Technical Improvements to the MSM Model and Regional Network

Technical issues that remain at the conclusion of this study include: 1) redoing an overall regional analysis to include the cities of New Brunswick and Trenton, and 2) further expanding of the TransCAD/construct modeling effort for use as a more refined planning tool by MSM and its constituents. These are briefly described below:

a. Improving the Modeling of the Cities

As discussed in Chapter V, regionwide trip generation formulas do not reflect urban tripmaking conditions well. In order to understand better the full regional -- urban and suburban -- and subregional consequences of constructs and strong urban growth, new formulas should be developed or urban area vehicle trip reduction factors devised. In addition, more detailed networks and traffic zones for the urban areas need to be built (e.g., Trenton is represented by only one zone in this model) to better distribute tripmaking within and around the periphery of the cities.

This type of modeling will also help urban areas to implement traffic and public transportation improvements which are responsive to the changing commuting patterns of the 1990's.

b. Expanded/Refined Use of the Study Methods

The construct vehicle trip reduction methodology, in combination with the TransCAD regional modeling package, is used here primarily as a tool for analyzing major, areawide development and transportation impacts. However, it can be readily refined to forecast discrete network impacts of site specific development types at the municipal and sub-municipal levels.

In particular, use of the spreadsheets offers analysis of vehicle trip reductions for peak hours and off-peak periods not analyzed by the regional model in this study. With this tool, MSM can assist the municipalities and counties in assessing land use decisions in conjunction with the status of the transportation network.

In order to accomplish this, a more detailed network for the MSM region should be built, including a peak hour version, as well as more refined traffic zones created to account for particular projects.

2. Quantifying the Public and Private Costs and Benefits of the Study Findings

The finding that the vehicle trip generation of projected new development in the region can be reduced by as much as 60 percent through changes in land use and development patterns is dramatic. Even the lesser reductions potentially achieved by these changed development policies are worth further consideration. The benefits of these reduced vehicle trips to the public and private sectors deserve further quantification. For example, if year 2010 travel demand was reduced by 20 percent from forecast levels, what savings in highway maintenance costs would result? What new highway links could be postponed or not constructed? What energy savings would result? And, what are the longerterm environmental savings in terms of such measures as improved air quality or preserved open land?

These questions are probably of most interest to public sector decision makers. However, the development community would be interested to know whether these "construct-style" projects could be built at less or at least the same cost as the current type of projects. Will they be marketable? Are there savings afforded by reduced parking requirements? Lower lot sizes? Lower roadway costs? Less impact fees? Specific case studies of construct patterns should be conducted to explore these questions, as MSM develops design guidelines and an implementation framework for the new options.

3. Seeking Public Support for Changing Regional Development Patterns

In this study, MSM Regional Council and the consultant team have worked together to see whether higher density, mixed-use suburban development can achieve traffic impact reduction on a regional level. The conclusion is that indeed it can. As MSM moves forward, this evidence needs to be supported by data from other subject areas, including that outlined in Section 2 above, and presented to local officials, employers, developers, and residents.

MSM recognizes the institutional strength that is invested in current land use patterns. Besides changing the zoning ordinances and master plans specifying the preference for low density, single-use development, banks, developers, residents associations, and many planning professionals will need to be convinced that a new pattern of development will be worth the risk of making a change.

MSM is a unique private, non-profit planning organization, carrying out both research and advocacy activities in central New Jersey. As a non-governmental agency, MSM has no authority to implement its recommendations, but its twenty-three-year history in the region has given MSM considerable credibility among its constituents. MSM staff will widely disseminate the results of this study and will use their influence through private and public meetings and seminars to ensure that serious consideration is given to the recommendations.

Further, the concepts outlined here will be strengthened by the goals and objectives of the New Jersey State Development and Redevelopment Plan and the federal Clean Air Act, as communities seek to bring their local plans into conformity with state policies. These state initiatives will provide the needed incentive for county and local governments to change their land use decision-making process.

The Urban Mass Transportation Administration and the New Jersey Department of Transportation have agreed to sponsor some of the additional work outlined above. The results of this work will determine whether the benefits of land use change can be translated from the pages of this research report into the protection and enhancement of the quality of life in the region.

REFERENCES

1. Cervero, Dr. Robert. America's Suburban Centers: A Study of the Land Use- Transportation Link, prepared for the Office of Policy and Budget, Urban Mass Transportation Administration, Report NO. DOT-T-88-14, Washington, D.C. (January, 1988).
2. Hooper, Kevin G. Travel Characteristics at Large-Scale Suburban Activity Centers, National Cooperative Highway Research Program, Report 323 (October, 1989).
3. Institute of Transportation Engineers. A Toolbox for Alleviating Traffic Congestion (1989).
4. Institute of Transportation Engineers. Trip Generation, 4th Edition (1987).
5. Kuzmyak, J. Richard, Schreffler, Eric N., and Katz, Harold, et al. Evaluation of Travel Demand Management (TDM) Measures to Relieve Congestion, Report No. FHWA-SA-90-005, prepared for Federal Highway Administration, Washington, D.C. (February, 1990).
6. Middlesex Somerset Mercer Regional Council. Suburban Mobility and Growth Management: Initiatives in Central New Jersey (April, 1989).
7. Middlesex Somerset Mercer Regional Council. An Action Agenda for Managing Regional Growth (June, 1987).
8. New Jersey State Planning Commission. Communities of Place: A Legacy for the Next Generation, the Preliminary State Development and Redevelopment Plan for the State of New Jersey, two volumes (November, 1988).
9. Stover, Vergil G., and Koepke, Frank J. Transportation and Land Development, In stitute of Transportation Engineers, Englewood Cliffs, New Jersey (1988).

Appendix A

Calculation of Vehicle Trip Reduction Factors for Walking, Transit, and Short Drive Constructs

MEMORANDUM

TO: MSM Regional Council
FROM: Land Use/Transportation Study Consultant Team
DATE: October 26, 1990
SUBJECT: Construct Trip Reduction Factors

This memo is intended to serve as a working record of trip reduction expected from Land Use Constructs, for review and fina! comment from appropriate parties. The trip reduction factors have been prepared both from the perspective of land use and for direct use in the TransCAD network model.

Based on our prior memorandum of September 25, and our study team meeting of October 11, we have finalized our estimate of the vehicular trip reductions which can be attributed to the various land use mix and density characteristics of our three constructs. As you know, we have worked hard to tie the estimated reductions to documented case study data. This memo presents the estimated reductions for each construct on a land use basis, the methodology utilized for translating these to the categories required for the regional network model, along with the results of each analysis stage.

Attached are tables summarizing case study trip reduction data which are considered applicable to our constructs as base values, plus additional trip reduction increments which can be expected for the various land use types under each of the three constructs. These factors have been devised for use with vehicle trip rates based on land use, similar to standard ITE trip generation rates. As we discussed, they can also be applied to person trip rates, provided that the same vehicle occupancy rates are used in the basic trip generation for the trend and construct scenarios.

Reduction Factor Determination Method

The methodology for determining the trip reduction factors is summarized below. All land use based factors were estimated for the AM peak hour, PM peak hour, offpeak period and the average daily traffic (ADT) conditions, while the values for the network were focused on only the AM peak hour.

1) Define land use and transit characteristics of constructs.
2) Determine conditions which lead to reduction of network vehicle trips through the means of a) changing external trips to internal trips (either vehicle, transit, or walk) and b) shifting mode of external trips (from SOV's to either transit or rideshare modes).
3) Use data from actual case studies at existing Suburban Activity Centers to help determine the level of trip reductions that would be experienced in our constructs under the conditions established in 2).
4) Compare constructs to case study data conditions to see if case study reductions apply, or if additional trip reductions can be expected beyond the case study values due to more favorable construct conditions.
5) Sum trip reductions for each construct. The initial reduction estimates were expressed as individual percentages for each relevant condition, and presented as simple sums for "gross" reductions. For "net" reduction factors, the values for the individual component conditions were combined as the product of sub-factors for each percentage. This was done to avoid double counting, as the effects of one condition remove a portion of total trips that can be affected by other conditions. For example, transit users produced by construct conditions are not available for carpools and vice versa. Numerically, if individual trip reductions of 15% and 10% might be estimated for transit mode shift and carpooling, repectively, the gross reduction would be $25 \%(15+10)$, but the net reduction factor would be 0.765 (0.85×0.90), implying a lesser reduction of $1-0.765=0.235$ or 23.5%.
6) As a basis for comparison of construct trip making with the same development program under "trend" conditions, the ITE trip generation rates for AM peak, PM peak and average daily vehicle trips (with offpeak trips as a byproduct) were applied to construct land use programs. Trip generation under construct conditions was calculated using ITE rates modified by the estimated reduction factors. For each construct, trips made with reduced rates were compared with trips produced with unmodified rates, yielding estimates of trip reduction performance compared with "trend" conditions. THIS STEP IS IMPORTANT FOR OVERALL ANALYSIS, BUT WAS NOT USED FOR ESTABLISHING CONSTRUCT TRIP MAKING IN THE NETWORK MODEL.
7) Convert construct land use based trip reduction factors to HBW (Home Based Work), HBO (Home Based Other), and NHB (Non Home Based) categories in the AM peak hour, as required by the TransCAD network model.
8) Run TransCAD model for "trend" scenario and first construct alternative (AM peak hour).
9) To supplement and expand on the "AM peak hour only" operations of TransCAD, analyze trip characteristics on a construct level versus the same land use programs on a trend basis for AM peak, PM peak, off-peak and ADT, as set forth in 6).

Application

In prior study phases, we have already identified the characteristics of the constructs. This memo summarizes the identification of the trip reduction factors to be applied to ITE rates for each land use. These steps are explained below.

1) The trip reductions from the constructs are due to a combination of factors.

These include:

```
- overall office/retail/housing mix;
- jobs/housing ratio;
- total employment;
- design integration;
- proximity to rail transit;
- presence of radial bus service;
- presence of internal bus service;
- constrained (and in the case of the transit construct priced) parking supply
    for commercial uses; and
- increased residential density.
```

2) These factors in various combinations can result in varying degrees of reduction of single occupant vehicles, due to:

- internalization of external vehicle trips, whether by vehicle, transit, or walking; and/or
- reduction of external vehicle trips by mode shifts to transit or rideshare modes.

3) In looking for case study data to use in measuring the trip reduction effects of these characteristics, we found no comparable existing data for areas which combine all of the factors as our constructs are intended to do. Probably the largest, most recent, most consistent data set is that found in NCHRP 323, Travel Characteristics at Large-Scale Suburban Activity Centers (October, 1989) by Kevin Hooper of JHK ${ }^{1}$, one of our "peer review group." As shown in his report and in other studies such as Cervero's ${ }^{2}$, existing "suburban activity centers" or
1. Hooper, Kevin G. Travel Characteristics at Large-Scale Suburban Activity Centers, National Cooperative Highway Research Program Report 323, (October, 1989).
"suburban employment centers" typically exhibit some of the above characteristics, but not all. With the possible exception of Bellevue, Washington, the existing suburban activity centers exhibit some land use mixing (particularly office/retail), but generally not the parking restraints, clustering, rail service, internal transit service, or pedestrian amenities which are included as assumptions in our constructs. And, many of the suburban activity centers are actually more like the "trend" development than the constructs. In fact, those individual cases where higher transit use or walking rates have been achieved are those like Bellevue which seem closer to our constructs in terms of adding transit, providing more housing units, better integrated design, pedestrian walkways, etc. Beyond the Hooper report, other case studies are useful in that they measure effects of transportation demand management measures, individual land use or transit service characteristics, but do not consider the land use mixing.
4) Thus, a decision was made to use the average values from NCHRP 323 as a base indicator of trip reductions which can be achieved through mixing land uses and increasing density in activity centers which would otherwise be dispersed in the "trend" (sprawl) pattern. The case study averages provide the benchmark values, tied to reality, which can be the starting point for the regional testing. Bear in mind that these trip reductions are fairly substantial in themselves. Their impact, when applied regionally, should be fairly significant.
5) Then, for each land use under each construct, additional references and "professional judgment" are used to estimate added reductions which can be attributed to the particular features we are assuming for our constructs. Some of these are tied to the Hooper data for Bellevue and other case study data of developments which are most like our constructs. Others are estimates, based on work/non-work trip percentages, ratios of employment to housing, etc. For some trip types there will be no further trip reductions beyond those indicated in the Hooper cases.

The exception is the walking construct, which is not really a "suburban activity center" as currently defined, and for which there is the least case study data. The most comparable data, if available, would probably be from new towns such as Reston or the new "neotraditional suburbs." In this case, the study team reached a decision that the base case trip type values could not be achieved in all cases, since the walking construct had the least similarity to the mixed use centers studied, notably in its lack of employment opportunities. Therefore, in the case of the walking construct, base reductions were made smaller for some trip types through negative adjustments, as shown in the tables.

[^0]An example of how this method is applied, related to office trips, follows. The numbers correspond to those shown in Page 1 of the attached tables.

For office use in the AM peak hour, NCHRP 323 shows that for "smaller centers," (those most similar in size to our constructs), an average of 10% of employees make a stop within the activity center. Mode shift data from NCHRP for the non-Bellevue suburban centers ${ }^{3}$ show that on average 1% use transit, walk or bike, and 7% carpool. These values are put into the matrix as base case study values. It is assumed that these reductions would be achieved as a minimum vehicle trip decrease from the trend values in any of the constructs. Result: $0.90 \times 0.99 \times 0.93=0.83$ net trip reduction factor.

Then, for the transit construct, an additional 2% internal trip reduction is estimated, due to the internal transit system and improved walking conditions. An additional 12\% transit use is estimated, based on Bellevue's 10\% transit mode share (with radial bus system) plus an estimated 2% reduction due to the rail access. Reductions due to ridesharing are not increased over the case study value. Result: 0.83 from base case, above) $\times 0.98 \times 0.88=.71$ net trip reduction factor (as shown in page 1 of the Tables).

For the short drive construct, reductions due to increased internal walking are increased by 1%, and carpooling is increased 8% over the base values, based on Cervero's findings of 15% carpool rates for large and medium mixed use centers. Result: 0.83 (from base case, above) $\times .99 \times .92=.75$ net trip reduction factor.

For the walking construct, office trips will be a much smaller proportion of total travel, but, due to their location they will attract a large proportion of employees and visitors from within the construct. Thus, the 10% internal trip reduction from the base case is deemed valid for office uses in this construct. However, no external transit use or carpooling increases are predicted for the walking construct, due to the absence of new regional services and the low proportion of use in commercial space, which would not justify adding local bus service. Thus, these values are listed as negative values (translated into factors greater than one) in the table. Result: $0.83 \times 1.01 \times 1.07=0.90$ net trip reduction factor.

Pages 1, 2, and 3 of the attached tables list trip reductions by land use for each construct. Then, Page 4 of the tables summarizes the total trip reductions by construct.

[^1]As we have talked about before, it is difficult to substantiate every factor as applied to every trip type. However, it should be reasonable to predict, as we have done here, how each construct stacks up against the current suburban activity centers for each type of trip. Looking at the literature, the values we have calculated here seem within ranges which have been measured in other case studies such as those presented in the ITE 1987 Trip Generation manual ${ }^{4}$ and the Stover and Koepke text Transportation and Land Development. ${ }^{5}$

Similarly, the February, 1990 FHWA report, Evaluation of Travel Demand Management Measures to Relieve Congestion ${ }^{6}$, states that, for programs of Transportation Demand Management (TDM) measures in combination, "trip reductions in the range of 20% to 40% can be the norm, rather than the exception." Although our study purposely does not attempt to isolate TDM program effects, TDM programs such as constrained and priced parking, TMA activity, rideshare incentives, and staggered work hours are considered part of each construct "package" along with the land use mix, density and design features which are the focus of this analysis effort.

We welcome the comments of the "peer review group" in adding comparative data. Also, as the constructs become incorporated into existing town centers, shopping centers, etc., it may be possible to adapt the trip reduction factors to reflect actual conditions.
/Attachments: Tables, Charts
4. Institute of Transportation Engineers, Trip Generation, 4th Edition, (1987), pp. 17-21.
5. Stover, Vergil G. and Koepke, Frank J. Transportation and Land Development, Institute of Transportation Engineers, Englewood Cliffs, New Jersey (1988), pp. 47-48.
6. Kuzmyak, J. Richard, Schreffler, Eric N. and Katz, Harold et al. Evaluation of Travel Demand Management (TDM) Measures to Relieve congestion Repot No. FHWA-SA-90005, prepared for Federal Highway Administration, Washington D.C. (February, 1990), p 28.

MSM Trip Reduction Relationships: 10/20/90
Land Use Type: COMMERCIAL (OFFICE) TRIPS

AM Peak	PM Peak		Off Peak
Values	Refer. Values Refer. Values Refer.		

CaSE STUDIES: MIXED USE DEV't/SUBuRBAN ACTIVITY CENTERS Construct/Reduction Type:

| Base Reductions for All Constructs: | | | | | |
| :--- | ---: | :--- | ---: | :--- | ---: | :--- |
| Internal Trips: 10% 1 10% 11
 (All Modes) 25% | 21 | | | | |
| External-Transit | 1% | 2 | 1% | 12 | 0% |
| External-Carpool | 7% | 3 | 7% | 13 | 0% |
| Subtotal (Gross): | 18% | | 18% | | 25% |

Additional Reductions/Totals by Construct:
tRANSIT CONSTRUCT:

Internal-Vehicle	0\%		0\%		0\%	
Internal-Transit	1\%	4	1\%	14	1\%	22
Internal-Walking	1\%	5	1\%	15	10\%	23
External-Transit	12\%	6	12\%	16	0\%	
External-Carpool	0\%		0\%		0\%	
CONSTRUCT TOTAL (Gross):	32\%		32\%		36\%	
* Net Ratios =	0.71		0.71		. 67	

SHORT DRIVE CONSTRUCT:

Internal-Vehicle	0%		0%		0%	
Internal-Transit	0%		0%		0%	
Internal-Walking	1%	7	1%	17	5%	24
External-Transit	0%		0%		0%	
External-Carpool	8%	8	8%	18	0%	
CONSTRUCT TOTAL (Gross):	27%		27%		30%	
* Net Ratios $=$	0.75		0.75	0.71		

WALXING CONSTRUCT:

Internal-Vehicle	0%	9	0%	19	0%	25
Internal-Transit	0%		0%		0%	
Internal-Walking	0%		0%		0%	
External -Transit	-1%	10	-1%	20	0%	
External-Carpool	-7%	10	-7%	20	0%	
CONSTRUCT TOTAL Gross):	10%		10%		25%	
\quad Net Ratios $=$	0.90		0.90		0.75	

* Ratios combine individual percentages as a product of corresponding reduction factors.

REFERENCES:

1,11 Hooper, p. 72, Table 17 Average for smaller centers, stop within SAC, 10\%
2,12 Hooper, p. 68
3,13 Av. mode split for non-Bellevue sites: 92\% auto, 7% carpool, 1% bus/walk/bike
4,14 H/SH estimate
5,15 H/SH estimate
6,16 H/SH estimate based on Bellevue 10% transit/bike/walk mode share with radial bus and 2% due to rail access
7,17 H/SH estimates: slightly higher walk commute due to more housing nearby
8,18 Cervero, America's Suburban Centers, p. 955 - increase due to density/land use mix
9,19 H/SH estimates: base reduction applicable to commercial trips because nature and location make office uses likely to attract local workers
10,20 H/SH estimates: reduced from base due to low proportion of office use in construct
21 Hooper, p. 72, Table 17 .- midday trips by office workers within SAC - smaller centers
22,23 H/SH estimates: marginal diversion to transit beyond case study value; large increase in walk trips due to density, design features
$24 \quad \mathrm{H} / \mathrm{SH}$ estimate: increase in walk trips due to more retail integration and design features, but less than that for transit construct due to greater distances H/SH estimate: base rates apply for offpeak trips due to high ratio of commercial to office space, design features

MSM Trip Reduction Relationships: 10/20/90
Land Use Type: RETAIL TRIPS

AM Peak		PM Peak
Values	Refer. Values Peak	
Refer. Values Refer.		

case studies: mixed use development/suburban activity centers
Construct/Reduction Type:
Base Reductions for All Constructs:

Internal Trips:						
(all modes)	14%	1	14%	6	23%	11
External-Transit	0%		0%		1%	12
External-Carpool	0%		0%		1%	13
Subtotal (Gross):	14%	0	14%	25%		

Additional Reductions/Totals by Construct:
TRANSIT CONSTRUCT:

Internal -Vehicle	0%		0%		0%
Internal -Transit	0%	0%	2%	14	
Internal - Walking	1%	2	1%	7	10%
External -Transit	2%	3	2%	8	0%
External -Carpool	0%		0%		0%
CONSTRUCT TOTAL (Gross):	17%		17%	37%	
* Net Ratios=	0.83		0.83	0.67	

SHORT DRIVE CONSTRUCT:

Internal-Vehicle	0%	0%	0%	
Internal-Transit	0%	0%	2%	16
Internal-Walking	1%	4	$\mathbf{1 \%}$	9
External -Transit	0%	0%	5%	17
External-Carpool	0%	0%	0%	
CONSTRUCT TOTAL (Gross):	15%	15%	0%	
* Net Ratios $=$	0.85	0.85	32%	

WALKING CONSTRUCT:

Internal-Vehicle	0\%	5	0\%	10	0\%	18
Internal-Transit	0\%		0\%		0\%	
Internal-Walking	0\%		0\%		0\%	
External-Transit	0\%		0\%		-1\%	19
External-Carpool	0\%		0\%		-1\%	20
CONSTRUCT TOTAL (Gross):	14\%		14\%		23\%	
* Net Ratios $=$	0.86		86		. 77	

* Ratios combine individual percentages as a product of corresponding reduction factors.

REFERENCES:

1,6,11 Hooper, p. 89 .- average of smaller activity centers (Bellevue, South Coast Metro and Southdale)
12,13 Hooper, p. 89 -- average of smaller activity centers (Bellevue, South Coast Metro and Southdale)
2,3,7,8 stightly higher retail conmute trips by radial transit, walking (estimate)
4 Slightly higher retail commute trips by walking -- estimate
5,10 Base values hold for retail employment due to relatively low number of jobs to be filled by high number of households in construct
14,15 For transit construct, 12% increase in internal offpeak trips estimated over case study values - due to higher density, design, constrained parkinng
16,17 For short drive, moderate increase in retail offpeak internal trips due to better design, clusteering (estimate)
18 For walking construct, lbase values assumed to hold for offpeak due to large number of households to support neighborhood commercial center
19,20 Base values do not apply due to low square footage of retail .- not large enouugh center to attract carpool, transit offpeak trips

MSM Trip Reduction Relationships: 10/20/90
Land Use Type: RESIDENTIAL TRIPS

| AM Peak | PM Peak |
| :--- | :--- | :--- |
| Values | Refer. Values \quad Refer. Values Peak |
| Refer. | |

CASE STUDIES: MIXED USE DEV'T/SUBURBAN ACTIVITY CENTERS
Construct/Reduction Type:
Base Reductions for Transit and Short Drive Constructs: Internal Trips:

(All Modes)	27%	1	27%	13	7%	25
External-Transit	0%		0%		0%	
External-Carpool	0%	2	0%	14	0%	
Subtotal (Gross):	27%		27%		7%	

Additional Reductions/Totals by Construct:
TRANSIT CONSTRUCT:

Internal -Vehicle	1%	3	1%	15	3%	26
Internal - Transit	1%	4	1%	16	3%	27
Internal -Walking	4%	5	4%	17	4%	28
External - Transit	10%	6	10%	18	2%	29
External-Carpool	5%	7	5%	19	0%	
CONSTRUCT TOTAL (Gross):	48%		48%		19%	
\quad * Net Ratios $=$	0.59		0.59		0.82	

SHORT DRIVE CONSTRUCT:
Internal-Vehicle

0%	8	0%	20	4%	30

Internal-Transit
Internal-Walking
External-Transit
External-Carpool
0\%

CONSTRUCT TOTAL (Gross):

* Net Ratios $=0.69$

WALKING CONSTRUCT:

Internal-Vehicle	0\%		0\%		3\%	33
Internal-Transit	0\%		0\%		0\%	
Internal-Walking	-17\%	11	-17\%	23	5\%	34
External-Transit	0\%		0\%		0\%	
External-Carpool	10\%	12	10\%	24	0\%	
CONSTRUCT TOTAL (Gross):	20\%		20\%		15\%	
* Net Ratios =	0.77		0.77		0.86	

* Ratios combine individual percentages as a product of corresponding reduction factors.

REFERENCES:

1,13 Hooper, p. 94, average for smaller centers.
2,14 No data found on carpool rates per residential unit in suburban centers.
3,4,5 Moderate increases estimated due to increase in housing units, design, density
Increases bring total to 33\% -- compare to Hooper, p. 94
6,18 NYC commuters estimated at 10\%
7,19 Moderate carpool increase seen as result of higher residential density
8,9 No increases over base data seen for short drive
10,22 Moderate carpool increase seen as result of higher residential density
11,23 Reduced internal trips dbeyond base due to fewer employment opportunities within zone
12,24 Residential clustering assumed to foster carpooling - 10\% of HBW trips
15,16,17 Moderate increases estimated due to increase in housing units, design, density Increases bring total to $33 \% \cdots$ compare to Hooper, p. 94
20,21 No increases over base data seen for short drive
2550% of non-employee trips (14\%) internal to construct - H/SH estimate
$26,27,28$ Overall 10% increase in internal tripmaking due to constrained parking, land use mix
29 Low off-peak transit use increase -- trips to NYC
30,31,32 Overall increase in internal tripmaking due to fewer workers/hh (more families), land use mix, design
33,34 Increase over base condition in internal offpeak tripmaking, due to larger HH size, more families, fewer workers, clustering, presence of shopping, services within construct

Appendix B
MSM Region Traffic Zones and 1988 Calibration Network

MSM UMTA Study. Transportation Analysis Zones

MSM Calibration Network - 1988

Appendix C

TransCAD Package Steps and Trip Generation Equations

Appendix 3

Models - Calibration

The following discussion detailing the steps involved in running model applications in TransCAD is being supplied to MSM staff to supplement tutorial and seminar training already completed.

The model execution involves creating a database network, building a matrix table of shortest paths, determining trip distribution with the gravity model, assigning the trips to the network and evaluating the results. This is accomplished through a series of models and worksheets executed sequentially. They will be discussed in the order which they occur.
I. Data Assignment Network

The MSM application database contains a line database commonly refered to as the network. When it is used as part of an application line database, it will be referred to as a database network. When being used as input to one of the transportation models, it will be referred to as the assignment network.

To create a database assignment network, select all the links in a line application database that will be used in the assignment process. Select all the centroids that will be used in zonal interchanges. It is not necessary to select all links and centroids in a line database. If a small area is to be studied such as Mercer County, only those links and centroids need to be selected from the three county set. From the procedures menu, choose Network Builder (80386). Fill in the template with information on the name and location of the new network. A listing of the node fields of the line database will be displayed. Select those fields that will be used in any calculations based on the nodes in the network. Node fields that may be included in the application network are those that contain transfer penalties. Because the MSM application database does not currently contain any information on transit routes, no fields should be selected.

The next list is of the available fields on the links in the network. Select the fields containing generalized cost and capacity for the link. The generalized cost of any link is the free flow travel time for that link plus any additional cost (in minutes) that would be incurred by any user of the link. A toll fee is an example of an additional cost to a user of that link. The current version of the MSM application network only uses the free flow travel time in the generalized cost for most links. The exception to this
is the centroid connectors. Centroid connectors are given an additional penalty of 999 minutes to every user on the link. This is done to prevent trips from passing through a zone via the centroid connectors on the way to a destination zone. Because of this, travel times for all origin/destination pairs will be increased by 1998 minutes (999 when leaving a zone and 999 when entering) The 1998 minutes are later removed to arrive at the true travel time. The resultant file will be used to create a shortest path table and assign trips.

II. Matrix of Travel Time

With the assignment network built, the next step is to calculate the shortest path between zones which are represented as centroid connectors. TransCAD calculates the shortest path based on the generalized cost for a set of links whether it is in travel time or distance. First set the current layer to a node layer of a line database, and select all the centroids and external stations that will be used in the travel time matrix table. From the procedure list, choose Pathtab1, and fill in the template with file name, location and a descriptive label for the table. Choose a network file created in Step I. Enter the weights for link fields contained in the network. For our discussion, enter 1 for generalized cost and 0 for link capacity. The cost of the path is a linear equation (Field 1 * Weight + Field 2 * Weight...). The resulting matrix table of zone to zone travel times will be used in the gravity model in step 3. Because it is a zone to zone matrix, the internal zone travel time is not calculated and is represented in the table as a missing value. Because of the addition of 999 to all centroid connectors, every cell in the travel time matrix table will be 1998 too high. This value can be removed by creating a second matrix table in the Table Editor using the same set of centroids and external stations as were used to create the travel time matrix table in Pathtab1. Fill the new table with 1998. Using the Table Manipulations procedure, subtract the 1998 table from the travel time matrix table. This will yield a table with the correct travel time except for internal trips (the diagonal) which will be -1998. This number must be changed to either missing (press delete key) or any amount of positive travel time in minutes. By leaving the diagonal value as missing, all trips generated are forced onto the network. The lower the diagonal number, the more intrazonal trips will occur. Inversely, the higher the intrazonal time, the fewer the number of trips. Edits to the diagonal must be done one cell at a time, either in a different matrix table where they can be manipulated and added to the travel time matrix, or the diagonal of the travel time matrix can be edited directly.
III. Gravity Model

Trip distribution is accomplished through the gravity model. To execute the gravity model, you will need to create two table files, one with production and the other with attractions. The structure of these files must be the same as the matrix table created in the Pathtabl step. There are three choices of gravity models, Origin Constrained, Destination Constrained or Doubly Constrained. If the Doubly Constrained model is used, then the production and attractions (P's and A's) must be balanced. To balance P's and A's, choose the Balance procedure and balance P's and A's to either P's or A's; or use Balance 2 to adjust both P's and A's. To accomplish the balancing, first, import the raw productions and attractions into the node list, and run either Balance or Balance2. Copy the results to the table files through the table menu. From the procedure list, choose Grav04. Select the type of gravity model to be used (Origin, Destination or Doubly Constrained). Enter the output table file name and path location. Use a generalized cost table created in Step II. Enter the name of the production and/or attraction table to be used (this is based on the type of gravity model used). Select the type of functional form to be used, either negative exponential or inverse power. Finally, enter the cost function (friction factor) to be used. The output file will contain a zone to zone matrix of the trip distribution (O/D demand).
IV. Assignment

The assignment model procedure brings together the output produced in Steps II and III. To run an assignment, select the capacity restrained assignment model from the traffic assignment menu. Enter the name of the solution file and where it is located. Select a network created in Step I. Select the fields with generalized cost and link capacity data. Enter the values for alpha and beta in the Bureau of Public Roads (BPR) formula (.15 and 4.0 respectively). Enter the trip distribution table created in Step III. Finally, enter the number of iterations to be run if closure is not made. Twenty iterations are recommended. At the completion of the assignment, the user will be prompted to input the fields in the network application database that will contain the forward and reverse flows. Forward flows are those traveling from Node A to Node B on any link. Reverse flows are trips from Node B to Node A on two-way links. All two-way links will contain both forward and reverse flows, while one-way links will contain only forward flows.
V. Measures of Effectiveness

Post processing of assignments is done both inside and outside of TransCAD. Numerous measures of effectiveness were used to monitor the calibration process and gauge the effect of changes to scenarios. Measures of effectiveness used during post processing included Root Mean Square Error (RMSE), Volume to Capacity Ratio (V/CR), Level of Service (LOS), congested travel time, average trip length (in both miles and minutes), Vehicle Miles of Travel (VMT), Average speed and percent of intrazonal trips.

RMSE

RMSE is the only measure that must be calculated outside of TransCAD. The remaining can be calculated using the data editor. The formula to calculate RMSE is as follows:

where: sim = Simulated Flow
obs = Observed Flow
$\mathrm{n}=$ Number of Observed Counts
The resulting value indicator of the effectiveness of the simulation. The caveat to this is if the observed counts are taken at locations with large variations day to day, the RMSE is less reliable. Observed counts along major arterials are most desirable because of the consistency of the daily volumes, while counts along local or neighborhood streets are less desirable. RMSE can be applied to the network at regional levels as well as subregional levels (such as a separate RMSE calculated for each county) dependant on the number of counts available.

Traffic Counts

Traffic count data was supplied by NJDOT for state roads in the MSM region from their traffic survey program. The time frame of the counts ranged from 1986 to 1990. Where the 1988 data was available, it was used as is. On the segments where there was no data for 1988 , the counts were adjusted by weighting to represent a 1988 count. The distribution of available data throughout the MSM region is not as even as we would like with most of the counts along Routes 1, 130, 31, and Interstate $195 / 295$ in Mercer and Middlesexx counties. Somerset county contained only three points with usable count data. This lack of observed traffic data brings up concern about calibration volumes in the south Somerset subregion. Because it is an isolated area, its effects on the rest of the regional calibration would be minimal. If the Somerset area will be used in the future for a more detailed
study, it is recommended additional traffic counts be obtained to assist in refining the calibration and subsequent applications.

Volume to Capacity Ratios/LOS

Volume to Capacity Ratio is used to determine simulated levels of service. This is a link level measure that should be looked at with an area wide approach. Groups of links should be compared, not individual link segments. This can be used as another measure to judge the effectiveness of the calibration process. It could also be used as an indicator of possible future conditions. Again, it should only be taken in a general area context. LOS categories used were taken from the $\frac{\text { Highway Capacity Manual }}{A=0.0-0.4 ;}$

$$
\begin{aligned}
& \mathrm{B}=0.4-0.7 ; \\
& \mathrm{C}=0.7-0.8 ; \\
& \mathrm{D}=0.8-0.95 ; \\
& \mathrm{E}=0.95-1.05 ; \\
& \mathrm{F}=1.05-1.5 ;
\end{aligned}
$$

Congested Travel Times and Speeds

Congested Travel Time and Speeds is another good measure of the effectiveness of the calibration process. It is similar to V/CR and LOS in that it should be used on an area basis when compared to real world conditions. By comparing them to free flow travel time and speeds, the effect of the simulation becomes readily apparent. To calculate congested travel time and speeds, apply the following formula to the links in the network.

Congested Travel Time $=$ time $_{0}\left[1+A\left(V_{t} / C\right)\right]$ where: \quad time $=$ free flow travel time
$A=$ alpha from $B P R$ formula
$B=$ beta from BPR formula
$\mathrm{V}_{\mathrm{t}}=$ calculated flow
$C=$ capacity
Congested speeds are derived from the congested travel time. Congested travel time/distance * 60.

Average Trip Length in Miles and Minutes

During calibration, average trip length in miles and minutes is an indicator of the improvement of the calibration process. Average trip lengths in miles are calculated by simply taking the sum of the miles traveled divided by the sum of the trips assigned. For the average length of trip in minutes and the sum of minutes of travel over the sum of the trips assigned will yield the average length of trips in minutes. Targets used were 8 miles and 20 minutes in length which were based on Montgomery County, Maryland travel time.

Vehicle Miles of Travel
VMT is used as an indicator of the increased use of a network during scenario applications. VMT is calculated by summing the number of trips and multiplying that by link length and number of lanes. The difference between calibration VMT and scenario application VMT can be due to an increase in the P^{\prime} 's and A's, or excessive congestion causing increased trip length. If there is little or no change in the average trip length, then the increase VMT would be due to an increase in the number of trips on the system.

Table 5

Trip Generation Fquations

Independent Variables
DU - Dwelling Units - all sizes/types
RE - Retail Employees
NE - All Other Employees
US - University Students
Present (1980 - 1990)
Production

$$
\begin{aligned}
& \text { HBW }=2.48 * \mathrm{DU} \\
& \mathrm{HBO}=6.64 * \mathrm{DU}+0.84 * \mathrm{US} \\
& \text { NHB }=0.25 * \mathrm{DU}=0.39 * \mathrm{US}+2.92 * \mathrm{RE}+1.13 * \mathrm{NE}
\end{aligned}
$$

Attractions

$$
\begin{aligned}
& \mathrm{HBW}=0.57 * \mathrm{US}+1.84 * \mathrm{RE}+1.89 * \mathrm{NE} \\
& \mathrm{HBO}=0.99 * \mathrm{DU}+0.81 * \mathrm{US}+23.24 * \mathrm{RE}+0.45 * \\
& \mathrm{NHB}=0.25 * \mathrm{DU}+0.39 * \mathrm{US}+2.92 * \mathrm{RE}+1.13 *
\end{aligned}
$$

NE
NE
Future (2005-2010)
Production

$$
\mathrm{HBW}=2.34 * \mathrm{DU}
$$

$$
\mathrm{HBO}=6.03 * \mathrm{DU}+0.84 * \mathrm{US}
$$

$$
\begin{aligned}
& \mathrm{HBO}=6.03 \star \mathrm{DU}+0.84 \star \mathrm{US}+3.47 \star \mathrm{RE}+1.16 \star \mathrm{NE} \\
& \mathrm{NHB}=0.25 * \mathrm{DU}+0.39 * \mathrm{U}
\end{aligned}
$$

Attractions

$$
\begin{aligned}
& \text { HBW }=0.57 * \mathrm{US}+1.89 * \mathrm{RE}+1.89 * \mathrm{NE} \\
& \text { HBO }=0.99 * \mathrm{DU}+0.81 * \mathrm{US}+20.56 * \mathrm{RE}+0.47 *
\end{aligned}
$$

NE

$$
\mathrm{NHB}=0.25 * \mathrm{DU}+0.39 * \mathrm{US}+3.47 * \mathrm{RE}+1.16 * \mathrm{NE}
$$

APPENDIX D: DEVELOPMENT OF LAND USE DATA FOR MUNICIPALITIES AND ZONES

General Description

The modeling process required the formulation of land use data at the municipal and zone levels. The basic units of analysis were: number of dwelling units and students (to represent the population), and retail and non-retail employment. The most up-to-date municipal population available at the commencement of the study was for 1988; therefore, this was chosen as the base year. The future year 2010 was selected, in part, because of the municipal employment and population projections made available by the counties to satisfy the requirements of the State Plan cross-acceptance process.

Tables 1 and 2 present the derivation of the traffic zone structure itself. New Jersey Department of Transportation provided data from four of their modeling efforts: the Route 1 Corridor Study, the North New Jersey Model, the Route 130 Study and the Route 518 Study. Because of some redundancy among models, we found it necessary to use only the first three in establishing the boundaries of the traffic zones. New zones were delineated in the portions of the region outside the scope of these existing models.

Tables 3 and 8 show the municipal population and employment figures we assumed for 1988, 2010 Trend, Scenario 1 and Scenario 2. While the total number of dwelling units and employment is held constant for the region in Trend and Scenarios 1 and 2, these tables illustrate the fundamental differences in the allocation of growth in each of the three cases. The Trend assumes that the regional distribution of growth among municipalities will occur as projected by the three counties and MSM. In Scenario 1, the cities receive a much larger share of the growth than projected in Trend, while the remainder is absorbed by the constructs. In Scenario 2, the cities are assumed to grow only by the 2010 Trend amount, with the increment allocated among the constructs.

Tables 4 to 7 and 9 to 12 show the assumptions made about the distribution of land uses at the zone level. Data from the NJDOT models and MSM's Current Development Survey was utilized to calculate the figures. The municipal totals were used as controls for the 1988 and 2010 Trend allocation process. The 1988 numbers were derived from 1980 zone data, in the case of the Route 1 Study portion, and 1986 zone data for the North New Jersey and Route 130 areas. Only the Route 1 and Route 130 models included future year zone data (2005 and 2006, respectively), and this was used to guide the allocation process for the 2010 Trend. Zoning ordinances and other in-house land use information were utilized whenever necessary, particularly in the portions of the region where new zones were created.

For Scenarios 1 and 2, it was determined that four additional zones were needed to accommodate walking constructs. Zones 200 to 203 were established for this purpose, having been split off from much larger zones $4,88,189$ and 194. This step was taken because it was assumed that in these particular areas, traffic behavior in the remainder of the zones outside the walking constructs would not be like that within the constructs and should be modeled differently.

Table 1: Derivation of Zones from Existing Studies

	Rリ4tes	Noturemerser	Route 33	New.
Cranbury Twp.	X			
East Brunswick Twp.		X		
Helmetta Boro		X		
Jamesburg Boro			X	
Milltown Boro		X		
Monroe Twp.			X	
New Brunswick City		X		
North Brunswick Twp.	X	X		
Plainsboro Twp.	X			
South Brunswick Twp.	X			
South River Boro		X		
Spotswood Boro		X		
Franklin Twp.	X	X		
Hillsborough Twp.		X		
Manville Boro		X		
Millstone Boro		X		
Montgomery Twp.	X			
Rocky Hill Boro	X			
So. Bound Brook Boro				X
East Windsor Twp.	X			
Ewing Twp.			X	X
Hamiton Twp.	X		X	
Hightstown Boro	X			
Hopewell Boro				X
Hopewell Twp.				X
Lawrence Twp.	X		X	
Pennington Boro				X
Princeton Boro	X			
Princeton Twp.	X			
Trenton City				X
Washington Twp.			X	
West Windsor Twp.	X			

Note: 'Route 1,' 'North New Jersey', and 'Route 130' refer to zones drawn from modeling efforts previously undertaken by the NJ Dept. of Transportation; otherwise, new zones were created as indicated by 'New.'

Table 2: Derivation of the Study Zone Structure

zono		ROUH: Modt	Momall 480移 $=$	ROWH. 130 400t	Mew 7ont
1	Franklin	1			
2	Franklin	2			
3	Montgomery/Rocky Hill	3			
4	Montgomery	4			
5	Montgomery	5			
6	Montgomery	6			
7	Montgomery	7			
8	Montgomery	8			
9	Montgomery	9			
10	Princeton Township	10			
11	Princeton Township	11			
12	Princeton Township	12			
13	Princeton Township	13			
14	Princeton Township/Boro	14			
15	Princeton Boro	15			
16	Princeton Township	16			
17	Princeton Township	17	\cdots		
18	Princeton Township	18			
19	Princeton Boro	19			
20	Princeton Township	20			
21	Franklin	21			
22	Franklin	22			
23	South Brunswick	23			
24	South Brunswick	24			
25	South Brunswick	25			
26	South Brunswick	26			
27	South Brunswick	27			
28	Plainsboro	28			
29	West Windsor	29			
30	West Windsor	30			
31	West Windsor	31			
32	West Windsor	32			
33	Plainsboro	33			
34	Plainsboro	34			
35	Plainsboro	35			
36	Plainsboro	36			
37	South Brunswick	37			
38	South Brunswick	38			
39	South Brunswick	39			
40	South Brunswick	40		.	
41	South Brunswick	41			
42	South Brunswick	42			
43	Plainsboro	43			
44	Plainsboro	44			
45	Plainsboro	45			
46	Plainsboro	46			
47	West Windsor	47			
48	West Windsor	48			
49	West Windsor	49			
50	West Windsor	50			
51	West Windsor	51			
52	East Windsor	52			
53	East Windsor	53			
54	West Windsor	54			
55	Cranbury	55			
56	Cranbury	56			

Table 2: Derivation of the Study Zone Structure

Table 2: Derivation of the Study Zone Structure

\%	\& 4	2. H , \% < \%	4\%	KOUKS 30 प H \&	K $\mathrm{K} \%$ 2 on
113	Franklin		1086		
114	Franklin		1085		
115	Franklin		1089		
116	Franklin		1090		
117	New Brunswick		617		
118	New Brunswick		618		
119	New Braswick		619		
120	New Brunswick		620		
121	New Brunswick		621		
122	New Brunswick		616		
123	New Brunswick		615		
124	New Brunswick		614		
125	New Brunswick		613		
126	New Brunswick		622		
127	North Brunswick		623-p		
128	North Brunswick		627-p		
129	East Brunswick		629		
130	South River		637		
131	South River		638		
132	South River		639		
133	East Brunswick		630		
134	Milltown		628		
135	East Bruswick		632		
136	East Brunswick		633		
137	East Brunswick		631		
138	East Brunswick		634		
139	East Brunswick		635		
140	East Brunswick		636		
141	Spotswood		659		
142	Spotswood		660		
143	Helmetta		661		
144	Monroe			46	
145	Jamesburg			47	
146	Monroe			48	
147	Monroe			49	
148	Monroc			50	
149	Monroe			52	
150	Monroe			51	
151	Monroe			53	
152	Washington			68	
153	Washington			69	
154	Washington			72	
155	Washington			71	
156	Washington			70	
157	Washington			74	
158	Washington			75	
159	Washington			76	
160	Washington			79	
161	Washington			78	
162	Washington			77	
163	Washington			73	
164	Hamilton			82	
165	Hamilton			85	
166	Hamilton			90	
167	Hamilton			95	
168	Hamilton			94	

Table 2: Derivation of the Study Zone Structure

20 碞		ROUKU: KOGOR	WoutikN WOMat	K. 414.40 Modet	
169	Hamilton			93	
170	Hamilton			89	
171	Hamilton			88	
172	Hamilton			84	
173	Hamilton			81	
174	Hamilton			87	
175	Hamilton			91	
176	Hamilton			92	
177	Hamilton			86	
178	Hamilton			83	
179	Lawrence			140-p	
180	Trenton			147	
181	Ewing			146	
182	Ewing				X
183	Hopewell Township				X
184	Hopewell Townahip				X
185	Pennington				X
186	Hopewell Township				X
187	Hopewell Township				X
188	Hopewell Township				X
189	Hopewell Township				X
190	Hopewell Township				X
191	Hopewell Township				X
192	Hopewell Township				X
193	Hopewell Boro				X
194	Hopewell Township				\mathbf{X}
195	Hopewell Township				\mathbf{X}
196	South Bound Brook				X

Note: Any zone number with the suffix "-p" indicates that only a portion of that zone was used to create a new one.

Table 3: Dwelling Unit Growth Assumptions - 1988, 2010 Trend, 2010 Scenarios

		Nimine of Housethids* 1988	Numbe: of Hamefoldst 2010	Honisenode Growt: 19832010		OrowIIM, citins Scuititol		OH:WHIIn Cinizs Sck atios
Cranbury Twp.		913	2,165	1,252	1,600		2,481	
East Brunswick Twp.		13,555	17,768	4,213				
Helmetta Boro		439	986	547				
Jamesburg Boro		1,688	2,215	527				
Milltown Boro		2,412	3,000	588				
Monroe Twp.		8,640	14,215	5,575				
New Brunswick City		12,682	16,461	3,779		19,408		3,779
North Brunswick Twp.		10,730	15,223	4,493	2,800		4,342	
Plainsboro Twp.		6,833	13,566	6,733	2,800		4,342	
South Brunswick Twp.		8,341	15,645	7,304	10,400		16,152	
South River Boro		4,823	5,504	681				
Spotswood Boro		2,904	3,354	450				
Franklin Twp.		13,502	23,293	9,791	4,400		6,823	
Hillsborough Twp.		9,165	14,249	5,084	2,800		4,342	
Manville Boro		3,868	4,133	265				
Millstone Boro		180	187	7				
Montgomery Twp./ Rocky Hill Boro		3,290	5,548	2,258	3,200		4,963	
So. Bound Brook Boro		1,502	1,669	167				
East Windsor Twp.		8,666	13,562	4,896	6,000		9,328	
Ewing Twp.		12,541	14,512	1,971				
Hamilton Twp.		31,336	40,394	9,058				
Hightstown Boro		1,818	1,819	1				
Hopewell Boro		803	1,083	280				
Hopewell Twp.		3,870	6,148	2,278	6,000		9,303	
Lawrence Twp.		8,616	11,235	2,619	2,800		4,342	
Pennington Boro		872	1,113	241				
Princeton Boro/ Princeton Twp.		8,804	13,295	4,491				
Trenton City		33,952	39,619	5,667		19,407		5,667
Washington Twp.		2,250	4,159	1,909	4,400		6,823	
West Windsor Twp.		4,436	9,327	4,891	6,000		9,328	
STUDY AREA (TOTAL)		223,431	315,446	92,015	53,200	38,815	82,569	9,446

*Note: For the purposes of this study, it was assumed that the number of households, derived from population estimates, is equal to the number of dwelling units which would generate traffic.

Sources: MSM Regional Council - "Estimated Average Household Size in 1980, 1984 \& 2000;"
NJ Dept. of Labor - Population Estimates; Middlesex, Somerset, Mercer Counties - Population Projections.

Table 4: Derivation of Dwelling Uaits by Zone - 1980/1986, 1988

	M SHind	D ondt	\%88: DU CH Hing Bitik	 Stirmons
1	Franklin	223	223	
2	Franklin	88	138	
3	Montgomery/Rocky Hill	643	653	
4	Montgomery	740	795	
5	Montgomery	107	195	
6	Montgomery	938	958	
7	Montgomery	175	185	
8	Montgomery	121	121	
9	Montgomery	33	383	
10	Princeton Township	203	203	
11	Princeton Township	300	365	
12	Princeton Township	1,725	1,725	
13	Princeton Township	787	807	
14	Princeton Township/Boro	1,073	1,073	3,945
15	Princeton Boro	2,132	2,132	650
16	Princeton Township	392	727	
17	Princeton Township	358	375	
18	Princeton Township	399	449	
19	Princeton Boro	576	576	915
20	Princeton Township	372	372	190
21	Franklin	28	28	
22	Franklin	145	145	
23	South Brunswick	1,400	1,288	
24	South Brunswick	1,855	2,097	
25	South Brunswick	130	425	
26	South Brunswick	158	158	
27	South Brunswick	217	423	
28	Plainsboro	326	551	
29	West Windsor	250	250	
30	West Windsor	5	20	
31	West Windsor	8	8	
32	West Windsor	600	600	
33	Plainsboro	39	39	
34	Plainsboro	10	10	
35	Plainsboro.	6	6	
36	Plainsboro	224	224	
37	South Brunswick	21	42	
38	South Brunswick	326	707	
39	South Brunswick	93	82	
40	South Brunswick	172	611	
41	South Brunswick	604	1,669	
42	South Brunswick	94	178	
43	- Plainsboro	27	27	
44	Plainsboro	992	992	
45	Plainaboro	1,669	4,897	
46	Plainsboro	87	87	
47	West Windsor	248	466	
48	West Windsor	551	781	
49	West Windsor	154	484	
50	West Windsor	80	80	
51	West Windsor	252	392	
52	East Windsor	2,616	2,642	
53	East Windsor	108	108	
54	West Windsor	232	420	
55	Cranbury	4	6	

Table 4: Derivation of Dwelling Units by Zone - 1980/1986, 1988

conc	Kuncindity	198049986 Duketint Oinil	1988 Dwelnos Unis	ESumbied Uning Shudehits
56	Cranbury	63	273	
57	Cranbury	14	14	
58	Cranbury	358	358	-
59	Cranbury	96	96	
60	South Brunswick	49	47	
61	South Brunswick	95	288	
62	South Brunswick	124	137	
63	Cranbury	34	34	
64	Cranbury	92	102	
65	--	--	--	
66	Cranbury	35	15	
67	Cranbury	15	15	
68	-	-	--	
69	Lawrence	22	22	
70	East Windsor	2,648	2,648	
71	East Windsor	30	56	
72	East Windsor	1,007	1,033	
73	East Windsor	543	1,169	
74	Hightstown	630	691	
75	Hightstown	1,066	1,127	
76	East Windsor	161	381	
77	East Windeor	150	176	
78	East Windsor	301	327	
79	East Windsor	100	126	
80	Lawrence	825	978	
81	Hamilton	1,245	3,021	
82	Lawrence	692	692	
83	Lawrence	27	627	
84	West Windsor	5	5	
85	West Windsor	190	790	
86	West Windsor	130	130	
87	West Windsor	10	10	
88	Franklin	191	627	
89	Franklin	155	455	
90	North Brunswick	1,308	2,668	
91	South Brunswick	105	189	
92	North Brunswick	479	1,129	
93	North Brunswick	1,721	2,399	
94	North Brunswick	1,211	1,211	
95	North Brunswick	2,765	3,311	
96	Lawrence	232	898	
97	Lawrence	1,012	2,558	
98	Hillsborough	1,045	1,062	
99	Hillsborough	2,059	2,654	
100	Hillsborough	773	1,167	
101	Hillsborough	1,526	1,526	
102	Hillsborough	1,017	1,017	
103	Hillsborough	1,356	1,739	
104	Millstone	180	180	
105	Manville	1,728	1,679	
106	Manville	1,104	1,055	
107	Manville	1,183	1,134	
108	Franklin	613	613	
109	Franklin	1,622	342	
110	Franklin	310	310	

Table 4: Derivation of Dwelling Units by Zone - 1980/1986, 1988

20nt	Whinif 4 前,	18904585% D $2=4142$ Qinik	1988 Owe Wing Yhits	Esfinmated Students:
111	Franklin	601	601	
112	Franklin	1,049	2,038	
113	Franklin	1,957	1,957	
114	Franklin	1,887	2,373	
115	Franklin	2,309	2,309	
116	Franklin	1,343	1,343	
117	New Brunswick	1,637	1,637	
118	New Brunswick	1,536	1,511	
119	New Brunswick	842	817	
120	New Brunswick	1,390	1,365	500
121	New Brunswick	1,190	1,165	500
122	New Brunswick	462	437	
123	New Brunswick	856	831	
124	New Brunswick	2,052	2,027	
125	New Brunswick	1,155	1,015	4,500
126	New Brunswick	1,992	1,877	2,000
127	North Brunswick	1,814-p	7	
128	North Brunswick	2,105-p	5	
129	East Brunswick	2,199	2,672	
130	South River	1,536	1,516	
131	South River	1,194	1,174	
132	South River	2,153	2,133	
133	East Brunswick	838	838	
134	Milltown	2,436	2,412	
135	East Brunswick	802	853	
136	East Brunswick	2,609	3,057	
137	East Brunswick	1,559	1,627	
138	East Bruaswick	1,472	1,722	
139	East Brunswick	1,166	1,166	
140	East Bruaswick	1,525	1,620	
141	Spotswood	1,862	1,859	
142	Spotswood	1,047	1,045	
143	Helmetta	342	439	
144	Monroc	3,881	4,252	
145	Jamesburg	1,558	1,688	
146	Monrce	3,178	3,553	
147	Monrce	52	52	
148	Monroe	262	262	
149	Monroe	313	313	
150	Moaroe	149	149	
151	Monroc	59	59	
152	Washington	66	66	
153	Washington	53	53	
154	Washington	57	57	
155	Washington	10	10	
156	Washington	66	66	
157	Washington	124	124	
158	Washington	177	351	
159	Washington	554	554	
160	Washington	25	25	
161	Washington	65	65	
162	Washington	202	202	
163	Washington	220	677	
164	Hamilton	1,226	1,226	
165	Hamilton	1,901	1,901	

Table 4: Derivation of Dwelling Units by Zone - 1980/1986, 1988

Zome			2988 Dwelings Unis	Rshmarei Suidents
166	Hamilton	104	104	
167	Hamilon	324	336	
168	Hamilton	1,091	1,211	
169	Hamilton	633	642	
170	Hamilton	1,545	1,545	
171	Hamilton	2,091	2,091	
172	Hamilton	2,702	3,102	
173	Hamilton	1,957	1,973	
174	Hamilton	4,413	4,413	
175	Hamilton	3,264	3,264	
176	Hamiton	2,694	2,695	
177	Hamilton	2,095	2,095	
178	Hamilton	1,717	1,717	
179	Lawrence		2,841	2,500
180	Treaton		33,952	
181	Ewing		11,341	2,500
182	Ewing		1,200	
183	Hopewell Township		420	
184	Hopewell Township		460	
185	Pennington		872	
186	Hopewell Township		310	
187	Hopewell Township		360	
188	Hopewell Township		410	
189	Hopewell Township		310	
190	Hopewell Township		360	
191	Hopewell Township		260	
192	Hopewell Township		360	
193	Hopewell Boro		803	
194	Hopewell Township		310	
195	Hopewell Township		310	
196	South Bound Brook		1,502	
	STUDY AREA (TOTAL)		223,431	18,200

Sources: NJDOT - Route 1 Corridor Study, North New Jersey Model,
Route 130 Model; MSM Regional Council - Current Development Survey, 1987, 1988.

Table S: Dweiling Units by Zone - 2010 Trend

Zob		W888 D.winition Unils	सutuputid 4aik Stuident:	2010 Dw Onil:	Dueling 3nik Orowih
1	Franklin	223		816	593
2	Franklin	138		731	593
3	Montgomery/Rocky Hill	653		700	47
4	Montgomery	795		1,895	1,100
5	Montgomery	195		418	223
6	Montgomery	958		1,180	222
7	Montgomery	185		407	222
8	Montgomery	121		343	222
9	Montgomery	383		605	222
10	Princeton Township	203		668	465
11	Princeton Township	365		831	466
12	Princeton Township	1,725		2,191	466
13	Princeton Township	807		1,273	466
14	Princeton Township/Boro	1,073	4,245	1,328	255
15	Princeton Boro	2,132	650	2,386	254
16	Princeton Township	727		1,193	466
17	Princeton Township	375		841	466
18	Princeton Township	449		915	466
19	Princeton Boro	576	915	831	255
20	Princeton Township	372	190	838	466
21	Franklin	28		621	593
22	Franklin	145		738	593
23	South Brunswick	1,288		2,192	904
24	South Brunswick	2,097		2,413	316
25	South Brunswick	425		1,499	1,074
26	South Brunswick	158		269	111
27	South Brunswick	423		1,619	1,196
28	Plainsboro	551		1,513	962
29	West Windsor	250		250	0
30	West Windsor	20		20	0
31	West Windsor	8		1,775	1,767
32	West Windsor	600		600	0
33	Plainsboro	39		1,001	962
34	Plainsboro	10		10	0
35	Plainsboro	6		6	0
36	Plainsboro	224		1,186	962
37	South Brunswick	42		154	112
38	South Brunswick	707		855	148
39	South Brunswick	82		1,131	1,049
40	South Brunswick	611		1,019	408
41	South Brunswick	1,669		2,469	800
42	South Brunswick	178		459	281
43	Plainsboro	27		989	962
44	Plainsboro	992		1,954	962
45	Plainsboro	4,897		5,859	962
46	Plainsboro	87		1,048	961
47	West Windsor	466		865	399
48	West Windsor	781		1,127	346
49	West Windsor	484		1,179	695
50	West Windsor	80		537	457
51	West Windsor	392		859	467
52	East Windsor	2,642		3,132	490
53	East Windsor	108		598	490
54	West Windsor	420		861	441
55	Cranbury	6		145	139

Table 5: Dwelling Units by Zone - 2010 Trend

		488 6望	Emum Stididnis:	2010 Q $4 . \operatorname{din} 12$ orik	Qwolim Growist
56	Cranbury	273		412	139
57	Cranbury	14		153	139
58	Cranbury	358		497	139
59	Cranbury	96		235	139
60	South Brunrwick	47		159	112
61	South Brunrwick	288		857	569
62	South Brunswick	137		249	112
63	Cranbury	34		173	139
64	Cranbury	102		241	139
65	-	-			
66	Cranbury	15		154	139
67	Cranbury	15		155	140
68	-	-			
69	Lawrence	22		988	966
70	East Windsor	2,648		3,138	490
71	East Windsor	56		546	490
72	East Windsor	1,033		1,523	490
73	East Windsor	1,169	-	1,658	489
74	Hightstown	691		692	1
75	Hightstown	1,127		1,127	0
76	East Windsor	381		871	490
77	East Windsor	176		665	489
78	East Windsor	327		816	489
79	East Windsor	126		615	489
80	Lewrence	978		1,182	204
81	Hamilton	3,021		3,587	566
82	Lawrence	692		970	278
83	Lawrence	627		1,243	616
84	West Windsor	5		5	0
85	West Windsor	790		1,109	319
86	West Windsor	130		130	0
87	West Windsor	10		10	0
88	Franklin	627		2,109	1,482
89	Franklin	455		1,048	593
90	North Brunswick	2,668		3,587	919
91	South Brunswick	189		301	112
92	North Brunswick	1,129		4,129	3,000
93	North Brunswick	2,399		2,779	380
94	North Brunswick	1,211		1,211	0
95	North Brunswick	3,311		3,505	194
96	Lawrence	898		898	0
97	Lawrence	2,558		2,671	113
98	Hillsborough	1,062		1,699	637
99	Hillsborough	2,654		3,885	1,231
100	Hillsborough	1,167		2,198	1,031
101	Hillsborough	1,526		2,164	638
102	Hillsborough	1,017		1,655	638
103	Hillsborough	1739		2,648	909
104	Millstonc	180		187	7
105	Manville	1,679		1,768	89
106	Manville	1,055		1,143	88
107	Manville	1,134		1,222	88
108	Franklin	613		1,206	593
109	Franklin	342		935	593
110	Franklin	310		904	594

Table 5: Dwelling Units by Zone - 2010 Trend

Zome	Whicing	1988 $\mathrm{D}=$ - 1 LH . Unils:	Eilutinitid Unishorify Sludenist	2010 DW811ing Onts:	DWeling Ynit Growin
166	Hamilton	104		670	566
167	Hamiton	336		902	566
168	Hamilton	1,211		1,777	566
169	Hamilton	642		1,208	566
170	Hamilton	1,545		2,111	566
171	Hamilton	2,091		2,657	566
172	Hamilton	3,102		3,668	566
173	Hamiton	1,973		2,539	566
174	Hamilton	4,413		4,979	566
175	Hamilton	3,264		3,830	566
176	Hamilton	2,695		3,262	567
177	Hamilton	2,095		2,662	567
178	Hamilton	1,717		2,283	566
179	Lawrence	2,841	3,000	3,283	442
180	Trenton	33,952		39,619	5,667
181	Ewing	11,341	3,000	13,073	1,732
182	Ewing	1,200		1,439	239
183	Hopewell Township	420		490	70
184	Hopewell Township	460		541	81
185	Pennington	872		1,113	241
186	Hopewell Township	310		353	43
187	Hopewell Township	360		412	52
188	Hopewell Township	410		524	114
189	Hopewell Township	310		524	214
190	Hopewell Township	360		398	38
191	Hopewell Township	260		749	489
192	Hopewell Township	360		1,375	1,015
193	Hopewell Boro	803		1,083	280
194	Hopewell Township	310		349	39
195	Hopewell Township	310		433	123
196	South Bound Brook	1,502		1,669	167
	STUDY AREA (TOTAL)	223,431	20,500	315,447	92,016

Sources: NJDOT - Route 1 Corridor Study, Route 130 Model; MSM Regional
Council - Current Development Survey, 1989.

Table 6：Dwelling Units by Zone－ 2010 Scenario No． 1

2ooc	Whandy M		EStumiod 4aikesequ shiudenis	2010 Durditige Oinits：	DW世雷宜 ynik Growh
1	Franklin	223		223	0
2	Franklin	138		138	0
3	Montgomery／Rocky Hill	653		653	0
4＊	Montgomery	795		795	0
5	Montgomery	195		195	0
6	Montgomery	958		958	0
7	Montgomery	185		185	0
8＊	Montgomery	121		1，721	1，600
9	Montgomery	383		383	0
10	Princeton Township	203		203	0
11	Princeton Township	365		365	0
12	Princeton Township	1，725		1，725	0
13	Princeton Township	807		807	0
14	Princeton Township／Boro	1，073	4，245	1，073	0
15	Princeton Boro	2，132	650	2，132	0
16	Princeton Township	727		727	0
17	Princeton Township	375		375	0
18	Princeton Township	449		449	0
19	Princeton Boro	576	915	576	0
20	Princeton Township	372	190	372	0
21	Franklin	28		28	0
22	Franklin	145		145	0
23	South Brunswick	1，288		1，288	0
24	South Brunswick	2，097		2，097	0
25	South Brunswick	425		425	0
26	South Brunswick	158		158	0
27	South Brunswick	423		423	0
28＊	Plainsboro	551		3，351	2，800
29	West Windsor	250		250	0
30	West Windsor	20		20	0
31	West Windsor	8		8	0
32＊	West Windsor	600		6，600	6，000
33	Plainsboro	39		39	0
34	Plainsboro	10		10	0
35	Plainsboro	6		6	0
36	Plainsboro	224		224	0
37	South Brunswick	42		42	0
38	South Brunswick	707		707	0
－ 39	South Brunswick	82		82	0
40＊	South Brunswick	611		6，611	6，000
41	South Brunswick	1，669		1，669	0
42	South Brunswick	178		178	0
43	Plainsboro	27		27	0
44	Plainsboro	992		992	0
45	Plainsboro	4，897		4，897	0
46	Plainsboro	87		87	0
47	West Windsor	466		466	0
48	West Windsor	781		781	0
49	West Windsor	484		484	0
50	West Windsor	80		80	0
51	West Windsor	392		392	0
52	East Windsor	2，642		2，642	0
53	East Windsor	108		108	0
54	West Windsor	420		420	0
55	Cranbury	6		6	0

Table 6: Dwelling Units by Zone - 2010 Scenario No. 1

20se		4989 onit	WHinnioid 4ayk stuinchis:	2010 Qumining Ofits	EWCIIM Uuil G:0win
56	Cranbury	273		273	0
57	Cranbury	14		14	0
58	Cranbury	358		358	0
59	Cranbury	96		96	0
60*	South Brunswick	47		1,647	1,600
61	South Brunswick	288		288	0
62*	South Brunswick	137		2,937	2,800
63	Cranbury	34		34	0
64*	Cranbury	102		1,702	1,600
65	--	--		-	
66	Cranbury	15		15	0
67	Cranbury	15		15	0
68	--	-		--	
69	Lawrence	22		22	0
70	East Windsor	2,648		2,648	0
71*	East Windsor	56		56	0
72	East Windeor	1,033		1,033	0
73	East Windsor	1,169		1,169	0
74	Hightstown	691		691	0
75	Hightstown	1,127		1,127	0
76	East Windsor	381		381	0
77	East Windsor	176		176	0
78	Eat Windsor	327		327	0
79*	East Windsor	126		6,126	6,000
80	Lawrence	978		978	0
81	Hamilton	3,021		3,021	0
82	Lawrence	692		692	0
83^{*}	Lawrence	627		3,427	2,800
84	Weat Windsor	5		5	0
85	Weat Windsor	790		790	0
86	West Windsor	130		130	0
87	West Windsor	10		10	0
88*	Franklin	627		627	0
89	Franklin	455		455	0
90	North Brunswick	2,668		2,668	0
91	South Brunswick	189		189	0
92*	North Brunswick	1,129		3,929	2,800
93	North Brunswick	2,399		2,399	0
94	North Brunswick	1,211		1,211	0
95	North Brunswick	3,311		3,311	0
96	Lawrence	898		898	0
97	Lawrence	2,558		2,558	0
98	Hillsborough	1,062		1,062	0
99*	Hillsborough	2,654		5,454	2,800
100	Hillsborough	1,167		1,167	0
101	Hillsborough	1,526		1,526	0
102	Hillsborough	1,017		1,017	0
103	Hillsborough	1,739		1,739	0
104	Millstone	180		180	0
105	Manville	1,679		1,679	0
106	Manville	1,055		1,055	0
107	Manville	1,134		1,134	0
108	Franklin	613		613	0
109	Franklin	342		342	0
110*	Franklin	310		3,110	2,800

Table 6: Dwelling Units by Zone - 2010 Scenario No. 1

20 Sis		188 DWatimis Uuil	 Yuivarsity Stidienit	2010 Dwelinig orius	Riglint
111	Franklin	601		601	0
112	Franklin	2,038		2,038	0
113	Franklin	1,957		1,957	0
114	Franklin	2,373		2,373	0
115	Franklin	2,309		2,309	0
116	Franklin	1,343		1,343	0
117	New Brunswick	1,637		3,578	1,941
118	New Brunswick	1,511		3,452	1,941
119	New Brunswick	817		2,758	1,941
120	New Brunswick	1,365	500	3,306	1,941
121	New Brunswick	1,165	500	3,106	1,941
122	New Brunswick	437		2,378	1,941
123	New Brunswick	831		2,772	1,941
124	New Brunswick	2,027		3,968	1,941
125	New Brunswick	1,015	5,500	2,955	1,940
126	New Srunswick	1,877	2,000	3,817	1,940
127	North Brunswick	7		7	0
128	North Brunswick	5		5	0
129	Esst Brunswick	2,672		2,672	0
130	South River	1,516		1,516	0
131	South River	1,174		1,174	0
132	South River	2,133		2,133	0
133	East Brunswick	838		838	0
134	Milltown	2,412		2,412	0
135	East Brunswick	853		853	0
136	East Brunswick	3,057		3,057	0
137	East Brunswick	1,627		1,627	0
138	East Brunswick	1,722		1,722	0
139	East Brunswick	1,166		1,166	0
140	East Brunswick	1,620		1,620	0
141	Spotswood	1,859		1,859	0
142	Spotswood	1,045		1,045	0
143	Helmetra	439		439	0
144	Monroe	4,252		4,252	0
145	Jamesburg	1,688		1,688	0
146	Monroe	3,553		3,553	0
147	Monroe	52		52	0
148	Monroe	262		262	0
149	Monroe	313		313	0
150	Monroe	149		149	0
151	Mouroe	59		59	0
152	Washington	66		66	0
153	Washington	53		53	0
154	Washington	57		57	0
155	Washington	10		10	0
156	Washington	66		66	0
157*	Washington	124		1,724	1,600
158	Washington	351		351	0
159	Washington	554		554	0
160*	Washington	25		2,825	2,800
161	Washington	65		65	0
162	Washington	202		202	0
163	Washington	677		677	0
164	Hamilton	1,226		1,226	0
165	Hamilton	1,901		1,901	0

Table 6: Dwelling Units by Zone - 2010 Scenario No. 1

		 Dw- $12 i=1$ onik	EMitulitid shiulents:	2010 Onil	Ubit Growh
166	Hamilton	104		104	0
167	Hamilton	336		336	0
168	Hamilton	1,211		1,211	0
169	Hamilton	642		642	0
170	Hamilton	1,545		1,545	0
171	Hamilton	2,091		2,091	0
172	Hamilton	3,102		3,102	0
173	Hamilton	1,973		1,973	0
174	Hamilton	4,413		4,413	0
175	Hamilton	3,264		3,264	0
176	Hamilton	2,695		2,695	0
177	Hamilton	2,095		2,095	0
178	Hamilton	1,717		1,717	0
179	Lawrence	2,841	3,000	2,841	0
180	Trenton	33,952		53,359	19,407
181	Ewing	11,341	3,000	11,341	0
182	Ewing	1,200		1,200	0
183	Hopewell Township	420		420	0
184*	Hopewell Township	460		3,260	2,800
185	Peanington	872		872	0
186	Hopewell Township	310		310	0
187	Hopewell Township	360		360	0
188	Hopewell Township	410		410	0
189:	Hopewell Township	310		310	0
190	Hopewell Township	360		360	0
191	Hopewell Township	260		260	0
192	Hopeweil Township	360		360	0
193	Hopewell Boro	803		803	0
194*	Hopewell Township	310		310	0
195	Hopewell Township	310		310	0
196	South Bound Brook	1,502		1,502	0
200	Montgomery (W/C)	0		1,600	1,600
201	Franklin (W/C)	0		1,600	1,600
202	Hopewell (W/C)	0		1,600	1,600
203	Hopewell (W/C)	0		1,600	1,600
	STUDY AREA (TOTAL)	223,431	20,500	315,446	92,015

*Note: Constructs are located in these zones. Zones 200-203 are new zones created from sections of zones $4,88,189$ and 194 for walking constructs.

Table 7: Dwelling Units by Zone - 2010 Scenario No. 2

zone	Munisid \#\#y	9888 Ding Hin关 Qinits	Tutumbud Siuidenis	2010 DW. 412.15 \#hits.	Duenims Growith
1	Franklin	223		223	0
2	Franklin	138		138	0
3	Montgomery/Rocky Hill	653		653	0
4*	Montgomery	795		795	0
5	Montgomery	195		195	0
6	Montgomery	958		958	0
7	Montgomery	185		185	0
8*	Montgomery	121		2,603	2,482
9	Montgomery	383		383	0
10	Princeton Township	203		203	0
11	Princeton Township	365		365	0
12	Princeton Township	1,725		1,725	0
13	Princeton Township	807		807	0
14	Princeton Township/Boro	1,073	4,245	1,073	0
15	Princeton Boro	2,132	650	2,132	0
16	Princeton Township	727		727	0
17	Princeton Township	375		375	0
18	Princeton Township	449		449	0
19	Princeton Boro	576	915	576	0
20	Princeton Township	372	190	372	0
21	Franklin	28		28	0
22	Franklin	145		145	0
23	South Brunswick	1,288		1,288	0
24	South Brunswick	2,097		2,097	0
25	South Brunswick	425		425	0
26	South Brunswick	158		158	0
27	South Brunswick	423		423	0
28*	Plainsboro	551		4,893	4,342
29	West Wiadsor	250		250	0
30	West Windsor	20		20	0
31	West Windsor	8		8	0
32*	West Windsor	600		9,928	9,328
33	Plainsboro	39		39	0
34	Plainsboro	10		10	0
35	Plainsboro	6		6	0
36	Plainsboro	224		224	0
37	South Brunswick	42		42	0
38	South Brunswick	707		707	0
39	South Brunswick	82		82	0
40*	South Brunswick	611		9,940	9,329
41	South Brunswick	1,669		1,669	0
42	South Brunswick	178		178	0
43	Plainsboro	27		27	0
44	Plainsboro	992		992	0
45	Plainsboro	4,897		4,897	0
46	Plainsboro	87		87	0
47	West Windsor	466		466	0
48	West Windsor	781		781	0
49	West Windsor	484		484	0
50	West Windsor	80		80	0
51	West Windsor	392		392	0
52	East Wiadsor	2,642		2,642	0
53	East Windsor	108		108	0
54	West Windsor	420		420	0
55	Cranbury	6		6	0

Table 7: Dwelling Units by Zone - 2010 Scenario No. 2

26%	Wining	1988 Uaits	Eitimios Yailuchaty Stuidenit	200 dints	Dw iling シムiL OKOKU4
56	Cranbury	273		273	0
57	Cranbury	14		14	0
58	Cranbury	358		358	0
59	Cranbury	96		96	0
60*	South Brunswick	47		2,528	2,481
61	South Brunswick	288		288	0
62*	South Brunswick	137		4,479	4,342
63	Cranbury	34		34	0
64*	Cranbury	102		2,583	2,481
65	-	-		--	
66	Cranbury	15		15	0
67	Cranbury	15		15	0
68	--	-		-	
69	Lawrence	22		22	0
70	East Windsor	2,648		2,648	0
71*	East Windsor	56		56	0
72	East Windsor	1,033		1,033	0
73	East Windsor	1,169		1,169	0
74	Hightstown	691		691	0
75	Hightstown	1,127		1,127	0
76	East Windsor	381		381	0
77	Eat Windsor	176		176	0
78	East Windsor	327		327	0
79*	East Windsor	126		9,454	9,328
80	Lawrence	978		978	0
81	Hamilton	3,021		3,021	0
82	Lawresce	692		692	0
83*	Lawrence	627		4,969	4,342
84	Weat Windsor	5		5	0
85	West Windsor	790		790	0
86	West Windsor	130		130	0
87	West Windsor	10		10	0
88*	Franklin	627		627	0
89	Franklin	455		455	0
90	North Brunswick	2,668		2,668	0
91	Sourh Brunswick	189		189	0
92*	North Brunswick	1,129		5,471	4,342
93	North Bruswick	2,399		2,399	0
94	North Brunswick	1,211		1,211	0
95	North Brunswick	3,311		3,311	0
96	Lawrence	898		898	0
97	Lawrence	2,558		2,558	0
98	Hillsborough	1,062		1,062	0
99*	Hillsborough	2,654		6,996	4,342
100	Hillsborough	1,167		1,167	0
101	Hillsborough	1,526		1,526	0
102	Hillsborough	1,017		1,017	0
103	Hillsborough	1,739		1,739	0
104	Millstone	180		180	0
105	Manville	1,679		1,679	0
106	Manville	1,055		1,055	0
107	Manville	1,134		1,134	0
108	Franklin	613		613	0
109	Franklin	342		342	0
110*	Franklin	310		4,652	4,342

Table 7: Dwelling Units by Zone - 2010 Scenario No. 2

20:3		988 D w 0ikit	EDitumide Xhistrid shiwenis.	2010 D. 4 \#nink Onily	OWSiHME चnil Stowth
111	Franklin	601		601	0
112	Franklin	2,038		2,038	0
113	Franklin	1,957		1,957	0
114	Franklin	2,373		2,373	0
115	Franklin	2,309		2,309	0
116	Franklin	1,343		1,343	0
117	New Brunswick	1,637		2,015	378
118	New Brunswick	1,511		1,889	378
119	New Brunswick	817		1,195	378
120	New Brunswick	1,365	500	1,743	378
121	New Brunswick	1,165	500	1,543	378
122	New Brunswick	437		815	378
123	New Brunswick	831		1,209	378
124	New Brunswick	2,027		2,405	378
125	New Bruswick	1,015	5,500	1,393	378
126	New Brunswick	1,877	2,000	2,254	377
127	North Brunswick	7		7	0
128	North Brunswick	5		5	0
129	East Brunswick	2,672		2,672	0
130	South River	1,516		1,516	0
131	South River	1,174		1,174	0
132	South River	2,133		2,133	0
133	East Brunswick	838		838	0
134	Milltown	2,412		2,412	0
135	East Brunswick	853		853	0
136	East Brunswick	3,057		3,057	0
137	East Brunswick	1,627		1,627	0
138	East Brunswick	1,722		1,722	0
139	East Brunswick	1,166		1,166	0
140	East Bruswick	1,620		1,620	0
141	Spotswood	1,859		1,859	0
142	Spotswood	1,045		1,045	0
143	Helmetta	439		439	0
144	Monroc	4,252		4,252	0
145	Jamesburg	1,688		1,688	0
146	Monroe	3,553		3,553	0
147	Monroc	52		52	0
148	Monroe	262		262	0
149	Monroe	313		313	0
150	Monroe	149		149	0
151	Monrce	59		59	0
152	Washington	66		66	0
153	Washington	53		53	0
154	Wa shington	57		57	0
155	Washington	10		10	0
156	Washington	66		66	0
157*	Washington	124		2,605	2,481
158	Washington	351		351	0
159	Washington	554		554	0
160*	Washington	25		4,367	4,342
161	Washington	65		65	0
162	Washington	202		202	0
163	Washington	677		677	0
164	Hamilton	1,226		1,226	0
165	Hamilton	1,901		1,901	0

Table 7: Dwelling Units by Zone - 2010 Scenario No. 2

2 Sov	Kun-		Eutumitid 8 ind CH d Suidenes:	$8,2010, \%$	DWHIITH Unil Qrowin
166	Hamilton	104		104	0
167	Hamilton	336		336	0
168	Hamilton	1,211		1,211	0
169	Hamiltort	642		642	0
170	Hamilton	1,545		1,545	0
171	Hamilton	2,091		2,091	0
172	Hamilton	3,102		3,102	0
173	Hamilton	1,973		1,973	0
174	Hamilton	4,413		4,413	0
175	Hamilton	3,264		3,264	0
176	Hamilton	2,695		2,695	0
177	Hamilton	2,095		2,095	0
178	Hamilton	1,717		1,717	0
179	Lawrence	2,841	3,000	2,841	0
180	Trenton	33,952		39,619	5,667
181	Ewing	11,341	3,000	11,341	0
182	Ewing	1,200		1,200	0
183	Hopewell Township	420		420	0
184*	Hopewell Township	460		4,801	4,341
185	Pennington	872		872	0
186	Hopewell Township	310		310	0
187	Hopewell Township	360		360	0
188	Hopewell Township	410		410	0
189*	Hopewell Township	310		310	0
190	Hopewell Township	360		360	0
191	Hopewell Township	260		260	0
192	Hopewell Township	360		360	0
193	Hopewell Boro	803		803	0
194*	Hopewell Township	310		310	0
195	Hopewell Township	310		310	0
196	South Bound Brook	1,502		1,502	0
200	Montgomery (W/C)	0		2,481	2,481
201	Franklin (W/C)	0		2,481	2,481
202	Hopewell (W/C)	0		2,481	2,481
203	Hopewell (W/C)	0		2,481	2,481
	STUDY AREA (TOTAL)	223,431	20,500	315,446	92,015

*Note: Constructs are located in these zones. Zones 200-203 are new zones created from sections of zones $4,88,189$ and 194 for walking constructs.

Table 8: Employment Growth Assumptions - 1988, 2010 Trend, 2010 Scenarios

		T\% Empteymant 2010	$\begin{aligned} & \text { Eipionent } \\ & \text { Growing } \\ & \text { ig } \end{aligned}$		4isowh in chins. SMnHiol	GFowin in Comtuncts S.mario 2	6tionthin citius
Cranbury Twp.	6,703	7,676	973	230		340	
East Brunswick Twp.	25,319	32,762	7,443				
Helmetta Boro	165	225	60				
Jamesburg Boro	2,082	2,703	621				
Milltown Boro	2,657	2,857	200				
Monrce Twp.	1,942	12,304	10,362				
New Brunswick City	35,252	37,015	1,763		32,971		1,763
North Brunswick Twp.	15,775	34,332	18,557	9,500		13,519	
Plainsboro Twp.	6,999	33,549	26,550	9,500		13,519	
South Brunswick Twp.	12,686	44,063	31,377	22,830		32,429	
South River Boro	2,237	3,252	1,015				
Spotswood Boro	2,174	2,962	788				
Franklin Twp.	23,942	26,610	2,668	9,730		13,859	
Hillsborough Twp.	4,380	10,650	6,270	9,730		13,519	
Manville Boro	1,279	3,630	2,351				
Millstone Boro	54	210	156				
Montgomery Twp.	7,454	10,260	2,806	230		680	
Rocky Hill Boro	526	850	324				
So. Bound Brook Boro	495	1,080	585				
East Windsor Twp.	8,463	13,500	5,037	13,100		18,568	
Ewing Twp.	28,660	33,740	5,080				
Hamilton Twp.	27,925	34,290	6,365				
Hightstown Boro	2,855	4,680	1,825				
Hopewell Boro	539	680	141				
Hopewell Twp.	2,928	4,140	1,212	9,960		14,199	
Lawrence Twp.	21,301	29,350	8,049	9,000		12,705	
Pennington Boro	1,636	3,550	1,914				
Princeton Boro/ Princeton Twp.	22,262	30,100	7,838				
Trenton City	54,847	69,900	15,053		32,970		15,053
Washington Twp.	2,100	3,940	1,840	9,730		13,859	
West Windsor Twp.	12,162	25,520	13,358	13,100		18,569	
STUDY AREA (TOTAL)	337,799	520,380	182,581	116,640	65,941	165,765	16,816

Sources: MSM Regional Council derived these estimates using NJ Dept. of Labor Covered Employment figures and Middlesex, Somerset, Mercer Counties' Employment Projections.

Table 9: Employment by Zone - 1980/1986, 1988

$80 \mathrm{ol}$		19804 ± 5 \% Foniforinnt	1004 588 matait Employ m cm	\% 88 g Kongroit सinioguint	8988 Employisu
1	Franklin	13	0	13	0
2	Franklin	0	0	0	0
3	Montgomery/Rocky Hill	1,680	507	1,943	550
4	Montgomery	592	0	304	5
5	Montgomery	184	0	200	30
6	Montgomery	2,574	0	4,644	0
7	Montgomery	44	0	44	0
8	Montgomery	237	0	250	10
9	Montgomery	0	0	0	0
10	Princeton Township	73	0	73	0
11	Princeton Township	1,219	0	1,719	25
12	Princeton Township	630	495	1,230	650
13	Princeton Township	84	0	84	0
14	Princeton Township/Boro	6,768	0	9,224	100
15	Princeton Boro	5,030		6,958	772
16	Princeton Township	343	0	343	50
17	Princeton Township	409	0	409	0
18	Princeton Township	197	0	200	0
19	Princeton Boro	159		200	25
20	Princeton Township	175	0	175	25
21	Franklin	281	0	281	40
22	Franklin	53	200	53	160
23	South Brunswick	118	50	150	205
24	South Brunswick	38	125	38	125
25	South Brunswick	11	0	0	130
26	South Brunswick	227	0	227	0
27	South Brunswick	27	0	30	30
28	Plainsboro	60	0	60	685
29	West Windsor	1,468	0	1,500	40
30	West Windsor	749	0	949	0
31	West Windsor	0	0	0	0
32	West Windsor	772	138	1,172	175
33	Plainsboro	980	0	980	0
34	Plainsboro	1,500	0	750	0
35	Plainsboro	3,460	0	3,569	0
36	Plainsboro	210	0	210	0
37	South Brunswick	874	0	2,606	0
38	South Brunswick	565	0	0	184
39	South Brunswick	481	0	0	0
40	South Brunswick	353	22	631	22
41	South Brunswick	1,548	0	1,895	84
42	South Brunswick	1,544	0	3,276	0
43	Plainsboro	0	0	0	0
44	Plainsboro	51	0	81	350
45	Plainsboro	24	0	147	117
46	Plainsboro	0	0	50	0
47	West Windsor	506	0	506	0
48	West Windsor	183	0	183	0
49	West Windsor	285	0	285	0
50	West Windsor	529	0	579	0
51	West Windsor	34	0	34	0
52	East Windsor	0	82	0	82
53	East Windsor	3,398	0	3,609	0
54	West Windsor	12	0	112	0
Ss	Cranbury	0	0	0	0

Table 9: Employment by Zone - 1980/1986, 1988

Zoine		198043.8 150n-Retay Emplidy in in	188010886 Employmen	1988 KNO Kelal Employmint	1988 Reuaí Employwin
56	Cranbury	58	0	148	0
57	Cranbury	0	0	0	0
58	Cranbury	518	0	0	25
59	Cranbury	0	0	0	0
60	South Brunswick	0	0	0	0
61	South Brunswick	1.459	0	782	0
62	South Brunswick	1,742	0	2,035	0
63	Cranbury	0	0	783	0
64	Cranbury	383	0	3,101	25
65	--	--	--	--	-
66	Cranbury	431	0	2,621	0
67	Cranbury	1,386	0	0	0
68	-	--	-	--	
69	Lawrence	107	329	107	1,150
70	East Windsor	80	214	587	214
71	East Windsor	1,146	0	1,222	0
72	East Windsor	23	0	100	0
73	East Windsor	411	656	722	552
74	Hightstown	1,185	0	1,742	0
75	Hightstown	1,377	0	313	800
76	East Windsor	241	0	684	0
77	East Windsor	0	0	0	0
78	Eat Windsor	31	0	0	0
79	East Windsor	630	0	691	0
80	Lawrence	1,330	50	1,730	350
81	Hamilton	1,957	0	2,213	0
82	Lawrence	615	0	2,444	0
83	Lewreace	608	2,361	1,625	2,561
84	Weat Windsor	6	0	56	0
85	West Windsor	396	0	796	800
86	West Windsor	2,704	0	4,940	25
87	West Windsor	37	0	0	10
88	Franklin	45	62	145	62
89	Franklin	73	50	73	50
90	North Brunswick	3,610	0	1,630	487
91	South Brunswick	473	0	236	0
92	North Brunswick	275	0	838	0
93	North Brunswick	1,290	0	585	72
94	North Brunswick	735	0	997	112
95	North Brunswick	993	625	9,106	1,498
96	Lawrence	4,250	0	4,205	0
97	Lawrence	87	0	110	25
98	Hillsborough	428	100	428	100
99	Hillsborough	198	67	381	188
100	Hillsborough	235	62	790	62
101	Hillsborough	84	33	267	155
102	Hillsborough	286	303	469	425
103	Hillsborough	974	141	974	141
104	Millstone	30	19	35	19
105	Manville	723	200	519	209
106	Manville	192	25	192	33
107	Manville	285	33	285	41
108	Franklin	8,684	414	9,834	414
109	Franklin	2905-p	270-p	2,440	213
110	Franklin	1,612	162	2,428	162

Table 9: Employment by Zone - 1980/1986, 1988

Zonc	Munistudits		1889 O 96 meniat Employstit	$198 \mathrm{E}$ Non Retal 	1988 Aetuil Employmin
111	Franklin	612	89	612	89
112	Franklin	1,541	171	1,541	171
113	Franklin	499	92	499	92
114	Franklin	700	372	700	372
115	Franklin	1,643	143	1,643	143
116	Franklin	1,593	119	1,593	119
117	New Brunswick	3,523	189	3,332	189
118	New Brunswick	558	62	367	62
119	New Branswick	1,369	63	1,177	63
120	New Brunswick	108	47	108	47
121	New Brunswick	1,675	85	1,483	107
122	New Brunswick	6,837	319	6,645	319
123	New Brunswick	3,789	273	3,597	273
124	New Brunswick	2,428	95	2,236	95
125	New Brunswick	14,874	631	10,111	631
126	New Branswick	3,530	1,071	3,339	1,071
127	North Brunswick	7176-p	552-p	150	0
128	North Brunswick	585-p	72-p	300	0
129	Eatt Brunswick	3,644	1,815	4,811	1,815
130	South River	1,288	180	1,122	217
131	South River	371	82	288	119
132	South River	487	50	404	87
133	East Brunswick	4,958	1,097	5,537	1,097
134	Millown	2,083	304	2,415	242
135	East Brunswick	86	44	86	44
136	East Brunswick	1,829	488	1,829	488
137	East Brunswick	689	206	689	206
138	East Brunswick	319	313	898	313
139	East Brunswick	2,028	3,149	2,028	3,149
140	East Brunswick	1,437	892	1,437	892
141	Spotswood	756	118	784	183
142	Spotswood	907	206	936	271
143	Helmetta	52	11	154	11
144	Monrce	0	0	0	0
145	Jamesburg	1,304	0	1,649	433
146	Monroe	1,612	0	1,542	0
147	Monroe	0	0	0	0
148	Moaroe	0	0	0	0
149	Monroc	469	0	400	0
150	Monroe	0	0	0	0
151	Monroe	0	0	0	0
152	Washington	0	0	50	75
153	Washington	0	0	50	0
154	Washington	0	0	50	0
155	Washington	0	0	0	0
156	Washington	0	0	50	50
157	Washington	0	0	50	50
158	Washington	0	1,882	50	25
159	Washington	0	0	500	25
160	Washington	0	0	0	0
161	Washington	0	0	225	25
162	Washington	0	0	350	100
163	Washington	0	0	225	150
164	Hamilton	0	0	0	50
165	Hamilton	0	196	270	196

Table 9: Employment by Zone - 1980/1986, 1988

zose	Munict on 4	1500 H 5 s 6 $\mathrm{Ki} \mathrm{FH} \mathrm{R}=\mathrm{K} \mathrm{I}$ 4 4inisy	14.001480 Ketifi Smbloymin	188 Non Retal EnDidnion	1988 Retin行 Ximploymem
166	Hamilton	1,133	0	1,133	50
167	Hamilton	440	0	440	0
168	Hamilton	0	0	270	100
169	Hamilton	426	0	426	0
170	Hamilton	327	250	597	250
171	Hamilton	730	466	730	550
172	Hamilton	2,423	1,221	2,576	1,221
173	Hamilton	583	1,166	853	1,893
174	Hamilton	2,629	124	2,763	124
175	Hamilton	654	523	523	523
176	Hamilton	2,504	0	2,720	0
177	Hamilton	3,288	538	3,288	538
178	Hamilton	8,671	128	3,500	128
179	Lawrence			4,463	2,531
180	Trenton			51,442	3,405
181	Ewing			24,952	2,458
182	Ewing			1,200	50
183	Hopewell Township			335	0
184	Hopewell Township			370	0
185	Pennington			1,596	40
186	Hopewell Township			700	98
187	Hopewell Township			300	0
188	Hopewell Township			250	0
189	Hopewell Township			500	30
190	Hopewell Township			0	0
191	Hopewell Township			345	0
192	Hopewell Township			0	0
193	Hopewell Boro			499	40
194	Hopewell Township			0	0
195	Hopewell Township			0	0
196	South Bound Brook			426	69

STUDY AREA (TOTAL)
293,894
43,905
*Note: Zones 1-97 have a 1980 base; zones 98-178 have a 1986 base.

Sources: NJDOT - Route 1 Corridor Study, North New Jerscy Model, Route 130 Model; MSM Regional Council - Current Development Survey, 1987, 1988; US Census Bureau - 1987 Census of Retail Trade.

Table 10: Non-Retail and Retail Employment by Zone - 2010 Trend.

Zoss	Winfot $+14 y$	1888 KHon Retar 	88\% K-kik $\mathrm{E}+2 \mathrm{O}$	2010 WRor R Retsa 6mploymat	2010 Retail FTmpotmant	NBW Redif Employnichet GOTOULH	Rerill Emplorinent Growth
1	Franklin	13	0	13	0	0	0
2	Franklin	0	0	0	0	0	0
3	Montgomery/Rocky Hill	1,943	550	2,841	677	898	127
4	Montgomery	304	5	304	5	0	0
5	Montgomery	200	30	826	157	626	127
6	Montgomery	4,644	0	5,026	173	382	173
7	Montgomery	44	0	44	0	0	0
8	Montgomery	250	10	920	137	670	127
9	Montgomery	0	0	0	0	0	0
10	Princeton Township	73	0	73	0	0	0
11	Princeton Township	1,719	25	4,115	25	2,396	0
12	Princeton Township	1,230	650	3,626	650	2,396	0
13	Princeton Township	84	0	84	0	0	0
14	Princeton Township/Boro	9,224	100	9,224	100	0	0
15	Princeton Boro	6,958	772	7,419	962	461	190
16	Princeton Township	343	50	343	50	0	0
17	Princeton Township	409	0	409	0	0	0
18	Princeton Township	200	0	200	0	0	0
19	Princeton Boro	200	25	200	25	0	0
20	Princeton Township	175	25	2,570	25	2,395	0
21	Franklin	281	40	281	40	0	0
22	Franklin	53	160	53	160	0	0
23	South Brunswick	150	205	303	294	153	89
24	South Brunswick	38	125	38	138	0	13
25	South Brunswick	0	130	0	686	0	556
26	South Brunswick	227	0	524	0	297	0
27	South Brunswick	30	30	30	30	0	0
28	Plainsboro	60	685	10,257	745	10,197	60
29	West Windsor	1,500	40	1,500	40	0	0
30	West Windsor	949	0	1,322	0	373	0
31	West Windsor	0	0	0	0	0	0
32	West Windsor	1,172	175	2,080	175	908	0
33	Plainsboro	980	0	3,883	0	2,903	0
34	Plainsboro	750	0	8,712	60	7,962	60
35	Plainsboro	3,569	0	5,641	60	2,072	60
36	Plainsboro	210	0	210	0	0	0
37	South Brunswick	2,606	0	6,549	0	3,943	0
38	South Brunswick	0	184	0	184	0	0
39	South Brunswick	0	0	0	0	0	0
40	South Brunswick	631	22	8,985	366	8,354	344
41	South Brunswick	1,895	84	2,145	84	250	0
42	South Brunswick	3,276	0	4,200	19	924	19
43	Plainsboro	0	0	0	0	0	0
44	Plainsboro	81	350	2,258	410	2,177	60
45	Plainsboro	147	117	1,086	177	939	60
46	Plainsboro	50	0	50	0	0	0
47	West Windsor	506	0	506	700	0	700
48	West Windsor	183	0	183	0	0	0
49	West Windsor	285	0	285	0	0	0
50	West Windsor	579	0	579	0	0	0
51	West Windsor	34	0	34	0	0	0
52	East Windsor		82	0	82	0	0
53	East Windsor	3,609	0	4,009	0	400	0
54	West Windsor	112	0	112	0	0	0
55	Cranbury	0	0	0	0	0	0

Table 10: Non-Retail and Retail Employment by Zone - 2010 Trend.

Zone	VWimed	198 . WH2	198% $\mathrm{R} \in \mathrm{til}$ $\mathrm{Emp} \mathrm{O}_{\mathrm{O}}^{\mathrm{y}} \mathrm{man}$	2010 Empioynueat	2010 Retinil Eimploymonin	 Emplogincif Growth	Reint Einhormen. CHowth
56	Cranbury	148	0	148	0	0	0
57	Cranbury	0	0	0	0	0	0
58	Cranbury	0	25	0	25	0	0
59	Cranbury	0	0	0	0	0	0
60	South Brunswick	0	0	0	0	0	0
61	South Bruaswick	782	0	3,225	0	2,443	0
62	South Brumwick	2,035	0	15,093	0	13,058	0
63	Cranbury	783	0	1,490	0	707	0
64	Cranbury	3,101	25	3,101	291	0	266
65	--					0	0
66	Cranbury	2,621	0	2,621	0	0	0
67	Cranbury	0	0	0	0	0	0
68	Cry					0	0
69	Lawrence	107	1,150	544	1,150	437	0
70	East Windsor	587	214	854	214	267	0
71	East Windsor	1,222	0	1,580	0	358	0
72	East Windsor	100	0	100	400	0	400
73	East Windsor	722	552	722	677	0	125
74	Hightstown	1,742	0	2,554	100	812	100
75	Hightstown	313	800	1,126	900	813	100
76	East Windsor	684	0	3,246	0	2,562	0
77	East Windsor	0	0	0	30	0	30
78	East Windsor	0	0	0	0	0	0
79	East Windsor	691	0	1,586	0	895	0
80	Lawrence	1,730	350	3,614	393	1,884	43
81	Hamilton	2,213	0	2,466	93	253	93
82	Lawrence	2,444	0	3,526	0	1,082	0
83	Lawrence	1,625	2,561	2,723	3,081	1,098	520
84	West Windsor	56	0	3,646	0	3,590	0
85	West Windsor	796	800	796	1,178	0	378
86	West Windsor	4,940	25	12,349	25	7,409	0
87	West Windsor	0	10	0	10	0	0
88	Franklin	145	62	145	346	0	284
89	Franklin	73	50	73	50	0	0
90	North Brunswick	1,630	487	3,369	687	1,739	200
91	South Brunswick	236	0	1,170	0	934	0
92	North Brunawick	838	0	7,907	298	7,069	298
93	North Brunswick	585	72	2,121	272	1,536	200
94	North Brunwwick	997	112	2,534	312	1,537	200
95	North Brunswick	9,106	1,498	10,643	1,698	1,537	200
96	Lawrence	4,205	0	6,579	0	2,374	0
97	Lawrence	110	25	230	25	120	0
98	Hillsborough	428	100	428	208	0	108
99	Hillsborough	381	188	924	228	543	40
100	Hillsborough	790	62	3,361	62	2,571	0
101	Hillsborough	267	155	1,248	195	981	40
102	Hillsborough	469	425	1,073	465	604	40
103	Hillsborough	974	141	2,277	181	1,303	40
104	Millstone	35	19	191	19	156	0
105	Manville	519	209	1,302	209	783	0
106	Manville	192	33	976	33	784	0
107	Manville	285	41	1,069	41	784	0
108	Franklin	9,834	414	10,090	414	256	0
109	Franklin	2,440	213	2,977	213	537	0
110	Franklin	2,428	162	4,001	180	1,573	18

Table 10: Non-Retail and Retail Employment by Zone - 2010 Trend.

20at	Kiundixinity	188 Edquopront	188% ketail $\mathrm{Emph} 0 \% \mathrm{H} \mu$	Zole 	2010 R \&idil Eapoloymun	 Clown	R Z inploymuin ciswith
111	Franklin	612	89	612	89	0	0
112	Franklin	1,541	171	1,541	171	0	0
113	Franklin	499	92	499	92	0	0
114	Franklin	700	372	700	372	0	0
115	Franklin	1,643	143	1,643	143	0	0
116	Franklin	1,593	119	1,593	119	0	0
117	New Brunswick	3,332	189	3,805	189	473	0
118	New Brunswick	367	62	367	62	0	0
119	New Brunswick	1,177	63	1,411	63	234	0
120	New Brunswick	108	47	108	47	0	0
121	New Brunswick	1,483	107	1,483	185	0	78
122	New Brunswick	6,645	319	6,645	397	0	78
123	New Brunswick	3,597	273	4,497	273	900	0
124	New Brunswick	2,236	95	2,236	95	0	0
125	New Brunswick	10,111	631	10,111	631	0	0
126	New Brunswick	3,339	1,071	3,339	1,071	0	0
127	North Brunswick	150	0	2,254	200	2,104	200
128	North Brunswick	300	0	1,837	200	1,537	200
129	East Brunswick	4,811	1,815	5,746	2,586	935	771
130	South River	1,122	217	1,460	217	338	0
131	South River	288	119	626	119	338	0
132	South River	404	87	743	87	339	0
133	East Brunswick	5,537	1,097	6,971	1,865	1,434	768
134	Milltown	2,415	242	2,615	242	200	0
135	East Brunswick	86	44	86	44	0	0
136	East Brunswick	1,829	488	2,583	1,332	754	844
137	East Brunswick	689	206	689	206	0	0
138	East Brunswick	898	313	1,005	313	107	0
139	East Brunswick	2,028	3,149	2,090	3,313	62	164
140	East Brunswick	. 1,437	892	3,041	892	1,604	0
141	Spotswood	784	183	1,178	183	394	0
142	Spotswood	936	271	1,330	271	394	0
143	Helmetta	154	11	214	11	60	0
144	Monroe	0	0	1,269	775	1,269.	775
145	Jamesburg	1,649	433	2,270	433	621	0
146	Moaroe	1,542	0	3,008	840	1,466	840
147	Moaroc	0	0	0	0	0	0
148	Moaroc	0	0	1,635	776	1,635	776
149	Moaroe	400	0	1,563	0	1,163	0
150	Moaroe	0	0	1,275	0	1,275	0
151	Monroc	0	0	1,163	0	1,163	0
152	Washington	50	75	50	75	0	0
153	Washington	50	0	50	0	0	0
154	Washington	50	0	50	0	0	0
155	Washington	0	0	0	0	0	0
156	Washington	50	50	50	50	0	0
157	Washington	50	50	50	50	0	0
158	Washington	50	25	50	25	0	0
159	Washington	500	25	500	25	0	0
160	Washington	0	0	1,521	0	1,521	0
161	Washington	225	25	225	25	0	0
162	Washington	350	100	386	100	36	0
163	Washington	225	150	408	250	183	100
164	Hamilton	0	50	40	103	40	53
165	Hamilton	270	196	270	196	0	0

Table 10: Non-Retail and Retail Employment by Zone - 2010 Trend.

Z $0 .<$	Muntidy ithy	1885 YOn $\mathrm{K}, \mathrm{ctait}$ 	198% setail 	an	200 Retizil 	Wor Whetin Empionnede Growth	Retofl Komploymun cithuth
166	Hamilton	1,133	50	1,205	50	72	0
167	Hamilton	440	0	440	0	0	0
168	Hamilton	270	100	270	194	0	94
169	Hamilton	426	0	426	0	0	0
170	Hamilton	597	250	4,032	267	3,435	17
171	Hamilton	730	550	730	550	0	0
172	Hamilton	2,576	1,221	3,657	1,270	1,081	49
173	Hamilton	853	1,893	853	1,933	0	40
174	Hamilton	2,763	124	3,302	134	539	10
175	Hamilton	523	523	523	544	0	21
176	Hamilton	2,720	0	2,720	510	0	510
177	Hamilton	3,288	538	3,288	570	0	32
178	Hamilton	3,500	128	3,500	154	0	26
179	Lawrence	4,463	2,531	4,954	2,531	491	0
180	Trenton	51,442	3,405	65,644	4,256	14,202	851
181	Ewing	24,952	2,458	29,749	2,741	4,797	283
182	Ewing	1,200	50	1,200	50	0	0
183	Hopewell Township	335	0	335	200	0	200
184	Hopewell Township	370	0	585	0	215	0
185	Pennington	1,596	40	3,510	40	1,914	0
186	Hopewell Township	700	98	700	98	0	0
187	Hopewell Township	300	0	300	0	0	0
188	Hopewell Township	250	0	250	0	0	0
189	Hopewell Township	500	30	1,297	30	797	0
190	Hopewell Township	0	0	0	0	0	0
191	Hopewell Township	345	0	345	0	0	0
192	Hopewell Township	0	0	0	0	0	0
193	Hopewell Boro	499	40	614	66	115	26
194	Hopewell Township	0	0	0	0	0	0
195	Hopewell Township	0	0	0	0	0	0
196	South Bound Brook	426	69	1,011	69	585	0

$\begin{array}{llllllll}\text { STUDY AREA (TOTAL) } & 293,894 & 43,905 & 462,181 & 58,199 & 168,287 & 14,294\end{array}$

Sources: NJDOT - Route 1 Corridor Study, Route 130 Model; MSM Regional
Council - Current Development Survey, 1989.

Zose	Mindid						
1	Frankiin	13	0	13	0	0	0
2	Franklin	0	0	0	0	0	0
3	Montgomery/Rocky Hill	1,943	550	1,943	550	0	0
4*	Montgomery	304	5	304	5	0	0
5	Montgomery	200	30	200	30	0	0
6	Montgomery	4,644	0	4,644	0	0	0
7	Montgomery	44	0	44	0	0	0
$8 *$	Montgomery	250	10	280	210	30	200
9	Montgomery	0	0	0	0	0	0
10	Princeton Township	73	0	73	0	0	0
11	Princeton Township	1,719	25	1,719	25	0	0
12	Princeton Township	1,230	650	1,230	650	0	0
13	Princeton Township	84	0	84	0	0	0
14	Princeton Township/Boro	9,224	100	9,224	100	0	0
15	Princeton Boro	6,958	772	6,958	772	0	0
16	Princeton Townahip	343	50	343	50	0	0
17	Princeton Towathip	409	0	409	0	0	0
18	Princeton Township	200	0	200	0	0	0
19	Princton Boro	200	25	200	25	0	0
20	Princeton Township	175	25	175	25	0	0
21	Franklin	281	40	281	40	0	0
22	Franklin	53	160	53	160	0	0
23	South Brunswick	150	205	150	205	0	0
24	South Bruaswick	38	125	38	125	0	0
25	South Brunswick	0	130	0	130	0	0
26	South Brunswick	227	0	227	0	0	0
27	South Brunswick	30	30	30	30	0	0
$28{ }^{-8}$	Plainsboro	60	685	9,060	1,185	9,000	500
29	West Windeor	1,500	40	1,500	40	-	0
30	West Windsor	949	0	949	0	0	0
31	West Windsor	0	0	0	0	0	0
32*	West Windsor	1,172	175	13,172	1,275	12,000	1,100
33	Plainsboro	980	0	980	0	0	0
34	Plainsboro	750	0	750	0	0	0
35	Plainsboro	3,569	0	3,569	0	0	0
36	Plainsboro	210	0	210	0	0	0
37	South Brunswick	2,606	0	2,606	0	0	0
38	South Brunswick	0	184	0	184	0	0
39	South Brunswick	0	0	0	0	0	0
40**	South Brunswick	631	22	12,631	1,122	12,000	1,100
41	South Brunswick	1,895	84	1,895	84	0	0
42	South Brunswick	3,276	0	3,276	0	0	0
43	Plainsboro	0	0	0	0	0	0
44	Plainsboro	81	350	81	350	0	0
45	Plainsboro	147	117	147	117	0	0
46	Plainsboro	50	0	50	0	0	0
47	West Windsor	506	0	506	0	0	0
48	West Windsor	183	0	183	0	0	0
49	West Windsor	285	0	285	0	0	0
50	West Windsor	579	0	579	0	0	0
51	West Windsor	34	0	34	0	0	0
52	East Windsor	0	82		82	0	0
53	East Windsor	3,609	0	3,609	0	0	0
54	West Windsor	112	0	112	0	0	0
55	Cranbury	0	0	0	0	0	0

Table 11: Non-Retail and Retail Employment by Zone - 2010 Scenario No. 1

Zotic	Mutidathe	1888 241450 HOROt	482 Rethil Emp $104 \mathrm{H}=\mathrm{m}$	2010 AHonORH KI 	2010 Retaik $\mathrm{E} \rightarrow 10 \mathrm{ymin}$	 Emptoyment Growilh	Rebil Enploymant Growth
56	Cranbury	148	0	148	0	0	0
57	Cranbury	0	0	0	0	0	0
58	Cranbury	0	25	0	25	0	0
59	Cranbury	0	0	0	0	0	0
60*	South Brunswick	0	0	30	200	30	200
61	South Bruoswick	782	0	782	0	0	0
62*	South Brungwick	2,035	0	11,035	500	9,000	500
63	Cranbury	783	0	783	0	0	0
64*	Cranbury	3,101	25	3,131	225	30	200
65	--						
66	Cranbury	2,621	0	2,621	0	0	0
67	Cranbury	0	0	0	0	0	0
68	--						
69	Lawrence	107	1,150	107	1,150	0	0
70	East Windsor	587	214	587	214	0	0
71*	East Windsor	1,222	0	7,222	550	6,000	550
72	East Windsor	100	0	100	0	0	0
73	East Windsor	722	552	722	552	0	0
74	Hightstown	1,742	0	1,742	0	0	0
75	Hightstown	313	800	313	800	0	0
76	East Windsor	684	0	684	0	0	0
77	East Windsor	0	0	0	0	0	0
78	East Windsor	0	0	0	0	0	0
79*	East Windsor	691	0	6,691	550	6,000	550
80	Lawrence	1,730	350	1,730	350	0	0
81	Hamilton	2,213	0	2,213	0	0	0
82	Lawrence	2,444	0	2,444	0	0	0
83*	Lawrence	1,625	2,561	10,625	2,561	9,000	0
84	West Windsor	56	0	56	0	0	0
85	Weat Windsor	796	800	796	800	0	0
86	West Windsor	4,940	25	4,940	25	0	0
87	West Windsor	0	10	0	10	0	0
88*	Franklin	145	62	145	62	0	0
89	Franklin	73	50	73	50	0	0
90	North Brunswick	1,630	487	1,630	487	0	0
91	South Brunswick	236	0	236	0	0	0
92*	North Brunswick	838	0	9,838	500	9,000	500
93	North Brunswick	585	72	585	72	0	0
94	North Brunswick	997	112	997	112	0	0
95	North Brunswick	9,106	1,498	9,106	1,498	0	0
96	Lawrence	4,205	0	4,205	0	0	0
97	Lawrence	110	25	110	25	0	0
98	Hillsborough	428	100	428	100	0	0
99*	Hillsborough	381	188	9,381	688	9,000	500
100	Hillsborough	790	62	790	62	0	0
101	Hillsborough	267	155	267	155	0	0
102	Hillsborough	469	425	469	425	0	0
103	Hillsborough	974	141	974	141	0	0
104	Millstone	35	19	35	19	0	0
105	Manville	519	209	519	209	0	0
106	Manville	192	33	192	33	0	0
107	Manville	285	41	285	41	0	0
108	Franklin	9,834	414	9,834	414	0	0
109	Franklin	2,440	213	2,440	213	0	0
110^{*}	Franklin	2,428	162	11,428	662	9,000	500

Table 11: Non-Retail and Retail Employment by Zone - 2010 Scenario No. 1

20\%	Munid	1488 Nor EHplidyort	1980 Retail Ecmph 4 Hm		2010 Retall Enployment	NomRUME Emplosmingo Orown	Reliil ©Howth
111	Franklin	612	89	612	89	0	0
112	Franklin	1,541	171	1,541	171	0	0
113	Franklin	499	92	499	92	0	0
114	Franklin	700	372	700	372	0	0
115	Franklin	1,643	143	1,643	143	0	0
116	Franklin	1,593	119	1,593	119	0	0
117	New Brunswick	3,332	189	6,335	484	3,003	295
118	New Brunswick	367	62	3,370	357	3,003	295
119	New Brunswick	1,177	63	4,180	358	3,003	295
120	New Brunswick	108	47	3,111	342	3,003	295
121	New Brunswick	1,483	107	4,485	402	3,002	295
122	New Brunswick	6,645	319	9,647	614	3,002	295
123	New Brunswick	3,597	273	6,599	568	3,002	295
124	New Brunswick	2,236	95	5,238	389	3,002	294
125	New Brunswick	10,111	631	13,113	925	3,002	294
126	New Brunswick	3,339	1,071	6,341	1,365	3,002	294
127	North Brunswick	150	0	150	0	0	0
128	North Brunswick	300	0	300	0	0	0
129	East Brunswick	4,811	1,815	4,811	1,815	0	0
130	South River	1,122	217	1,122	217	0	0
131	South River	288	119	288	119	0	0
132	South River	404	87	404	87	0	0
133	East Brunswick	5,537	1,097	5,537	1,097	0	0
134	Milltown	2,415	242	2,415	242	0	0
135	East Brunswick	86	44	86	44	0	0
136	East Brunswick	1,829	488	1,829	488	0	0
137	East Brunswick	689	206	689	206	0	0
138	East Brunswick	898	313	898	313	0	0
139	East Brunswick	2,028	3,149	2,028	3,149	0	0
140	East Brunswick	1,437	892	1,437	892	0	0
141	Spotswood	784	183	784	183	0	0
142	Spotswood	936	271	936	271	0	0
143	Helmetta	154	11	154	11	0	0
144	Monroe	0	0	0	0	0	0
145	Jamesburg	1,649	433	1,649	433	0	0
146	Monrce	1,542	0	1,542	0	0	0
147	Monrce	0	0	0	0	0	0
148	Monrce	0	0	0	0	0	0
149	Monrce	400	0	400	0	0	0
150	Monrce	0	0	0	0	0	0
151	Monrce	0	0	0	0	0	0
152	Washington	50	75	50	75	0	0
153	Wa shington	50	0	50	0	0	0
154	Washington	50	0	50	0	0	0
155	Washington	0	0	0	0	0	0
156	Washington	50	50	50	50	0	0
157*	Washington	50	50	80	250	30	200
158	Washington	50	25	50	25	0	0
159	Washington	500	25	500	25	0	0
160*	Washington	0	0	9,000	500	9,000	500
161	Washington	225	25	225	25	0	0
162	Washington	350	100	350	100	0	0
163	Washington	225	150	225	150	0	0
164	Hamilton	0	50	0	50	0	0
165	Hamilton	270	196	270	196	0	0

Table 11: Non-Retail and Retail Employment by Zone - 2010 Scenario No. 1

ZO~.	Mu4idatity	1488 $\mathrm{N} \omega \mathrm{HR} \mathrm{R} \cdot \mathrm{a}=$ 	198 . Rentis Imploymu		2010 Resail Koploymint	N: Employ ming crawid	Renifil Lmploymen crowth
166	Hamiltoa	1,133	50	1,133	50	0	0
167	Hamilton	440	0	440	0	0	0
168	Hamilton	270	100	270	100	0	0
169	Hamiltoa	426	0	426	0	0	0
170	Hamilton	597	250	597	250	0	0
171	Hamilton	730	550	730	550	0	0
172	Hamilton	2,576	1,221	2,576	1,221	0	0
173	Hamilton	853	1,893	853	1,893	0	0
174	Hamilton	2,763	124	2,763	124	0	0
175	Hamiltoa	523	523	523	523	0	0
176	Hamilton	2,720	0	2,720	0	0	0
177	Hamilton	3,288	538	3,288	538	0	0
178	Hamiltoa	3,500	128	3,500	128	0	0
179	Lawrence	4,463	2,531	4,463	2,531	0	0
180	Trenton	51,442	3,405	81,465	6,352	30,023	2,947
181	Ewing	24,952	2,458	24,952	2,458	0	0
182	Ewing	1,200	50	1,200	50	0	0
183	Hopewell Township	335	0	335	0	0	0
184*	Hopewell Township	370	0	9,370	500	9,000	500
185	Pennington	1,596	40	1,596	40	0	0
186	Hopewell Township	700	98	700	98	0	0
187	Hopewell Township	300	0	300	0	0	0
188	Hopewell Township	250	0	250	0	0	0
189*	Hopewell Township	500	30	500	30	0	0
190	Hopewell Township	0	0	0	0	0	0
191	Hopewell Township	345	0	345	0	0	0
192	Hopewell Township	0	0	0	0	0	0
193	Hopewell Boro	499	40	499	40	0	0
194********	Hopewell Township	0	0	0	0	0	0
195	Hopewell Township	0	0	0	0	0	0
196	South Bound Brook	426	69	426	69	0	0
200	Montgomery (W/C)	0	0	30	200	30	200
201	Franklin (W/C)	0	0	30	200	30	200
202	Hopewell (W/C)	0	0	30	200	30	200
203	Hopewell (W/C)	0	0	30	200	30	200
	STUDY AREA (TOTAL)	293,894	43,905	462,181	58,199	168,287	14,294
	*Note: Constructs are located in these zones. Zones 200-203 are new zones created from sections of zones 4, 88, 189 and 194 for walking constructs.						

Zoms	Murichyuny	\$198 No R RHAI employ,ubint	198\% RGdit shoploy yiem	20 O Norsonk timployniont		 Expploy quent © 10 unth	Revíi dmployonem Growith
1	Franklin	13	0	13	0	0	0
2	Franklin	0	0	0	0	0	0
3	Montgomery/Rocky Hill	1,943	550	1,943	550	0	0
4*	Montgomery	304	5	304	5	0	0
5	Montgomery	200	30	200	30	0	0
6	Montgomery	4,644	0	4,644	0	0	0
7	Montgomery	44	0	44	0	0	0
8*	Montgomery	250	10	280	320	30	310
9	Montgomery	0	0	0	0	0	0
10	Princeton Township	73	0	73	0	0	0
11	Princeton Township	1,719	25	1,719	25	0	0
12	Princeton Township	1,230	650	1,230	650	0	0
13	Princeton Township	34	0	84	0	0	0
14	Princeton Townehip/Boro	9,224	100	9,224	100	0	0
15	Princeton Boro	6,958	772	6,958	772	0	0
16	Princelon Township	343	50	343	50	0	0
17	Princelon Township	409	0	409	0	0	0
18	Princeton Township	200	0	200	0	0	0
19	Princelon Boro	200	25	200	25	0	0
20	Princeton Township	175	25	175	25	0	0
21	Franklin	281	40	281	40	0	0
22	Franklin	53	160	53	160	0	0
23	South Brunswick	150	205	150	205	0	0
24	South Bruaswick	38	125	38	125	0	0
25	South Brunswick	0	130	0	130	0	0
26	South Brunswick	227	0	227	0	0	0
27	South Brunswick	30	30	30	30	0	0
28*	Plainsboro	60	685	12,765	1,499	12,705	814
29	West Windsor	1,500	40	1,500	40	0	0
30	West Windsor	949	0	949	0	0	0
31	West Windsor	0	0	0	0	0	0
32*	West Windsor	1,172	175	18,038	1,878	16,866	1,703
33	Plainsboro	980	0	980	0	0	0
34	Plainsboro	750	0	750	0	0	0
35	Plainsboro	3,569	0	3,569	0	0	0
36	Plainaboro	210	0	210	0	0	0
37	South Brunswick	2,606	0	2,606	0	0	0
38	South Bruaswick	0	184	0	184	0	0
39	South Bruaswick	0	0	0	0	0	0
40*	South Bruaswick	631	22	17,498	1,725	16,867	1,703
41	South Brunswick	1,895	34	1,895	84	0	0
42	South Brunswick	3,276	0	3,276	0	-	0
43	Plainaboro	0	0	0	0	0	0
44	Plainaboro	81	350	81	350	0	0
45	Plainsboro	147	117	147	117	0	0
46	Plainsboro	50	0	50	0	0	0
47	Weat Windsor	506	0	506	0	0	0
48	West Windsor	183	0	183	0	0	0
49	West Windsor	285	0	285	0	0	0
50	West Windsor	579	0	579	0	0	0
51	West Windsor	34	0	34	0	0	0
52	East Windsor	0	82	0	82	0	0
53	East Windsor	3,609	0	3,609	0	0	0
54	West Windsor	112	0	112	0	0	0
55	Cranbury	0	0	0	0	0	0

Table 12：Non－Retail and Retail Employment by Zone－ 2010 Scenario No． 2

20ヶ6			\&	2010 Nod Su CH Eqploy世－int	2010 Ben行 Rmploy $\%$ 明	 Smployuria Grouth	Rexaía Xindormont Crown
56	Cranbury	148	0	148	0	0	0
57	Cranbury	0	0	0	0	0	0
58	Cranbury	0	25	0	25	0	0
59	Cranbury	0	0	0	0	0	0
60^{*}	South Brunswick	0	0	30	310	30	310
61	South Brunswick	782	0	782	0	0	0
62＊	South Brunswick	2，035	0	14，740	814	12，705	814
63	Cranbury	783	0	783	0	0	0
64＊	Cranbury	3，101	25	3，131	335	30	310
65	－－						
66	Cranbury	2，621	0	2，621	0	0	0
67	Cranbury	0	0	0	0	0	0
68	－－						
69	Lawrence	107	1，150	107	1，150	0	0
70	Eat Windsor	587	214	587	214	0	0
71＊	East Windsor	1，222	0	9，655	851	8，433	851
72	East Windsor	100	0	100	0	0	0
73	East Windsor	722	552	722	552	0	0
74	Hightstown	1，742	0	1，742	0	0	0
75	Hightstown	313	800	313	800	0	0
76	East Windsor	684	0	684	0	0	0
77	East Windsor	0	0	0	0	0	0
78	East Windsor	0	0	0	0	0	0
79＊	East Windsor	691	0	9，124	851	8，433	851
80	Lawrence	1，730	350	1，730	350	0	0
81	Hamilton	2，213	0	2，213	0	0	0
82	Lawrence	2，444	0	2，444	0	0	0
83＊	Lawrence	1，625	2，561	14，330	2，561	12，705	0
84	West Windsor	56	0	56	0	0	0
85	West Windsor	796	800	796	800	0	0
86	Weat Windsor	4，940	25	4，940	25	0	0
87	West Windsor	0	10	0	10	0	0
88＊	Franklin	145	62	145	62	0	0
89	Franklin	73	50	73	50	0	0
90	North Brunswick	1，630	487	1，630	487	0	0
91	South Brunswick	236	0	236	0	0	0
92＊	North Brunswick	838	0	13，543	814	12，705	814
93	North Brunswick	585	72	585	72	0	0
94	North Brunswick	997	112	997	112	0	0
95	North Brunswick	9，106	1，498	9，106	1，498	0	0
96	Lawrence	4，205	0	4，205	0	0	0
97	Lawrence	110	25	110	25	0	0
98	Hillsborough	428	100	428	100	0	0
99＊	Hillsborough	381	188	13，086	1，002	12，705	814
100	Hillsborough	790	62	790	62	0	0
101	Hillsborough	267	155	267	155	0	0
102	Hillsborough	469	425	469	425	0	0
103	Hillsborough	974	141	974	141	0	0
104	Millstone	35	19	35	19	0	0
105	Manville	519	209	519	209	0	0
106	Manville	192	33	192	33	0	0
107	Manville	285	41	285	41	0	0
108	Franklin	9，834	414	9，834	414	0	0
109	Franklin	2，440	213	2，440	213	0	0
110＊	Franklin	2，428	162	15，133	976	12，705	814

	000000 NO

Table 12: Non-Retail and Retail Employment by Zone - 2010 Scenario No. 2

$20 \mathrm{ok}$			488 Resit Employ	2010 SHon RKAK Emiloynispo	2010 $\mathrm{BCl} \mathrm{II}^{2}$ Employmen	Non K K al Employnion Crowth	Reain Growith
166	Hamilton	1,133	50	1,133	50	0	0
167	Hamilton	440	0	440	0	0	0
168	Hamilton	270	100	270	100	0	0
169	Hamilton	426	0	426	0	0	0
170	Hamilton	597	250	597	250	0	0
171	Hamilton	730	550	730	550	0	0
172	Hamilton	2,576	1,221	2,576	1,221	0	0
173	Hamilton	853	1,893	853	1,893	0	0
174	Hamilton	2,763	124	2,763	124	0	0
175	Hamilton	523	523	523	523	0	0
176	Hamilton	2,720	0	2,720	0	0	0
177	Hamilton	3,288	538	3,288	538	0	0
178	Hamilton	3,500	128	3,500	128	0	0
179	Lawrence	4,463	2,531	4,463	2,531	0	0
180	Trenton	51,442	3,405	65,644	4,256	14,202	851
181	Ewing	24,952	2,458	24,952	2,458	0	0
182	Ewing	1,200	50	1,200	50	0	0
183	Hopewell Township	335	0	335	0	0	0
184*	Hopewell Township	370	0	13,074	815	12,704	815
185	Pennington	1,596	40	1,596	40	0	0
186	Hopewell Township	700	98	700	98	0	0
187	Hopewell Township	300	0	300	0	0	0
188	Hopewell Township	250	0	250	0	0	0
189*	Hopewell Township	500	30	500	30	0	0
190	Hopewell Township	0	0	0	0	0	0
191	Hopewell Township	345	0	345	0	0	0
192	Hopewell Township	0	0	0	0	0	0
193	Hopewell Boro	499	40	499	40	0	0
194*	Hopewell Township	0	0	0	0	0	0
195	Hopewell Township	0	0	0	0	0	0
196	South Bound Brook	426	69	426	69	0	0
200	Montgomery (W/C)	0	0	30	310	30	310
201	Franklin (W/C)	0	0	30	310	30	310
202	Hopewell (W/C)	0	0	30	310	30	310
203	Hopewell (W/C)	0	0	30	310	30	310

$\begin{array}{llllllll}\text { STUDY AREA (TOTAL) } & 293,894 & 43,905 & 462,181 & 58,199 & 168,287 & 14,294\end{array}$
*Note: Constructs are located in these zones. Zones 200-203 are new zones
created from sections of $4,88,189$ and 194 for waiking constructs.

Appendix E

MSM Employment and Housing Projections, Vehicle Trip Productions and Attractions, Daily Trip Ends, and Jobs/Housing Ratios: 1988, 2010 Trend, Scenario 1, Scenario 2

Page 1.

	Growth Code	MSM Land Use Changes 1988-2010 Non-Retail Employment					Non-Retail		Retail Employment 1988	2010	Retail Growth	Percent Groulh Renail	Retail Employment Density Jobs/Square Mile		Total Employment Density Jobs/Square Mile	
		1.and Area	$\begin{array}{r} 1988 \\ \text { Non-Retail } \end{array}$	$\begin{array}{r} 2010 \\ \text { Non-Red } \end{array}$	Trend Non-Rel	Percent	Employme Jobs/Squar									
Zone	Municipality	Sq.Mi.	Employment	Employ't	Growth	Growth	1988	2010					1988	2010	1988	2010
52	East Windsor	1.97	0	0	0	0\%	0	0	82	82	0	0\%	42	42	42	42
53	East Windsor	1.75	3,609	4,009	400	11\%	2,067	2.297	0	0	0	0\%	0	0	2,067	2,297
70	East Windsor	0.71	587	854	267	45\%	824	1,199	214	214	0	0\%	300	300	1,125	1.499
71	East Windsor	0.88	1,222	1,580	358	29\%	1.392	1,800	0	0	0	0\%	0	0	1,392	1,800
72	East Windsor	1.18	100	100	0	0\%	85	85	0	400	400	0\%	0	340	85	425
73	East Windsor	1.10	722	722	0	0\%	658	658	552	677	125	23\%	503	617	1,161	1,275
76	East Windsor	2.67	684	3,246	2,562	375\%	256	1,217	0	0	0	0\%	0	0	256	1,217
77	East Windsor	1.85	0	0	0	0\%	0	0	0	30	30	0\%	0	16	0	16
78	East Windsor	2.42	0	0	0	0\%	0	0	0	0	0	0\%	0	0	0	0
79	East Windsor	1.13	691	1,586	895	130\%	613	1,407	0	0	0	0\%	0	0	613	1,407
Total	East Windsor	15.65	7.615	12,097	4,482	59\%	487	773	848	1,403	555	65\%	54	90	541	863
181	Ewing	14.14	24,952	29.749	4.797	19\%	1.765	2,104	2.458	2,741	283	12\%	174	194	1,939	2,298
182	Ewing	2.12	1,200	1.200	0	0\%	565	565	50	50	0	0\%	24	24	589	589
Total	Ewing	16.26	26,152	30,949	4,797	18\%	1,608	1,903	2,508	2.791	283	11\%	154	172	1,763	2,075
81	Ilamilton	5.19	2,213	2,466	253	11\%	427	475	0	93	93	0\%	0	18	427	493
164	Hamilton	0.80	0	40	40	0\%	0	50	50	103	53	106\%	63	129	63	179
165	Ilamilton	2.27	270	270	0	0\%	119	119	196	196	0	0\%	87	87	206	206
166	Ilamilton	2.51	1,133	1,205	72	6\%	451	480	50	50	0	0\%	20	20	471	500
167	llamilton	5.54	440	440	0	0\%	79	79	0	0	0	0\%	0	0	79	79
168	llamilton	2.15	270	270	0	0\%	126	126	100	194	94	94\%	47	90	172	216
169	Hamilon	0.69	426	426	0	0\%	616	616	0	0	0	0\%	0	0	616	616
170	llamilton	2.30	597	4,032	3,435	575\%	260	1,756	250	267	17	7\%	109	116	369	1.872
171	Hamilton	1.69	730	730	0	0\%	432	432	550	550	0	0%	326	326	758	. 758
172	Hamilton	3.39	2,576	3,657	1,081	42\%	759	1,078	1.221	1,270	49	4\%	360	374	1,119	1.452
173	Ilamilton	1.94	853	853	0	0\%	439	439	1,893	1,933	40	2\%	975	996	1.414	1.435
174	llamilton	3.12	2,763	3,302	539	20\%	885	1,058	124	134	10	8\%	40	43	925	1,101
175	Hamilton	1.47	523	523	0	0\%	357	357	523	544	21	4\%	357	371	713	728
176	llamilton	4.85	2.720	2.720	0	0\%	561	561	0	510	510	0\%	0	105	561	666
177	llamilton	1.12	3,288	3,288	0	0\%	2.926	2.926	538	570	32	6\%	479	507	3,404	3.433
178	Hamilton	2.12	3,500	3,500	0	0\%	1,647	1,647	128	154	26	20\%	60	72	1,708	1,720
Total	Hamilton	41.15	22,302	27,722	5,420	24\%	10,085	674	5.623	6.568	945	17\%	137	160	10,221	833
74	Hightstown	0.50	1.742	2,554	812	47\%	3.480	5,102	0	100	100	0\%	0	200	3.480	5,301
75	llightstown	0.76	313	1,126	813	260\%	411	1,479	800	900	100	13\%	1,051	1,183	1,462	2.662
Total	Hightstown	1.26	2,055	3,680	1,625	79\%	3.891	2.917	800	1,000	200	25\%	634	793	4.942	7,963
183	Hopewell Township	5.19	335	335	0	0\%	65	65	0	200	200	0\%	0	39	65	103
184	Hopewell Township	5.19	370	585	215	58\%	71	113	0	0	0	0\%	0	0	71	113
186	Hopewell Township	6.94	700	700	0	0\%	101	101	98	98	0	0\%	14	14	115	115
187	1 lopewell Township	9.34	300	300	0	0\%	32	32	0	0	0	0\%	0	0	32	32
188	1 lopewell Township	8.88	250	250	0	0\%	28	28	0	0	0	0\%	0	0	28	28
189	Ilopewell Township	4.21	500	1,297	797	159\%	119	308	30	30	0	0\%	7	7	126	315
190	Ilopewell Township	3.18	0	0	0	0\%	0	0	0	0	0	0\%	0	0	0	0

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Growth Code		MSM Land Use Changes 1988-2010 Non-Retail Employment					Non-Retail Employment Density Jobs/Square Mile		Retail Employment 1988		Retail Growth	Percent Growth Retail	Retail Employment Density Jobs/Square Mile		Total Employment Density Jobs/Square Mile		
		Land Area	$\begin{array}{r} 1988 \\ \text { Non-Retsil } \end{array}$	$\begin{array}{r} 2010 \\ \text { Non-Ret } \end{array}$	Trend Non-Ret	Percent											
Zone	Municipality	Sq.Mi.	Employment	Employ't	Growh	Growth	1988	2010		2010			1988	2010	1988	2010	
163	Washington	2.40	225	408	183	81\%	94	170		150	250	100	67\%	62	104	156	274
Total	Washington	20.48	1,601	3,340	1,739	109\%	78	163	500	600	100	20\%	24	29	2,686	3,519	
29	West Windsor	0.68	1,500	1,500	0	0\%	2.212	2,212	40	40	0	0\%	59	59	2.271	2.271	
30	West Windsor	1.44	949	1,322	373	39\%	659	918	0	0	0	0\%	0	0	659	918	
31	West Windsor	0.97	0	0	0	0\%	0	0	0	0	0	0\%	0	0	0	0	
32	West Windsor	1.34	1,172	2.080	908	77\%	876	1,555	175	175	0	0\%	131	131	1,007	1,686	
47	West Windsor	3.46	506	506	0	0\%	146	146	0	700	700	0\%	0	202	146	348	
48	West Windsor	1.95	183	183	0	0\%	94	94	0	0	0	0\%	0	0	94	94	
49	West Windsor	2.99	285	285	0	0\%	95	95	0	0	0	0\%	0	0	95	95	
50	West Windsor	2.86	579	579	0	0\%	202	202	0	0	0	0\%	0	0	202	202	
51	West Windsor	4.19	34	34	0	0\%	8	8	0	0	0	0\%	0	0	8	8	
54	West Windsor	2.58	112	112	0	0\%	43	43	0	0	0	0\%	0	0	43	43	
84	West Windsor	0.38	56	3.646	3,590	6411\%	147	9,602	0	0	0	0\%	0	0	147	9.602	
85	West Windsor	1.13	796	796	0	0\%	702	702	800	1.178	378	47\%	706	1,039	1,408	1,741	
86	West Windsor	1.44	4,940	12,349	7,409	150\%	3.427	8,566	25	25	0	0\%	17	17	3.444	8.584	
87	West Windsor	0.62	0	0	0	0\%	0	0	10	10	0	0\%	16	16	16	16	
Total	West Windsor	26.04	11,112	23,392	12,280	111\%	427	898	1,050	2,128	1,078	103\%	40	82	467	980	
	Mercer County	227.00	162,473	225,193	62.720	39\%	716	992	23,206	28,197	4,991	22\%	102	124	7,079	23.401	
1	Franklin	1.12 .87	13	13	0	0\%	5	5	0	0	0	0\%	0	0	5	5	
2	Franklin	2.78	0	0	0	0\%	0	0	0	0	0	0\%	0	0	0	0	
21	Franklin	0.56	281	281	0	0\%	499	499	40	40	0	0\%	71	71	570	570	
22	Franklin	2.92	53	53	0	0\%	18	18	160	160	0	0\%	55	55	73	73	
88	Franklin	6.99	145	145	0	0\%	21	21	62	346	284	458\%	9	49	30	70	
89	Franklin	2.51	73	73	0	0\%	29	29	50	50	0	0\%	20	20	49	49	
108	Franklin	7.41	9,834	10,090	256	3\%	1,327	1.361	414	414	0	0\%	56	56	1382	1,417	
109	Franklin	8.13	2,440	2,977	537	22\%	300	366	213	213	0	0\%	26	26	326	392	
110	Franklin	2.81	2,428	4,001	1.573	65\%	863	1,423	162	180	18	11\%	58	64	921	1.487	
111	Franklin	1.60	612	612	0	0\%	382	382	89	89	0	0\%	55	55	437	437	
112	Franklin	2.97	1,541	1,541	0	0\%	519	519	171	171	0	0\%	58	58	576	576	
113	Franklin	1.80	499	499	0	0\%	278	278	92	92	0	0\%	51	51	329	329	
114	Franklin	0.68	700	700	0	0\%	1,024	1,024	372	372	0	0\%	544	544	1.568	1.568	
115	Franklin	1.22	1.643	1,643	0	0\%	1,345	1,345	143	143	0	0\%	117	117	1,463	1.463	
116	Franklin	0.94	1,593	1,593	0	0\%	1,689	1,689	119	119	0	0\%	126	126	1,815	1,815	
201	Franklin (W/C)	0.50	\%				0	0	0				0	0	0 513	0 570	
Total	Franklin	46.70	21,855	24,221	2,366	11\%	468	519	2,087	2,389	302	14\%	45	51	513	570	
98	1lillsborough	20.40	428	428	0	0\%	21	21	100	208	108	108\%	5	10	26	31	
99	Hillsborough	3.18	381	924	543	143\%	120	291	188	228	40	21\%	59	72	179	363	
100	Hillsborough	10.84	790	3,361	2,571	325\%	73	310	62	62	0	0\%	6	6	79	316	
101		3.99	267	1,248	981	367\%	67	313	155	195	40	26\%	39	49	106	361	
102	lill sborough	6.51	469	1,073	604	129\%	72	165	425	465	40	9\%	65	71	137	236	
103	lills sborough	9.77	974	2,277	1.303	134\%	100	233	141	181	40	28\%	14	19	114	252	

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Growth Code		MSM Land Use Changes 1988-2010 Non-Retail Employment					Non-Retail Employment Density Jobs/Square Mile		Retail Employment 1988	2010	Retail Growth	Percent Growth Retail	Retail Employment Density Jobs/Square Mile		Total Employment Density Johs/Square Mile	
		Land Area	$\begin{array}{r} 1988 \\ \text { Non-Retaid } \end{array}$	$\begin{array}{r} 2010 \\ \text { Non-Ret } \end{array}$	Trend Non-Ret	Percent										
Zone	Municipality	Sq.Mi.	Employment	Employ'i	Growth	Growth	1988	2010					1988	2010	1988	2010
23	South Brunswick	2.72	150	303	153	102\%	55	111	205	294	89	43\%	75	108	131	220
24	South Brunswick	2.95	38	38	0	0\%	13	13	125	138	13	10\%	42	47	55	60
25	South Brunswick	1.83	0	0	0	0\%	0	0	130	686	556	428\%	11	374	71	374
26	South Brunswick	1.29	227	524	297	131\%	176	406	0	0	0	0\%	0	0	176	406
27	South Brunswick	0.54	30	30	0	0\%	55	55	30	30	0	0\%	55	55	110	110
37	South Brunswick	1.82	2,606	6,549	3,943	151\%	1.432	3,600	0	0	0	0\%	0	0	1,432	3,600
38	South Brunswick	2.67	0	0	0	0\%	0	0	184	184	0	0\%	69	69	69	69
39	South Brunswick	1.14	0	0	0	0\%	0	0	0	0	0	0%	0	0	0	0
40	South Brunswick	2.67	631	8,985	8.354	1324\%	237	3,369	22	366	344	1564\%	8	137	245	3,506
41	South Brunswick	2.98	1.895	2,145	250	13\%	636	720	84	84	0	0%	28	28	664	748
42	South Brunswick	2.17	3.276	4,200	924	28\%	1.510	1,936	0	19	19	0\%	0	9	1,510	1.945
60	South Brunswick	2.08	0	0	0	0\%	0	0	0	0	0	0\%	0	0	0	0
61	South Brunswick	4.47	782	3.225	2,443	312\%	175	722	0	0	0	0\%	0	0	175	722
62	South Brunswick	7.56	2,035	15,093	13,058	642\%	269	1,996	0	0	0	0\%	0	0	269	1,996
91	South Brunswick	3.53	236	1,170	934	396\%	67	331	0	0	0	0\%	0	0	67	331
Total	South Brunswick	40.41	11,906	42,262	30.956	255\%	295	1,046	780	1,801	1.021	131\%	19	45	314	1,090
130	Sounh River	0.93	1.122	1.460	338	30\%	1.207	1.570	217	217	0	0\%	233	233	1.440	1.804
131	South River	0.41	288	626	338	117\%	698	1,518	119	119	0	0\%	289	289	987	1,807
132	South River	1.51	404	743	339	84\%	267	491	87	87	0	0\%	57	57	324	548
Total	South River	2.86	1.814	2,829	1.015	56\%	635	990	423	423	0	0\%	148	148	783	1.139
141	Spotswood	1.55	784	1,178	394	50\%	505	759	183	183	0	0%	118	118	623	87
142	Spotswood	0.82	936	1,330	394	42\%	1,144	1,626	271	271	0	0%	331	331	1,475	1.957
Total	Spotswood	2.37	1.720	2.508	788	46\%	726	1,058	454	454	0	0\%	192	192	917	1.250
Middl	sex Co. (part)	158	97,420	188,946	91.526	94\%	618	1,199	16.575	24,754	8.179	49\%	105	157	723	1.356
	MSM Region Total	523.22	293.899	462,181	168,282	57\%	562	883	43,905	58,199	14.294	33\%	84	111	646	995

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Page 9.

Source: Douglas \& Douglas, Inc.

Page 10.

Source: Douglas \& Douglas, Inc.

Page 11.

Source: Douglas \& Douglas, Inc.

Page 12.

Source: Douglas \& Douglas, Inc.

Zone	GrowthCodeMunicipality	Total Daily	1988 Daily Trips/Sq. Mi. HBW	Total	II	Trend Scenario 2010 Productions		NHB	Total Daily	Trend Scenario			Total Daily	2010 Daily Trips/Sq. Mi. HBW	Total	IIIIIIIn	2010 Scenl NREmp	Scenario 1 Change from Trend	
					H			2010 Attra											
					11	HBW	HBO			IIBW	HBO	NHB							
					II														
52	East Windsor	5572	3405	15525	II	7329	18886		1068	27282	155	4787	1068	6009	3801	16909	In	0	0
53	East Windsor	12657	4061	10167	1	1399	3606	4800	9805	7577	2476	4800	14853	5142	14126	1	3.609	(400)	
70	East Windsor	11312	11330	52523	II	7343	18922	2518	28783	2019	7908	2518	12444	13142	57878	\%	587	(267)	
71	East Windsor	4310	2790	7082	11	1278	3292	1969	6539	2986	1283	1969	6239	4859	14560	f	7,222	5,642	
72	East Windsor	1628	2338	9705	11	3564	9184	1885	14632	945	9779	1885	12609	3832	23150	I'	100	0	
73	East Windsor	19411	4811	29881	11	3880	9998	3601	17479	2644	15900	3601	22145	5945	36107	\%	722	0	
76	East Windsor	2846	839	2695	11	2038	5252	3983	11273	6135	2388	3983	12506	3063	8913	II	684	(2,562)	
77	East Windsor	218	235	1007	II	1556	4010	270	5836	57	1275	270	1602	870	4012	H	0	0	
78	East Windsor	405	335	1433	1	1909	4920	204	7034	0	808	204	1012	789	3323	H	0	0	
79	East Windsor	2554	1435	4005	II	1439	3708	1994	7141	2998	1354	1994	6345	3935	11960	1	6.691	5,105	
Total	East Windsor	60914	2393	9789	11	31735	81779	22291	135805	25515	47958	22291	95764	3658	14797	I	19.615	7.518	
181	Ewing	174780	5766	22644	II	30591	81350	48458	160399	63116	85709	48458	197284	6629	25302	H	24.952	(4.797)	
182	Ewing	7052	2514	9326	II	3367	8677	1925	13970	2363	3017	1925	7304	2699	10021	I	1.200	0	
Total	Ewing	181832	5342	20905	1	33958	90027	50384	174369	65479	88726	50384	204588	6116	23307	1	26,152	$(4,797)$	
81	Hamilton	11425	2251	8143	II	8394	21630	4080	34103	4837	6622	4080	15539	2551	9571		2,213	(253)	
164	llamilton	2920	3927	18245	U	4193	10806	852	15851	270	3911	852	5033	5596	26180	1	0	(40)	
165	llamilton	8782	2466	12127	11	5773	14876	1610	22259	881	6599	1610	9090	2937	13839		270	0	
166	llamilton	5460	993	3132	II	1568	4040	1739	7347	2372	2258	1739	6368	1570	5463	,	1.133	(72)	
167	Hamilon	1943	300	1008	II	2111	5439	736	8286	832	1100	736	2667	531	1976	V	440	0	
168	llamilton	5239	1724	8010	II	4158	10715	1431	16304	877	5875	1431	8182	2347	11415		270	0	
169	Hamiton	2274	3465	12680	1	2827	7284	796	10907	805	1396	79	2997	5250	20100	I	426	0	
170	llamiton	10987	2360	11701	1	4940	12729	6131	23800	8125	9474	6131	23731	5690	20700		597	$(3,435)$	
171	Hamilon	20526	4484	25182	11	6217	16022	3420	25659	2419	14282	3420	20120	5111	27093	If	730	0	
172	Hamilton	46973	4364	24320	II	8583	22118	9566	40267	9312	31461	9566	50339	5274	26705	\#	2.576	(1,081)	
173	llamilton	58410	5144	42946	1	5941	15310	8332	29583	5266	42657	8332	56254	5772	44208	1	853	0	
174	Ilamilton	18532	5253	20303	I	11651	30023	5540	47214	6494	9236	5540	21270	5814	21943	1	2,763	(539)	
175	llamilton	20506	6850	36282	II	8962	23095	3452	35509	2017	15222	3452	20691	7486	38322	\%	523	0	
176	Ilamiton	12780	2437	8473	11	7633	19670	5740	33043	6105	14993	5740	26838	2832	12343		2,720	0	
177	llamilton	29071	11033	48038	1	6229	16052	6457	28738	7292	15900	6457	29649	12031	51953	I'	3.288	0	
178	llamilton	17858	5229	18016	1	5342	13766	5165	24274	6906	7071	5165	19143	5765	20436	II	3,500	0	
Total	Hamilton	273689	3164	14798	I	94522	243576	65047	403145	64808	188057	65047	317913	3872	17523	-	22,302	$(5,420)$	
74	Ilightstown	6902	10000	30651	\\|	1619	4173	3483	9275	5016	3941	3483	12440	13254	43376	H	1,742	(812)	
75	lightstown	24884	6384	50105	II	2637	6796	4711	14144	3829	20149	4711	28689	8496	56280	"	313	(813)	
Total	Hightstown	31785	7819	42386	11	4256	10969	8194	23419	8845	24090	8194	41129	10384	51160	I	2,055	$(1,625)$	
183	Hopewell Township	1683	323	1155	II	1147	2955	1205	5306	1011	4755	1205	6971	416	2365	1	335	0	
184	Hopewell Township	1854	355	1269	,	1266	3262	814	5342	1106	811	814	2730	457	1557	!	9.370	8,785	
186	Hopewell Township	5557	327	1374	II	826	2129	1240	4195	1508	2693	1240	5442	336	1388	H	700	0	
187	Hopewell Township	1487	156	557	\\|	964	2484	451	3899	567	549	451	1567	164	585	1	300	0	
188	Hope well Township	1376	168	619	II	1226	3160	421	4807	473	636	421	1530	191	714	1	250	0	
189	Hopewell Township	2959	420	1548	1	1226	3160	1740	6126	2508	1745	1740	5993	887	2878	1	500	(797)	
190	Hopewell Township	446	281	1201	1	931	2400	100	3431	0	394	100	494	293	1234	\\|	0	0	

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Page 15.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Page 17.

Source: Douglas \& Douglas, Inc.

Page 18.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Page 21.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

	Growth Code	Scenario IDaily Trips/Sq. Mi.		1 1 1 1	Consi Code Scenl	Daily Trip Ends - Scenario 1 Reduced by Construct Impact				Change in Total Daily	2010 Percent Change in Daily Trip Ends Scenario 1 vs. Trend				
Zone	Municipality	HBW	Total	1		HBW	HBO	NIIB	Total	Trip Ends	HBW	IIBO	NHB	TOTAL	
191	Hopewell Township	493	1636	1		1260	1987	930	4178	-4822	-47.6\%	63.3\%	-20.8\%	-53.6\%	
192	Hopewell Township	162	681	I		842	2527	180	3550	-10008	-73.8\%	-73.8\%	-73.8\%	-73.8\%	
193	Hopewell Boro	4237	16712	\\|		2898	6694	1837	11429	-4063	-24.1\%	-27.6\%	-24.2\%	-26.2\%	
194	Hopewell Township	240	1012	1	ZW	725	2176	155	3057	. 385	-11.2\%	-11.2\%	-11.2\%	-11.2\%	
195	Hopewell Township	204	861	1		725	2176	155	3057	-1213	-28.4\%	-28.4\%	-28.4\%	-28.4\%	
202	Hopewell (W/C)	8357	43589	\\|	W	3274	13208	1716	18198	18198	N/A	N/A	N/A	N/A	
203	Hopewell (W/C)	8357	43589°	,	W	3274	13208	1716	$18: 98$	18198	N/A	N/A	N/A	N/A	
Total	Hopewell Township	854	3299	1		41514	92559	32555	166628	63037	59.5\%	51.9\%	95.9\%	60.9\%	
69	Lawrence	4588	65249	I	B	1986	17910	6263	26159	-19927	-64.0\%	-41.9\%	-35.7\%	-43.2\%	
80	Lawrence	2403	10830	-	B	4894	12218	5268	22380	-17739	-52.7\%	-32.4\%	-55.0\%	-44.2\%	
82	Lawrence	1912	5598	!	B	4970	5256	4572	14798	-11268	-44.4\%	-37.9\%	-47.2\%	-43.2\%	
83	Lawrence	19186	92480	1	S	24224	69243	31337	124805	9254	74.6\%	-5.6\%	10.6\%	8.0\%	
96	Lawrence	2950	8376	\\|		10049	8280	10205	28534	-11110	-30.9\%	-11.9\%	-35.1\%	-28.0\%	
97	Lawrence	1089	4617	\\|		6241	18523	1708	26471	. 1676	-7.3\%	-4.4\%	-16.4\%	-6.0\%	
179	Lawrence	6889	42235	-		21577	79029	31680	132285	-6656	-8.3\%	-4.0\%	-4.1\%	-4.8\%	
Total	Lawrence	4207	20958	-		73940	210459	91032	375431	-59122	-11.4\%	-13.0\%	-16.7\%	-13.6\%	
185	Pennington	5339	17935	\\|		5133	7694	4416	17243	-11334	-44.9\%	-25.2\%	-50.8\%	-39.7\%	
10	Princeton Township	450	1719	1		613	1459	271	2343	-4585	-64.0\%	-69.1\%	-46.2\%	.66.2\%	
11	Princeton Township	2940	8768	\\|		4150	3884	4344	12379	-15808	.57.5\%	-53.1\%	-57.1\%	-56.1\%	
12	Princeton Township	4977	27454	I		7590	26052	8227	41868	-15808	-42.5\%	-14.4\%	-41.3\%	-27.4\%	
13	Princeton Township	2496	10182	\\|		2047	5705	598	8350	-4595	-34.8\%	-36.4\%	-28.0\%	-35.5\%	
14	Princeton Township/	19270	59315	I		22553	20928	25941	69422	-2514	-2.6\%	-7.9\%	-0.5\%	-3.5\%	
15	Prinction Boro	30545	119653	I		19969	35182	23073	78224	- 10246	-8.4\%	-14.4\%	-9.8\%	-11.6\%	
16	Princeton Township	808	3386	I		2444	6293	1506	10243	-4595	-30.9\%	-34.2\%	-13.4\%	-31.0\%	
17	Princeton Township	559	1902	\\|		1651	2825	1136	5612	-4595	-39.8\%	-53.7\%	-17.0\%	-45.0\%	
18	Princeton Township	676	2537	1		1429	3246	689	5363	-4595	-43.3\%	-50.2\%	-25.3\%	-46.1\%	
19	Princeton Boro	3499	15395	1		2295	6161	1639	10095	- 2514	-20.6\%	-22.5\%	-7.2\%	-19.9\%	
20	Princeton Township	603	2572	1		1357	3521	914	5792	-15803	-80.5\%	-55.5\%	-86.4\%	-73.2\%	
Total	Princeton	3684	13917	1		66097	115255	68339	249691	-85658	-27.7\%	-25.3\%	-23.8\%	-25.5\%	
180	Trenton	36629	137791	\#		290834	543466	259761	1094061	271120	29.4\%	37.1\%	28.8\%	329\%	
152	Washington	260	2056	-		391	2029	670	3089	-0	0.0\%	0.0\%	0.0\%	-0.0\%	
153	Washington	119	410	\%		219	396	143	757	0	-0.0\%	0.0\%	0.0\%	0.0\%	
154	Washington	94	330	1		228	424	145	796	-0	0.0\%	0.0\%	0.0\%	-0.0\%	
155	Washington	19	80	I		23	70	5	999	-0	0.0\%	0.0\%	0.0\%	-0.0\%	
156	Washington	416	2855	I		343	1515	496	2354	-0	0.0\%	0.0\%	0.0\%	-0.0\%	
157	Washington	2241	11892	-	W	3668	14861	2115	20643	16514	379.7\%	434.9\%	260.9\%	400.0\%	
158	Washington	494	2271	I		963	3002	465	4430	0	0.0\%	0.0\%	0.0\%	0.0\%	
159	Washington	1308	4878	1		2289	4638	1611	8537	-2002	-17.2\%	-23.5\%	-5.9\%	-19.0\%	
160	Washington	9314	32101	1	S	18027	29020	18291	65339	57974	514.6\%	3159.3\%	416.5\%	787.2\%	
161	Washington	394	1533	-		625	1076	728	2429	-1785	-40.4\%	-54.1\%	-11.1\%	-42.4\%	
162	Washington	5095	25294	\\|		1323	3639	1607	6569	-168	-4.9\%	-0.5\%	-4.9\%	-2.5\%	

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Growth Code		Scenario I Daily Trips/Sq. Mi.		11 11 11 11	Const Code Scenl	Daily Trip Ends - Scenario 1 Reduced by Construat Impact			Total	Change in Total Daily Trip Ends	2010 Percent Change in Daily Trip Ends Scenario I vs. Trend		NHB	TOTAL	
Zone	Municipality	IIBW	Total	II		HBW	HBO	NIIB			HBW	HBO			
Total	Hillsborough	992	4055	1		45517	113224	36955	195697	-27727	-14.9\%	-14.2\%	-2.8\%	-12.4\%	
105	Manville	4573	21661	V		5305	16328	3494	25126	-4542	-24.1\%	-5.7\%	-34.8\%	-15.3\%	
106	Manville	8736	37044	\%		2894	8175	1202	12271	-4537	-36.8\%	-10.8\%	-60.8\%	-27.0\%	
107	Manville	3311	13893	I		3270	8938	1513	13720	-4537	-34.0\%	-9.9\%	-55.2\%	-24.8\%	
Total	Manville	4627	20622	\\|		11468	33440	6209	51117	-13616	-30.6\%	-8.1\%	-47.4\%	-21.0\%	
104	Millstone	699	3334	1		523	1671	303	2497	-799	-37.3\%	-6.8\%	-54.7\%	-24.2\%	
3	Montgomery/Rocky	4320	21946	\#		6240	16805	8651	31696	-8399	-24.7\%	-167\%	-25.7\%	-20.9\%	
4	Montgomery	335	1291	\\|	ZW	2444	5827	1137	9408	-10846	-51.3\%	-57.0\%	-32.6\%	-53.5\%	
5	Montgomery	344	1444	-		891	2080	770	3740	-8861	-68.6\%	-68.3\%	-76.1\%	-70.3\%	
6	Montgomery	783	2214	-		11019	8908	11253	31180	. 9061	-125\%	-37.3\%	-16.3\%	-22.5\%	
7	Montgomery	110	434	I		516	1319	195	2030	-2189	-50.2\%	-54.2\%	-36.3\%	-51.9\%	
8	Montgomery	2443	12059	II	W	3934	14216	2255	20406	8692	40.5\%	151.3\%	-30.7\%	74.2\%	
9	Montgomery	1389	5855	H		896	2689	192	3776	-2189	-36.7\%	-36.7\%	-36.7\%	-36.7\%	
200	Montgomery(W/C)	8357	43589	1	W	3274	13208	1716	18198	18198	N/A	N/A	N/A	N/A	
Total	Montgomery	936	3852	\\|		29215	65052	26169	120435	- 14655	-14.0\%	-3.3\%	-22.7\%	-10.8\%	
196	South Bound Brook	5719	24200	I		4450	12163	2218	18831	-4384	-25.2\%	-10.6\%	-39.4\%	-18.9\%	
Somerset County (Part)		1495	5952	H		183958	410884	155547	750390	-112605	-14.7\%	-13.5\%	-9.8\%	-13.0\%	
				\#											
55	Cranbury	12	51	U		14	42	3	59		-95.9\%	-95.9\%	-95.9\%	-95.9\%	
56	Cranbury	560	2063	I		919	1986	480	3384	-1371	-26.2\%	-32.9\%	-12.7\%	-28.8\%	
57	Cranbury	39	166	1		33	98	7	138	. 1371	-90.8\%	-90.8\%	-90.8\%	-90.8\%	
58	Cranbury	935	4506	,		885	3027	353	4265	-1371	-26.9\%	-24.4\%	-16.5\%	-24.3\%	
59	Cranbury	74	310	,		225	674	48	947	. 1371	-59.1\%	-59.1\%	.59.1\%	-59.1\%	
63	Cranbury	1145	2938			1559	607	1834	4000	-4679	-51.6\%	-68.3\%	-48.3\%	-53.9\%	
64	Cranbury	5990	22071	1	W	8775	15519	7354	31649	6207	25.8\%	69.9\%	-21.2\%	24.4\%	
66	Cranbury	2826	7031	1		4989	1337	6088	12414	-1371	-6.1\%	-42.2\%	-1.1\%	-9.9\%	
67	Cranbury	37	155	\%		35	105	8	148	-1380	-90.3\%	.90.3\%	.90.3\%	-90.3\%	
Toul	Cranbury	1413	4720	1		17433	23396	16174	57003	. 8076	-10.9\%	-7.0\%	-20.5\%	-12.4\%	
				II											
129	East Brunswick	4756	25888	H		18776	58335	25094	102204	- 33957	-20.6\%	-26.7\%	-23.9\%	-24.9\%	
133	East Brunswick	9125	41800	1		14499	31039	20878	66417	-29283	-22.3\%	-34.7\%	-29.3\%	-30.6\%	
135	East Brunswick	498	2243	-		2242	6933	931	10106	-6922	-42.3\%	-41.5\%	-27.4\%	-40.6\%	
136	East Brunswick	1845	8487	I		11533	32353	9159	53044	. 35256	-28.8\%	-41.2\%	-46.5\%	-39.9\%	
137	East Brunswick	3632	16724	1		5499	15981	3842	25321	-6922	-23.0\%	-23.6\%	-8.4\%	-21.5\%	
138	East Brunswick	3255	15650	\%		6318	18946	5117	30381	-7422	-22.6\%	-20.8\%	-10.5\%	-19.6\%	
139	Esst Brunswick	9222	83679	H		12513	73882	27142	113537	-12042	-14.2\%	-10.1\%	-5.7\%	-9.6\%	
140	East Brunswick	6145	36691	\%		8193	30387	10334	48914	. 7507	-27.0\%	-2.4\%	-26.5\%	-13.3\%	
Total	Esst Brunswick	3546	20052	H		79572	267856	102496	449924	-139310	-23.1\%	-23.9\%	-23.3\%	-23.6\%	
143	Helmeta	1715	6880	1		1339	3380	653	5373	-5674	-51.0\%	-53.4\%	-38.7\%	-51.4\%	

Source: Douglas \& Douglas, Inc.

Zone	Growh Code Municipality	Scenario 1 Daily Trips/Sq. Mi.		\#	Const Code Scen 1	Daily Trip Ends - Scenario is Reduced by Construct Impact				Change in Toul Daily	Percent Change in Daily Trip Ends Scenario I vs. Trend		NHB		
		HBW	Total	!		HBW	HBO	NIIB	Total	Trip Ends	HBW	HBO		TOTAL	
				\%											
145	Jamesturg	8593	40416	\\|		7885	21527	7675	37087	-8103	-23.4\%	-15.6\%	-18.2\%	-17.9\%	
134	Milltown	7399	29272	I		10666	23043	8488	42197	-6734	-14.1\%	-15.5\%	-8.2\%	-13.8\%	
144	Monroe	1025	4321	I		9950	29849	2126	41925	-36565	-36.5\%	-42.6\%	-80.4\%	-46.6\%	
146	Monroe	1818	6840	,		11228	25667	5354	42249	-39397	-35.7\%	-47.8\%	-64.3\%	-48.3\%	
147	Monroe	85	359	/		122	365	26	513	-7849	-93.9\%	-93.9\%	-93.9\%	-93.9\%	
148	Monroe	99	418	1		613	1839	131	2583	- 38307	-91.3\%	-92.4\%	-98.7\%	-93.7\%	
149	Monroe	149	495	,		1488	2385	1085	4958	-13301	.73.2\%	-72.0\%	-74.15	-72.8\%	
150	Monroe	52	217	1		349	1046	75	1469	-13825	-925\%	-85.6\%	-97.8\%	-90.4\%	
151	Monroe	76	321	1		138	414	30	582	-13301	-96.7\%	-93.7\%	-99.1\%	-95.8\%	
Total	Monroe	568	2241	1		23888	61566	8825	94279	-162545	-57.7\%	-59.9\%	-81.1\%	-63.3\%	
				H											
117	New Brunswick	14367	53487	1		21260	38046	19845	79152	35922	73.4\%	92.0\%	78.0\%	83.1\%	
118	New Brunswick	57951	231091	1		15122	33157	12022	60301	38135	189.1\%	125.4\%	440.0\%	1720\%	
119	New Brunswick	65774	250651	1		15031	28686	13561	57278	37040	169.3\%	177.2\%	214.8\%	183.0\%	
120	New Brunswick	73323	295909	1		14547	32527	11634	58708	38135	212.4\%	131.0\%	532.9\%	185.4\%	
121	New Bruswick	81219	314098	1		16789	33002	15138	64930	35838	138.2\%	104.3\%	157.2\%	123.2\%	
122	New Brunswick	88812	308311	I		24958	33851	27831	86641	35838	64.0\%	99.0\%	49.8\%	70.5\%	
123	New Brunswick	135813	507863	V		20032	34239	20638	74909	33919	69.1\%	111.2\%	59.6\%	82.7\%	
124	New Brunswick	101680	383191	1		19920	38315	16836	75071	38101	98.5\%	92.7\%	138.8\%	103.1\%	
125	New Brunswick	47305	173528	-		36582	55000	42609	134191	38091	37.0\%	50.4\%	29.8\%	39.6\%	
126	New Brunswick	12603	58025	1		24636	61140	27653	113429	38101	67.0\%	43.1\%	54.8\%	50.6\%	
Total	New Brunswick	36473	140495	1		208877	387964	207767	804608	369121	84.3\%	87.0\%	81.2\%	84.8\%	
90	North Brunswick	3571	16819	-	B	7838	25027	6456	39322	-32004	-51.2\%	-38.8\%	-55.1\%	-44.9\%	
92	North Brunswick	10946	37896	1	S	20998	35876	20064	76937	-9538	-16.6\%	-7.6\%	-10.7\%	-11.0\%	
93	North Brunswick	2834	11787	II	B	5116	16551	2323	23990	-21331	-53.6\%	-36.6\%	-71.7\%	-47.1\%	
94	North Brunswick	3889	15697	-	B	3787	9769	2809	16365	-16604	-53.9\%	-39.4\%	-67.5\%	-50.4\%	
95	North Brunswick	9966	42779	-		27789	58322	33178	119289	-14984	-11.9\%	-9.6\%	-13.2\%	-11.2\%	
127	North Brunswick	1669	4292	1		300	120	352	771	- 15725	-93.6\%	-97.7\%	-94.7\%	-95.3\%	
128	North Brunswick	786	1975	1		579	176	699	1453	-13071	-85.0\%	-96.5\%	-87.6\%	-90.0\%	
Total	North Brunswick	6165	24654	\%		66408	145840	65879	278127	-123257	-33.9\%	-25.8\%	-36.8\%	-30.7\%	
28	Plainsboro	22257	90214	\\|	S	19933	44122	21952	86007	1190	-18.1\%	43.4\%	-26.1\%	1.4\%	
33	Plainsboro	1517	3881	,	B	1585	593	1743	3921	-24121	-83.6\%	-93.3\%	-81.7\%	-86.0\%	
34	Plainsboro	2104	5269	1	B	1179	328	1326	2834	-39801	-92.9\%	-93.9\%	-93.6\%	-93.4\%	
35	Plainsboro	6782	16817	,	B	5541	1296	6295	13133	- 15090	-48.6\%	-67.0\%	-53.4\%	-53.5\%	
36	Plainsboro	1244	4311	-		921	1671	599	3191	-9485	-71.0\%	-80.2\%	-44.5\%	-74.8\%	
43	Plainsboro	26	108	,		63	190	14	266	-9485	-97.3\%	.97.3\%	-97.3\%	-97.3\%	
44	Plainsboro	4062	26485	I		3136	14198	3113	20447	-21437	-67.4\%	-38.8\%	-65.6\%	-51.2\%	
45	Plainsboro	7047	30886	\#		11958	36852	3602	52411	-15643	-25.7\%	-18.6\%	-46.1\%	-23.0\%	
46	Plainsboro	126	461	II		298	634	160	1092	-9475	-88.3\%	-91.4\%	-75.1\%	-89.7\%	
Toual	Plainsboro	4392	17413	-		44615	99883	38803	183302	-143347	-53.1\%	-28.7\%	-57.5\%	-43.9\%	

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Source: Douglas \& Douglas, Inc.

Growh Code		job/Housing Ratios	2010		Percent Change in 2010 J/H Ratios			II	
		11							
Zone	Municipality		1988	Trend	Scen 1	'88-T	'88-S1	T-S1 11	
163	Washington			0.55	0.32	0.55	-42.9\%	0.0\%	75.1\% 11
Total	Washington		0.93	0.95	1.78	1.5\%	90.5\%	87.8\% III	
29	West Windsor		6.16	6.16	6.16	0.0\%	0.0\%	0.0\% II	
30	West Windsor		47.45	66.10	47.45	39.3\%	0.0\%	-28.2\% II	
31	West Windsor		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 11	
32	West Windsor		2.25	3.76	2.19	67.4\%	-2.5\%	-41.8\% 11	
47	West Windsor		1.09	1.39	1.09	28.4\%	0.0\%	-22.1\% II	
48	West Windsor		0.23	0.16	0.23	-30.7\%	0.0\%	44.3\% II	
49	West Windsor		0.59	0.24	0.59	-58.9\%	0.0\%	143.6\% II	
50	West Windsor		7.24	1.08	7.24	85.1\%	0.0\%	571.3\% II	
51	West Windsor		0.09	0.04	0.09	-54.4\%	0.0\%	119.1\% 11	
54	West Windsor		0.27	0.13	0.27	.51.2\%	0.0\%	105.0\% II	
84	West Windsor		11.20	729.20	11.20	6410.7\%	0.0\%	.98.5\% II	
85	West Windsor		2.02	1.78	2.02	-11.9\%	0.0\%	13.5\% II	
86	West Windsor		38.19	95.18	38.19	149.2\%	0.0\%	-59.9\% II	
87	West Windsor		1.00	1.00	1.00	0.0\%	0.0\%	0.0\% II	
Total	West Windsor		2.74	2.74	2.42	-0.2\%	-11.7\%	-11.5\% II	
	Mercer County		1.57	1.62	1.68	3.0\%	6.9\%	3.8\% II	
1	Franklin		0.06	0.02	0.06	.72.7\%	0.0\%	265.9\% 11	
2	Franklin		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% II	
21	Franklin		11.46	0.52	11.46	.95.5\%	0.0\%	2117.9\% II	
22	Franklin		1.47	0.29	1.47	-80.4\%	0.0%	409.0\% II	
88	Franklin		0.33	0.23	0.33	-29.5\%	0.0\%	41.8\% II	
89	Franklin		0.27	0.12	0.27	-56.6\%	0.0\%	130.3\% \|	
108	Franklin		16.72	8.71	16.72	-47.9\%	0.0\%	91.9\% II	
109	Franklin		7.76	3.41	7.76	-56.0\%	0.0\%	127.4\% II	
110	Franklin		8.35	4.63	3.89	-44.6\%	-53.5\%	-15.9\% II	
111	Franklin		1.17	0.59	1.17	-49.7\%	0.0\%	98.8\%	
112	Franklin		0.84	0.65	0.84	-22.6\%	0.0\%	29.1 \% II	
113	Franklin		0.30	0.23	0.30	-23.3\%	0.0\%	30.4\% II	
114	Franklin		0.45	0.36	0.45	-20.0\%	0.0\%	25.0\% 11	
115	Franklin		0.77	0.62	0.77	-20.5\%	0.09	25.7\% 11	
116	Frankiin		1.27	0.88	1.27	-30.7\%	0.0%	44.2\% II	
201	Franklin (W/C)				0.14			11	
Total	Franklin		1.77	1.14	1.88	-35.6\%	6.1\%	64.6\% II	
98	Ilillsborough		0.50	0.37	0.50	-24.7\%	0.0%	32.8\% II	
99	liillsborough		0.21	0.30	1.85	38.3\%	761.1\%	522.6\% II	
100	llilisborough		0.73	1.56	0.73	113.3\%	0.0\%	-53.1\% II	
101	1 lillsborough		0.28	0.67	028	141.1\%	0.0%	-58.5\% II	
102	1 lills borough		0.88	0.93	0.88	5.7\%	0.0\%	-5.4\% II	
103	Hillsborough		0.64	0.93	0.64	44.8\%	0.0\%	-30.9\% II	

Source: Douglas \& Douglas, Inc.

Growth Code		Job/Housing Ratios	1988	$\begin{gathered} 2010 \\ \text { Trend } \end{gathered}$	2010	Percent Change in J/II Ratios		III
Zone	Municipality				Scen 1	'88-T	-88-S1	T-S1
Total	Hill sborough		0.48	0.75	1.16	56.4\%	142.7\%	55.2\% 11
105	Manville		0.43	0.85	0.43	97.1\%	0.0\%	-49.3\% II
106	Manville		0.21	0.88	0.21	313.9\%	0.08	-75.8\% II
107	Manville		0.29	0.91	0.29	216.0\%	0.0%	-68.4\% 1
Total	Manville		0.33	0.88	0.33	165.6\%	0.0\%	-62.4\% II
104	Millstone		0.30	1.12	0.30	274.3\%	0.0\%	.73.3\% 1
3	Monigamery/Rocky		3.82	5.03	3.82	31.6\%	0.0\%	-24.0\% 1
4	Montgonery		0.39	0.16	0.39	-58.0\%	0.0%	138.4\% I'
5	Monigomery		1.18	2.35	1.18	99.4\%	0.08	-49.8\% 1
6	Montgomery		4.85	4.41	4.85	-9.1\%	0.08	10.0\% 1
7	Montgornery		0.24	0.11	0.24	-54.5\%	0.0\%	120.0\% 11
8	Montgomery		2.15	3.08 0.00	0.28	43.4\%	-86.7\%	90.8\% 11
9	Monigomery		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 1
${ }_{\text {200 }}^{\text {Total }}$	Montgomery(W/C) Montgomery		2.43	2.00	0.14 1.30	-17.4\%	-46.4\%	.35.1\% 11
196	South Bound Brook		0.33	0.65	0.33	96.4\%	0.0\%	-49.1\% II
Somer	set County (Par)		1.21	1.09	1.38	-10.3\%	14.0\%	27.1\% II
55	Cranbury		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 11
56	Cranbury		0.54	0.36	0.54	-33.7\%	0.0\%	50.9\%
57	Cranbury		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 1
58	Cranbury		0.07	0.05	0.07	-28.0\%	00\%	38.8\% I
59	Cranbury		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 11
63	Cranbury		23.03	8.61	23.03	62.6\%	0.0\%	167.4\% I
64	Cranbury		30.65	14.07	1.97	-54.1\%	-93.6\%	-86.0\% 11
66	Cranbury		174.73	17.02	174.73	-90.3\%	0.0\%	926.7\% H
67	Cranbury		0.00	0.00	0.00	0.0\%	0.0\%	0.0\% 1
Total	Cranbury		7.34	3.55	2.76	-51.7\%	.62.4\%	-22.2\%
129	East Brunswick		2.48	2.47	2.48	-0.4\%	0.0\%	0.4\% II
133	East Brunswick		7.92	10.54	7.92	33.2\%	0.0\%	-24.9\%
135	East Brunswick		0.15	0.08	0.15	-45.1\%	0.0\%	82.3\% II
136	East Brunswick		0.76	1.04	0.76	37.4\%	0.0\%	-27.2\% II
137	East Brunswick		0.55	0.38	0.55	-30.1\%	0.0\%	43.1\% \%
138	East Brunswick		0.70	0.54	0.70	-22.7\%	0.0\%	29.3\% I
139	East Brunswick		4.44	2.89	4.44	-34.9\%	0.0\%	53.6\% I'
140	East Brunswick		1.44	2.43	1.44	68.9\%	0.0\%	-40.8\% II
Total	East Brunswick		1.87	1.84	1.87	-1.3\%	0.0\%	1.3\%
143	Helmeta		0.38	0.23	0.38	-39.3\%	0.0\%	64.7\% 1

Source: Douglas \& Douglas, Inc.

Growth Code		Job/hlousing Ratios	20102010		Percent Change in J/ll Ratios		II	
Zone	Municipality	1988	Trend	Scen I	'88.T	'88-S1	T-SI H	
145	Jamesburg	1.23	1.22	1.23	-1.1\%	0.0\%	1.1\% 1	
134	Milltown	1.10	0.95	1.10	-13.5\%	0.0\%	15.7\% I	
144	Monroe	0.00	0.40	0.00	172068.9\%	-100.0\%	- 100.0\% II	
146	Monroe	0.43	0.88	0.43	103.9\%	0.0%	-50.9\% II	
147	Monroe	0.00	0.00	0.00	0.0\%	0.0\%	0.0\% I	
148	Monroe	0.00	2.28	0.00	59605.3\%	-100.0\%	-100.0\% II	
149	Monioe	1.28	1.41	1.28	10.2\%	0.0\%	-9.2\% II	
150	Monroe	0.01	1.35	0.00	19981.9\%	-100.0\%	-100.0\%	
151	Monroe	0.02	1.36	0.00	7916.0\%	-100.0\%	-100.0\% II	
Total	Monroe	0.23	0.87	0.22	284.3\%	-0.2\%	-74.0\% \1	
117	New Brunswick	2.15	1.98	1.91	-7.8\%	-11.4\%	-3.9\% II	
118	New Brunswick	0.28	0.23	1.08	-20.0\%	280.3\%	375.4\%	
119	New Brunswick	1.52	1.23	1.65	-18.7\%	8.4\%	33.4\% \#	
120	New Brunswick	0.11	0.09	1.04	-21.7\%	819.8\%	1074.5\% II	
121	New Brunswick	1.36	1.08	1.57	-20.8\%	15.3\%	45.5\% II	
122	New Brunswick	15.94	8.64	4.31	-45.8\%	.72.9\%	-50.1\%	
123	New Brunswick	4.66	3.95	2.59	-15.3\%	-44.5\%	-34.5\%	
124	New Brunswick	1.15	0.97	1.42	-15.7\%	23.3\%	46.3\% II	
125	New Brunswick	10.58	7.71	4.75	-27.1\%	-55.1\%	-38.4\% H	
126	New Brunswick	2.35	1.96	2.02	-16.7\%	-14.1\%	3.2\% If	
Total	New Brunswick	2.78	2.25	2.13	-19.1\%	-23.5\%	-5.5\% 日	
90	North Brunswick	0.79	1.13	0.79	42.5\%	0.0\%	-29.8\% I	
92	North Brunswick	0.74	1.99	2.63	167.7\%	254.5\%	32.4\% II	
93	North Brunswick	0.27	0.86	0.27	214.4\%	0.0%	-68.2\%	
94	North Brunswick	0.92	2.35	0.92	156.6\%	0.0\%	-61.0\% H	
95	North Brunswick	3.20	3.52	3.20	9.9\%	0.0\%	-9.0\% II	
127	North Brunswick	21.43	350.57	21.43	1536.0\%	0.0\%	-93.9\% \\|	
128	North Brunswick	60.00	407.40	60.00	579.0\%	0.0\%	-85.3\% II	
Tols!	North Brunswick	1.47	2.26	1.87	53.4\%	27.1\%	-17.2\% ${ }_{\text {I }}$	
28	Plainsboro	1.35	7.27	3.06	437.8\%	126.1\%	-58.0\% \#1	
33	Plainsboro	25.13	3.88	25.13	-84.6\%	0.0\%	547.8\% II	
34	Plainsboro	75.00	877.20	75.00	1069.6\%	0.0\%	-91.5\% H	
35	Plainsboro	594.83	950.17	594.83	59.7\%	0.0\%	-37.4\% II	
36	Plainsboro	0.94	0.18	0.94	-81.1\%	0.0\%	429.5\% H1	
43	Plainsboro	0.00	0.00	0.00	0.0\%	0.0\%	0.0\% II	
44	Plainsboro	0.43	1.37	0.43	214.3\%	0.0\%	-68.2% II	
45	Plainsboro	0.05	0.22	0.05	299.9\%	0.0\%	.75.0\% II	
46	Plainsboro	0.57	0.05	0.57	-91.7\%	0.0\%	1104.6% \|	
Total	Plainsboro	1.02	2.47	1.71	141.4\%	67.2\%	-30.7\% II	

Source: Douglas \& Douglas, Inc.

[^2]
Appendix F

Vehicle Trips, Speeds, and Vehicle Miles of Travel for Study Area Municipalities: 1988, 2010 Trend, Scenario 1, Scenario 2

THE MSM REGION MCD Codes

Somerset Ext. $=21$

Vehicle Miles Summary

		Calb	Tmd	Scen 1	Scen2
		Vch	Veh	Veh	Veh
	Jurisdicuion	Mile	Mile	Mile	Mile
1	Washington	91.926	109,419	106.211	102,221
2	Trenton	101,186	112.092	148.313	127,922
3	Ewing	51,551	55,055	57,756	50,929
4	Lawrence	74,658	96,545	102.519	99,980
5	Hopewell	25,494	32,276	33,776	37,927
6	Princeton	39,966	56,184	42.992	43,845
7	W.Windsor	45,731	72,124	59,708	65,460
8	Hamilton	34,764	45,624	47,844	51,608
9	E.Windsor	25,986	36,666	35,761	41,203
10	Crabury	40,201	53,285	45,217	48,301
11	Plainsboro	19,634	37,605	21,786	24,772
12	S.Brunswick	71.936	134,703	104,437	118,289
13	N.Brunswick	35,178	54,081	50,225	48,668
14	New Brunswick	34,454	37,147	52.020	40.194
15	E. Brunswick	77,835	88.530	77.480	76,117
16	Monroe	31,246	50,256	32,738	33,026
17	Montgomery	27,441	39,015	30.887	34,152
18	Hillsborough	32.948	46,970	37.555	40,980
19	Franklin	56,065	72.939	63,207	67.221
20	Mercer Ext	22,152	23.761	26,809	23.856
21	Somerset Ext	8.340	9.990	8.655	8.042
22	Middlescx Ext	+0,975	+2,393	+1,438	40.603

County Summary (Excluding Ext.)

	Calb
	Veh
	Surisdiction
Mercer	Mile
Somersel	491,263
Middlesex	310.482
Tow!	116,454
	918.198

Tmd
Veh
Mile
615.986
455.607
158.924
1.230 .517

Scen1	Scen2
Veh	Veh
Mile	Mile
634,381	621.094
383.903	389.367
131,649	142.353
$1,150.433$	1.152 .814

County Summary (Including Ext.)

	Calb
	Veh
Jurisdicrion	Mile
Mcreer	513.414
Somersct	318,822
Middlescx	157.429
Toul	989,665

Tmd
Vch
Mile
639,747
465.597
201.817
1.307 .161

Scenl	Scen2
Veh	Veh
Mile	Mile
661.689	644.950
392.558	397,408
173.087	182.956
$1,227.335$	1.225 .315

Source: Douglas \& Douglas, Inc.

Difference

	Jurisdiction	Trnd Cab	Scni-calb	ScreTma	Sererat	5 Sn Titer	Sere Scne	T-C/C	S1-6/C	S:-T/T	S2C	C2-T/T	S2-S1/S1
1	Washington	17492	14285	-3208	10294	-7198	-3990	19.0\%	15.5\%	-2.9\%	11.2%	-6.6\%	-3.8\%
2	Trenton	10906	47127	36220	26736	15830	-20390	10.8\%	46.6\%	32.3\%	26.4\%	14.1\%	-13.7\%
3	Ewing	3504	6205	2702	-622	-4126	-6828	6.8\%	12.0\%	4.9\%	-1.2\%	-7.5\%	-11.8\%\%
4	Lawrence	21886	27861	5975	25322	3435	-2540	29.3\%	37.3\%	6.2\%	33.9\%	3.6\%	-2.5\%
5	Hopewell	6782	8282	1500	12433	5651	4151	26.6\%	32.5\%	4.6\%	48.8\%	17.5\%	12.3\%
6	Princeton	16218	3026	-13192	3879	-12339	853	40.6\%	7.6\%	-23.5\%	9.7\%	-22.0\%	2.0\%
7	W.Windsor	26394	13977	-12416	19730	-6664	5752	57.7\%	30.6\%	-17.2\%	43.1\%	-9.2\%	9.6\%
8	Hamilton	10860	13080	2219	16844	5983	3764	31.2\%	37.6\%	4.9\%	48.5\%	13.1\%	7.9\%
9	E.Windsor	10680	9775	-905	15217	4537	5442	41.1\%	37.6\%	-2.5\%	58.6\%	12.4\%	15.2\%
10	Crabury	13085	5016	-8068	8100	-4984	3084	32.5\%	12.5\%	-15.1\%	20.2\%	-9.4\%	6.8\%
11	Plainsboro	17972	2153	-15819	5138	-12834	2985	91.5\%	11.0\%	-42.1\%	26.2\%	-34.1\%	13.7\%
12	S.Brunswick	62767	32501	-30266	46354	-16414	13852	87.3\%	45.2\%	-22.5\%	64.4\%	-12.2\%	13.3\%
13	N.Brunswick	18903	15047	-3856	13490	-5413	-1557	53.7\%	42.8\%	-7.1\%	38.3\%	-10.0\%	-3.1\%
14	New Brunswick	2693	17567	14873	5741	3047	-11826	7.8\%	51.0\%	40.0\%	16.7\%	8.2\%	-22.7\%
15	E. Brunswick	10695	-355	-11050	-1718	-12413	-1363	13.7\%	-0.5\%	-12.5\%	-2.2\%	-14.0%	-1.8\%
16	Monroc	19010	1493	-17517	1780	- 17230	287	60.8\%	4.8\%	-34.9\%	5.7\%	-34.3\%	0.9\%
17	Montgomery	11574	3446	-8128	6711	-4863	3265	42.2\%	12.6\%	-20.8\%	24.5\%	-12.5\%	10.6\%
18	Hillsborough	14022	4607	-9415	8032	-5990	3425	42.6\%	14.0\%	-20.0\%	24.4\%	-12.8\%	9.1\%
19	Franklin	16875	7142	-9733	11156	-5719	4014	30.1\%	12.7\%	-13.3\%	19.9\%	-7.8\%	6.4\%
20	Mercer Ext	1610	4657	3047	1704	95	-2953	7.3\%	21.0\%	12.8\%	7.7\%	0.4\%	-11.0\%
21	Somerset Ext	1650	316	-1335	-298	-1948	-613	19.8\%	3.8\%	-13.4\%	-3.6\%	-19.5\%	-7.1\%
22	Middlesex Exi	1918	463	-1455	-372	-2290	-835	4.7\%	1.1\%	-3.4\%	-0.9\%	-5.3\%	-2.0\%

County Summary (Excluding Ext.)
Difference
Difference Ratio

| Jurisdiction | Tmd-Calb | Scnl-Calb | Scn1-Trnd | Scn2-Cal | Scn2-Tmd | Scn2-Scn1 | T-C/C | S1-C/C | S1-T/T | S2-C/C | S2-T/T | S2-S1/S1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mercer | 124723 | 143618 | 18895 | 129832 | 5109 | -13786 | 25.4% | 29.2% | 3.1% | 26.4% | 0.8% | -2.2% |
| Somersel | 145125 | 73421 | -71704 | 78884 | -66241 | 5463 | 46.7% | 23.6% | -15.7% | 25.4% | -14.5% | 1.4% |
| Middlesex | 42470 | 15195 | -27275 | 25899 | -16571 | 10704 | 36.5% | 13.0% | -17.2% | 22.2% | -10.4% | 8.1% |
| Total | 312318 | 232235 | -80084 | 234615 | -77703 | 2381 | 34.0% | 25.3% | -6.5% | 25.6% | -6.3% | 0.2% |

County Summary (Including Ext.)
Difference
Difference Ratio

Jurisdiction	Tmd-Calb	Scnl-Calb	Scnl-Trnd	Scn2-Cal	Scn2-Tmd	Scn2-Scn 1	T-C/C	S1-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S1/S1
Mercer	126333	148275	21942	131536	5203	-16739	24.6\%	28.9\%	3.4\%	25.6\%	0.8\%	-2.5\%
Somersei	146775	73737	. 73039	78587	-68189	4850	46.0\%	23.1\%	-15.7\%	24.6\%	-14.6\%	1.2\%
Middlesex	44388	15658	-28730	25527	-18861	9869	28.2\%	9.9\%	-14.2\%	16.2\%	-9.3\%	5.7\%
Total	317497	237670	-79826	235650	-818.46	2020	32.1\%	24.0\%	-6.1\%	23.8\%	-6.3\%	-0.2\%

[^3]Vehicle Minutes Summary

		Calb	Tmd	Scen 1	Scen2
		Veh	Veh	Veh	Veh
	Jurisdiction	Min	Min	Min	Min
1	Washington	187,404	214,849	193,563	192,672
2	Trenton	475,827	530,091	1,262,744	778,741
3	Ewing	253,058	301,650	265,206	203,020
4	Lawrence	125,680	185,458	185,864	168,581
5	Hopewell	44,966	59,492	64,337	76,233
6	Princeton	165,878	236,602	172,901	190,643
7	W.Windsor	85,344	241,125	118,129	142,297
8	Hamilton	43,983	61,178	63,073	69,337
9	E.Windsor	53,100	76,750	78,907	98,322
10	Crabury	54,467	76,032	60,521	64,811
11	Plainsboro	40,351	118,028	47,364	63,374
12	S.Brunswick	129,393	381,204	216,929	321,286
13	N.Brunswick	73,928	136,191	108,273	117,800
14	New Brunswick	133,415	167,799	865,640	168,922
15	E. Brunswick	216,182	268,745	215,810	212,109
16	Monroe	76,501	133,951	79,485	79,150
17	Montgomery	50,962	88,626	59,201	67,154
18	Hillsborough	125,204	321,775	146,884	278,466
19	Franklin	179,020	250,563	205,342	238,193
20	Mercer Ext	25,610	26,588	29,442	26,687
21	Somerset Ext	14,123	16,872	15,252	12,782
22	Middlesex Ext	85,541	95,862	96,273	94,513

County Summary (Excluding Ext.)

	Caib	Tmd	Scenl	Scen2
	Vch	Vch	Veh	Veh
Jurisdiction	Min	Min	Min	Min
Mercer	1,435,240	1,907,195	2,404,725	1,919,847
Somerset	724,238	1,281,951	1,594,022	1,027,454
Middlesex	355,186	660,965	411,426	583,813
Toul	2,514,664	3,850,110	4,410,173	3,531,114
County Summary (Including Ext.)				
	Calb	Tmd	Scen 1	Scen 2
	Veh	Vch	Vch	Vch
Jurisdiction	Min	Min	Min	- Min
Mercer	1,460,850	1,933,783	2,434,167	1,946,533
Somerset	738,361	1,298,822	1,609,274	1,040,235
Middlesex	440,728	756,827	507,699	678,327
Toul	2,639,939	3,989,433	4,551,140	3,665,095

Source: Douglas \& Douglas, Inc.

		Difference		Difference Ratio									
	Jurisdiction	Trnd-Calb	Scnl-Calb	Scnl-Tmd	Scn2-Cal	Scn2-Tmd	Scn2-Scn 1	T-C/C	S1-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S1/S1
1	Washington	27445	6158	-21286	5267	-22177	-891	14.6\%	3.3\%	-9.9\%	2.8\%	-10.3\%	-0.5\%
2	Trenton	54263	786917	732653	302914	248651	-484002	11.4\%	165.4\%	138.2\%	63.7\%	46.9\%	-38.3\%
3	Ewing	48592	12148	-36444	-50038	-98630	-62186	19.2\%	4.8\%	-12.1\%	-19.8\%	-32.7\%	-23.4\%
4	Lawrence	59779	60185	406	42901	-16877	-17283	47.6\%	47.9\%	0.2\%	34.1\%	-9.1\%	-9.3\%
5	Hopewell	14526	19372	4845	31268	16742	11896	32.3\%	43.1\%	8.1\%	69.5\%	28.1\%	18.5\%
6	Princeton	70724	7024	-63700	24766	-45958	17742	42.6\%	4.2\%	-26.9\%	14.9\%	-19.4\%	10.3\%
7	W.Windsor	155782	32785	- 122996	56953	-98828	24168	182.5\%	38.4\%	-51.0\%	66.7\%	-41.0\%	20.5\%
8	Hamilton	17194	19089	1895	25353	8159	6264	39.1\%	43.4\%	3.1\%	57.6\%	13.3\%	9.9\%
9	E.Windsor	23650	25807	2157	45222	21571	19414	44.5\%	48.6\%	2.8\%	85.2\%	28.1\%	24.6\%
10	Crabury	21565	6054	-15511	10344	-11221	4290	39.6\%	11.1\%	-20.4\%	19.0\%	-14.8\%	7.1\%
11	Plainsboro	77677	7013	-70663	23023	-54653	16010	192.5\%	17.4\%	-59.9\%	57.1\%	-46.3\%	33.8\%
12	S.Brunswick	251811	87536	-164275	191893	-59918	104357	194.6\%	67.7\%	-43.1\%	148.3\%	-15.7\%	48.1\%
13	N.Brunswick	62263	34345	-27918	43872	-18390	9527	84.2\%	46.5\%	-20.5\%	59.3\%	-13.5\%	8.8\%
14	New Brunswick	34384	732225	697841	35507	1123	-696718	25.8\%	548.8\%	415.9\%	26.6\%	0.7\%	-80.5\%
15	E. Brunswick	52564	-372	-52936	-4073	-56636	-3701	24.3\%	-0.2\%	-19.7\%	-1.9\%	-21.1\%	-1.7\%
16	Monroe	57450	2984	-54466	2649	-54801	-335	75.1\%	3.9\%	-40.7\%	3.5\%	-40.9\%	-0.4\%
17	Monigomery	37664	8238	-29426	16192	-21472	7954	73.9\%	16.2\%	-33.2\%	31.8\%	-24.2\%	13.4\%
18	Hillsborough	196572	21681	-174891	153263	-43309	131582	157.0\%	17.3\%	-54.4\%	122.4\%	-13.5\%	89.6\%
19	Franklin	71543	26321	-45222	59173	-12370	32852	40.0\%	14.7\%	-18.0\%	33.1\%	-4.9\%	16.0\%
20	Mercer Ext	978	3832	2854	1076	98	- 2756	3.8\%	15.0\%	10.7\%	4.2\%	0.4\%	-9.4\%
21	Somerset Ext	2749	1129	-1620	-1341	-4090	-2470	19.5\%	8.0\%	-9.6\%	-9.5\%	-24.2\%	-16.2\%
22	Middlesex Ext	10321	10731	410	8972	-1349	-1759	12.1\%	12.5\%	0.4\%	10.5\%	-1.4\%	-1.8\%

County Summary (Excluding Exı.)
Difference

Difference Ratio

Jurisdicuion	Trnd-Calb	Scnl-Calb	Scnl-Trnd	Scn2-Cal	Scn2-Trnd	Scn2-Scn 1	T-C/C	S1-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S1/S 1
Mercer	471955	969485	497530	484607	12652	-484878	32.9\%	67.5\%	26.1\%	33.8\%	0.7\%	-20.2\%
Somerset	557713	869784	312072	303216	-254497	-566569	77.0\%	120.1\%	24.3\%	41.9\%	-19.9\%	-35.5\%
Middlesex	305779	56240	-249539	228627	-77151	172387	86.1\%	15.8\%	-37.8\%	64.4\%	-11.7\%	41.9\%
Total	1335447	1895510	560063	1016450	-318997	-879060	53.1\%	75.4\%	14.5\%	40.4\%	-8.3\%	-19.9\%

County Summary (Including Ext.)
Difference
Difference Ratio

Jurisdicuion	Tmd-Calb	Scnl-Calb	Scnl-Tmd	Scn2-Cal	Scn2-Trud	Scn2-Scnl	T-C/C	St-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S 1/S 1
Mercer	472933	973317	500384	485683	12750	-487634	32.4\%	66.6\%	25.9\%	33.2\%	0.7\%	-20.0\%
Somersel	560461	$87(1913$	310452	301874	-258587	-569039	75.9\%	118.0\%	23.9\%	40.9\%	-19.9\%	-35.4\%
Middlesex	316100	66971	-249128	237599	-78501	17(6)28	71.7\%	15.2\%	-32.9\%	53.9\%	-10.4\%	33.6\%
Total	1349494	1911201	561707	1025156	-324338	-886045	51.1\%	72.4\%	14.1\%	38.8\%	-8.1\%	-19.5\%

Source: Douglas \& Douglas, Inc.

Difference Difference Ratio

	Jurisdiction	Tmd-Calb	Scnl-Calb	Scnl-Tmd	Scn2-Cal	Scn2-Tmd	Scn2-Scnl	T-C/C	S1-C/C	SI-T/T	S2-C/C	S2-T/T	S2-S1/S1
1	Washington	1.1	3.5	2.4	2.4	1.3	-1.1	3.8\%	11.9\%	7.7\%	8.2\%	4.2\%	-3.3\%
2	Trenton	-0.1	-5.7	-5.6	-2.9	-2.8	2.8	-0.6\%	-44.8\%	-44.5\%	-22.8\%	-22.3\%	39.9\%
3	Ewing	-1.3	0.8	2.1	2.8	4.1	2.0	-10.4\%	6.9\%	19.3\%	23.1\%	37.4\%	15.2\%
4	Lawrence	-4.4	-2.5	1.9	-0.1	4.3	2.5	-12.4\%	-7.1\%	6.0\%	-0.2\%	13.9\%	7.5\%
5	Hopewell	-1.5	-2.5	-1.1	-4.2	-2.7	-1.6	-4.3\%	-7.4\%	-3.2\%	-12.3\%	-8.3\%	-5.2\%
6	Princeton	-0.2	0.5	0.7	-0.7	-0.4	-1.1	-1.4\%	3.2\%	4.7\%	-4.5\%	-3.1\%	-7.5\%
7	W.Windsor	-14.2	-1.8	12.4	-4.5	9.7	-2.7	-44.2\%	-5.7\%	69.0\%	-14.1\%	53.8\%	-9.0\%
8	Hamilon	-2.7	-1.9	0.8	-2.8	-0.1	-0.9	-5.6\%	-4.0\%	1.7\%	-5.8\%	-0.2\%	-1.9\%
9	E.Windsor	-0.7	-2.2	-1.5	-4.2	-3.5	-2.0	-2.4\%	-7.4\%	-5.1\%	-14.4\%	-12.3\%	-7.5\%
10	Crabury	-2.2	0.5	2.8	0.4	2.7	-0.1	-5.0\%	1.2\%	6.6\%	1.0\%	6.3\%	-0.3\%
11	Plainsboro	-10.1	-1.6	8.5	-5.7	4.3	-4.1	-34.5\%	-5.5\%	44.4\%	-19.7\%	22.7\%	-15.0\%
12	S.Brunswick	-12.2	-4.5	7.7	-11.3	0.9	-6.8	-36.4\%	-13.4\%	36.2\%	-33.8\%	4.2\%	-23.5\%
13	N.Brunswick	-4.7	-0.7	4.0	-3.8	1.0	-3.0	-16.5\%	-2.5\%	16.8\%	-13.2\%	4.0\%	-10.9\%
14	New Brunswick	-2.2	-11.9	-9.7	-1.2	1.0	10.7	-14.3\%	-76.7\%	-72.9\%	-7.9\%	7.5\%	295.9\%
15	E. Brunswick	-1.8	-0.1	1.8	-0.1	1.8	-0.0	-8.5\%	-0.3\%	9.0\%	-0.3\%	8.9\%	-0.0\%
16	Monroe	-2.0	0.2	2.2	0.5	2.5	0.3	-8.1\%	0.8\%	9.8\%	2.2\%	11.2\%	1.3\%
17	Montgomery	-5.9	-1.0	4.9	-1.8	4.1	-0.8	-18.2\%	-3.1\%	18.5\%	-5.6\%	15.5\%	-2.5\%
18	Hillsborough	-7.0	-0.4	6.6	-7.0	0.1	-6.5	-44.5\%	-2.8\%	75.2\%	-44.1\%	0.8\%	-42.4\%
19	Franklin	-1.3	-0.3	1.0	-1.9	-0.5	-1.5	-7.0\%	-1.7\%	5.7\%	-9.9\%	-3.1\%	-8.3\%
20	Mercer Ext	1.7	2.7	1.0	1.7	0.0	-1.0	3.3\%	5.3\%	1.9\%	3.4\%	0.0\%	-1.8\%
21	Somerset Ext	0.1	-1.4	-1.5	2.3	2.2	3.7	0.3\%	-3.9\%	-4.2\%	6.6\%	6.3\%	10.9\%
22	Middlesex Ext	-1.9	-2.9	-1.0	-3.0	-1.1	-0.0	-6.6\%	-10.1\%	-3.8\%	-10.3\%	-4.0\%	-0.2\%

County Summary (Excluding Ext.)

Difference
Difference Ratio

Jurisdiction	Trnd-Calb	Scn1-Calb	Scn1-Trnd	Scn2-Cal	Scn2-Tmd	Scn2-Scn1	T-C/C	S1-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S1/SI
Mercer	-1.2	-4.7	-3.5	-1.1	0.0	3.6	-5.6%	-22.9%	-18.3%	-5.5%	0.2%	22.5%
Somerset	-4.4	-11.3	-6.9	-3.0	1.4	8.3	-17.1%	-43.8%	-32.2%	-11.6%	6.6%	57.4%
Middlesex	-5.2	-0.5	4.8	-5.0	0.2	-4.6	-26.7%	-2.4%	33.1%	-25.6%	1.4%	-23.8%
Total	-2.7	-6.3	-3.5	-2.3	0.4	3.9	-12.5%	-28.6%	-18.4%	-10.6%	2.1%	25.2%

County Summary (Including Ext.)
Difference Ratio

Jurisdiction	Trad-Calb	Scnl-Calb	Scnl-Trnd	Scn2-Cal	Scn2-Trud	Scn2-Scn 1	T-C/C	S1-C/C	S1-T/T	S2-C/C	S2-T/T	S2-S1/S1
Mercer	-1.2	-4.8	-3.5	-1.2	0.0	3.6	-5.9\%	-22.7\%	-17.8\%	-5.7\%	0.2\%	21.9\%
Somerset	-4.4	-11.3	-6.9	-3.0	1.4	8.3	-17.0\%	-43.5\%	-32.0\%	-11.5\%	6.6\%	56.6\%
Middlesex	-5.4	-1.0	4.5	-5.2	0.2	-4.3	-25.3\%	-4.6\%	27.8\%	-24.5\%	1.1\%	-20.9\%
Total	-2.8	-6.3	-3.5	-2.4	0.4	3.9	-12.6\%	-28.1\%	-17.7\%	-10.8\%	2.0\%	24.0\%

Source: Douglas \& Douglas, Inc.

Speed Summary (MPH)

	Jurisdiction	Calb Ave Speed	Tmd Ave Speed	Scen 1 Ave Speed	Scen2 Ave Speed
1	Washington	29.4	30.6	32.9	31.8
2	Trenton	12.8	12.7	7.0	9.9
3	Ewing	12.2	11.0	13.1	15.1
4	Lawrence	35.6	31.2	33.1	35.6
5	Hopewell	34.0	32.6	31.5	29.9
6	Princeton	14.5	14.2	14.9	13.8
7	W.Windsor	32.2	17.9	30.3	27.6
8	Hamilton	47.4	44.7	45.5	44.7
9	E.Windsor	29.4	28.7	27.2	25.1
10	Crabury	44.3	42.0	44.8	44.7
11	Plainsboro	29.2	19.1	27.6	23.5
12	S.Brunswick	33.4	21.2	28.9	22.1
13	N.Brunswick	28.6	23.8	27.8	24.8
14	New Brunswick	15.5	13.3	3.6	14.3
15	E. Brunswick	21.6	19.8	21.5	21.5
16	Monroe	24.5	22.5	24.7	25.0
17	Montgomery	32.3	26.4	31.3	30.5
18	Hillsborough	15.8	8.8	15.3	8.8
19	Franklin	18.8	17.5	18.5	16.9
20	Mercer Ext	51.9	53.6	54.6	53.6
21	Somerset Ext	35.4	35.5	34.0	37.8
22	Middlesex Ext	28.7	26.8	25.8	25.8

County Summary (Excluding Ext.)

	Calb
	Ave
Jurisdiction	Speed
Mercer	20.5
Somerset	25.7
Middlesex	19.7
Towal	21.9

County Summary (Including Ext.)

Cony	Calb
	Ave
Jurisdiction	Speed
Mercer	21.1
Somerset	25.9
Middlescx	21.4
Total	22.5

Tmd
Ave
Speed
19.8
21.5
16.0
19.7

Scen1	Scen2 Ave Ave
Speed	Spd
16.3	19.9
14.6	22.9
20.5	16.2
16.2	20.1

Source: Douglas \& Douglas, Inc.

Appendix G

Suburban Mixed-Use Centers and Transportation:

Current Research and Issues

A technical report submitted to the Steering Committee of the MSM Land Use/Transportation Project

The Land/Use Transportation Project is funded by a public grant from the Urban Mass Transportation Administration, with the support of the New Jersey Department of Transportation, and with a private grant from the Fund for New Jersey.

Prepared By: Donna Bender, Senior Research Associate
For: \quad MSM Regional Council
November, 1989
Revised June, 1990

Table of Contents

Chapter Page

1. Introduction - Summary of Issues and Current Research 1
2. Reality Rolls Around - Demographics on Wheels 5
3. Fashioning a Suburban Prototype 7
A. Density and Size 7
B. Land Use Mix 8
C. Pedestrian Encouragement 10
D. Transit-Friendly Features 12
4. Transportation Demand Management Strategies 17
5. Travel Behavior at Existing Mixed-Use Centers 22
6. New Jersey: Route 1 Corridor Region 32
7. Proposed Center Prototype 40
Appendix - NCHRP Trip Generation Rates 42
Bibliography 55

1. Introduction

Faced with the task of finding solutions to the burgeoning traffic in present-day suburbia, transportation professionals and policy-makers have been considering both old and new strategies. Planning wisdom of the 1980's has suggested that building mixed-use centers, in concert with the use of "demand management" techniques, is one of the most effective ways of mitigating traffic growth. Afterall, before the American love affair with automobile began, people actually lived in settlements dense enough to support mass transit and mixed enough to allow errands to be completed using the power of shoe leather. Furthermore, the mixed-use approach is even stronger when considered within the current context of "no new taxes," ergo, no new highways. The intent of this study is to determine if the introduction of new suburban land use patterns will reduce the growth in traffic congestion on the regional network compared to what would occur if current trends were to continue.

While the mixed-use solution seems sensible, we are still faced with many questions about how (and if) it can be effectively implemented in various suburban regions. To begin to identify, and perhaps answer, some of the pertinent questions, we will examine what others have learned in their analyses of existing and emerging suburban mixed-use centers throughout the United States and elsewhere. This technical report is intended to serve as both a catalyst for discussion and a foundation for the "center" design and evaluation procedures to be carried out in the second phase of this project. Note: For the purposes of this report "centers" will refer to suburban activity centers in which housing, retail, and commercial activity is located.

Summary of Issues and Current Research

The literature search has revealed that, generally speaking, there are no hard and fast rules which can be applied to land use guaranteeing the achievement of our traffic growth reduction objectives. We do, however, have some evidence that certain approaches are more effective than others and that a combination of strategies can produce a whole that is greater than the sum of the parts. We are proposing that a built environment and policy approach be created that encourages carpooling and vanpooling, living closer or taking transit to work. The following is a summary of what we have learned to date from the literature:

1. Suburban Demographics - Suburban areas have received the lion's share of the population and employment growth over the past several decades. The characteristics of the new suburban population have great implications for the future of land use and the transportation system. For example, travel patterns are significantly affected by the increasing entry of women into the workforce, the decline in the traditional married couple family and the growing proportion of unmarried people. More people must make daycare stops on the way to work or need to choose housing somewhere between the workplaces of the husband and wife.

New demographic patterns contribute to the fact that, on average, most people old enough to drive a vehicle, have one. Auto accessibility is the single strongest indicator of what mode someone will choose to get to work or shopping. In addition, suburban origins and destinations are too dispersed to support frequent public transportation service.

Female and clerical workers are more likely to stop on the way to and from work, while managerial/professional workers are more likely than non-management workers to make midday trips. The most frequently cited reason for stopping on the way to work is to drop children at childcare or school; on the trip home, shopping is the most common reason for interrupting the trip. Conversely, non-management workers are also more likely to rideshare than professional employees.
2. Density and Scale - Large, dense suburban activity centers tend to have a higher rate of ridesharing and transit use and increased pedestrian activities. It is not clear, however, if there is some minimum density and size threshold, although it has been suggested (without much substantiation) that a floor-area-ratio (FAR) of at least 2.0 is necessary to achieve transportation benefits. We have found that expressing density in terms of FAR alone is not adequate. Measures such as employees per acre and commercial space per acre may be more enlightening. In addition, these large, dense centers also have associated roadway congestion and may compete for capacity with through traffic on the highway arteries where the centers are located.
3. Land Use Mix - While the predominate activity in suburban centers tends to be office use, there is some correlation between providing on-site retail and services and an increased rate of ridesharing. If the services are wellintegrated into the overall design, midday pedestrian travel is enhanced. The land use mix should also accommodate other workforce needs like daycare and household shopping. Case studies show that more homebound intermediate trips will be captured on-site if the center offers adequate shops and services, and is located in a relatively isolated place with no adjacent shopping opportunities.
4. Jobs-Housing Mismatch - A major factor contributing to traffic congestion on the regional system is the spatial mismatch of jobs and affordable housing. While providing housing within the center might be considered desirable, it has often been the case that few people both live and work within the center. Case studies have shown, however, that those who own their own homes within the center are more likely to work within the center than those who rent. Housing that is appropriately priced and phased will better accommodate the center's workforce. A jobs-housing ratio of 1.5 has been suggested as an optimal balance within a community, although having adequate housing within a three-to-five-mile radius of the workplace has also been proposed as being sufficient.
5. Designing for Pedestrians and Transit - An important element in designing the centers is the clustering of the buildings on the site. The reason for doing so is that people, on average, will only walk a maximum of 1000 feet to take transit or do midday shopping. In addition, transit will be able to service the site much more effectively if the activities are concentrated rather than dispersed. Pathways should be established so that pedestrian travel can take place safely and with minimal disruption en route.

Case studies have shown that a substantial retail component $(900,000+$ square feet) within 2,000 feet of a sizable office component (2 million + square feet) will generate anywhere from 6 to 17 percent of midday trips on foot, depending upon the quality of pedestrian connections. It has been suggested that moderate bus service can only be supported with a minimum of 10 million square feet within less than a square mile at the work destination and a density greater than 7 dwelling units per acre at the origin.
6. Transportation Management - Transportation management strategies like ridesharing, flextime, and parking regulations can be effective ways to reduce the demand on the road system during peak periods. It has been found that charging for parking is one of the most effective ways to get people to rideshare and take transit. The optimal combination of factors for a successful transportation management program is: frequent transit service, a limited supply of moderate-to-high-priced parking, preferential HOV (High-Occupancy Vehicles) spaces, and an on-site transportation coordinator who promotes transportation management strategies and provides a custom carpool matching service.
7. Trip Generation Rates - There is some evidence that the ITE (Institute of Transportation Engineers) trip generation rates are not applicable for every use within a mixed-use center. One study shows that observed rates for regional malls, hotels, and office space per square foot were lower than ITE, while office rates per employee and residential rates per resident were higher. Another study concluded that peak hour rates should be reduced by 2.5 percent when applied to mixed use centers.
8. Route 1 Corridor Region - Growth in this region's economy through the end of the century will take place in business and health services, and trade. The types of jobs which are expected to be created are either "high tech," computer-oriented positions or skilled service jobs like nursing and maintenance. Any growth seen in the labor force supply to fill these jobs will be comprised mostly of women and minorities; if the potential labor shortage situation is critical enough, the "young elderly" will be enticed to stay in the labor force longer. These factors must be considered when designing future centers so that appropriate housing, services, corporate
facilities, and transportation management strategies are provided to accommodate the lifestyles of the workforce in addition to encouraging more desirable travel behavior.
9. Proposed Center Prototype - Given what we have learned in our study of the literature and the previous analytical and consensus-building efforts which went into the REGIONAL FORUM effort, we propose the FORUM's "regional center" standards as a starting point for development of prototype "centers" for testing in the Land/Use Transportation Project. These standards are:

Acreage	$400+$
Employment	$9,000+$ jobs
Population	$5,700+$
Housing Units	$2,700+$
Net DU's/Acre	$8-11$
Net Nonres. FAR	1.10
Jobs/Housing	3.5
Height Range	$4-10$ stories

It is the purpose of the Land Use/Transportation Project to determine appropriate densities, scales, location, and demand management policies for central New Jersey. It must be strongly emphasized, however, that these standards alone are probably inadequate for achieving our transportation goals without the consideration and incorporation of the elements set forth in items 1 through 8 above. Further, additional analysis may lead us to modify any or all of the REGIONAL FORUM figures. The remainder of this report describes research projects which have focused on the relationship between various aspects of land use and travel patterns.

2. Reality Rolls Around - Demographics on Wheels

To better understand the commuting dynamics in question, it is important to consider what has actually gone on in suburbia in recent years. One of the richest, most often quoted sources of information on suburban trends is Commuting in America, (ENO Foundation for Transportation, 1987). We will draw on this source to provide some fundamental information about the people and patterns we intend to change. First, we offer several facts about recent suburban demographics:

1. Most of the population growth (86 percent) occurring since 1950 has been in the suburbs. Correspondingly, from 1960 to 1980, two-thirds of metropolitan region job growth took place in the suburbs.
2. The female labor force participation rate has grown from about 33 percent in 1950 to 60 percent in 1980. This trend is expected to continue through the end of the century.
3. The growth in households has been far greater than the growth in population. This is due to a rapidly declining household size resulting from a decreasing proportion of traditional married couple families.
4. Vehicle ownership is estimated to be approximately one per licensed driver.

What does this tell us? First it tells us that the suburbs are filling up with people who both live and work there. This is borne out by the fact that the suburb-to-suburb commute now represents the largest segment of all types of commuter flows. Second, a large portion of the households no longer has the woman free to run errands and look after children during the day. In addition, housing decisions are being made based on the workplace locations of two wageearners rather than just one. This has some major implications for travel patterns.

Prevedouros and Schofer (1988) have examined the lifestyle implications of the increasing population of unmarried people. Single people tend to spend their money on vehicles and real estate, and are more mobile. This has contributed to the decrease in average household size and the increase in the number of households. More housing units are demanded than would have been needed if these individuals had merged households by marrying. This, of course, has land use ramifications.

Finally, the force that is perhaps the strongest influence on travel behavior is that, in the aggregate, everyone who is old enough to drive, has a vehicle. This is related to the rise in personal income in the last several decades and the increase in the need for more cars per household resulting from the growth of the number of women in the workforce. Because auto ownership is a key factor in whether or not someone drives to work or shopping, the current suburban accessibility to autos has removed a once built-in factor in controlling traffic congestion (Ducca, 1989.)

What this adds up to is a lot of people driving their cars all over the suburbs to get to work, childcare, entertainment and shopping. We need to look at how this plays out in terms of commuting patterns. The following are additional relevant facts from Commuting in America:
5. Since about 1960 , the portion of work trips made with a private automobile has grown from 70 percent to over 85 percent. Transit use has fallen correspondingly.
6. Vehicle availability to workers has increased to 1.34 vehicles per worker from 85 in 1960.
7. Average commuting auto occupancy is 1.15 nationwide and falling, with little variation from region to region. This trend is linked to increased vehicle availability and the dispersed suburban pattern of origins and destinations.
8. There are indications that both commuting times and distances are getting longer.

American suburbia appears wedded to the single-occupancy vehicle commute. Ken Orski has very poignantly described the traffic effects of this suburban auto-orientation. He identified the phenomenon of congestion spreading across space. The traffic jams frequently associated with the CBD and close-by suburbs have spread to the outlying suburban fringes of metropolitan regions. While previously, commuters in the 'burbs could "take the backroads," there aren't any free backroads left -- all the roads are crowded. In addition, in many areas the "rush hour" lasts all day (Orski, 1987).

In the past, the suburban areas served as bedroom communities with commuters jumping on the radial, CBD-bound transit system to get to work. Today, the suburb-to-suburb commute pattern is characterized by a wide dispersion of origins ("o's") and destinations (" d 's") with commuters criss-crossing all over the region. This is a situation that traditional transit services have been unsuccessful in dealing with. Because of the dispersed nature of the o's and d's, Orski has pointed out that "there simply is not enough mass to make mass transit work effectively (Orski, 1987).

3. Fashioning a Suburban Prototype

In this section, important elements of project development density and scale, land use mix, pedestrian and transit-friendly features are discussed in terms of their effects on travel behavior.

A. Density and Size

As mentioned earlier, in the suburb-to-suburb trip, both the origins and destinations are often dispersed in low density development throughout a region. Table 3.1 compares the densities of 120 suburban office developments with those in various central business districts.

Table 3.1: Comparison of Office Density Characteristics

	Suburban Office Complexes ${ }^{\text {a }}$			CBD Range ${ }^{\text {b }}$	Approximate Difference Ratio of Suburbs to CBD
	Average	Low	High		
Floor area ratio ${ }^{\text {c }}$	0.29	0.06	1.48	5.0-10.0	0.04:1
				(varies widely)	
Floor space per employee (gross ft^{2})	380	140	970	175-200	2:1
Total land per employee (ft^{2})	1,410	230	3,360	35-50	33:1

${ }^{a}$ Based on a national survey of 120 suburban office developments.
${ }^{\mathrm{b}}$ See Reference 8 and 9 for sources.
${ }^{\mathcal{E}}$ Floor area ratio represents gross floor space of all buildings divided by the total land area of the office development.

Source: Cervero, 1986A.

Not only is land used much less intensively in the suburbs, floor utilization is much less intense as well. We might assume that without a critical mass of people working within a short distance of each other, it is difficult to fulfill the objective of transit utilization and ridesharing.

Cervero concluded several things about suburban density in his study of 57 "suburban employment centers (SECs)." The densest projects in Cervero's study which exhibited the highest incidence of ridesharing also tended to be somewhat large. These centers contained from 3.6 million sq. ft. to 25.3 million sq. ft. of commercial/industrial space, with acreages ranging from 330 to 19,700. They employed from 5,000 to 59,500 individuals (Cervero, 1988). He found that high densities were positively correlated with increased pedestrian activities, transit usage, and ridesharing. Through analyzing various centers, Cervero suggested that a floor area ratio of at least 2.0 is required for successful ridesharing and transit usage.

However, he also stressed a dilemma associated with the density issue. While large, dense agglomerations may in fact support the establishment of ridesharing and transit, they also generate more total trips than parcels developed at low densities (Cervero, 1988). A study of the Atlanta region found that its suburban centers compete with through traffic on the highway system adjacent to the centers. The network is often inadequate to handle both flows (Atlanta

Regional Commission, 1985). The challenge is to design and locate centers so that a higher proportion of generated trips are intra-site, the total number of trips are more concentrated in the immediate vicinity of the center rather than dispersed throughout the region, and the center is not placed at a point on the network which is already overburdened.

Intensifying the use of land often requires removing the height restrictions which are typically three to four stories maximum in many suburban areas. This is often politically unpopular in these communities. The tallest buildings in the centers discussed above range from 6 to 28 stories (Cervero, 1988). Height restrictions, in concert with lot coverage limitations and large set-back requirements, have the effect of spreading centers out in a low density, horizontal fashion. This exacerbates dependence on the automobile and discourages pedestrian trips because of long walking distances between activities (Cervero, 1986B). Design and scale are important factors in solving this problem.

What can be concluded from this information is that the prototypical center should be somewhat large and dense. However, because of the wide disparity in the sizes and densities of the centers studied and the inherent positive and negative traffic effects associated with high density development, it is not clear what the minimum criteria should be. Furthermore, as we proceed through the other design and policy considerations, it will become apparent that adequate size and density are necessary but not sufficient conditions for achieving our transportation objectives.

B. Land Use Mix

Along with density and size, Cervero cited the land use mix as being a major factor in employee travel behavior at the 57 centers he considered. Because much of the suburban job growth explosion has been due to the relocation of back-office, information-handling functions, the centers Cevero studied tended to be dominated by office space. However, unlike the centers comprised exclusively of office space, those with a substantial retail component tended to have a higher rate of ridesharing (Cervero, 1988). This correlation appears to support the idea that providing shops and services on-site will entice employees to carpool or vanpool.

Increased ridesharing is only one potential benefit of providing a mix of uses within the suburban center. In the case of a retail/restaurant component, there is also the possibility that those who do drive alone to work will take care of personal business on foot at lunch-time, or at the very least, more of the non-work auto trips will be confined to the center rather than the regional network during peak hours. Of course, there are other factors to be considered in providing retail, such as supplying businesses appropriate for the type of workforce present in the center and ensuring that the overall design of the project provides reasonable walking distances and amenities to promote pedestrian activities. (This will be discussed in more detail in a later section.)

Determining the optimal amount of each use is somewhat difficult. An initial determination must be made about the primary use to be located at the site -- is it office space, residential, manufacturing or retail? Then, a variety of other factors come into play such as physical characteristics of the site, the market potential for the various uses, and the financing position of the developers.

Phasing is also an issue. If a major component of the project is a large build-to-suit complex, then it is easier to construct the retail uses earlier in the project because there is a guaranteed level of demand once the client company's workforce moves in (Urban Land Institute, 1987). However, phasing becomes more difficult when the primary use is developed over an extended period of time to allow for incremental market absorption. When looking at some case studies later in this report, we will be able to see examples of various use mixes in existing centers.

Perhaps the most difficult element to grapple with in discussing the importance of mixing uses is the inclusion of housing. One of the major forces contributing to the congestion on suburban roads is the jobs-housing mismatch. It seems logical that if given a choice, people will not choose a long commute. However, it is often the case that there is little choice in places to live once a particular job is secured. This is because of a spatial mismatch of jobs and housing, often the result of fiscal and exclusionary zoning practices. Towns frequently prefer to zone for more commercial development than residential because of perceived tax benefits. In addition, exclusionary zoning means that only expensive, large-lot residential projects are allowed, restricting the supply of affordable housing available for those who will work in the nearby employment centers (Cervero, 1989). The net result of the jobs-housing mismatch is an acute regional labor shortage and many workers with long commutes. This adds trips to parts of the regional network which wouldn't be there if a better balance of jobs and housing existed within communities.

Robert Cervero conducted a regression analysis of the relationship between providing on-site housing and traffic congestion at 26 suburban centers. His findings confirmed those in his previous study. Large, dense, and in this case, housing-free centers tend to have the worst local traffic congestion. He also concluded from a similar analysis that a better balance of jobs-to-housing provides marginal increases in pedestrian and bicycle travel (Cervero, 1989).

Basing his calculations on recent figures showing that 90 percent of the adult population lives in cohabitant households and that 70 percent of these households are comprised of at least two wage earners, Cervero concluded that 1.5 is the maximum jobs/housing ratio required for achieving a balanced community. However, he found that, in many cases, even where housing was provided on-site, most of those occupying the units did not work within the center. This may again be related to a lack of units affordable to over 40 percent of the workforce, employed in clerical and non-professional jobs. Cervero suggests that having adequate housing within a three-to-five-mile radius of the workplace is sufficient (Cervero, 1989).

Thus, the challenge we are facing when determining the character of our mixed-use center prototype is to provide an appropriate supply of housing near the job sites. This means understanding the kind of workforce to be accommodated so that the right types of units will be furnished. To do so requires an analysis of both current and future economic development trends, and occupational and income information.

The Association of Bay Area Governments in California established a comprehensive program for achieving a jobs-housing balance to mitigate traffic in the region. In the first phase, an assessment of the regional labor force and housing needs was conducted, and a model for
predicting future needs was developed. A series of measures to be promoted by local governments was then developed:

1. Increase the supply of housing close to employment centers;
2. Encourage production of affordable housing;
3. Phase housing construction with job growth;
4. Improve access to transit for home-to-work trips;
5. Encourage developers to locate near existing affordable housing; and,
6. Increase employment of local residents in the new jobs.

Each of these measures is promoted with specific suggestions on how to carry it out (ABAG, 1985). Strategies like these should be considered when designing the suburban prototype to be tested in our region.

C. Pedestrian Encouragement

One of the primary objectives in designing a prototype center is to induce people to walk more and drive their automobiles less. To do this we must provide certain physical amenities. Earlier we mentioned providing on-site retail, services and housing. However, merely providing these features is not enough. If people have abandoned their automobiles to rideshare or take transit, we must make sure that facilities are within a reasonable and comfortable walking distance.

When designing a center with our objectives in mind, the pedestrian trip must be given a very high priority. If the buildings are widely dispersed over the site, people will not be motivated to walk and the auto will dominate. Figure 3.1 shows the difference between designing for the auto ($\operatorname{Plan} \mathrm{A}$) and designing for the pedestrian (Plan B). One of the key elements in pedes-trian-friendly environments is to cluster the buildings so that walking distances are minimized and interaction between uses can be more easily facilitated (Jackson and Kulash, 1988). This clustering approach also better accommodates transit, to be discussed in the next section.

Figure 3.1: Land Use Options

Source: Jackson, Timothy T. and Walter Kulash, "Land Use and TransportationEngineering Measures to Support Clustered Development," ITE, 1988.

There is a rule of thumb that walking distances from the parking lot should not exceed 300 feet (Urban Land Institute, 1987). Since we are focusing on how to encourage pedestrian travel of all sorts, we have to search further for some standards. A recent survey showed that 70 percent of all walk trips generated from suburban workplaces are 0.2 miles ($1,056 \mathrm{ft}$.) and 90 percent of the trips are 0.4 miles ($2,112 \mathrm{ft}$.) or less (Barton-Aschman,1989). If we consider that one study showed an average walking speed of 265 feet per minute (Fruin, 1971), this means that 1.056 feet would take about 4 minutes to walk and 2,112 feet would take about 8 minutes to walk. Given that most people have only an hour for lunch, it is reasonable to assume that walking much more than a 16 -minute roundtrip would consume too much time to justify the journey. Similar distances have been cited by others, with one study concluding that only 15 percent of Americans are willing to walk 2,000 feet for non-leisure trips and another suggesting that the maximum acceptable walking distance in suburban areas is 1,000 feet (Cervero, 1988). This 1,000 feet should serve as a guideline in determining the proximity of the various uses within a mixed-use center.

An appropriate path system is necessary to encourage both pedestrian and bicycle trips. These pathways must be designed with sensitivity to the needs of these individuals and with the objective of spatially linking the various uses. Often when sidewalks are provided, they are located along wide boulevards designed to facilitate optimal automobile flows. However, pedestrians seek the shortest distance between two points, not always conforming to the street configuration (Cervero, 1986B). Furthermore, the scale of these auto-oriented streets may make pedestrian travel dangerous as walkers try to cross the street. The optimal approach would be to provide a pathway system that includes crossing signals at the points where the pathway intersects the street and design it so that the pedestrian has a safe, direct way to move from building to building.

Another feature to include in this clustered, linked environment is outdoor green space plazas. While many office "parks" currently provide expanses of open space, they are frequently
only large front and side yards created out of compliance with zoning regulations. These areas have no design relationship to one another, lack a central focus, and offer absolutely no pedestrian facilities like benches. To encourage people to get out of the buildings and walk, outdoor spaces should be inviting, providing a "central place" and enhancing the human scale rather than the automobile scale.

D. Transit-Friendly Features

We have briefly discussed reorienting toward the pedestrian, but now we should go one step further and think about accommodating transit at suburban centers.

To illustrate the conflict between auto-friendly and transit-friendly designs, Stephen Potter studied British new towns. Figure 3.2 shows optimal designs for both automobile and transit accommodation. To prevent congestion from developing at various points in the autooriented town, it is necessary to distribute various uses at low densities throughout. However, in the transit-oriented scenario, there are benefits to creating high density clusters close to the transit line so frequent service can be maintained and evenly spread along the route. Thus, the auto and the bus require two very different operating environments (Potter, 1984).

Figure 3.2: Optimal Urban Structures for Public and Private Transport

(a) Optimal sructure for private motorized transport. Uniformly low dens:ry to reduce trafic intensity and random distribution of fecilities to even-out loading on roads

(b) Optimal structure for public transport. Urban facilities locared along corridors hence concentrating demand to maintain a high frequency service. Facilities locared evenly slong corridors to avoid peaks in loading. Increese in density towards public transport roure to minimize distances

Source: Potter, Stephen, "The Transport Versus Land Use Dilemma," TRB \#964,1984.

Potter looked at the effects of adopting these opposing designs in several new towns.
Table 3.2 summarizes the characteristics of several of the new towns considered:

Table 3.2: Key Characteristics of the New Towns Under Study

	Milton Keynes	Washington	Redditch	Runcorn	Peterborough
Population	107,000	55,000	68,000	65,000	124,000
Current gross density (ppha) ${ }^{\text {a }}$	12	24	23	32	19
Planned Eoss density (ppha) ${ }^{\text {a }}$	20	27	25	34	23
Developrent costs to state per person housed	10,200	11,000	4,100	7,000	5,300
Average bas frequency (min)	30	20	10	5	15
Cost of bes season ticket per week	2.40	1.65	3.50	2.50	3.50
Subsidy as percent of bus running costs	42	NA	6	5	14
Average oamber of shops at local center	5	9	15	7	23

Note: This table includes two new towns in addition to those considered in the text. Washington (in northeast England) is of comparable size to Redditch and Runcorn but was designed similarly to Milton Keynes. Peterborough is comparable in size to Milton Keynes but was designed to promote public transport.
${ }^{a}$ Persons per hectare.
Source: Poter, Ibid.

Milton Keynes and Washington were designed to accommodate the automobile, while the Redditch, Runcorn and Peterborough plans tried to strike a balance between transit priorities and the presence of autos. Although the original Milton Keynes plan called for frequent transit service, once the auto-oriented, low density land use plan was established, the planners realized they had made transit-provision very difficult. The original intention of having 2.5 to 5 -minute headways for bus service became impossible without an inordinately high subsidy. As Table 3.2 shows, even with headways of 30 minutes, the Milton Keynes bus system required an operating subsidy of 42 percent.

The contrast between this situation and that in Redditch and Runcorn is quite striking. Not only are these towns able to provide headways of 10 and 5 minutes, respectively, they are able to maintain the service for a very low subsidy. Furthermore, Potter reports that the capacities of the Redditch and Runcorn road systems have been quite adequate in serving the autos which are present on the system. In addition, the orientation toward a transit environment has made the town pedestrian and bicycle-friendly.

As an aside, the other aspect to note about the differences between these new towns is the cost of construction. By concentrating the majority of the activities in denser areas of the town near the transit line, the areas at the periphery do not have to be crossed by water pipes, electric cables, etc. and so provision of all types of infrastructure is more efficient than in the case of the dispersed land patterns. Table 3.2 shows the contrast in the development costs of the auto versus transit-oriented new towns. Figure 3.3 shows the land use plans for Milton Keynes, Runcom and Redditch.

Potter summarized the basic design principles of Runcorn, Redditch and Peterborough as follows:

1. Public transport and car flows are on separate networks, making it possible to concentrate travel flows for public transport while dispersing car traffic.
2. The size of residential areas is determined by the population needed to maintain a frequent public transport service.
3. Residential densities are zoned so that they increase toward public transport routes.
4. Low-density uses (e.g., open space, warehousing, major roads, and parks) are zoned away from public transport routes so as not to increase walking distance to routes.
5. Residential areas, employment, shopping, and other major travelgenerating land uses are arranged so that they provide corridors of public transport movement conducive to high service frequencies.
6. The overall density of development is changed little, but land uses are rearranged to provide a pattern of development that is conducive to public transport operations.

Figure 3.3: Comparative Land Use Patterns

Because we rarely have the opportunity these days to establish large-scale new towns, the challenge is to take these transit design principles and incorporate them into the suburban fabric in some effective way. As mentioned previously, current suburban development patterns are often too dispersed and lacking in density to support a transit system with a reasonable level of service. Pushkarev and Zupan concluded that nonresidential downtowns, if spread over an area less than one square mile, must contain at least 10 million square feet to support a moderate bus service. However, they also commented that suburban clusters of nonresidential space can only occasionally support minimal bus service and even this is usually only possible if they contain retail centers or are surrounded by housing in densities greater than 7 dwelling units per acre (Pushkarev and Zupan, 1977).

These conclusions must be explored further because there are examples of suburban centers with good bus systems. One example is Bellevue, WA, a suburban center located near Seattle. Bellevue contains approximately 4.7 million sq. ft . of office space and 3 million sq. ft . of retail, enabling it to support enough bus service to achieve about a 7 percent transit work trip mode share, considered quite good in suburban terms (NCHRP, 1989). Bellevue will be studied in more detail in Section 5. As we continue to increase our information base to prepare a suburban mixed-use prototype, we will have to further define the feasibility of supporting a reasonable level of transit service.

4. Transportation Demand Management Strategles

Demand management is a part of a broad spectrum of policies and engineering strategies called Transportation Systems Management (TSM). Demand management devises strategies to decrease the number of vehicles demanding capacity on the roads during the peak period. We will use demand management strategies in concert with the mixed-use center design principles discussed above. Note that our study assumes that the capacity of our transportation system will increase only by those improvements which are already planned through 2010.

The Federal Highway Administration conducted a study to determine the effectiveness of using supply and demand management strategies. In this work, travel demand management strategies included: ridesharing, scheduling techniques, access management, reduction in the need to travel, land use and zoning laws, and vehicle restrictions such as traffic ordinances, congestion and road pricing, and goods movement. It was found that applying these measures to the highway and secondary road system could reduce VMT anywhere from 3 to 8 percent. This was calculated using a high and low scenario approach. The high scenario assumed that one in five SOV (single-occupancy vehicle) drivers could be induced to rideshare or take public transit. The low sce nario assumed a rate of one in ten SOV drivers choosing alternative travel means (Lindley and McDade, 1988). In this section we will look at the aspects of demand management which are most applicable to our centers.

Transportation Management Associations (TMAs)

Transportation management associations (TMAs) are organizations created to promote demand management strategies. Membership can be either voluntary or mandatory, depending upon local statutes, and the membership is usually comprised of private sector participants and/or government entities. In some cases, the organization may be entirely a private sector initiative serving a particular office complex or group of businesses. In most instances, TMAs emerge in suburban areas with high concentrations of white collar workers and low levels of transit service (Cervero, 1986B).

The focus of a particular TMA depends upon its membership and the transportation problems specific to its region. The TMA can become involved in anything from lobbying for transit improvements, to providing computerized carpool matching services, to actually brokering vans and buses. The developer and private sector-supported TMAs tend to shy away from promoting legislation which requires developer contributions for road improvements or mandatory traffic reduction programs.

The central issue for this report is how effective these TMAs might be in reducing traffic associated with the mixed-use centers we are studying. Much of this effectiveness depends upon how successful the organization is in applying demand management strategies appropriate to the particular problems of its region. There are moderately successful cases like the one in Tysons Corner, VA, where 70,000 workers converge daily on this large office/retail center. The Tysons Corner Association initiated a vanpool program and shuttle bus system which got 5,000 vehicles off the area's clogged roads (Cervero, 1986B). As discussed below, the most successful efforts tend to be carried out for and by large, single-tenant projects like Pacific Northwest Bell with

1,200 employees in Bellevue, WA. Through a combination of incentives and disincentives, PNB recently reported a mere 25 percent rate of solo commuting (UMTA,1989).

On the other hand, there is the Newport Center Association in Southern California which closed down after a year of promoting ridesharing to 10,000 employees in an area of Newport Beach. The whole program failed because of inadequate top-level management interest and commitment among the target corporations. The most difficult situation for a TMA to surmount is one with a multitude of small office developments with many different tenants (Cervero, 1986B). To further assess the potential effectiveness of transportation management initiatives, we will look at individual strategies below.

Ridesharing

In an attempt to reduce the number of vehicles on the road, programs are often instituted to encourage people to either carpool or vanpool. It has been concluded, however, as evidenced in New-port Beach, that employers must get involved for ridesharing programs to succeed. Some employers have actually designated on-site transportation management coordinators to provide matching services and promote the program. There is some evidence that the presence of a coordinator does help to increase ridesharing participation. In a survey of 120 sites, those without a coordinator were found to have an average ridesharing of 5 percent, compared to 11 percent at those with coordinators (Cervero, 1986B).

As mentioned previously, ridesharing programs tend to be less successful at sites with multiple establishments. Even places with active TMAs like Tysons Corner have reduced SOVs by about three or four percent primarily because of this multi-tenant constituency. Firm size and type of labor force also affect ridesharing rates. The greatest success has been seen at large firms with relatively sizable portions of clerical and data processing staff. One survey showed that non-SOV shares at firms with over 1,000 employees range from 30 to 40 percent, while those under 1,000 average around 20 percent (UMTA, 1989).

Design incentives are an important consideration. Designating priority parking near the building for carpools and vanpools is an inexpensive way to encourage ridesharing. Providing pedestrian-accessible, on-site restaurants and stores encourages employees to give up their autos. If stores and services are not within a reasonable and comfortable walking distance, which is the preferred situation, then excellent shuttle service connecting these uses must be furnished. These elements also encourage transit usage, a topic which was considered in more detail in Section 3-D.

There are other factors which affect the success of ridesharing programs. In the discussion on the jobs-housing mismatch, it was proposed that having a substantial portion of the workforce living within three to five miles of the job site was adequate to overcome the problem. While this will reduce vehicle-miles traveled (VMT), it will also most likely thwart ridesharing efforts if SOV disincentives are not also employed. Commuters with long trips tend to rideshare more readily than those living nearby. However, because we are concerned with the regional road system, the localized congestion caused by a more proximate workforce may be the price we pay to see a decline in VMT.

Flextime, discussed in the next section, also might act to undo ridesharing efforts. While flextime might serve to spread out the arrival and departure times of employees so that peak congestion is reduced, it also makes matching people for ridesharing more difficult because the starting times might vary widely. However, there is conflicting evidence on this point. In the San Francisco Bay Area, those having flextime privileges were able to be matched for ridesharing 30 percent of the time compared to 16 percent for those not on flextime. On the other hand, in Pleasonton, CA, only 7.9 percent of the employees with flextime rideshare compared to the 11.4 percent rate for the entire workforce (UMTA, 1989). Again, the key to applying transportation management techniques is understanding the needs and priorities of the population being targeted.

Time Scheduling Techniques

Time scheduling refers to flextime and staggered hours programs. The main objective is to avoid exacerbating peak period congestion by extending the period of time over which employees arrive and depart. Flextime is implemented on an individual company basis and involves establishing windows of time in the morning and evening within which employees can choose their work hours. Usually, an employee can choose to arrive at work between 7:00 a.m. and 10:00 a.m., work the required number of hours and then depart between 3:00 p.m. and 6:00 p.m. The net effect is that all employees are not converging on the site between 8:45 a.m. and 9:00 a.m.

The same effect can be achieved through staggering work hours in a multi-tenant complex. This requires businesses to establish work hours starting at various times, with each business maintaining a set daily work schedule. For example, company A may have an 8 to 4 day, while B has an 8:30 to 4:30 day, and C works 9 to 5 . Another approach to staggering hours carried out within a particular firm is to have shifts with several different starting times in the morning, instead of allowing individuals to choose their arrival times as is the case under flextime.

As mentioned earlier, there is some skepticism about the effectiveness of flextime in achieving regional traffic reduction objectives. In some cases it has been shown to interfere with ridesharing programs unless the two programs are linked. On the other hand, this flexibility is certainly a blessing to working parents and those who have long commutes both in cars and on transit. As with all policies, time scheduling techniques will only be effective if applied in appropriate situations.

Parking Management

Probably the single most effective means of getting SOV commuters to change their behavior is through regulating the parking supply at the workplace. The Pacific Northwest Bell case in Bellevue, WA, is a prime example of this. When the project was built, there were only 440 pariing spaces supplied for 1,200 employees. Of these spaces, over half were designated for ridesharing vehicles. In addition, those having a vehicle occupancy of less than three were required to pay $\$ 60$ per month to park. The net effect has been a decline of SOV commuting to 25 percent (NCHRP, 1989).

It must be kept in mind that parking disincentives cannot be imposed without presenting some ridesharing or transit incentives. Otherwise, it may become difficult to hire employees. In the PNB case, there is an in-house ridesharing coordinator who provides rideshare matching services, a good bus system serving the area, the use of flextime, and reduced parking rates for those who manage to form a carpool with only two people (UMTA, 1989).

Another example of the effectiveness of combining parking disincentives with alternative incentives is the Twentieth Century Corporation at Warner Center in West San Fernando, CA. This company, with 1,150 employees, reduced the solo driving rate from 95 percent to 65 percent by having a ridesharing coordinator who provides matching services and transit passes, by giving free parking to carpools, and by charging SOVs. It was noted that when the company began charging for parking, the carpool rate jumped from 6 to 31 percent (UMTA, 1989).

One of the problems with restricting parking supply is the strong opposition of many developers, particularly those who build speculative projects. Currently, developers expect to be able to supply between three and four parking spaces for every 1,000 square feet of office space, claiming the market will not accept anything less. This results in a sea of parking that caters to the SOV. Furthermore, recent calculations show that a standard at-grade parking space costs $\$ 4,972$ on average for development and constructions costs with additional operating expenses of $\$ 955$ per year. For a freestanding multi-level parking structure, the figure jumps to $\$ 20,125$ per space plus $\$ 2,756$ annually for operating costs (Urban Land Institute, 1989). Current practices actually subsidize people who drive, while those who take transit often get nothing. Parking policy is something that both developers and local regulators must seriously reassess.

Traffic Reduction Ordinances

We have mostly been talking about getting the SOV drivers to change their behavior. However, as mentioned previously, transportation management programs do not work without the support of upper management. Therefore, sometimes it is necessary to take measures to get executives and developers to change their behavior as well. These measures have recently been taking the form of traffic reduction ordinances.

Generally speaking, a traffic reduction ordinance is a law enacted by a local government which requires companies to undertake programs to reduce SOV trips by some specified amount. The most notable example is Pleasanton, California. Its ordinance applies to employers with 10 or more employees, with stricter requirements imposed on larger companies and developments. The broad goal is a 45 percent reduction in SOV trips over a specified period of time. The company is given free reign to achieve this goal within this period, and if it does not, the city may impose a specific program. Then, if this plan is not implemented, fines of $\$ 250$ per day can be levied until the company complies (UMTA, 1989).

Other such ordinances are being enacted all over the country. Some areas like the South Coast Air Quality Management District in California are taking such measures with the ultimate goal of reducing air pollution from auto emissions. In New Jersey, a bill has been introduced in the State Legislature requiring all municipalities to develop traffic reduction ordinances. We can expect to see an increasing number of these ordinances in the next several years.

Summary

To sum up the implementation of transportation management programs, UMTA has prepared the table presented below. This concise synopsis of transportation management will be referenced again in the process of designing our mixed-use center prototypes.

Best and Worst Cases for Transportation Management Programs

Variable	BEST CASE	HORST CASE
Progrem	Iransportation Coordinator, personalized in-house carpool matching, priority carpool parking, iransit encouragments, bicycle facilities and promotions, possibly flextime	No Coordinator or litite commitment, carpool Information, no matching, Ifttle if any transit Information or poss sales, few bicycle facillities, Ifttle management support
Tenant	Large compony, rumerous clerical, or dota processing staff	Small company, high proportion of professional staff
Parking	Tight supply, moderate to high prices, low level of parking cost subsidy, litite on or off gtreet parking nearby, good enforcement of carpool preferential porking	Arple supply, low or no prices, porking subsidies from employer, available nearby parking, no carpool stall enforcement
Iransit	Frequent service, emple capocity, steble fares	Copacity constrsined, service less frequent, fares increasing

[^4]
5. Travel Behavior at Existing Mixed-Use Centers

Trip generation and modal split rates are typically assigned standard values which have been calculated using information from existing places. However, because there is not a great deal of experience with the mixed-use suburban prototype we are studying, the standard values nay not be appropriate. Thus, we must look at case studies of existing mixed-use centers to help \therefore understand how to model behavior accurately for our prototype. (Note: No center studied has all the characteristics we have determined would be needed in our suburban prototype. Therefore, figures derived from existing places must be considered of limited significance.)

There are two noteworthy studies for us to draw upon. The first is a study in progress being conducted by the National Cooperative Highway Research Program (NCHRP) of the Transportation Research Board: "Travel Characteristics at Large-Scale Suburban Activity Centers," and the second, "Trip Generation for Mixed-Use Developments," was published in 1987 by the Colorado/Wyoming Section of ITE. Both projects utilized survey instruments to gather actual data on travel patterns associated with mixed-use centers. The conclusions are presented below.

"Travel Characteristics at Large-Scale Suburban Activity Centers"

The NCHRP consultants chose six recently-developed "suburban activity centers," each with at least 5 million square feet of office and retail, with the retail component being at least 600,000 square feet. These centers are between 5 and 45 miles from the regional central business district: Bellevue (Seattle), South Coast Metro (Los Angeles), Parkway Center (Dallas), Perimeter Center (Atlanta), Tysons Corner (Washington, DC), and Southdale (Minneapolis-St. Paul). More detailed characteristics of each center can be found in Table 5.1 below.

The team produced a comparison, by land use, of observed trip generation and trip generation which would result from the application of published ITE rates. This assessment was conducted for both AM and PM peak periods. The detailed trip generation tables included in the NCHRP report are presented in the Appendix. Following are the general conclusions drawn from the comparison:

1. Office - On a per square foot basis, the observed rates were lower than ITE. However, the observed rates per employee were generally higherthan the published ITE rates.
2. Retail - The majority of the regional malls surveyed showed rates lower than the ITE rates. The results varied, however, among the specialty, community and neighborhood centers.
3. Residential - On a per occupied square foot basis, the observed rates are comparable to the ITE published rates. Per resident, however, the observed rates are actually higher.
4. Hotel - The majority of the hotels had a lower observed rate than the ITE rate.

"Trip Generation for Mixed-Use Developments"

The ITE Colorado Section Technical Committee on Trip Generation conducted its survey a. a ixed-use sites in Colorado only. Compared to the NCHRP centers, the Colorado centers Whe wher small, ranging from 95,104 to $1,000,000$ square feet. The only criterion for , m x w shat the site include two or more different uses. The general conclusions reported article in the February 1987 ITE Journal were:

1. Published ITE rates can be used to estimate total daily trip generation for mixed-use centers.
2. The peak hour ITE rates should be reduced by 2.5 percent when applied to mixed-use developments.
3. Studies should be conducted in other states to determine if the results of this study are valid.

Given the somewhat inconsistent nature of the conclusions of these two studies, the aeces tip generation rates used in the evaluation phase of this study will have to be carefully aserod.

A Comparison of the NCHRP Study and the Rice Center Study

> Arestarch project conducted by the Rice Center for the Houston-Galveston Area Couni: 1987 , "Houston's Major Activity Centers and Worker Travel Behavior," looked at travel at acracs associated with the Houston CBD, and three suburban centers in the Houston in Sreenway, City Post Oak and the Energy Corridor.

Table 5.1 presents the general characteristics of the Houston CBD, the three Houston
 S.. त Bellevue, which is 440 acres, to Parkway Center near Dallas, which is 1,870 acres. Each watr contains sone amount of office, retail, hotel and residential uses, although data is not a inble induail for each of these items in every center (see notes on Table 5.1). Because a. u ge SAR s were not always available, commercial space per total acreage was calculated for rain center as a rough means of comparing development intensity. Houston CBD and City Post Onk are the most dense centers when evaluated using this measure.

Table 5.1: Characteristics of Case Study Centers

Center	Acres	Commercial Space (mill. sq. ft.)		Commercial Space/Acre (sq. ft.)	Hotel Rooms	Total Employment*	Residential Units**	Distance From CBD (miles)
		Office	Retail					
Houston CBD	969	51.8	5.9	59,546	5,500	178,304	N/A	--
City Post Oak	960	25.3	16.0	43,020	3,727	54,650	N/A	6
Greenoiay	848	12.1	0.5	14,858	980	37,878	N/A	4
W. Houston Energy Corridor	1,715	7.4	2.6	5,830	1,057	28,317	N/A	12
Belleruc (Seattle)	440	4.7	3.0	17,500	1,000	19,030	556	10
S. Cosst Metro (Los Angeles)	580	3.5	4.0	12,931	1,800	17,330	2,300	45
Parkway Center (Dallas)	1,870	17.0	7.0	12,834	2,200	48,375	15,000	10
Perimeter Center (Atlanta)	1,450	13.0	2.0	10,344	1,800	42,430	200	12
Tysons Comer (Washington, DC)	1,230	13.0	3.0	21,138	N/A	37,650	1,745	12
Southdz)- (Minneapolis)	960	4.0	3.0	7,292	2,200	19,855	3,000	10
*The employment figures for the NCHRP centers include only workers associated with the office and retail space. **The Houston study did not focus directly on the travel characteristics of residents in the centers and so no counts of residential units were done. The figures given for Bellevue and Tysons Corner represent only those surveyed and not total units in the centers.								

The NCHRP study looked at employees per acre to also get some sense of the intensity of use of floor space. This calculation yields the following based on office and retail employees and total acreage:

	emp./acre
Bellevue	43.2
S. Coast Metro	29.9
Parkway Center	25.9
Perimeter Center	29.3
Tysons Corner	30.6
Southdale	20.7

When evaluated in these terms, Bellevue clearly is the most intensively utilized center of these six.

Employee Work Trips

One of the first elements to assess is the work trip patterns of the employees of a center. A major aspect of the journey-to-work is modal split. Table 5.2 shows the mode choice determined through the administration of a travel survey at the NCHRP centers; the data for the Houston centers has been taken from the 1980 Census journey-to-work information because mode information was only gathered for all trips in aggregration by the survey team.

Table 5.2: Work Trip Modal Split

| | Drive
 Alone | Carpool/
 Vanpool | Denter | Diver | Passenger | Bus |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Walking/Bike

Note: Modal statistics were gathered for all of the centers through the administration of travel surveys. However, the Houston surveys obtained only information on mode split for all trips, not just work trips. Therefore the information presented here for the Houston centers is taken from 1980 Census joumey-to-work data.

Although we must be somewhat guarded in drawing conclusions from the Houston 1980 data, there are several points that seem fairly apparent about the modal choices among all ten of the centers. First, Houston CBD and Bellevue have substantially higher bus utilization than the other centers. In the case of the Houston region, over 90 percent of the transit routes are CBDoriented, which may partially explain for why the bus utilization is much lower in the suburban centers despite of the fact that City Post Oak is a fairly large and dense location.

The Bellevue bus share of 8.8 percent is remarkable given the relatively small size of this center compared with most of the others. Like Houston, this is partially explained by the differences in transit supply between Bellevue and the other five NCHRP centers. None of the other five centers has fixed-route transit serving it as an end-of-the-line destination. However, Bellevue has 17 Seattle Metro routes delivering commuters to the Bellevue Transit Center, which has bus bays, covered seating areas and information booths. Thus, while demand for transit certainly is a crucial element, the supply side is equally important. The destinations can be very large and dense, but if there is not adequate service available to the workforce, obviously there is no means of inducing use of transit.

Another element is the rate of carpooling and vanpooling. Because the data on ridesharing was collected differently in the two studies, a comparison cannot readily be made. However, Table 5.3 shows the average automobile occupancy for all of the centers. There is no qualitative information in the Houston report to explain why the least dense center, W. Houston Energy Corridor, has one of the highest vehicle occupancy rates. While it makes intuitive sense that the Houston CBD has a relatively higher occupancy rate, it is not immediately apparent why the moderately-sized Greenway Center has the highest rate. It is neither the largest nor the densest of the ten centers. The report may fail to mention area TMA's which are affecting these rates.

Table 5.3: Average Auto Occupancy - Work Trips

	Average Auto Occupancy
	$\ldots---1.21$
Houston CBD	1.13
City Post Oak	1.26
Greenway	1.21
W. Houston Energy Corridor	1.16
Bellevue (Seattle)	1.07
S. Coast Metro (Los Angeles)	1.06
Parkway Center (Dallas)	1.07
Perimeter Center (Atlanta)	1.11
Tysons Corner (Washington, DC)	1.07
Southdale (Minneapolis)	

A clue to the success of ridesharing is found in the case of Bellevue. Bellevue's auto occupancy rate of 1.16 is not remarkable when compared to the other centers. However, when one office building is removed from the figure, the rate drops to 1.10 . This particular building, PNB Plaza has an auto occupancy rate of 1.74 and a transit usage rate of 12 percent. This anomaly is due to a very stringent parking management system at the PNB building described in Section 4. With 1,200 employees in the building, there are only 402 on-site parking spaces and over half are reserved for HOV's. In addition, vehicles arriving with three or more persons can park for free; otherwise, the fee is $\$ 60$ per month.

Intermediate Trips

Another influence on modal split and the overall regional traffic congestion level is the rate at which people take trips for purposes other than to get to and from work. Earlier in this report, we discussed the importance of understanding the lifestyles of the current workforce so that we may better influence the commuting patterns. Looking at why people stop on the way to and from work, and what they do on their lunch hours may assist us in determining how to design centers which will take some of the strain off the regional transportation network.

The NCHRP study did an excellent job of capturing the patterns of intermediate stops made during the work trip and the midday. The results are summarized in Table 5.4. Bellevue has a significantly higher proportion of employees making stops to and from work than the other five centers. The NCHRP study team attempted to determine a reason for this and could not. They posed the hypothesis that Bellevue is far more dense and compact than the other centers, but no support for this theory was readily apparent. Bellevue employees show midday rates similar to the other centers.

Table 5.4: Characteristics of Trips Made By Suburban Activity Center Employees

Trip To Wort Ecllsiut		South cura Msin	Juriway Cerncr	Ferimeter Centes	Ty cons Comer	Southdale
- Proportion of emplojecs who stop	3.47	237	218	178	17\%	17\%
- Proporion who stop within SAC	197	47	98	127	9\%	7\%
- Average number of stops per tip	14	12	12	12	1.2	1.2
Midday Inips						
- Proportion of employees who make a midday inp	537	547	454	464	35\%	42\%
- Proportion who make a midday inf within the SAC	297	227	208	33%	32\%	23\%
Average number of stops per trip	17	1.9	1.6	1.6	1.6	1.6
Inip Erom Wots						
- Proporzion of employees who stop	stat	4178	378	350	36%	36\%
- Proportion who stip within SAC	1:7	64	97	16%	10\%	13\%
- Average number of stops per inip	17	10	1.1	1.2	1.5	1.5

Source: NCHRP, 1989.

Excluding Bellevue, the two centers with slightly higher rates of employee stops en route are South Coast Metro and Parkway Center. It was determined that this is due in part to the presence of greater proportions of female and secretary/clerical workers in these two centers. These groups tend to have more intermediate stops than others.

Important to examine in these patterns is the proportion of those who make intra-center stops. We proposed early on that to reduce trips on the regional network, more trips would have to be captured within the center. The NCHRP team identified a possible causal factor for centers having lower than average intra-center stop rates. The four centers with lower rates are South Coast Metro, Parkway Center, Southdale, and Tysons Corner. The one factor these centers have in common is the proximity of external retail trip generators. Thus, more people will be attracted to stop outside these centers than in the case of Bellevue and Perimeter Center which are relatively isolated in terms of activity concentration in their region. The NCHRP team proposed the following relationship:

1. For centers with relatively little retail activity immediately adjacent, about 13 percent of the employees will stop within the center on their way to work and approximately 15 percent will stop there on the way home.
2. Centers with a significant amount of retail immediately adjacent will have approximately 8 percent of the workforce stopping in the center on the way to work and about 10 percent stopping on their way home.

Table 5.4 also shows the patterns of midday trip-making. The NCHRP team determined that there is a correlation between occupation and the proclivity for making a midday trip, with professional/technical staff more likely to go out at lunchtime. Given the data gathered from the six centers, the following relationships were suggested:

1. For centers with at least 60 percent professional, technical, manager, or administrator positions, the proportion of office employees making midday trips within the center ranges from 29 to 33 percent.
2. For centers which have lower proportions of these professional categories, the expected internal midday trip rate is between 20 and 23 percent.

Another factor which influences the midday internal trip patterns is the availability of eating establishments. The fact that Perimeter Center has the highest midday intra-center trip rate is probably due to the availability of various restaurants within the center and a corresponding lack of lunch opportunities in the largely residential area surrounding the center.

Intermediate Stop Trip Purposes

The NCHRP study also surveyed intermediate stop trip purposes. The results are presented in Table 5.5. The most frequently cited reason for a stop on the way to work is to drop a child at childcare or school -- an average of 34 percent of the office workers stop for this purpose. In second place, an average of 21 percent said they stop on work-related business on the way to the office. On the way home, 21 percent stop to shop, 14 percent pick up a child at school or childcare, 15 percent stop for social or recreation reasons such as health clubs, and 13 percent stop at the grocery store.

It is rather clear given these intermediate trip purposes that there is ample opportunity to shape travel patterns by providing needed services within the center. If there were childcare services on-site, perhaps more people would be free to carpool by bringing the child along. If there were shops, restaurants and supermarkets within the center, workers might be enticed to remain in the center for a longer period of time, thus spreading the peak demand for regional highway capacity. These factors must be considered in the design phase of this project.

Table 5.5: Intermediate Stop Trip Purposes

	Distribution of Trip Pumoses by Time Period		
	Along Trip Te Work	Midday Trips	Alons Trip Home
Trip Purpose			
Work Related	21\%	25\%	6\%
Meal/Snack	10	35	4
Shopping	3	13	21
Childcare/School	34	*	14
Pick Up/Drop Off Passenger	er 5	1	3
Education	* 1	*	2
Social/Recreation ${ }^{2}$	3	3	15
Home	*	4	0^{3}
Banking	7	9	6
Medical	2	2	3
Dry Cleaners	9	1	7
Gas Station	$0{ }^{\text {- }}$	1	0 *
Grocery Store	2	1	13
Other	-3	-3	6
	100	100	100
Notes:			
* indicates less than 1 percent			
${ }^{2}$ Health club trips have been included under the Social/Recreation category			
3 By definition, trips to home from work cannot have an intermediate stop at home			
- Intermediate stops at gas stations along the way either to work or from work have been excluded in this distribution. During the trip to work, the survey indicates that roughly 11 percent of all intermediate stops are at a gas station Along the trip home, roughly 9 percent of all intermediate stops are at gas stations.			

Source: NCHRP, 1989.

Table 5.5 also shows midday trip purposes. An average of 35 percent of the midday trips are for a meal or snack, 13 percent are shopping trips, and 9 percent are for banking. This again shows the opportunities which exist to shape travel behavior by locating appropriate services within the center.

Midday Walking Trips

The NCHRP study also identified a rather direct relationship between the proximity of the services to the office space and the propensity of the workers to walk to their midday destinations. The Galleria Mall in the Parkway Center showed a 17 percent walk share for midday trips. The Galleria, containing 970,000 square feet, is connected by enclosed walkways to approximately 1 million square feet of office space and has a total of 2.1 million square feet of office space within 2,000 feet of the mall. Bellevue Square Mall, also with 2.1 million square feet of office space within 2,000 feet, generates a midday peak hour walk mode of 6 percent and
contains $1,066,300$ square feet of retail space. Bellevue has a pedestrian pathway system as well. Perimeter Mall in Perimeter Center has $1,436,000$ square feet, receives a 7 percent midday walk trade, and has 2.8 million square feet of office space within 2,000 feet.

Residential Travel Characteristics

Various residential areas within the six NCHRP mixed-use centers were surveyed to determine their travel characteristics. Residents were asked specifically about the work location and the trips they made within the center. Table 5.6 summarizes the findings.

The percentage of those living and working within the center ranges from 13 to 50 . It was determined that, on average, owner-occupied households have "internal" workers more often (31 percent) than renter-occupied units (28 percent). In addition, the larger the center, the more likely it is that the residents will also work there. Those classified as large, Tysons Corner and Parkway Center, had an average of 33 percent of their residents employed within the centers, while the smaller centers averaged 27 percent.

The denser centers of Bellevue and South Coast Metro exhibited a higher walk mode share for trips internal to the center. Shorter walk distances and Bellevue's pedestrian path system contribute to increased walking trips. While these walking trips represent only a very small proportion of the intra-site trips, perhaps if larger residential components were studied and/or provided on-site, a significant impact on travel patterns could be made.

Table 5.6: Intra-Center Trips Made by Residents

Residscual Sics	\% of Employed Residerts ${ }^{2}$ Which Hork wuhin SAC	Mode of Tipas Made Wilhin tre SAC		
		Aus	Welk	Iransil
Belcruse				
Ean Sus	438	136	195	0%
The Part	32	16	4	0
12 Cenual Square	27	72	24	4
South Coan Merto				
The Lutes	33	76	24	0
The Cape	13	9	4	0
village Crate	27	19	11	0
Parkway Center				
Spris Measows	33	100	0	0
Carolina Chas	50	91	0	9
Presion Rucqua Cub	14	9	2	0
Trione Corner				
Cormmons	40	93	6	1
Roconda	33	9	1	5
Souindalt				
Edinborouph	27	98	2	0
The Colony	15	17	10	3
The Cedan	32	93	2	9
The Duotam	33	9	4	2

Source: NCHRP, 1989.

Pleasanton Study

Pleasanton, California, enacted a traffic reduction ordinance requiring employers to reduce peak hour trips by 45 percent. This program has been in force for several years; Cervero and Griesenbeck (1987) conducted a study of the travel patterns occurring as a result of the regulations. The general conclusions drawn from the study are as follows:

1. In 1986, 62 percent of those employed in Pleasanton were female.
2. Over 26 percent were classified as management/administration, 21.1 were clerical, 21.0 were service, and 17.6 were professional/technical.
3. The share of professional employees commuting more than 15 miles was much higher than that of the non-professionals. This suggests that the long average commuting distance of 15 miles is more a function of higherincome workers choosing to live farther away, rather than lower-income workers being pushed out by rising housing prices.
4. Analysis of travel data showed that those most likely to rideshare have long commuting distances, work for a large company in a single-tenant site, and are in non-professional, non-management positions.
5. People are more likely to "flex" their working hours if they commute relatively long distances, work for a small firm in a multi-tenant complex, and have a professional/management position. This may reflect in part the difficulty of implementing ridesharing for smaller firms, which leaves them with flex-time as the other option for fulfilling the TSM ordinance requirements.
6. Flex-time privileges discourage ridesharing. Most of Pleasanton's trip reduction requirements have been achieved through flex-time.
7. The most effective approach to demand management may be to encourage staggered hours across firms so that ridesharing within firms can be accomplished in concert with spreading the trips over a longer time period.

6. New Jersey: Route 1 Corridor Region

While the purpose of this study is to further our understanding of the relationship between suburban land use and transportation in general, the laboratory we will be using to test our ideas is the Route 1 Corridor region in central New Jersey. This region includes Mercer County and southern portions of Middlesex and Somerset Counties. To establish a foundation for the analytical portion of this project, we will begin by assessing some of the attributes of the Route 1 region which are pertinent to issues discussed throughout this report. In addition, the efforts of the REGIONAL FORUM and the State Planning Commission will be discussed in terms of their recommendations for establishing mixed-use centers. It should be understood, however, that this section will be somewhat cursory in nature, with a substantial amount of data and analysis to be provided in a subsequent phase of this project.

Economic and Demographic Characterics of the Route 1 Corridor

The Route 1 Corridor Region, comprised of 32 municipalities, had an estimated population of 616,766 in 1987. Table 6.1 shows the change in population by municipality since 1980 . Growth has clearly been taking place in the suburban and more rural municipalities like West Windsor, Franklin, Plainsboro and South Brunswick, while older localities and cities like Manville, Milltown, Trenton and New Brunswick have been losing population. However, this losing trend is expected to turn around by 2010, with every municipality in the region experiencing some level of growth, albeit with the suburban areas continuing to caputre a greater share. The task is to determine how much of this growth is already accounted for in existing development proposals and how much can be shaped by our mixed-use center land use approach.

Table 6.2 shows projected jobs/housing ratios for each municipality. While the regional figure shows a nice balance of 1.56 , some municipalities have rather low ratios, indicating that their resident labor force is commuting somewhere else to work. Without current travel data, however, it is difficult to know the extent of a spatial mismatch between jobs and housing within the region. The jobs-housing factor is one important consideration when deciding upon the potential future location for our prototype centers.

The State Department of Labor recently prepared an analysis of labor demand versus supply in New Jersey through the end of the century. Most of the labor force growth within the next decade will be accounted for by women and minorities, with a declining overall proportion of white males relative to the total. There may be a labor shortage because of the baby-bust (a decline in the 16 to 24 age cohort), skills mismatch and a lack of affordable housing. Unemployment is expected to be 3.5 percent in 2000 if the economy continues to grow as projected. Retraining efforts will be needed because a major portion of the new jobs will be in the service sector, requiring higher levels of education and skills to meet "high tech" information-processing needs or to fill specialized positions such as nursing and computer maintenance. Raising the retirement age may be considered to keep older workers in the workforce longer. In addition, if the affordable housing issue is not addressed, it will be very difficult to attract workers from other areas (Department of Labor, June 1989).

Table 6.1: Municipal Population Trends and Projections

Municipality	Population 1980	Estimated Population 1987	Change 1980-1987	Percent 11 Change 11 $1980-1987$ 11	Projected Population 2010	Change 1987-2010	$\begin{gathered} \text { Percent } \\ \text { Change } \\ 1987-2010 \end{gathered}$	
East Windsor	------------	---------1	$2,130$	$\left.\begin{array}{r} -----------\quad\| \| \\ 10.1 \end{array} \right\rvert\,$	34,000	10,829	$-\cdots--------$	
Ewing	34,842	35,656	814	2.3 \|1	38,700	3,044	8.5	
Hamilton	82,801	87,106	4,305	5.2 11	101,630	14,524	16.7	
Hightstown	4,581	4,843	262	5.7 \|		4,900	57	1.2
Hopewell B.	2,001	2,021	20	1.0 \\|	2,550	529	26.2	
Hopewell Twp.	10,893	11,282	389	3.611	16,850	5,568	49.4	
Lawrence	19,724	25,166	5,442	27.6 11	31,200	6,034	24.0	
Pennington	2,109	2,276	167	7.9 \\| 1	2,800	524	23.0	
Princeton B.	12,035	12,172	137	1.1 \|		13,000	828	6.8
Princeton Twp.	13,683	14,288	605	4.4 II	23,000	8,712	61.0	
Trenton	92,124	90,646	$(1,478)$	-1.6 11	97,898	7,252	8.0	
Washington	3,487	5,347	1,860	53.3 \|1	10,500	5,153	96.4	
West Windsor	8,542	13,149	4,607	53.9 \|		26,400	13,251	100.8
				11				
MERCER	307,863	327,123	19,260	6.3 \\|	403,428	76,305	23.3	
				11				
Franklin	31,358	38,468	7,110	22.7 \|		62,790	24,322	63.2
Hillsborough	19,061	24,001	4,940	25.9 \|1	35,850	11,849	49.4	
Manville	11,278	10,490	(788)	-7.0 \|		10,770	280	2.7
Millstone	530	477	(53)	-10.0 \|		520	43	9.0
Montgomery	7,360	9,116	1,756	23.9 11	16,030	6,914	75.8	
Rocky Hill	717	696	(21)	-2.9 \\| 1	730	34	4.9	
S. Bound Brook	4,331	4,007	(324)	-7.5 \|		4,050	43	1.1
				11				
SOMERSET	74,635	87,255	12,620	16.9 II	130,740	43,485	49.8	
				11				
Cranbury	1,927	2,292	365	18.9 II	5,311	3,019	131.7	
East Brunswick	37,711	44,508	6,797	18.0 II	53,803	9,295	20.9	
Helmetta	955	975	20	2.1 \\|	2,702	1,727	177.1	
Jamesburg	4,114	4,806	692	16.8 \\|	5,772	966	20.1	
Milltown	7,136	6,960	(176)	-2.5 \\| 1	7,979	1,019	14.6	
Monroe	15,858	21,143	5,285	33.3 \\|	33,592	12,449	58.9	
New Brunswick	41,442	39,568	$(1,874)$	-4.5 \\|	46,691	7,123	18.0	
North Brunswick	22,220	26,165	3,945	17.8 \\|	37,889	11,724	44.8	
Plainsboro	5,605	11,395	5,790	103.3 \|		22,063	10,668	93.6
South Brunswick	17,127	22,838	5,711	33.3 II	44,000	21,162	92.7	
South River	14,361	13,243	$(1,118)$	-7.8 11	13,947	704	5.3	
Spotswood	7,840	8,495	655	8.4 11	9,462	967	11.4	
				11				
MIDDLESEX	176,296	202,388	26,092	14.8 \|		283,211	80,823	39.9
REGIONAL TOTAL	558,794	616,766	57,972	10.4 \|		817,379	200,613	32.5

Sources: 1980 - US Census; 1987 - NJ Dept. of Labor; 2010 - Mercer County Planning Board, Somerset County Planning Board, Middlesex County Planning Board.

Table 6.2: Projected Jobs/Housing Ratios - 2010

Municipality	Projected Population 2010	Household Size 2000	Estimated Housing 2010	Projected Employment 2010	Jobs/Housing 2010
East Windsor	34,000	2.51	13,546	13,230	0.98
Ewing	38,700	2.46	15,732	33,070	2.10
Hamilton	101,630	2.52	40,329	33,610	0.83
Hightstown	4,900	2.38	2,059	4,590	2.23
Hopewell B.	2,550	2.35	1,085	665	0.61
Hopewell Twp.	16,850	2.74	6,150	4,060	0.66
Lawrence	31,200	2.51	12,430	28,765	2.31
Pennington	2,800	2.52	1,111	3,480	3.13
Princeton B.	13,000	1.98	6,566	17,130	2.61
Princeton Twp.	23,000	2.40	9,583	12,370	1.29
Trenton	97,898	2.47	39,635	68,510	1.73
Washington	10,500	2.52	4,167	3,860	0.93
West Windsor	26,400	2.83	9,329	25,010	2.68
TOTAL	403,428	2.49	162,019	248,350	1.53
Franklin	62,790	2.70	23,256	26,610	1.14
Hillsborough	35,850	2.52	14,226	10,650	0.75
Manville	10,770	2.61	4,126	3,630	0.88
Millstone	520	2.79	186	210	1.13
Montgomery	16,030	3.06	5,239	10,260	1.96
Rocky Hill	730	2.43	300	850	2.83
S. Bound Brook	4,050	2.43	1,667	1,080	0.65
TOTAL	130,740	2.64	49,523	53,290	1.08
Cranbury	5,311	2.45	2,168	7,676	3.54
East Brunswick	53,803	3.03	17,757	32,762	1.85
Helmetta	2,702	2.74	986	225	0.23
Jamesburg	5,772	2.61	2,211	2,703	1.22
Milltown	7,979	2.66	3,000	950	0.32
Monroe	33,592	2.36	14,234	12,304	0.86
New Brunswick	46,691	2.32	20,125	27,412	1.36
North Brunswick	37,889	2.49	15,216	34,332	2.26
Plainsboro	22,063	1.63	13,536	33,549	2.48
South Brunswick	44,000	2.81	15,658	44,063	2.81
South River	13,947	2.53	5,513	3,252	0.59
Spotswood	9,462	2.82	3,355	2,962	0.88
TOTAL	283,211	2.55	111,063	202,190	1.82
REGIONAL TOTAL	817,379	2.53	323,075	503,830	1.56

[^5]If we look at the specific labor market areas which include the Route 1 Corridor region, it is apparent that the regional trends are expected, in large part, to be the same as those predicted for the entire state. In the Middlesex-Union labor area, approximately 77 percent of the new jobs projected through the year 2000 will be in the non-production industries of wholesale trade, retail trade and services. Of this portion, half of the jobs are expected to be in business and health services. Similarly, in Mercer, 68 percent of the new jobs are projected to be in trade and services, with legal, business and health services as the leaders. Finally, in the Somerset/Hunterdon Jabor area, the trend is the same, with 72 percent of the new jobs in trade and services, particularly business and health services (Department of Labor, Feb. 1989). A more thorough look ai the attributes of the region's employment structure may also help us to understand how to approach the location of the future mixed-use centers.

As mentioned above, these points will be expanded upon in a subsequent analysis, but we can draw some preliminary implications. As we saw in the NCHRP case studies, women are more likely to have the responsibility for dropping a child at school or daycare and for doing the household's shopping. Because a large portion of the labor force growth will be women, childcare and shopping facilities should be offered on-site in our centers of the future. In addition, while many of the new jobs are high tech, many of the service jobs are lower-paying positions, making affordable housing in or near the centers a very important issue. Finally, if we are going to increasingly call on the retirement-age workers to remain in the workforce, their needs will have to be accommodated as well.

REGIONAL FORUM and State Plan Standards for Mixed-Use Centers

Two ongoing land use planning efforts in New Jersey are MSM's REGIONAL FORUM and the State Planning Commission's State Development and Redevelopment Plan. The REGIONAL FORUM was initiated in 1985 to address growth management issues in what we have designated in this report as the Route 1 Corridor region. Through an extensive consensusbuilding effort, bringing together 250 individuals representing various interests in the region, the REGIONAL FORUM produced a growth management agenda for the Route 1 Corridor region.

The State Planning Commission was created by legislative action in 1986 with the mandate to establish a growth management plan for all of New Jersey. The Commission is currently in the process of revising the Preliminary State Development and Redevelopment Plan, an interim document which will eventually be crafted into the Final State Development and Redevelopment Plan. The Final Plan will present a set of policies and guidelines for future land use throughout the State.

REGIONAL FORUM and State Planning efforts are being considered in this report because they both advocate the establishment of mixed-use centers as an alternative to the current panterns of suburban growth. The Preliminary State Plan uses an approach called the Regional Design System, which sets out standards for a hierarchy of centers ranging from traditional central cities to rural hamlets. The REGIONAL FORUM discussed a similar hierarchy of centers. The Preliminary State Plan's "corridor center" and the FORUM's "regional center" criteria are relevant to our work.

Some of the questions we have asked regarding the optimal design of mixed-use suburban centers have been addressed by both the Preliminary Plan and the REGIONAL FORUM. Table 6.3 presents suggested standards for centers:

Table 6.3: Standards for Mixed-Use Centers

	Regional Center	Corridor Center
Acreage	$400+$	$640-6,400$
Employment	$9,000+$ jobs	$4,000-30,000$ jobs
Population	$5,700+$	$5,000-40,000$
Dwelling Units	$2,700+$	$2,000-15,000$
Jobs/Housing Ratio	3.5	$2.0-5.0$
Net DU's per Acre	$8-11$	$4-20+$
Nonresidential FAR	1.10	$1-4+$
Open Space	13%	$20 \%-35 \%$
Height Range	$4-10$ stores	$85: 15-60: 40^{*}$
Modal Split		

[^6]Both the Preliminary State Plan and the REGIONAL FORUM recommend that these centers be located proximate to the places on the transportation infrastructure that are most appropriate for supporting them, namely highway interchanges and transit stops. The Preliminary Plan suggests that the best approach to siting these centers is through the establishment of corridor plans focused on particular highway and transit corridors. No recommendations have been made, however, as to where specific corridor centers should be located. The counties and municipalities have been given the responsibility for determining appropriate locations.

As we have seen in our case studies, it is difficult to conclude that merely providing a mix of uses and a relatively high density and large size will achieve our transportation objectives. One of our most successful case studies from a transportation perspective is also one of the smallest -- Bellevue. Bellevue is 440 acres in size, with a total of 7.7 million square feet of commercial space, and employment of 19,030. Part of Bellevue's ability to achieve a greater than 25 percent non-SOV share is the relative intensity of the activities, 43.2 employees per acre compared with the next highest of 30.6 percent in Tysons Corner with 37,650 employees and a non-SOV mode split of only slightly greater than 10 percent. Bellevue also has a pedestrian walkway system, a relatively good transit service, and some corporations with aggressive parking management programs. In short, both the REGIONAL FORUM and the State Plan guidelines may be necessary, but not sufficient conditions for transportation success.

The REGIONAL FORUM has suggested generalized locations for possible mixed-use centers throughout the Route 1 Corridor region. These include:

- Proposed Monmouth Junction Station Area
- I-287/Franklin Twp.
- I-95/Mercer Airport
- NJ Turnpike Exit 7/I-95
- NJ Turnpike Exit 8/Hightstown
- NJ Turnpike Exit 8A/Forsgate
- I-95 Quakerbridge Area

Two other centers have been growing since 1980: the Princeton Junction area including Carnegie Center and the Forrestal Center area. These two areas are mixed-use in nature, but are not dense enough, nor adequately integrated in design to achieve the transportation objectives we hope to realize. These centers will be considered in our location analysis, however, because there may be possibilities to improve them as they continue to expand.

Figure 6.1 shows the location of the existing and prospective centers throughout the Route 1 region. The locations of future centers must be assessed not only in terms of their ability to absorb growth, but also from the perspective of their locations relative to other regional activities. If there is already a great deal of pressure on the highways and train lines which would serve the centers, there may be a resulting congestion problem when the centers compete with through traffic for capacity. In addition, as the NCHRP study showed, it is easier to capture intra-site trips if the center is relatively isolated from other retail and service activities.

Within the past six months, there have been two proposals for centers at the proposed Monmouth Junction train station and the I-95 Mercer Airport area. The former was brought forth by a development firm and the latter effort is being carried out by the Mercer County Division of Planning in conjunction with a variety of development interests in that area. As mentioned above, both of these locations were included in the REGIONAL FORUM recommendations.

The center proposed for the Mercer Airport area is included in a plan for what has been designated the Mercer County I-95/295 Corridor (Mercer County Planning Board, October, 1989). The Mercer County Division of Planning is currently working with a team of consultants to prepare this plan. The draft plan calls for:

	square feet	acres
Office/Research	$5,463,874$	505
Light Industrial	72,000	11
Retail	239,500	28
Hotel	160 rms	10
Residential	$2,719 \mathrm{du's}$	1,712

Figure 6.1: Existing and Proposed Centers in the Route 1 Corridor Region

Source: "An Action Agenda for Managing Regional Growth," REGIONAL FORUM, MSM Regional Council, 1987.

On most of the nonresidential parcels the FAR is .15 and the total new employment estimated for this area is 19,328 . Residential densities per parcel vary from .5 to 8 dwelling units per acre, with a total gross residential density of 1.6 units per acre for the entire residential area. While the total employment and housing is within the parameters put forth by the Preliminary State Plan and the REGIONAL FORUM, the overall density of development is quite low and the balance is off.

If this area were developed according to previous individual proposals, there would eventually be 30,651 jobs and 1,687 dwelling units with a jobs/housing ratio of 18.16 . Under the draft corridor plan, the jobs/housing ratio has been reduced to 7.11 , obviously a great improvement, but still over four times the 1.5 ratio recommended in the literature. We cannot forget, however, that the county is dealing with a large group of developers, some of whom have already submitted plans for local approval based on existing zoning conditions.

Should this corridor planning effort be successful in achieving its proposed levels of development, the center will certainly represent a laudable example of improved land use through collaboration and compromise. In addition, the county is planning to apply for a Transportation Development District designation for this area which would help to assure that necessary transportation improvements will be made to accommodate the growth, and transportation management programs will be carried out.

To be sited adjacent to the future Monmouth Junction Train Station, the Jersey Center Metroplex has been proposed (Rieder Land Technology, 1989). This development has generated quite a lot of controversy because of its size, the height of the proposed buildings and density. The target build-out year is 2002, at which point there would be 6.5 million square feet of office space under the proposed plan. This translates into employment of over 20,000 . With a total site area of 506 acres, there would be over 40 employees per acre, a level approaching that of the Bellevue case study we examined. The retail component of 180,000 square feet is relatively minor when compared with the amount of office space. In addition, there are only 700 units of housing proposed, which would yield a jobs/housing ratio of over 29.

In addition to the proposed height of 14 stories for the tallest building, there are many questions about the underlying transportation assumptions of this development. A shuttle bus is proposed to connect the uses with each other and the train station, which, in absence of a walking scale could be an acceptable alternative. However, the developer has calculated that over 20 percent of the workers will commute using transit. This assumes that reverse-flow commuting will occur on the westbound Northeast Corridor Rail Line and that there is adequate capacity for the rail system to handle additional eastbound peak flow. In addition, the local road system is still left to handle the trips of the remaining $16,000+$ employees who don't travel by transit. While the proposed size and density is at a level advocated by the Preliminary State Plan and the REGIONAL FORUM, the transportation issues and mix of uses need to be addressed more adequately.

7. Proposed Center Prototype

Throughout this report, various relationships between land use and transportation characteristics have been examined. While certain factors such as increased size, density and mix of land uses have been shown to favorably impact travel patterns, no clear standards or minimum thresholds have emerged from the literature. On the other hand, we know there are some basic design parameters like clustering buildings within the center and providing approximately $1,000-$ foot walking distances to effectively facilitate pedestrian and transit travel. Furthermore, we also know the optimal components for transportation management programs such as parking management and custom rideshare matching programs.

We are now faced with making a leap to propose a prototype center which can be tested in the Route 1 Corridor region. Given what we have learned, the REGIONAL FORUM standards, with some additional stipulations, seem to be reasonable minimum thresholds for designing the prototype. These figures have the added advantage of having been developed through a consensus-building process specific to the Route 1 Corridor region. The Preliminary State Plan standards might also be appropriate, but the ranges given are quite wide; they have been prepared for use in many types of areas throughout the state, and have not yet been completely through the public scrutiny and amendment process. Therefore, open for modification as our study proceeds, the REGIONAL FORUM standards shall be our starting point:

Acreage	$400+$
Employment	$9,000+$ jobs
Population	$5,700+$
Housing Units	$2,700+$
Net DU's/Acre	$8-11$
Net Nonres. FAR	1.10
Jobs/Housing	3.5
Height Range	$4-10$ stories

In addition, the prototype should incorporate the following:

- Relatively intensive use of the nonresidential land, perhaps at least 40 employees per acre
- Ample supply of retail and services, possibly a relationship of .5 square feet of retail for every square foot of office
- A housing supply which accommodates all anticipated employee income levels
- A phasing and marketing plan which would promote the opportunity for people to both live and work within the center
- The inclusion of services such as childcare, grocery stores, restaurants, health clubs, medical offices, movie theaters and banks
- Location of the center so that it does not excessively compete with through traffic for what would become an inadequate amount of road capacity
- Location of the center in an area relatively remote from other commercial developments
- A transportation management coordinator on-site who implements parking management and programs appropriate for the demographics of the workforce
- Possible parking supply restriction to 2 spaces per 1,000 square feet of office space
- A design which clusters activities and provides a pathway system to encourage pedestrian and transit trips

As the study proceeds and the actual sites are selected for testing the effects of the regional mixed-use centers, there will certainly be a variation in the application of the standards. Most likely, we will attempt to make the centers as large and dense as political, economic and physical constraints will allow. The final configuration of the test centers will be determined through careful analysis, and review and modification by local and national experts.

APPENDIX

NCHRP Trip Generation Rates

The following tables have been taken directly from the National Cooperative Highway Research Program report "Travel Characteristics at Large-Scale Suburban Activity Centers," prepared by JHK \& Associates, 1989. These figures were collected through the administration of a survey at each of the listed sites. This data is important because it speaks to the question of whether or not the ITE trip generation rates are applicable for large suburban mixed-use centers. Each entry in the table is compared with the corresponding ITE rate. A summary of this comparison is presented in Section 5-A.

Table 8. Office vehicle-trips (AM peak hour).

Table 8. Office vehicle-trips (AM peak hour).				AM Peak Hour (2-way rehicle fios)				$\begin{gathered} \% \\ \text { Inbound } \end{gathered}$	Inbound Auto Occupancy	ITE Trips/Occupicd 1.000 GSF	ITE Trips/ Employes	$\begin{aligned} & \text { D } \\ & \text { D } \end{aligned}$
Office Building	$\begin{aligned} & \text { Total GSF } \\ & (\times \quad 1.000) \end{aligned}$	Percent Occupied	Approx. No. of Employees	Total Trips	$\begin{gathered} \text { Trips/ } \\ 1.000 \text { GSF } \end{gathered}$	Trips/ Occupied 1.000 GSF	Trips/ Employee					$\begin{aligned} & \frac{3}{2} \\ & \end{aligned}$
Bellevue												
PNB Plaza	442.0	100	1150	203	0.46	0.46	0.20	89	1.74	1.63	0.50	
United Olympic Building	214.2	80	425	242	1.13	1.41	0.57	94	1.04	1.86	0.51	
Rainicr Bank Plaza	441.8	80	1000	367	0.83	1.04	0.37	93	1.06	1.68	0.50	
Honeywell Center	235.8	90	650	283	1.20	1.34	0.44	94	1.09	1.80	0.51	
Business Center Bldg.	146.0	99	450	242	1.66	1.69	0.54	83	1.20	1.90	0.51	
Pacific First Plaza	134.0	60	100	58	0.43	0.72	0.58	93	1.10	2.07	0.53	
Skyline Tower	420.0	82	775	403	0.96	1.17	0.52	94	1.05	1.69	0.51	
Transamerica Tiule	73.1	100	250	112	1.53	1.53	0.45	87	1.08	2.09	0.52	
One Bellevue Center	357.0	92	900	196	0.55	0.60	0.22	89	1.06	1.70	0.50	
Wells Development	21.5	90	60	29	1.35	1.50	0.48	79	1.04	2.52	0.53	
South Coast Metro												$\stackrel{-}{4}$
Imperial Bank Tower	310.0	93	725	411^{1}	1.33	1.43	0.57	93	NA	1.73	0.51	\pm
Central Bank Tower	289.6	89	810	6631	1.14	1.24	0.41	92	NA	1.61	0.51	合
Great Western Savings Tower	289.9	96	805)									5
Metro Cenicr	240.0	80	635	341	1.42	1.77	0.54	89	1.05	1.83	0.51	¢ิ.
Downey Plaza	118.0	100	NA	283	2.40	2.40	NA	90	1.07	1.96	NA	5
Griflin Towers	285.0	86	500	319	1.12	1.30	0.64	92	1.10	1.77	0.51	$\stackrel{2}{2}$
3 Hution Center Drive	200.0	NA	NA	161	0.80	NA	NA	92	1.06	NA	NA	$\frac{5}{5}$
Buticrlield Tower	146.3	100	400	196	1.34	1.34	0.49	94	1.06	1.90	0.51	$\frac{8}{2}$
Corporate Center	159.2	71	350	229	1.44	2.03	0.65	75	1.08	1.97	0.51	欹
Metro Pointe												-2
950 South Coast Drive	40.0	100	160	88	2.20	2.20	0.55	80	1.04	2.28	0.52	$\stackrel{\square}{5}$

Table 8. Continued

Table 8. Continued

	Total GSF ($\times 1.000$)	Percent Occupied	Approx. No. of Empioyees	AM Peak Hour (2-way yehicle trips)							
Office Building				Total Trips	$\begin{aligned} & \text { Trips/ } \\ & 1.000 \text { GSE } \end{aligned}$	Trips/ Occupied 1.000 GSE	Trips/ Employee	g Inbound	Inbound Auto Occupancy	ITE Trips/Occupied 1.000 GSF	ITE Trips/ Employes
Perimeter Center (cont.)											
41/47 Perimeter Center East	189.5	100	NA	527	2.78	2.78	NA	85	1.10	1.83	NA
Maryland Casualty Building	146.0	NA	NA	204	1.40	NA	NA	93	1.19	NA	NA
AT\&T	86.0	100	400	55	0.64	0.64	0.14	85	1.09	2.05	0.51
Northpark 400	585.1	70	NA	620	1.06	1.51	NA	99	1.06	1.65	NA
400 Embassy Row	155.0	97	530	224	1.45	1.49	0.42	98	1.07	1.89	0.51

Tysons Corner

The BDM Corporation - 7915 Jones Branch Dr. - 7923 Jones Branch Dr.	135.3 88.8	100 100	$\left.\begin{array}{l} 400 \\ 250 \end{array}\right\}$	352	1.57	1.57	0.54	90	1.09	1.80	0.51
- 1517 Westbranch Dr.	135.3	100	400	357	1.79	1.79	0.65	92	1.03	182	0.51
- 1521 Wesibranch Dr.	64.5	100	150	357	1.79	1.79	0.65	92	1.03	1.82	0.51
Lancaster Buidding	135.3	65	270	107	0.79	1.22	0.40	85	1.07	2.04	0.52
8201 Greensboro Dr.	353.1	100	800	604	1.71	1.71	0.75	85	1.07	1.68	0.50
Tysons International											
1919 Gallows Rd.	425.6	100	675								
1921 Gallows Rd.	425.6	20	95	408	0.96	0.96	0.60	89	1.32	1.60	0.51
Tycon Tower	427.3	50	350	221	0.52	1.03	0.63	88	1.04	1.80	0.51
The Mitre Corporation											
- 1820 Dolley Madison Blvd.	170.5	100	570	362	2.12	2.12	0.64	91	1.08	1.86	0.51
- 7525 Colshire Dr.	347.0	100	1160	591	1.70	1.70	0.51	82	1.05	1.68	0.50
- 1575 Anderson Rd.	61.2	100	200	172	2.81	2.81	0.86	84	1.08	2.15	0.52
NADA	195.9	100	650	348	1.78	1.78	0.54	93	1.57	1.82	0.51

Table 8. Continued

[^7]Tahle 0 . Offlep vehtele-(ripy (1יM peak hour).

Table 9. Continued
PM Peak Hour (2-way vehicle trips)

Stone Tower	265.0	42	275	169	0.64	1.52	0.61	82	1.09	1.93	0.49
Hentage Square Tower $\mathbf{2}^{2}$	200.0	80	400	$258{ }^{2}$	1.29	1.61	0.64	93	NA	1.82	0.49
Stanfort Pank	295.0	95	500	321	1.08	1.15	0.64	59	1.07	1.65	0.48
\pm Princeion	370.0	70	NA	467	1.26	1.80	NA	88	1.13	1.67	NA
One Spectrum Center	597.0	80	NA	606	1.02	1.27	NA	82	1.06	1.45	NA
Perimeter Center											
Southem Company	512.5	100	NA	697	1.36	1.36	NA	91	1.14	1.49	NA
Tcraces Nonh	429.0	99	NA	701	1.63	1.65	NA	88	1.05	1.54	NA
Ravinia One	377.5	95	1200	613	1.62	1.71	0.51	83	1.11	1.58	0.48
Concourse II	288.0	100	NA	490	1.70	1.70	NA	86	1.09	1.64	NA
UNISYS	286.0	NA	NA	417	1.46	NA	NA	89	1.10	NA	NA
Cotton States/Goldkist	264.8	100	NA	325	1.23	1.23	NA	90	1.12	1.67	NA
219223 Perimeter Center Pkwy.	260.1	NA	NA	252	0.97	NA	NA	87	1.04	NA	NA
Travellers	225.6	NA	NA	245	1.09	NA	NA	91	1.25	NA	NA
Ashwood 1200	218.8	NA	NA	268	1.22	NA	NA	89	1.09	NA	NA
Contel	215.0	100	NA	309	1.44	1.44	NA	87	1.06	1.73	NA

Table 9. Continued

Perimeter Center (cont.)

41/47 Perimeter Center East	189.5	100	NA	475	2.51	2.51	NA	70	1.14	1.77	NA
Maryland Casualty Building	146.0	NA	NA	219	1.50	NA	NA	92	1.22	NA	NA
AT\&T	86.0	100	400	183	2.13	2.13	0.46	92	1.04	2.02	0.49
Northpark 400	585.1	70	NA	606	1.04	1.48	NA	86	1.06	1.55	NA

Tysons Corner

The BDM Corporation
$\stackrel{\rightharpoonup}{0}$

Office Building	Total GSF ($\times 1.0,0)$	Percent Occupied	Approx. No. of Employees	PM Peak Hour (2-way yehicle Inips)				Outbound	Outbound Auto Occupancy	ITE Trips/Occupied 1.000 GSF	TTE Trips/ Employes
				Total Trips	$\begin{aligned} & \text { Trips/ } \\ & 1.000 \text { GSF } \end{aligned}$	Trips/ Occupied 1.000 GSF	Trips/ Employee				
Southdale											
Southdale Medical Office	198.0	85	1100	768	3.88	4.56	0.61	66	1.25	1.80	0.48
Southdale Place inlcuding the drive-in banking	$\mathrm{g}^{73.3}$	92	250	$\begin{aligned} & 188 \\ & 355 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 4.84 \end{aligned}$	$\begin{gathered} 2.79 \\ 5.26 \end{gathered}$	$\begin{aligned} & 0.75 \\ & 1.42 \end{aligned}$	67	1.14	2.10	0.49
National Car Rental	335.0	85	1000	477	1.42	1.68	0.48	89	1.07	1.65	0.48
Minnesota Center	300.0	50	550	314	1.05	2.09	0.57	81	1.08	1.84	0.48
Northand Plaza	328.8	84	800	411	1.25	1.49	0.51	84	1.07	1.66	0.48
Northand Exec. Center	516.1	96	1500	777	1.51	1.57	0.52	88	1.10	1.50	0.47
Northwesiem Financial Cur.	480.0	89	1500	842	1.75	1.97	0.56	85	1.09	1.54	0.47
Southgate Office Tower	238.9	80	750	332	1.39	1.74	0.44	80	1.08	1.76	0.48
Normandale Lake Office Park											
8400 Normandale Lake Blvd.	434.0	85 95	NA	1075	0.89	1.29	NA	81			
8500 Normandale Lake Blvd.	484.0	35					NA	81	1.11	1.38	NA

[^8]
Appendix 3

Table 35. Residential vehicle trips (AM and PM peak hour).

- AM Psak Hour (romal ychicle inips)										
Residenial Site	DU's	$\begin{aligned} & \text { Occupied } \\ & \text { DU's } \end{aligned}$	Total Trips	Trips/ DU	Trips/ Occupied DU	Trips/ Resident'	\% Outbound	Outbound Auto Occupancy	$\begin{gathered} \text { ITE } \\ \text { Trips/ } \\ \text { Occ. DU } \end{gathered}$	ITE Trips/ Resident
Bellevue										
The Eas Side	168	147	53	0.32	0.36	0.23	88.7	1.11	0.48^{2}	$0.28{ }^{2}$
The Park	184	168	75	0.41	0.45	0.32	85.5	1.17	$0.48{ }^{2}$	$0.28{ }^{2}$
12 Central Square	204	171	77	0.38	0.45	0.22	79.2	1.26	$0.35{ }^{3}$	$0.27{ }^{2}$

South Coast Metro

| The Lakes at South Coast | 772 | 710 | 301 | 0.39 | 0.42 | 0.24 | 85.0 | 1.07 | 0.30^{3} | 0.27^{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| The Cape at Metro Pointe | 296 | 246 | 139 | 0.47 | 0.57 | 0.33 | 91.4 | 1.21 | 0.47^{2} | 0.26^{2} |
| Village Creek | 133 | 133 | 63 | 0.47 | 0.47 | 0.25 | 73.0 | 1.13 | 0.50^{4} | 0.25^{4} |

Parkway Center

| | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spring Meadows | 152 | 128 | 126 | 0.83 | 0.98 | 0.61 | 56 | 1.16 | 0.49^{2} | 0.28^{2} |
| Carolina Chase Apts. | 334 | 280 | 113 | 0.34 | 0.40 | 0.22 | 79 | 1.17 | 0.47^{2} | 0.26^{2} |
| Preston Raquet Club | 184 | 170 | 114 | 0.62 | 0.67 | 0.42 | 87 | 1.07 | 0.47^{4} | 0.24^{4} |
| Galleria Plaza Apts. | 153 | 109 | 55 | 0.36 | 0.50 | NA | 75 | 1.10 | 0.49^{2} | NA |

				ak 11	etal ychis	Ins				
Residential Site	DU's	Occupied DU's	Total Trips	Trips/ DU	Trips/ Occupied DU	Trips/ Resident	Outbound	Outbound Auto Occupancy	1TE Trips/ Occ. DU	ITE Trips/ Resident
Perimeler Center										
Dunwoody Chace	50	50	35	0.70	0.70	NA	91	1.00	0.55^{2}	NA
Dunwoody Springs	156	150	128	0.82	0.85	NA	90	1.10	$0.49{ }^{4}$	NA

Tysons Corner

The Commons of McLean 5	246	235	133	0.54	0.57	0.35	78	1.13	0.45^{4}	0.21^{4}
The Rouonda	1168	1160	388	0.33	0.33	0.20	86	1.25	0.34^{4}	0.14^{4}

| Southdale | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Edinborough | 392 | 360 | 132 | 0.34 | 0.37 | 0.28 | 89 | 1.09 | 0.41^{4} | 0.19^{4} |
| Cedars of Edina | 510 | 415 | 219 | 0.43 | 0.53 | 0.41 | 92 | 1.11 | 0.46^{2} | 0.26^{2} |
| York Plaza | 530 | 470 | 120 | 0.23 | 0.26 | NA | 88 | 1.18 | 0.40^{4} | NA |

Table 35. Continued

Residential Site	DU's	Occupied DU's	Total Trips	Trips/ DU	Trips/ Occupied DU	Trips/ Resident	Inbound	Inbound Aulo Occupancy	ITE Trips/ Occ. DU	$\begin{gathered} \text { ITE } \\ \text { Trips/ } \\ \text { Resident } \end{gathered}$

Bellevue

| The East Side | 168 | 147 | 84 | 0.50 | 0.57 | 0.36 | 70.2 | 1.08 | 0.63^{2} | 0.34^{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| The Park | 184 | 168 | 89 | 0.48 | 0.53 | 0.38 | 67.4 | 1.15 | 0.62^{2} | 0.34^{2} |
| 12 Central Square | 204 | 171 | 90 | 0.44 | 0.53 | 0.31 | 73.3 | 1.20 | 0.45^{3} | 0.34^{2} |

South Coast Metro

The Lakes at South Coast	772	710	255	0.33	0.36	0.20	72.7	1.16	$0.42{ }^{3}$	$0.32{ }^{2}$
The Cape at Metro Pointe	296	246	145	0.49	0.59	0.35	68.3	1.15	$0.58{ }^{2}$	0.32^{2}
Village Creet	133	133	94	0.71	0.71	0.37	64.9	1.11	0.60^{4}	$0.32{ }^{4}$
Parkway Center										
Spring Meadows	152	128	158	1.04	1.23	0.77	52	1.20	$0.60{ }^{2}$	0.35^{2}
Carolina Chase Apts.	334	280	134	0.40	0.48	0.27	55	1.25	$0.57{ }^{2}$	0.32^{2}
Preston Raquet Club	184	170							4	4
Galleria Plaza Apts.	153	109	116	0.76	1.06	NA	54	1.48	0.66^{2}	NA

Perimeter Center

Dunwoody Chace	50	50	30	0.60	0.60	NA	70	1.10	$0.92{ }^{2}$	NA
Dunwoody Springs	156	150	124	0.79	0.83	NA	65	1.21	$0.59{ }^{4}$	NA
Tysons Cormer										
The Commons of McLean ${ }^{5}$	246	235	115	0.47	0.49	0.31	63	1.13	$0.53{ }^{4}$	$0.27{ }^{4}$
The Rotonda	1168	1160	385	0.33	0.33	0.20	71	1.28	$0.38{ }^{4}$	$0.18{ }^{4}$
Southdale										
Edinborough	392	360	145	0.37	0.40	0.31	67	1.09	0.49^{4}	$0.19{ }^{4}$
Cedars of Edina	510	415	216	0.42	0.52	0.40	69	1.15	$0.54{ }^{2}$	$0.32{ }^{2}$

1 Number of residents is based on average number of residents per houschold in the listed residential complex as shown in Table 36.
${ }^{2}$ Based on ITE Land Use Code 220 (Apartment): for complexcs wiuh known houschold size characteristics, appropriate adjustment factors have been applied.
${ }^{3}$ Based on ITE Land Usc Code 222 (High-Rise Aparment)
4 Based on ITE Land Use Code 230 (Residential Condominium)
${ }^{5}$ Trip generation counts were taken at only a porion of the total complex.

Table 28. PM peak-hour trip-generation at retall sites.

Rctail Site	Gross Leaseable Arca (GLA) $(\times 1000)$	2-Way Person Trips	2-Way Vehicle Trips	Percentage Inbound	Average Auto Occupancy	Person Trips Per Occupied GLA	Vehicle Trips Per Occupied GLA	ITE Ratcs	
								Vehicles/ GLA	Percentage Inbound
Bellevue									
Bellevue Square	1066.3	4753	3335	53	1.27	4.5	3.2	2.9	47
Bellevue North	47.0	637	531	48	1.19	17.6	14.7	10.2	49
Emst Hardware	54.2	250	215	54	1.15	4.6	4.0	--	--
Park Row	17.8	132	125	52	1.05	7.4	7.0	14.3	49

South Coast Metro

South Coast Plaza Mall	2.200 .0	5096	3427	54	1.45	2.4	1.6	2.8	47
South Coass Plaza Crystal Cour	600.0	754	613	47	1.18	1.6	1.3	3.4	47
South Coast Plaza Village	130.0	595	416	56	1.30	7.6	5.3	7.0	49
Sunflower-Bristol Plaza	45.0	604	447	53	1.23	15.1	11.2	9.7	49
Parkway Center									
Galleria Mall	970.0	3115	2232	55	1.34	3.3	2.3	3.0	47
Prestonwood Mall	1112.0	3300	2581	52	1.28	3.0	2.3	2.9	47
Plaza at the Quorum I	85.2	456	296	57	1.51	5.4	3.5	6.7	49
Plaza at the Quorum 11	79.2	481	323	51	1.46	6.5	4.3	7.0	49
Perimeter Center									
Perimeter Mall	1436.0	4070	3173	53	1.26	2.9	2.3	2.9	47
Park Place Shopping Center	61.0	423	351	75	1.18	6.9	5.8	7.9	49

Tysons Corner

Tysons Comer Mall	2114.1	5245	3875	51	1.33	2.5	1.8	2.8	47
Tysons Commons	70.2	1205	765	60	1.53	17.2	10.9	7.6	49

Southdale

Southdale Mall	1161.3	3820	2988	52	1.27	3.3	2.6	2.9	47
Galleria	147.4	922	677	47	1.36	6.3	4.6	5.2	49
Yorktown Mall	92.0	434	347	57	1.18	5.2	4.2	6.8	49
Target	113.0	1434	1067	50	1.33	12.7	9.4	8.0	49
Byerlcys	70.0	969	760	51	1.26	13.8	10.9	.-	--
Fuddruckers	10.0	217	117	67	1.85	21.7	11.7	3.3	..

Table 39. Hotel tripg generated during AM peak hour.

Howd	Jowly llalous. 1 nos Paren Yehicle		1nts tr Itren	Rovn Yetucle	$\begin{gathered} \text { 1spi Iti } \\ \text { itrein } \end{gathered}$	Unculxd Rocm Yenucle	letcernepe Lntownd	Avi Ault UKCwDatey
Greerneod Holel	321	250	126	142	148	19	10	131
Red Lion ling	371	331	105	093	118	103	9	112
Soutt Coast Meiro								
Wetrin 17wa	197	151	119	011	119	119	94	180
Beveriy lieriuge	212	130	014	U3s	0 'm	059	39	161
Partuay Cenier								
Westin Galleria	292	234	080	031	0 Am	$00-1$	91	129^{1}
Mantiot Quorum	192	131	035	025	031	027	418	128
Hzerpaon ln	92	53	0 5n	033	0%	037	37	135
Preteriter Center								
Hyan Regency Ravimia			044	036	0 OH	110	St	122
Matiot	416	321	103	079	1al	122	sh	112
Combicire llotal		103	031	024	Uan	092	∞	133
Irsoma Corner								
Himen	395	311	017	068	1211	1194	35	122^{1}
Sherreon	311	235	008	032	078	098	00	125
Soorthale								
Rxctisson	312	254	034	044	117	071	11	$11{ }^{1} 1$
Rexand Inom	12	68	041	(1)	"11	015	31	121
Ihond Seville	39	41	013	016	11)	113	31	134

1 Estimated from interuep surveys

Table 40. Hotel trips generated during I'M peak hour.

Hosed	Tolal_sad llovilnm Persen Yehicls		Ing iti Remm tresely yehisis		from	Uncumsd Rown Ystucle	Tricerage lithourd	Avg Auto Oscypancs
Bethene								
Greenwood Itotel	217	168	121	095	111	$10 ?$	62	121
Ret Lion Inn	324	210	091	039	091	099	50	133
Sourte Const Mieliro								
Westin Plaza	129	87	013	022	016	029	54	14]
Es-crly Heriuge	269	148	11]	062	1:?	087	59	138
Pration Center								
Wetin Gallers	300	226	068	051	0 O	062	49	1301
Marriont Quoram	230	178	042	012	045	033	32	126
Hzapr on Inn	75	14	041	028	003	011	S	1.48
Primeter Cenier								
Hy= Regency Ravinia	394	315	074	039	14			
Marrioft	388	282	09	069	141	107	11	134
Dombleure Hotel	238	196	064	053	114	098	65	1.21
Treas: Corner								
1 liman	279	223	081	049	045	068	52	129
Sticmon	419	311	092	061	1:1	091	31	121
Southale								
Rederscon	426	333	074	1198	1:3	64)	31	12, ${ }^{1}$
Reminda lin	153	120	0 O	UAM	111	1174	7	122
Itonel Scritle	68	50	021	- 20	$0 \% 1$	0 OT	34	132

[^9]
BIBLIOGRAPHY

Association of Bay Area Governments. "Jobs/Housing Balance for Traffic Mitigation," Oakland, CA, November 1985.
Atlanta Regional Commission. "Transportation Problems and Strategies for Major Activity Centers in the Atlanta Region," a working paper prepared as part of the Regional Development Plan update, Atlanta, April 1985.
Barton-Aschman Associates, Inc. "Land Use Characteristics Required to Support Different Transit Technologies," draft report prepared for the Regional Public Transportation and Land Use Project of the Town of Chapel Hill, NC, August 1989.
Cervero, Robert. "America's Suburban Centers, A Study of the Land Use--Transportation Link," U.S. Department of Transportation, January 1988.

Cervero, Robert. "Jobs-Housing Balancing and Regional Mobility," Journal of the American Planning Association, Spring 1989.
Cervero, Robert. "Safeguarding Suburban Mobility," in "Land Development Simulation and Traffic Mitigation," Transportation Research Record \#1079, Transportation Research Board, Washington, D.C., 1986A.
Cervero, Robert. Suburban Gridlock. New Brunswick, NJ: Rutgers, The State University of New Jersey, 1986B.
Cervero, Robert and Bruce Griesenbeck. "Commuting Behavior in Suburban Labor Markets: A Case Analysis of Pleasanton, California," Institute of Transportation Studies, University of California, Berkeley, Report UCB-ITS-RR-87-3, June 1987.
Ducca, Frederick W. "The Demographics of Driving -- No Slowdown in Sight," Urban Land, July 1989.

Fruin, John J. Pedestrian Planning and Design, New York: Metropolitan Association of Urban Designers and Environmental Planners, Inc., 1971.
Institute of Transportation Engineers, Colorado/Wyoming Section Technical Committee -- Trip Generation. "Trip Generation for Mixed-Use Developments," ITE Journal, February 1987.
Jackson, Timothy T. and Walter Kulash. "Land Use and Transportation Engineering Measures to Support Clustered Development," Institute of Transportation Engineers Annual Meeting, Compendium of Technical Papers, September 1988.
Indley, Jeffrey A. and Jonathan D. McDade. "Evaluating the Effectiveness of Strategies to Relieve Congestion," Institute of Transportation Engineers Annual Meeting, Compendium of Technical papers, September 1988.
Mercer County Planning Board. "Comprehensive Development Plan and Infrastructure Impact Analysis for the Mercer County I-95/295 Corridor," Draft Report, October 1989.
Nationai Cooperative Highway Research Program, Transportation Research Board. "Travel Characteristics at Large-Scale Suburban Activity Centers," Report \#323, prepared by K. G. Hooper, JHK \& Associates, Alexandria, VA, March 1989.
New Jersey Department of Labor. "Employment Projections, Vol. I: Industry Outlook for New Jersey \& Selected Areas, 1989-2000," February 1989.
New Jersey Department of Labor. "New Jersey's Labor Equation: Demand vs. Supply Through 2000," Trenton, NJ, June 1989.
New Jersey State Planning Commission. "Preliminary State Development and Redevelopment Plan, Vol. III," Trenton, NJ, 1988.
Orski, C. Kenneth. ""Managing" Suburban Traffic Congestion: A Strategy for Suburban Mobility," Transportation Quarterly, October 1987.
Pisarski, Alan E. "Commuting in America," ENO Foundation, Westport, CT, 1987.
Potter, Stephen. "The Transport Versus Land Use Dilemma," in "Transportation and Land Development Issues," Transportation Research Record \#964, Transportation Research Board, Washington, D.C., 1984.
Prevedouros, Panos D. and Joseph L. Schofer. "Suburban Transport Behavior as a Factor in Congestion," The Transportation Center, Northwestern University, Evanston, IL, November 1988,
submitted for presentation at the 1989 Transportation Research Board Annual Meeting.
Pushkarev, Boris S. and Jeffrey M. Zupan. Public Transportation \& Land Use Policy, Bloomington: Indiana University Press, 1977.
Rice Center, prepared for the Houston-Galveston Area Council. "Houston's Major Activity Centers and Worker Travel Behavior," January 1987.
Rieder Land Technology, concept plan submitted to South Brunswick Township, NJ, 1989.
REGIONAL FORUM, "An Action Agenda for Managing Regional Growth," MSM Regional Council, Princeton, NJ, 1987.
ULI--the Urban Land Institute. "The Costs of Parking," Land Use Digest, October 1989.
ULI--the Urban Land Institute. Mixed-Use Development Handbook. Washington, D.C.: ULI, 1987.
Urban Mass Transportation Administration, Office of Technical Assistance and Safety. "An Assessment of Travel Demand Approaches at Suburban Activity Centers," U.S. Department of Transportation, Transportation Systems Center, Cambridge, MA, July 1989.

[^0]: 2. Cervero, Dr. Robert. America's Suburban Centers: A Study of the Land UseTransportation Link, Prepared for Office of Policy and Budget, Urban Mass Transportation Administration, Report No. DOT-T-88-14, Washington, D.C. (January, 1988).
[^1]: 3. For the transit use value, Bellevue is excluded from the base case value due to its atypical, higher level of transit service which would raise the base value too high to be used in all cases.
[^2]: Source: Douglas \& Douglas, Inc

[^3]: Source: Douglas \& Douglas, Bnc.

[^4]: Source: UMTA, "An Assessment of Travel Demand Approaches at Suburban Activity Centers," 1989

[^5]: Source: MSM Regional Council, Mercer County Planning Board,
 Somerset County Planning Board, Middlesex County
 Planning Board.

[^6]: Sources: "An Action Agenda for Managing Regional Growth," REGIONAL FORUM, MSM Regional Council, 1987. "The Preliminary State Development and Redevelopment Plan," Vol. III, New Jersey State Planning Commission, 1988

[^7]: 'These buildings have no isolated parking. Person counts were taken at the building entrances (as reflected in Table 30). Vehicle trips are based on an assumed average auto occupancy of 1.07 (average for South Coast Metro office buildings).
 ${ }^{2}$ Parking garage is sbared with another office building. Person counts were taken at building entrances. Vehicle rips are based on an assumed average auto
 occupancy of 1.06 (average for Parkway Center office buildings).

[^8]: These buildings have no isolated parking. Person counts were taken at the building entrances (as reflected in Table 31). Vehicle trips are based on an assumed average auto occupancy of 1.11 (average for South Coast Merm nffire mildinos)
 ${ }^{2}$ Parking garage is shared with another office building. Person counts were taken at building entrances. Vehicle trips are based on an assumed average auto occupancy of 1.10 (average for Parkway Center office buildings).

[^9]: ${ }^{1}$ Erimated from intenept surveys

