Traffic Models Overview Handbook

Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear herein only because they are considered essential to the object of this document.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation.

PASSER Output for Offset and Split Optimization

(COVER)
 - PROGRESSION MODE.
**** INPUT DATA SUMMARY ****

NUMBER OF INTERSECTIONS

3
MASTER INTERSECTION

1

LOWER CYCLE LENGTH

90
REFERENCE INTERSECTION

1

UPPER CYCLE LENGTH

90
REFERENCE POINT

BEGIN

CYCLE INCREMENT

10
SYSTEMWIDE LOST TIME
3.5
(EMBED.DAT)

```
PASSER II-90 MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90
```

TRAFFIC CONTROL TYPE: LEFT TURN SNEAKERS:
PRETIMED OPERATION 2.0 VEHICLES
IDEAL SATURATION FLOW: PHASE LOST TIME:
1800 PCPHGPL
ANALYSIS PERIOD:
60 MINUTES
3.5 SECONDS

LEFT TURN PHASING:
APPROACH-BASED

DELAY UNIT:
TOTAL DELAY
LOS DELAY CRITERIA:
A - 6.5 SECS/VEH
B - 19.5 SECS/VEH
C - 32.5 SECS/VEH
D - 52.0 SECS/VEH
E - 78.0 SECS/VEH
F - 78.0 SECS/VEH

PERMITTED LEFT TURN MODEL: (6) TTI MODEL
MODEL COEFFICIENTS: $\quad V O=0 p p$ Sat Flow (vph) $=1750$
$\mathrm{T}=\mathrm{LT}$ Critical Gap $(\mathrm{sec})=4.5$
$\mathrm{H}=\mathrm{LT}$ Headway $(\mathrm{sec})=2.5$

Node 1, 1st Street

25 sec 34 sec 31 sec Offset $=0 \mathrm{sec}$. Cycle $=90 \mathrm{sec}$.

Phase Sequence ERIG for EWINS. Leading Left (2+5) for the EB movement followed by Throughs ($2+6$) for the EW movements and Green Ball $(4+8)$ for the NS movements.

Node 2, 2nd Street

25 sec 42 sec 23 sec

$$
\text { Offset }=48 \mathrm{sec} . \text { Cycle }=90 \mathrm{sec} .
$$

Node 3, 3rd Street

18 sec 41 sec 31 sec Offset $=47 \mathrm{sec}$. Cycle $=90 \mathrm{sec}$.
4. Phase Sequence LTIG for EWINS. Protected Dual Lefts ($1+5$) followed by Throughs ($2+6$) for the EW movements and Green Ball $(4+8)$ for the NS movements.

Phase Sequence LTIG for EWINS. Protected Dual Lefts $(1+5)$ followed by Throughs ($2+6$) for the EW movements and Green Ball ($4+8$) for the NS movements.
, When splits and offsets shown are "existing" values before optimetion is performed. This sample problem did not include phase optimization.
I- PASSER II-90-1

HE
336
. T7
M44
1993

19153

MAY 011995

+

This Page Intentionally Blank

APPENDIX I

SELECTED TRAFFIC MODEL INPUTS AND OUTPUTS

This Appendix contains outputs from 9 of the programs reviewed in this handbook. Some of these programs were pre-release versions of either new programs or updated programs. The outputs contained in this Appendix therefore may not be reproducible. For some of the programs, portions of the outputs were deleted for the sake of brevity.

The programs for which sample outputs have been provided are:

> PASSER II-90
> TRANSYT-7F
> TRAF-NETSMM
> CORFLO
> (NETFLO 1)
> (NETFLO 2)
> (FREFLO)
> FRESIM
> ROADSIM
> MAXBAND 86
> SOAP-84
> TIMACS

This Page Intentionally Blank

Recommended Hardware Specifications

Operating System and

FREQ10: PC compatible 80286/80287 computer. FREQ11: PC compatible 80386/80387 or 80486DX computer with 8 MB of memory.

PC compatible 80386/80387 33/40 or 80486DX 33 computer with 8 MB of memory. Environment Requirement and Compatibility

DOS 5.0 .
Program Language(s) FORTRAN

FREQPE outputs are similar to FREQPL with the addition of a ramp control plan.

Traffic performance tables containing travel time, delay, queue, speed, and fuel and emission rates optionally for each time slice.

Contour maps of up to ten traffic performance measures.
Differential spatial and modal response effects tables comparing non-HOV with HOV altematives using various traffic performance measures.

Freeway ramp control plan.
The Measures of Effectiveness (MOEs) generated for each sub-section by each time slice include:

Flows	V/C Ratios	Speeds
Densities	Travel Times	Ramp Delays
Total Veh-Hrs	Total Veh-Miles	Traffic Queues
Vehicle Noise	Fuel Consumption	Cost Effectiveness

Preprocessors

Post-processors

Program Maximum Dimension Limits

Program Modelling Limitations

FREO10
24 FREO11 24
Time slices:
38
18 158
Freeway subsections:
Origins and Destinations: 78

Priority Entry and Priority Lanes can not be performed concurrently. Ramps have vertical queues, that is, no spillback modelling of ramps.

Alternative route (parallel arterial) traffic flows and geometric connections to freeway.

HOV lane design specifications in terms of their location, number of lanes, and the "cut-off" vehicle occupancy limit of the HOV lanes being evaluated. HOV lanes may service busses only, or carpools and busses.

FREQPE input is similar to the data requirements of FREQPL.
Freeway design features such as subsection lengths, capacities, speed-flow curves, location and capacity of ramps, grades, and lanes.

Freeway demand patterns in terms of time slice specific user supplied or synthetically generated Origin-Destination (O-D) data and the occupancy distribution at each on-ramp.

Alternative route (parallel arterial) traffic flows and geometric connections to freeway.

Ramp control specifications which define an objective and a set of constraints (for optimization) so as to uniquely define a strategy of ramp control.

Optional time slice specific reductions in subsection capacities for incident scenarios or roadway maintenance.

FREQPL output consists of:
Traffic performance tables containing travel time, delay, queue, speed, and fuel and emission rates optionally for each time slice.

Contour maps of up to 10 traffic performance measures.
Differential spatial and modal response effects tables comparing non-HOV with HOV altematives using various traffic performance measures.

Cost-Benefit performance index for comparing different HOV operational designs.

Documentation. Availability and License Cost

Modeling Approach

Input Requirements

A research report/user manual is available from:

Systems Unit

Institute of Transportation Studies
111 McLaughlin Hall
UCLA-Berkeley
Berkeley, CA 94720
Phone (510)-642-1008
License cost is \$500 and includes one year free telephone support and updates.

A deterministic, macroscopic traffic simulation model serves as the nucleus of FREQPL and FREQPE. The simulation responds to time varying traffic demands, modal shifts, and also spatial shifts through a demand-performance (supply) feedback process if a parallel arterial is also specified. FREQPE handles ramp metering while FREQPL simulates HOV lanes. Ramp queues are handled as "vertical" queues, that is, there is no spillback modelling. Merging and weaving analysis are performed according to the 1965 HCM. Aggregate travel times, travel distance, average speed, fuel and emissions are computed during each time slice for each subsection. The relationship between user specified subsection capacity and speed-flow curves along with mainline shockwave analysis govern the simulation process.

For priority entry control, vehicles with more than " n " occupants are not metered. Special metered ramps can be specified as HOV only operation. FREQPE can maximize vehicle-miles or passenger-miles. A linear programming decision model is utilized for generating an optimal entry control for each ramp. Optional, the user may request interaction to occur between the simulation, optimization, and demandperformance modal shift routines until equilibrium is reached.

FREQPL input consists of:
Freeway design features such as subsection lengths, capacities, speed-flow curves, location and capacity of ramps, grades, and lanes.

Freeway demand patterns in terms of time slice specific user supplied or synthetically generated Origin-Destination (O-D) data and the occupancy distribution at each on-ramp.

Application Areas

Product History

FREQ
Institute of Transportation Studies, University of California, Berkeley, California

FREQ is a traffic model package for either freeway corridor priority lane simulation or a freeway ramp metering (control) optimization/simulation. FREQ is a system consisting of an input/output processor - FREQ, a corridor simulation program for investigating Priority (HOV) Lane operations - FREQPL, and a Priority Entry control optimization program for ramp metering and entry - FREQPE. There is no direct interaction between the FREQPL and FREQPE programs.

The major application of FREQPL is for evaluating the benefits of implementing Priority Lanes (HOV) strategies on a freeway system with or without a parallel arterial in an arterial. Much of the processing in evaluating HOV lanes as compared to a non-HOV lane operation has been automated in FREQPL including adding the lane to the existing freeway, modal shifts (non-HOV vehicles to HOV vehicles) and spatial shifts between freeway and the arterial for both non-HOV vehicles and HOV vehicles where Origin-Destination demands vary over time.

The major application of FREQPE is in the evaluation of a user supplied or optimum program generated metering plan. Modal shifts and spatial shifts to the arterial as a result of the metering plan are also modeled.

Design improvements (capacity) can be evaluated by either model.
FREQ (FREQ1) was developed in 1968 for the purpose of evaluating alternatives for improving 140 miles of freeway in the San Francisco Bay Area. FREQ has been continuously improved since that time in response to the changing traffic flow theory, travel demand modelling, and simulation modeling knowledge base, and the need to include additional capabilities in response to increased travel demand and other transportation system management concerns. Capabilities added have included detailed fuel consumption and emissions models, modal shift models, spatial shift models, optimization models, and improved input and output capabilities.

Current Version/Releases

FREQ10 and FREQ11 Version 3.0 (FREQ11 is a larger version of FREQ10)

Program/Package Name

Developer
Brief Description

Application Areas

Product History

Documentation, Availability, and Cost

PROG.D - PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS

Deakin, Harvey, Skabardonis, Inc.
This is NOT a computer program but is a research report and implementation guideline for applying traffic signal timing optimization program outputs, such as PASSER II, TRANSYT-7F, and MAXBAND, to an arterial or network system of coordinated actuated controllers. Together with the TIMACS program and report, this report and implementation guide provides the means to implement signal timing plans in the field and/or to test and further refine them using simulation software.

Where the TIMACS program provided the ability to determine the yield point, force-offs, and permissive period settings, this report and set of implementation guidelines provide additional help in further optimizing the actuated controller settings for arterial systems and for grid networks. Criteria for choosing the type of control at selected intersections within the coordinated system are also presented in the report.

The guidelines were developed based on the operating strategies developed and tested through simulation using NETSIM-Q5, a predecessor to TRAF-NETSIM.

FHWA Reports RD-89-132 and RD-89-133 are available from McTrans (University of Florida) as PROG.D for $\$ 10$.

Qutputs

Preprocessors
and Post-processors
Program Maximum
Dimension Limits
Minimum Computer
Hardware Requirements
Recommended Hardware Specifications

Operating System and
Environment Requirement
and Compatibility
Program Language(s) Source code not normally available to users.
Compiled Basic.

Developer
Brief Description

Application Areas

Product History
Current Versign/Releases TIMACS Version 1.2
Documentation,
Availability and License Cost

Modeling Approach

Input Requirements Systems permissive periods. parameters.

TIMACS - Timing Implementation Method for Actuated Coordinated

University of Florida Transportation Research Center
TIMACS package provides 1) guidelines for implementing computerized traffic model timing designs at non-coordinated traffic actuated controllers, and 2) a program for implementing computerized traffic model timing designs at coordinated traffic actuated controllers.

TIMACS guidelines and the TIMACS program were designed as aids to implementing signal timing plans generated by traffic models such as SOAP, TRANSYT-7F, PASSER II, MAXBAND, and any others. The TIMACS program is especially helpful in computing Yield Points, Force-Offs, and Permissive Periods for coordinated actuated controllers. The program handles both "Ped Omit" and "Phase Omit"

First developed in 1987 with only minor revisions to date.

Development of Guidelines for Implementing Computerized Timing Designs at Traffic Actuated Signals - Volume 1: Isolated Intersection Implementation, and Volume 2: Arterial System Implementation. Available from McTrans McTrans (University of Florida) for $\$ 40$.

Not a model. Simple but organized calculations provide needed timing

Controller data such as number of phases, dials, and permissive periods and if the NEMA "Walk Rest Modifier" is active.

Movement data for specifying NEMA movement numbers to the nonactuated and actuated phases.

Timing data such as cycle length, offset to non-actuated phase, walk time, pedestrian clearance, change intervals, computed splits, and vehicle minimums as provided by signal timing plans such as those generated by PASSER II, TRANSYT-7F, and the like.

Program/Package Name
Developer

Brief Description

Application Areas

Product History

Current Version/Release
Documentation: Availability and License Costs

Modeling Approach

Input Requirements

Outputs

Preprocessors

SOAP

University of Florida and Federal Highway Administration. Other contractor(s) involved in development: SRA Technologies, Inc.

SOAP (Signal Optimization and Analysis Program) will design and or evaluate pre-timed isolated intersection signal timing and provide the necessary parameters for developing a detailed signal phasing plan and is capable of handling 48 time periods in which traffic demand, turning percentages, and timing plans can vary.

The program is applied to isolated intersections with existing or planned signal installations. Program provides intermediate calculation tables for detailed analysis over a large number of time periods.

Developed originally in 1977 and greatly enhanced in 1984 with only minor revisions since then 1984.

SOAP 84.04

A User's Manual and program is available through the McTrans McTrans (University of Florida) and PC-TRANS (University of Kansas) distribution Centers for about $\$ 80$.

SOAP is a deterministic model which computes the cycle length and phase splits on the basis of flow ratios and the desired saturation level specified as input. The program is designed to minimize delay and or stops based upon user parameters input. The program is capable of analyzing a large number of time periods in which the inputs related to traffic flows or signal phasing may be varied.

The program requires traffic volumes for each movement and an estimated saturation flow rate plus the signal phasing sequence and minimum green times to be utilized at the intersection. Both travel demand and saturation flow rate may vary over time periods.

The program outputs flow ratios, cycle length and phase splits ($\%$ and seconds), plus a number of MOE's related to delay, stops and estimated fuel consumption by time period.

A data input manager (SOAPDIM) is included as part of the program and assists with the assembly of input data.
Input Requirements Inputs to MAXBAND include splits (phase durations) or movement volumes and capacities, intersection specific data, and control and facility parameters. If Webster's method is used to compute splits, traffic volumes and saturation capacities for each movement are required. There are 15 card types and the input is coded in accordance with various coding schemes that do vary somewhat from the commonly understood notations. However, the type of data actually entered is very similar to PASSER II in several instances. For basic runs the primary cards are "START", SETUP, ARTERY, and ART2 at the system level and MAP, VOLUME, CAPACITY, MINGREEN, LEFTPAT and SPEED cards for each of the intersections.
The program produces most of the standard traffic operation outputs common to these type of analyses. MAXBAND operates primarily as a "design program" and thence outputs basic elements of signal design such as: (1) cycle length range for best optimization (2) number and sequence of phases (side street only one) (3) phase durations (optionally generated by program) and (4) offsets. These data are output in a series of reports (arterial summary and intersection detail) which summarize the data. A time space diagram for the optimal solution is also presented.
None
None
20 intersections per arterial.
All times except for cycle length are entered as a fraction of the cycle length, not in seconds as is common to all other programs.
Queue clearance times may be specified by the user.
Minimum Computer
Hardware Requirements

Outputs

Preprocessors

Post-processors
Program Maximum
Dimension Limits
Program Modelling Limitations
Other Features and Capabilities

Que clearance times may be specified by the user.

MAXBAND was programmed for a mainframe computer and requires a FORTRAN compiler and about 1.2 MB of memory. Run time requirements vary significantly. A PC version running on 80386/80387 computers or better may be available in the future.
arrive at the green splits prior to entering the linear programming model.
mogram/Package Name
exeloper
rief Description

Application Areas

Product History

Current Version/Release
Documentation,
Availability and
License Costs

Modeling Approach

MAXBAND
Massachusetts Institute of Technology, Federal Highway Administration, and Texas Transportation Institute.

MAXBAND is a mathematical bandwidth optimization program designed to develop coordinated signal timing plans for arterials or networks. MAXBAND maximizes bandwidth by selecting phase sequences, cycle length, and offsets. MAXBAND's unique feature is that it attempts, through the use of mixed-integer linear programming techniques, to produce a mathematically "global" optimum solution to the problem.

The model is applicable to a signalized arterial or network of an interconnected signals. The program treats grid networks as a series of individual arterials which can be independently weighted.

Initially developed for mainframe computers in 1980 at the Massachusetts Institute of Technology and updated in 1985 to include network optimization.

MAXBAND 86

An updated Users Manual (for arterial applications only) was developed in 1987 and accompanies the program when acquired from McTrans (University of Florida). Documentation is $\$ 20$ while the program is $\$ 30$ with an additional $\$ 509$-track tape handling fee.

The approach of MAXBAND is to optimize the bandwidth by selecting phase sequences, cycle length, and offsets. Both arterial directions and the arterials themselves can be individually weighted by the user. The model utilizes a form of optimization described as mixed integer linear programming. While the specifics of the algorithm are rather complex, in its very "simplest terms", the program is essentially designed to examine phase lead and lag options, compute effective green times and "fit these times" to the optimal time space diagram. The effective green that is maintained "throughout the system" in a particular direction for vehicles travelling at a particular speed is the "optimal bandwidth". The "width" of the band mathematically describes the likely probability of a certain percentage of the vehicles will be able to go through the system without being stopped. Green splits are either provided by the user or if saturation flow and traffic volumes are provided, Webster's method is used to

For an isolated interchange, the distance between signals, progression speed and queue clearance times are input variables to this program. Traffic volumes, number of lanes, and minimum green times are required for every movement (18 are usually available). Interior travel times (between the signals) and available queue storage are also input. Phasing data is not required for optimization, but can be input as a simulation option.

The output consists of the timing plans and an evaluation of traffic flows in terms of queue clearance probabilities, storage ratios and approach delay which lead to an estimated of Level of Service based upon MOE's LOS criteria embedded into the program.

The program and user manual are $\$ 135$ and $\$ 15$ respectively and are available from McTrans (University of Florida) and PC-TRANS (University of Kansas)..

Full screen editing included in shell program.
Output viewing and print control included in shell program.

The progressive mode has limit of 20 interchanges.

Internal delays at each of several interchanges are "held constant" as the optimal bandwidth for the "external delays" are computed in the progression mode, which is considered a limitation of the program.

Minimum Computer
Hardware Requirements
Recommended Hardware Specifications

Same as minimum.
Operating System and Environment Requirement and Compatibility

Program Language
Source code not normally available to users.
Shell Turbo Pascal
PASSER III FORTRAN

Program/Package Name
Developer
Brief Description
Application Areas
Current Version/Release
Modeling Approach

PASSER III

Texas Transportation Institute
This model is designed to optimize timings at signalized diamond interchanges. It performs analysis based upon two basic plans - (1) isolated interchange and (2) progressive frontage road approach.

This program is limited to the specified purpose of a dual signal diamond interchange analysis. It would not be used at the "Single Point Urban Interchange" since this concept operates with only one signal and phasing pattern.

PASSER III-90 represents the latest version for the PC.
The program uses a deterministic time-based optimization technique which examines either the isolated or progressive system using two distinctly different methods. Cycle length is the principle variable which is tested to determine an optimum signal timing solution.

For an isolated interchange, 3 basic signal phases provides the ability to optimize this configuration quickly. The program, however, is able to examine all possible combination of phase sequences with a limit of 15 combinations for the left and right sides of the diamond. Webster method is utilized to obtain desirable green times and the delay for all vehicles entering the interchange and the internal delay is computed using the delay-offset technique.

Either fixed or actuated timing designs may be tested. Only the "average operation" assumption can be used for the actuated signal controller under the presumption that its design will result in timings very similar to those developed as the average splits computed using the Webster algorithm.

In progressive analysis, all of the calculations for the "isolated" interchange are carried out for each interchange in the system connected by frontage roads. The bandwidth efficiency algorithm is applied in a manner as designed by the PASSER II program to the traffic in this system. If carried out "simultaneously" the computational algorithm is excessive, so it is suggested that a 2 step approach be used. In this manner the individually optimized timings at each of several locations are tested only by shifting the principle "offset" to determined the best bandwidth across all of the interchanges, directionally or bi-directionally as selected by the user.

Outputs

Preprocessors

Post-processors
Program Maximum Dimension Limits

Program Modelling Limitations

The primary outputs of ROADSIM consist of link operating statistics that describe "content" and average speed during each simulation time period selected. The statistics on content are output by intermediate snapshots where the status of each vehicle is described and other data is summarized by link. These include number of vehicles in/out of the link, VMT, mean speed, standard deviation, min \& mx speeds of the vehicles simulated on the link. Cumulative statistics for link travel times, mean delay and passing attempts with completions and failures are also compiled for vehicle types for the time period on each link. For each direction, summary data on the distributions of headways, speeds and platoon size are compiled. Finally, speed histograms by vehicle type are output.

None
None

The program dimensions consist of limits of 29 links, 30 nodes, 2 entry nodes, 1 exit for any entry and a total occupancy of 750 vehicles at any time (note this is NOT total vehicles simulated, but only those IN the system at one time). Other parameters include limits on vehicle type (16), speed (75) length (125 ft).

Intersections can not be modelled and therefore the effects of the presence of or lack of turn lanes can not be estimated. Truck climbing lanes can not be modelled.

IBM AT 286 or higher with a math coprocessor.

A minimum of 10 Meg Hard Disk and a $80386 / 80387-20$ or better CPU is recommended.

Operating System and Environment Requirement and Compatibility

DOS 2.0+
Program Language Source code not normally available to users.
ROADSIM FORTRAN 77

Minimum Computer
Hardware Requirements

AT Clone $80386 / 8038720 \mathrm{MHz}$ with 3 MB of extended, XMS, DPMI, or VCPI compatible memory in addition to the 1 MB or real (conventional) memory.

Recommended Hardware Specifications

FRESIM is a computationally intensive program. Based on FRESIM's computational needs and on rapidly decreasing hardware costs and other available and future software requirements, a $486-33 \mathrm{MHz}$ computer with 8 MB RAM and 200 MB hard disk is strongly recommended.

Operating System and Environment Requirement and Compatibility

Program Language
DOS 5.0 Recommended. Also may be executed from within TSIS and FEDIT.

Source code not normally available to users.
FRESIM FORTRAN
FEDIT
MS-Professional Basic

Program Maximum
Dimension Limits
Program Modelling Limitations

The user must input data in the form of run control, network description (geometry and operations cards) and turn movements (percentages), entry volumes and origin-destination pairs. These data provide a full description of the freeway and its entry and departure points and intervening geometric "conflicts". Other inputs are required if optional features such as ramp metering, surveillance systems, and incidents are to be modelled.

The primary outputs of FRESIM consist of link operating statistics that describe "content" and average speed during each simulation time period selected. The statistics on content are output by lane and other data summarized by link. These include number of vehicles in/out of the link, VMT, VHT (in minutes), moving and delay times, hourly volume rate estimate and speeds. Cumulative statistics are also compiled for fuel consumption and emissions for each time period.

FEDIT is an intelligent, structured, user-friendly input editor and greatly speeds data entry while minimizing input errors. TURNVOL estimates turming volume given turning percentages and entry volumes. INTOFRE converts INTRAS input files to FRESIM input files. Though not a preprocessor, FSMTUTOR is an online tutorial for FRESIM.

CONTOUR reads the FRESIM output file and provides a characterbased contour plot of speed and density over time for the first freeway segment. Animation and static graphics programs are planned for the future.

FRESIM can handle 200 links, 120 nodes, and 3000 vehicles.

FRESIM can model 5 through lanes and 3 auxiliary lanes. Ramp and freeway-to-freeway connectors may have 3 lanes but cannot have lane adds/drops or auxiliary lanes.

Other Features and Capabilities

Multiple time period capability during which traffic volumes, turning movements, and O-D percentages can vary. Lane adds and drops, and multiple destination lanes can be explicitly modelled as can truck restrictions or bias to specific lanes.

Program/Package Name

Developer

Brief Description

Application Areas

Product History

Current Version/Release

Documentation, Availability and License Cost

Modeling Approach

FRESIM
U.S. Department of Transportation, Federal Highway Administration. Other contractor(s) involved in development: JFT Associates, Inc., SRA Technologies, Inc., AEPCO Inc., and VIGGEN Inc.

FRESIM is a microscopic, time stepping stochastic model designed to simulate freeway networks. Every vehicle is traced through the system in a manner similar to TRAF-NETSIM, which provides a detailed set of statistics during the simulation. The program is unique in its ability to provide sufficient evaluation of detailed final design elements of lane configurations, merge and diverge points and complex weaves within the system. Congestion and queues are modelled in detail as well.

A number of specific applications relate to the use of the program for evaluation of design and operation elements such as ramp metering, comprehensive incident modelling, incident detection algorithm testing, lane restrictions, special driver characteristics, accelerationdeceleration lanes, lane drops, weaving areas, collector-distributer roadways, interchange design, HOV lane and roadway operation, and freeway incident management. Environmental analysis of various alternatives can also be conducted using the fuel consumption and emissions analysis capabilities of the programs outputs.

FRESIM's predecessor was FHWA's INTRAS program which was not widely distributed. FRESIM will be released to the public mid-1993.

Version 1 is being released for the microcomputer environment in summer 1993.

A FRESIM User Manual along with a FEDIT, CONTOUR, and FSMTUTOR Manual will be available when the program is released. The program will be available from McTrans and PC-TRANS.

The model simulates the dynamic vehicular characteristics of a wide range of autos, and single and multiple unit trucks (medium and full load) as they traverse the described freeway segments. Vehicle following algorithms, acceleration and deceleration characteristics, lane changing rules, and stochastic decision processes are used to respond to congestion and other system incidents. Vehicles enter and leave the system using network origin-destination patterns input by the user or generated internally.
period capability for modelling time varying traffic demands. Bus operations are modelled with separate travel statistics. CORFLO traffic assignment can be applied to FREFLO networks.

Minimum Computer Hardware Requirements

AT Clone $80386 / 80387$ with 3 MB of extended, XMS, DPMI, or VCPI compatible memory in addition to the 1 MB or real (conventional) memory with EGA or VGA capability for GCOR graphics or TRAFEdit input.

Recommended Hardware Specifications

Traffic assignment and graphic conversions can be very computationally intensive. Based on rapidly decreasing hardware costs and other available and future software requirements, a $486-33 \mathrm{MHz}$ computer with 8 MB RAM and 200 MB hard disk is strongly recommended.

Operating System and Environment Requirement and Compatibility

Program Language
MS-DOS 5.0 Recommended. Normally executed from within the TSIS shell program.

Source code not normally available to users.

FREFLO	FORTRAN
SCORG	FORTRAN
TRAFEdit	C
TSIS	MS-Professional Basic

Input Requirements

Outputs

Preprocessor

Postprocessors

Program Maximum
Dimension Limits
Program Modelling
Limitations

Other Features
and Capabilities
incorporating a dynamic speed equation, and buses, carpools, autos and trucks are distinguished as distinct vehicle types.

The input requirements for FREFLO are defined by the relatively simple link and node descriptions. Under the TRAF sub-system of programs, the traffic volumes may be obtained from other subprograms or input directly. Basic link node and geometric data along with the special use (e.g. carpool lanes) designations must be input. The capacity of a link are input on a per lane basis and "ramp" links must be adjusted for speeds and capacity.

The outputs of FREFLO are characteristic of basic traffic flow and density parameters for freeways. For each link, speed, moving and total delay time and their related flow data are output and summarized for the subnetwork. The program also reports environmental variables such as fuel consumption and emissions.

All of the inputs can be managed under the TRAFEdit screen editor which is documented separately in the TRAFEdit User Guide. TRAFEdit consists of both a "Smart" and "Quick" line editor. TRAFEdit can also be used to edit NETFLO 1 and 2 data input. NETFLO 1 and 2 are urban street simulation programs of lesser detail than NETSIM which can be used in conjunction with FREFLO as well as TRAFIC which is the CORFLO traffic assignment module. The FEDIT preprocessor for FRESIM can also be used for generating a FREFLO data file excluding those features which are unique to each program.

CORFLO has a static graphics postprocessor similar to TRAFNETSIM. The GCOR SCORG (static) prograr work with FREFLO as well as NETFLO 1 and 2.

FREFLO is capable of handling 500 links and 250 nodes.

Uprosment Entry ramps are treated as sinks and sources, that is they do not connect to a surface street. Any FREFLO link can connect directly to a NETFLO 1 or 2 surface street link via an interface node. Merges and weaves are not explicitly modelled. There is no ramp metering except by constraining capacity on a link.

Special purpose lanes for carpools and busses. Each link can have 2 source or destination links. NETFLO 1 and 2 both have multiple time
Program/Package NameDeveloperBrief Description
Application Areas
Product History
Current Version/Release
Version 1

Version 1
Documentation,
Availability and
License Costs
Modeling Approach
CORFLO FREFLOU.S. Department of Transportation, Federal Highway Administration.Other contractor(s) involved in development: KLD Associates, Inc.,SRA Technologies, Inc., AEPCO Inc., and VIGGEN Inc.
CORFLO is an integrated set of three simulation programs of whichFREFLO provides a semi-detailed (intermediate level) macroscopicsimulation of freeway segments. The measures used to describefreeway performance are flow rate, density and space-mean-speedwithin each defined section. The model is designed to operate in"tandem" with the CORFLO programs so that the interface of freewayramp movements can be better coordinated with local at-grade arterialsignal systems.
FREFLO is applied to evaluate proposed, existing, or alternative freeway configurations to determine their effectiveness in responding to predefined traffic flows or for modelling large scale roadway designs, improvement projects, or traffic management schemes. It is part of a series of CORFLO programs which perform similar activities on surface streets - NETFLO 1 and 2.
This program was originally developed for mainframe computers and has a long development history. It was publicly released early in 1993 for operation in a microcomputer environment as a module within CORFLO.
The TRAF Reference Guide provides principle documentation for CORFLO FREFLO, NETFLO 1 and 2, and TRAF-NETSIM in a single manual and is available for $\$ 50$. The CORFLO program package, which also includes FREFLO, NETFLO 1 and 2, along with the TRAFEdit preprocessor program and the GCOR postprocessor graphic programs is about $\$ 350$. The program is available from McTrans (University of Florida) and PC-TRANS (University of Kansas).
The FREFLO simulation is defined in terms of aggregate (macroscopic) measures which discretely establishes a direct relationship for entry flow rate, exit flow rate, density, and space-mean-speed on freeway segments. It has been enhance to include the refinement that equilibrium speed-density relationship is enhanced by

Program Maximum Dimension Limits

Program Modelling Limitations

In NETFLO 1, 250 links, 70 nodes, 20 actuated controllers, and 10,000 vehicles are allowed. NETFLO 2 permits up to 500 links and 240 nodes. Larger networks are possible with customized versions.

Other Features and Capabilities

Minimum Computer
 Hardware Requirements

DOS 80386/80387 computer or with 3 MB of extended memory, XMS, DPMI, or VCPI compatible memory in addition to the 1 MB or real (conventional) memory with VGA capability for GCOR graphics or TRAFEdit input.

Recommended Hardware Specifications

Traffic assignment and graphic conversions can be very computationally intensive. Based on rapidly decreasing hardware costs and other available and future software requirements, a $486-33 \mathrm{MHz}$ computer with 8 MB RAM and 200 MB hard disk is strongly recommended.

Operating System and Environment Requirement and Compatibility

Program Language
DOS 5.0 Recommended. Normally executed from within the TSIS shell program.

Source code not normally available to users.

CORFLO	FORTRAN
SCORG	FORTRAN
TRAFEdit	C
TSIS	MS-Professional Basic

Modeling Approach

Input Requirements

Outputs

Preprocessor

Postprocessors

NETFLO 1 is an event based simulation model which is microscopic in nature. Vehicles are simulated across all events experienced in a network, but car following logic (as employed in TRAF-NETSIM) is utilized.

NETFLO 2 further simplifies traffic flow logic to that of a macroscopic platoon simulation in a manner similar to TRANSYT-7F. Vehicle behavior is described by vehicle flow histograms for link entry, input, service, queue and output. These histograms are updated and "reported" to the program at each program "time interval".

The input requirements for NETFLO are very similar to TRAFNETSIM, in that basic network and traffic data on a system wide, link and node basis must be provided. Many of the card types are identical. Basic link, node, and geometric data, in addition to signal parameters are required.

With the simulation of actuated signals in NETFLO 1, additional data on approach configuration, phase duration parameters and the location of traffic detectors must be provided, in a manner similar to TRAFNETSIM.

Both submodels require run control cards that specific simulation time periods and identify related control parameters for the simulation.

The outputs of NETFLO 1 and 2 are very similar to those of TRAFNETSIM. For each link, traffic speeds, stop percentages, number of stops, and moving and total delay time are output and later summarized for the subnetwork. The program also reports on environmental variables such as fuel consumption and emissions.

All of the inputs are managed under the TRAFEdit screen editor which is documented separately in the TRAFEdit User Guide. TRAFEdit consists of both a "Smart" and "Quick" line editor. TRAFEdit can also be used to edit FREFLO data input. FREFLO is a macroscopic freeway simulation program which can be used in conjunction with NETFLO 1 and 2 as well as TRAFIC which is the CORFLO traffic assignment module.

CORFLO has a static graphics postprocessor similar to TRAFNETSIM's GTRAF SNETG programs. The GCOR SCORG (static) program work with NETFLO 1 and 2 as well as FREFLO.

Program/Package Name

Developer

Brief Description

Application Areas

Product History

Current Version/Release

CORFLO NETFLO 1 and 2

U.S. Department of Transportation, Federal Highway Administration. Other contractor(s) involved in development: KLD Associates, Inc., SRA Technologies, Inc., and VIGGEN Inc..

CORFLO is an integrated set of 5 modules - FREFLO, NETFLO 1 and 2, TRAFIC, and CAPACITY. NETFLO 1 and 2 provide a semidetailed (intermediate level) simulation of urban street networks and their associated signal systems.

Although some of the computational algorithms are similar to TRAFNETSIM, the NETFLO 1 program provides a more limited simulation of vehicle tracking within the network. The basic difference is that each simulation step is based upon an "event" versus the unit of time step characteristic of TRAF-NETSIM. NETFLO 1 uses many of the same inputs as TRAF-NETSIM and has similar outputs.

NETFLO 2 also uses much the same inputs and has similar outputs to TRAF-NETSIM and NETFLO 1, but process the simulation on the basis of a macroscopic platoon simulation in a manner similar to TRANSYT-TF. In this instance, since individual vehicles are not simulated, actuated signals cannot be directly modelled.

NETFLO 1 and 2 are applied to evaluate existing or proposed signal system networks to determine their effectiveness in responding to predefined traffic flows or for modelling large scale roadway designs, improvement projects, or traffic management schemes.

These programs where originally developed for mainframe computers and have a long development history. They were publicly released early in 1993 for operation in a microcomputer environment.

Version 1.
Documentation, Availability and License Costs

The TRAF Reference Guide provides principle documentation for CORFLO NETFLO 1 and 2, FREFLO, and TRAF-NETSIM in a single manual and is available for $\$ 50$. The CORFLO program package, which includes FREFLO, NETFLO 1 and 2 along with the TRAFEdit preprocessor program and the GCOR postprocessor graphic programs is about $\$ 350$. It is available from McTrans (University of Florida) and PC-TRANS (University of Kansas).

Other Features and Capabilities

Minimum Computer Hardware Requirements

TRAF-NETSIM can model traffic circles as a series of yield sign controlled intersections. It can model traffic streams with motorcycles or bicycles, by replacing the vehicle characteristics of carpool vehicles with those of motorcycles or bicycles. It can estimate capacity by "flooding" an approach with vehicles and observing how many vehicles can go through with given traffic control and geometric conditions.

In the near future, TRAF-NETSIM will be joined with FRESIM, to form a new program called CORSIM which will permit microscopic freeway and urban street simulation.

TRAF-NETSIM now requires an 80386/80387 of better with 4 MB of memory. The full package requires about 10 MB of disk space but if the GTRAF postprocessors are to be used, the amount of disk space required can be very significant - anywhere from a few MB's to 10's of MB. An EGA or VGA card and monitor are required for the GTRAF postprocessor and TRAFEdit preprocessor. Any color display and the ANSI.SYS device driver (Comes with DOS) is required for NEDIT. 580 K of free real memory is required for NEDIT and GTRAF. DOS 5.0 is required.

Recommended Hardware

Specifications

Based on rapidly decreasing hardware costs and other available and future software requirements, a $486-33 \mathrm{MHz}$ computer with 8 MB RAM, VGA, and 200 MB hard disk is strongly recommended.

Operating System and
Environment Requirement and Compatibility

Program Language(s)

DOS 5.0 recommended. Normally operated from within the TSIS shell program.

Source code not normally available to users.
TRAF-NETSIM FORTRAN
SNETG
ANETG
NEDIT
TRAFEdit C
TSIS MS-Professional Basic

Modelling lane obstruction:

Required - Start time or frequency, duration, and which lane.
Modelling pedestrian:
Required - Pedestrian intensity (high, moderate, low or none).
Optional - Amount of delay to vehicles for each pedestrian intensity.

Outputs

Preprocessors

Post-processors

Program Maximum
 Dimension Limits

Program Modelling Limitations

The program provides a rich array of output statistics, including vehicle and link based MOE's dealing with effective speeds, saturation levels, cycle failures, moving and stopped delay, total delay, number of stops, fuel consumption, emissions and other outputs such as bus station and path statistics, and special event activities. These data are accumulated at pre-specified time intervals and summarized for the total simulation as well.

There are two pre-processors to assist in coding the data. NEDIT accepts data on the screen using "forms" processing, resulting in a program which normally treats each card type as a form with context sensitive prompting. TRAFEdit provides a more user friendly "Smart" and "Quick" line editors that run faster and provides a more "interactive" system.

The post-processor package for TRAF-NETSIM is called GTRAF. GTRAF consists of two programs, ANETG and SNETG. ANETG produces animated graphics which displays street layouts, traffic controls and moving vehicles on the screen. SNETG produces static graphics which displays the input data and resulting performance statistics in maps, diagrams, line graphics and bar charts.

The current version is limited to 500 links, 250 nodes, 100 actuated controllers, 25 bus routes, 99 bus stops and 60 long term events.

As might be expected, the number of vehicles, links and types of control devices directly affect the simulation to real time ratio, but a small 25 link 3 traffic light system with 1800 vehicle trips in 6 minutes of simulations takes only 320 seconds of CPU time on a 33 Mhz 486. (Note: the graphics option for this sample network simulation would require about 5 Million bytes of disk space.)

One limitation at this time is that traffic origins and destinations cannot be directly replicated as the path of individual vehicles is stochastically determined by user specified turning percentages. This will be remedied when TRAF-NETSIM is eventually integrated into TRAF to accept output from "TRAFIC" - a network assignment module which is now a part of CORFLO.

For any run:
Required - Node, link, number of lanes, approach length and vehicle turning volumes.

Optional - Grade; percentages of auto/truck/carpool; channelization; number and length of exclusive turning lanes; pedestrian intensity; mean vehicle headway; free flow speed; start-up lost time; right-turn-on-red; mid-block source and sink; closing of lanes; percentages of auto, truck, bus, and carpool in a vehicle fleet; length, occupancy, maximum acceleration and maximum speed for each vehicle type; left and right turning speeds; acceptable gaps for left/right turning and for lane switching; probabilities of vehicles blocking the intersection duration over-saturated condition; emission rates for HC, CO and NOx by vehicle type; fuel consumption rates by vehicle type; random number seeds for the distributions of traffic patterns and driver types; metric system; etc.

Modelling buses:

Required - Location, capacity and type of bus stop; dwell time; bus route; and bus frequency.

Optional - Distribution of dwell time.

Modelling fixed time signal:

Required - Cycle length, number and sequence of phases, and split.

Optional - Offset, probability of left turn jump at start of signal, probability of making left turn during yellow signal, factors to decide to stop or go during yellow signal, etc.

Modelling actuated signal:

Required - Number and sequence of phases, maximum green, minimum green, vehicle extension, amber duration, detector location, and sensor length.

Optional - Detector type, minimum and maximum gaps, number of actuation, maximum and time added to initial intervals, maximum extension, minimum and maximum recalls, Yellow and red locks, dual ring operation, phase overlap, yield point, force-off, permissive periods, pedestrian actuation, pedestrian arrival patterns, etc.

Modelling stop or yield sign:

Required - None.
Optional - Acceptable gaps for near-side and far-side cross street traffic.

Modelling parking:

Required - Location of parking zone, and duration and number of maneuvers.

Optional - Distance of parking zone from stop line.

8088 and 80286 based computers. The next generation recoded mainframe program, TRAF-NETSIM, was later converted in full to a microcomputer version and was also named TRAF-NETSIM and included a preprocessor and two post-processors. The latest version now requires an 80386/80387 or better to execute.

Current Version/Release

The current Version is 4.0 and was released in late 1993.

Documentation, Availability and License Cost

Modeling Approach

Input Requirements
The user's manual provides documentation of procedures, card input requirements and outputs and is available from both the PC-TRANS (University of Kansas) and McTrans (University of Florida) distribution centers. The license cost (about $\$ 350$) is dependent on if the user selects to get TRAF-NETSIM with or without the GTRAF postprocessors. Other manuals for TSIS (a TRAF program operational shell), NEDIT and TRAFEdit are also included. GTRAF manuals are available with the GTRAF software.

TRAF-NETSIM is time-based microscopic, stochastic simulation of individual vehicles in a traffic controlled urban roadway system which is basically city street or network in character. TRAF-NETSIM traffic flow logic performs a full range of controls on vehicles travelling within specific lanes and responding to any number of control devices which include stop and yield signs, fixed-time and actuated signals and related surveillance systems. Vehicle flow is guided by car-following rules, lane changing logic, and other driver decisions making processes.

Basically, 7 steps are characteristic of the analytical sequence carried out by the model within each one second time step. These are: 1) all vehicles within queues at the commencement of the time step are processed, 2) other vehicles are processed, 3) new vehicles are entered through entry links, 4) new vehicles are added through internal source links, 5) the status of all signals is updated, 6) the standard vehicle and link arrays or statistics are updated (accumulated) and diagnostics performed and 7) if a reporting time period has been reached results are printed.

The model's value is its rich array of statistics maintained at the vehicle and link level, wherein the program outputs a large array of measures of effectiveness (MOE's) for review.

TRAF-NETSIM can model a variety of situations. The input depends on what is to be modelled. The list below shows both the required and optional data. Optional means the program will supply default values unless the user overrides them.

Program/Package Name
Developer

Brief Description

Application Areas

Product History

TRAF-NETSIM

U.S. Department of Transportation, Federal Highway Administration. Other contractor(s) involved in development: KLD Associates, Inc., SRA Technologies, Inc., AEPCO Inc., and VIGGEN Inc.

It is a detailed traffic network simulation model. It can simulate a mixture of automobiles, buses, trucks and carpools/vanpools in the traffic stream. It can simulate streets with different configurations (1 or 2-way streets, T-intersections, intersections with more than four approaches, exclusive turning lanes, etc.) and different traffic controls (fixed time signais, actuated signals, stop signs, yield signs, etc.). It can simulate delays due to pedestrians, bus loading/unloading, parking, lane obstruction, street closure, etc. The model can be calibrated to represent site specific conditions. For instance, The user can specify local vehicle types (auto, bus, truck, etc.) and the characteristics of each type of vehicle (length, maximum speed, maximum acceleration, occupancy, etc.). The user can specify local driver characteristics such as driving aggressiveness; reaction time; acceptable gaps for making turns, response to yellow and red signals; etc. TRAF-NETSIM produces static and animated graphics. It can display street layouts, traffic controls and moving vehicles on the screen. Graphical displays provide visual windows for focussing in on problem areas and help the user in formulating alternative geometric and/or traffic control strategies.

TRAF-NETSIM is applicable to evaluating existing or proposed signal systems on a street network to determine their effectiveness in responding to predefined traffic flows. It is also used for evaluating alternative geometric and operational improvements of a detailed nature within a urban street network including bus operations. The flexibility of its inputs permit modelling most any design or operational aspect of urban street networks.

Typical applications include site traffic and/or environment impact analysis, traffic signal evaluation, left tum pocket evaluation, bus stop location analysis, parking policy evaluation, geometric design and traffic operational studies, etc. These applications focus on individual elements of a system. However, it's great strengths are its ability to look at larger systems made up of many urban network components and its ability to model a system where changing one input or parameter can have an effect on the entire network.

Originally developed under the "Urban Traffic Control System (UTCS-1) in the early 1970's, the program evolved under the direction of FHWA as UTCS-1S and was later renamed NETSIM. Due to its heavy computing requirements, its migration to the desktop was very slow. A reduced size and capability version was developed for the

Program Language(s) Source code not normally available to users.
TRANSYT-7F MS-FORTRAN for 16 bit version T7FDIM AAP PPD MS-QuickBasic MS-Professional Basic Compiled Basic

Program Maximum Dimension Limits

Program Modelling Limitations

Other Features and Capabilities

Minimum Computer Hardware Requirements

TRANSYT-7F and T7FDIM - AT Clone 80286/80287 with 640K of free RAM. For AAP, a color monitor strongly recommended but not required.

Recommended Hardware

Specifications

The standard version has a capacity of 100 nodes, 600 links, 7 phases, and 25 intervals. Other versions which permit larger networks and faster execution are available for "protected mode" operation on 386 and 486 computers.

Spillback not explicitly modeled. Optimization based solely on "Disutility" may result in poor "perceived" progression. Optimization based on static traffic flows which do not vary over time. Phase sequence not optimized.

Double cycling, multiple greens, RTOR, unsignallized intersections, bus and carpool lanes (links) and weighting, bottleneck links, shared lanes, mid-block flows, link-to-link weighting, protected and protected-permitted left turn modelling, user specified bandwidth constraints, user specified cross-street desired degree of saturation for semi-actuated control, indirect consideration of queues (spillback) via additional performance penalties.

Minimum recommendation of a $80386 / 80387-20 \mathrm{MHz}$ based computer

AAP is also a post processor in that it can take a TRANSYT-7F timing plan and pass it to PASSER II and can also keep a run log for quick comparison of timing plan or geometric altematives. The AAP can also execute the AAP2NEMA program which can display the optimized signal timing for either a single ring configuration or in the NEMA dual ring configuration. The AAP2NEMA program can also modify the NEMA numbering convention to match local definitions. with 2 MB RAM and VGA Monitor. Based on rapidly decreasing hardware costs and other available and future software requirements, a $486-33 \mathrm{MHz}$ computer with 8 MB RAM and 200 MB hard disk is strongly recommended. The "protected mode" version requires a $80387 / 80387$ or 486DX.

[^0]
Outputs

Preprocessors

Post-processors
many optional inputs can be easily assumed using the defaults without significant concern. Preprocessors have simplified the input effort and have thus promoted the usage of TRANSYT-7F.

The basic reports for TRANSYT-7F include the input image; system, route and intersection performance tables for delay, stops, back of queue, and fuel consumption; flow profile plots (optional); time-space diagrams (optional); time-location diagrams (optional); platoon progression diagrams (optional); and signal timing tables. The most complex and perhaps most utilized is the performance table and the user must be able to carefully interpret these data. Timing data provides the engineer with the basic data needed for implementing the results in the field.

A large number of pre-processors have been developed to reduce or eliminate the card type level of processing and (in many cases) eliminate the upstream link-to-link volume computations that must be "developed" by the user. The original preprocessor for TRANSYT7F, T7FDIM, is included with the latest release and essentially provides the ability to edit "on screen" all card types, but the user MUST have detailed knowledge of TRANSYT-7F card types, ordering, and contents. Other proprietary preprocessors are available and can greatly simplify the data preparation effort.

The user who has infrequent use of TRANSYT-7F must usually depend upon these preprocessors or the amount of "leam or refresh time" and debugging process becomes inordinate.

The most significant advance in TRANSYT-7F utilization is the recent release of the new AAP (Arterial Analysis Package) program which provides a very user-friendly method of entering intersection and arterial data to both PASSER II and TRANSYT-7F arterial signal timing applications. This program may have a few too many "standard assumptions" for special analyses but is essential for the more common user who must thoroughly evaluate less complex arterial signal configurations.

Other proprietary preprocessors are available and are described in the McTrans and PC-TRANS catalogs.

PPD (Platoon Progression Diagram) is a contour plot of flow versus time and distance along an arterial. Queue build-up, dispersion, and merging is clearly shown and provides great visual insight on the flow patterns which are occurring along the arterial.
willing to expend the effort, the TRANSYT-7F manual contains highly detailed and informative documentation of how the program works in terms of the traffic flow models and relationships used throughout TRANSYT-7F.

Of more direct concern to the user are the calculation of delay, stops, queue length, fuel consumption and operating cost which are the principle elements of the measures of effectiveness (MOE's) that evaluate the results of the simulation or drive the optimization process.

Input Requirements
One daunting aspect of the TRANSYT-7F model has been the input data requirements and the fairly rigid format in which the "card deck" must be produced. "Preprocessors" are discussed below, so this section will discuss the relationship of the data requirements to the general characteristics of a study methodology that must be applied.

Inputs can be generally characterized as:

- Networkwide "common" parameters
- Optimization control parameters
- Specification of signal timing and
- Specify the traffic input data

Each are input through card "types" of which there are over 30, of which about 10 or so are input in a fairly "routine" problem. The essential elements of the input data can usually be identified as follows:

- Control card
- Node list and associated data
- Controller timing (phasing required, timing optional)
- Link data (geometrics and volumes and turn percentages)
- Upstream source links
- Bottleneck and dummy links
- Weighting, Modifier, Arterial and Plot Cards
- Run parameter and Termination Cards

The complexity of traffic data and "upstream" source links has been a common "nemesis" to TRANSYT-7F and the use of "standard tuming data" must be supplemented with link-to-link flows for the platoons to be truly representative. Most other elements of data input are fairly self explanatory and need not be outlined in this summary. Suffice it to say, that if TRANSYT-7F is to be carried out a considerable amount of knowledge about the network is required, but

- Procedurally, the model now uses a "punch file" to capture intermediate "best" timing plans, allows for optimizing specific nodes more than once and now permits coding of offsets while permitting program calculation of initial splits.
- Allowable network size has been increase to 100 nodes and 600 links

Documentation, Availability and License Cost

TRANSYT-7F is documented through a comprehensive Users Guide, developed and published by the Transportation Research Center University of Florida and distributed at cost to users of the program. It contains 9 Chapters and 4 Appendices to include an Introduction, McT7F Executive Operation, Applications, Model Description, Input Data, Advanced Coding Options, Interpretation of Results, Application Guidelines and Installation Instructions.

The manual is available for $\$ 15$ separately and the program package costs $\$ 350$ and is available from the McTrans (University of Florida) and PC-TRANS (University of Kansas) software distribution centers.

Modeling Approach
TRANSYT-7F is designed to optimize signal settings by performing a macroscopic (i.e. platoons of vehicles) simulation of traffic flow within very small time increments (called steps) while signal timing parameters are varied. Optimization is performed on cycle length, offsets, and green splits through simulation of vehicle responses to varying signal settings using a hill-climbing search technique to minimize/maximize an objective function. When simulation only is applied, most parameters are input and a performance evaluation of stops, delay and fuel consumption is reported. When optimization is performed, the cycle length is either user fixed or the best cycle length is determined by TRANSYT-7F using a "quick" simulation and evaluation technique. Detailed optimization of offsets and splits is performed on the user specified or most likely "best cycle length". A more in-depth cycle, offset, and split optimization search can be made by making multiple runs with different fixed cycle lengths.

The program is characterized by a number of sub-models and algorithms which assist with the primary simulation of platoons of vehicles in the network and the optimization process. The users "control" over these can be very indirect and the user might proceed without a great amount of specific knowledge about traffic flow theory, flow balancing, permitted movement submodel, shared and permitted lane algorithms, and platoon dispersion. If the user is

Program/Package Name
Developer

Brief Description

Application Areas

Product History

Current Version/Release

TRANSYT-7F
Transportation and Road Research Laboratory through TRANSYT Version 9, TRANSYT-7F enhanced and upgraded by University of Florida Transportation Research Center (TRC).

TRANSYT-7F (TRAffic Network StudY Tool, Version 7F) is designed to optimize traffic signal systems for arterials or networks on the basis of cycle length, offsets, and green splits adjustments to improve progression opportunities, or to reduce delay, stops and fuel consumption, or a combination of progression, delay and stops. The program accepts user input on signal timing phase patterns, geometric conditions, driver behavior characteristics and design hour vehicle volumes.

The program is applied at the network (sub area) and/or corridor (arterial) level wherein a consistent set of traffic conditions is apparent and the system hardware can be integrated and coordinated with respect to fixed cycle length and coordinated offsets. For this reason, when actuated traffic signals (or other signals that are not coordinated) are in the network, additional steps are required to force the actuated signals to behave "as fixed time signals" in order to get a simulation/optimization to work.

Developed in 1968 by TRRL and proceeded by introduction of Versions 1-6 for applications primarily in the European continent. Version 7F, converted from TRANSYT Version 7 to work with right side driving, non-metric measures, and the hardware specifications and terminology for the United States, was introduced in 1978. Version 7F has since been upgraded using "release" numbers with Release 7 being made available in late 1992.

Version 7F - Release 7. Release 7 is highlighted by a number of significant enhancements which include:

- A new Executive menu to handle file operations in the DOS environment
- Significant improvements towards optimizing progression opportunities, handling of overlap phases, using a newer HCM method for random delay estimates, improving the split algorithm to employ user specified degrees of saturation and revising the stops algorithm for better accuracy near saturation.

Minimum Computer Hardware Requirements

An AT 286 or higher system with 640 KB is the minimum. The LEART module requires color EGA or better.

Recommended Hardware
Specifications
An AT Clone 386sx or better with 1 MB is recommended if larger arterial systems are being optimized.

Operating System and
Environment Requirement
and Compatibility MS-DOS 3.x or higher.
Program Language Source code not normally available to users.

PASSETUP
PASSER II

Turbo Pascal Turbo Pascal

Post-processors

a HCM type adjustment of volumes and saturation flow and for computation of minimum green times. The AAP provides for a common TRANSYT-7F and PASSER II preprocessor and reduces the time required for data coding, but does make a number of assumptions.

PASSER II's own operating shell for input and output, PASSETUP, displays the program outputs to screen or transmits output to a printer. The LEART program displays an animation of the signal timing and the movement of vehicles through the arterial. There is little correlation between the LEART animation and PASSER II output except for signal timing and entry volumes. The AAP AAP2NEMA program can display the signal timing in either a single ring or dual ring controller configuration. The AAP can also take the PASSER II generated phasing patterns and signal timing and pass them to TRANSYT-7F for further optimization.

The LEART program might also be described as a postprocessor, but while it describes the arterial in graphics format using individual vehicle displays of the current system status, the results of the vehicle performance and queuing are not very well correlated with the PASSER II output. In fact, the number of lanes displayed by LEART can differ from that input to PASSER II. Since PASSER II does not simulate individual vehicles, separate "LEART" algorithms are used to display vehicle progression. LEART is therefore more of a progression display than a serious engineering tool.

Program Maximum Dimension Limits

Program Modelling Limitations

A total of 20 intersections with 2 to 6 phases sequences can be simulated and a total of 8 intersections can be "shown" in the LEART module.

Ignores progression opportunities which may occur within subsegments of the arterial. No explicit consideration is given to spillback. Left tum lanes have same length as through lanes. Optimization process may select a phase sequence at an intersection that is only marginally better than an existing phase sequence. Bandwidth optimization can result in cycle lengths which can cause high degrees of saturation and delay. Webster timing split can provide green time to cross-street that can be better utilized by arterial street if a higher degree of saturation is acceptable for the cross-street.
percentage of green time that is within the calculated "band" in each direction. The best performing bandwidth is then selected from among those possible with the phasing being tested, using the measure of bandwidth "efficiency" defined as sum of both through bands divided by twice the cycle length.

The user can, if desired, optimize the results for a particular direction of traffic flow on the arterial by specifying either direction as the "optimized flow direction".

Input Requirements

Outputs

The program requires all of the standard traffic flow and geometric data, in the form of capacity for each lane group. PASSER II requires an understanding of "permitted phase sequencing" which may be allowed for the signal system on the arterial to be analyzed. While at first the terminology is "new", it really boils down to which types of sequencing (with overlap or without overlap) will be allowed and if left turn phases are used, whether the "permitted vs protected" option is selected over the "protected plus permitted" option. These two options result in 8 possible phasing patterns and a maximum of 4 may be "selected" for evaluation on the arterial with only one being selected for the side street.

The program uses the NEMA movement numbering convention and care must be taken to understand the differences between overlap and non-overlap options. Both the PASSER II preprocessor, PASETUP, and the AAP program provides a significant amount of assistance in this area.

Some other "embedded data" changes are also permitted at the user's discretion, but they are not usually changed by the infrequent user.

The output for this program is by its nature relatively simple and limited in quantity. The "selected" optimal phase pattern is identified and the associated signal data of cycle length and bandwidth performance is summarized. The intersection performance level in terms of a V/C ratio, average delay, and the minimum delay cycle is then summarized. Using NEMA phase mumbering designations, the signal phasing patterns are detailed with splits and sequences, concluding with average delay and fuel consumption. The arterial system is summarized with average intersection delay, total delay, fuel consumption, and the number of stops.

PASSER II's own operating shell for input and output, PASSETUP, is user-friendly and permits a wider option of inputs as compared to the AAP program. PASSETUP also has an ASSISTANT module for

TRAFFIC MODEL PROGRAM SUMMARIES

Program/Package Name

Developer

Brief Description

Application Areas

Product History

Current Version/Release
Documentation, Acquisition and License Cost

Modeling Approach

PASSER II
Texas Transportation Institute
PASSER II is a bandwidth based arterial signal timing optimization program which has the unique ability to optimize phase sequence. Cycle lengths and splits are optimized using Webster's method and the program develops optimized offsets for a series of interconnected signals. Actuated signals are not treated by the program.

The program is utilized to optimize signal timing on an arterial system by maximizing bandwidth efficiency. The program does not analyze a network of signals.

The program was initially developed in the 1970's in Texas to respond to the ability of newer controllers to be setup on a coordinated basis with a number of optional phasing and split sequences which a number of other traffic programs could not handle. It has evolved from a 1980 mainframe version (PASSER II 80) to the current version which operates in the PC environment and also runs under the Arterial Analysis Package (AAP).

PASSER II-90

PASSER II and the User Guide is available at a cost of $\$ 150$ for the program and $\$ 15$ for the User Guide from McTrans (University of Florida) and PC-TRANS (University of Kansas).

PASSER II is a deterministic, time-series, search-and-find, bandwidth optimization model in which the user provides minimum and maximum cycle length, permitted phasing options, left turn phase protection type, hourly design traffic volumes, and geometric data. A maximum of four possible phase sequences are specified for the arterial (or individual node) and limits to one the allowable phase sequences for the cross street. With a limit on the models operation, the program can be used to "simulate" an existing condition.

The program uses Webster's method for signal splits, and bandwidth optimization to determine the arterial offsets. Since neither individual vehicles nor platoons are "tracked", the program relies upon an algorithm that calculates the probability of queue clearance and the

This Page Intentionally Blank

INTRODUCTION

This Traffic Model Handbook provides information on a number of the more widely used traffic models. The traffic models summarized are listed below.

PASSER II
TRANSYT-7F
TRAF-NETSIM
CORFLO NETFLO 1 and 2
CORFLO FREFLO
FRESIM
PROG.D (Document, not a program)

ROADSIM
PASSER III
MAXBAND
SOAP
TIMACS
FREQ

For each of the traffic model program packages, the following information is generally provided. Sample inputs and outputs are provided in Appendix I.

Program/Package Name	Preprocessors
Developer	Post-processors
Brief Description	Program Maximum Dimension Limits
Application Areas	Program Modelling Limitations
Product History	Other Features and Capabilities
Current Version/Releases	Minimum Computer Hardware Requirements
Documentation, Availability and Cost	Recommended Hardware Specifications
Modeling Approach	Operating System and Environment
Input Requirements	Requirement and Compatibility
Outputs	Program Language(s)

Selected models in this handbook deal with integrated signal systems, urban network simulation and their integration with the freeway system. In deciding which traffic model(s) is appropriate for inclusion in a project study, it is helpful to compare the models side-by-side in terms of their capabilities or program features. The following summary comparisons tables were therefore deemed appropriate and are presented in Appendix II.
(1) TRANSYT-7F (Network and Arterial) versus PASSER II (Arterial) Signal Timing
(2) TRAF-NETSIM vs. CORFLO NETFLO 1 vs. CORFLO NETFLO 2 Urban Network Simulation
(3) FRESIM versus FREFLO Freeway Network Simulation

Appendix III contains traffic model specific references and is a subset of Appendix V.
Appendix IV contains an alphabetized list of traffic modelling references without any abstracts.
Appendix V contains an alphabetized list of traffic modelling references with abstracts.

HESЗE - T7.M44 1993
Mekemsari. James R.

$$
\text { namonowk } \quad \text { aっ: is }
$$

TABLE OF CONTENTS

INTRODUCTION 1
TRAFFIC MODEL PROGRAM SUMMARIES 3
PASSER II 3
TRANSYT-7F 7
TRAF-NETSIM 13
CORFLO NETFLO 1 and 2 18
CORFLO FREFLO 21
FRESIM 24
ROADSIM 27
PASSER III 29
MAXBAND 31
SOAP 34
TIMACS 36
PROG.D - PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS 38
FREQ 39APPENDIX I - SELECTED TRAFFIC MODEL INPUTS AND OUTPUTSAPPENDIX II - TRAFFIC MODEL SUMMARY COMPARISON TABLES
APPENDIX III - TRAFFIC MODEL SPECIFIC REFERENCESAPPENDIX IV - TRAFFIC MODELLING REFERENCESAPPENDIX V - TRAFFIC MODEL REFERENCES AND ABSTRACTS

[^1]rounding should be made to comply with Section 4 of ASTM E380
(Revised August 1992)

Technical Report Documentation,

15. Supplementary Notes
16. Abstroct

This Handbook provides an overview of a number of Traffic Models for performing traffic signal timing optimization mainly for arterials and networks and for performing evaluations of traffic operations and geometric design plans for intersections, arterials, urban street networks, and freeways using simulation models. The simulation models reviewed encompass both macroscopic and microscopic models. The traffic models reviewed include: PASSER II, TRANSYT-7F, TRAF-NETSIM, CORFLO (NETFLO $1 \& 2$ and FREFLO), FRESIM, ROADSIM, PASSER III, MAXBAND, SOAP, TIMACS, and FREQ. The purpose of the Handbook is to provide the transportation professional with information sufficient for deciding if a particular traffic model would be suitable for their applications and an idea on how much effort and resources would be required to apply the model effectively.

Appendices contain "Selected Traffic Model Inputs and Outputs", "Traffic Model Summary Comparison Tables", "Traffic Model Specific References", "Traffic Modelling References", and "Traffic Model References and Abstracts".

17. Key Words Traffic Models, Signal Simulation, Optimi Intersections, Arterials, Computer Models	Timing, No res zation, No Freeways,	18. Distribution Statement No restriction.	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	$\begin{gathered} \text { 21. No. of Pages } \\ 420 \end{gathered}$	22. Price

(INPUT.DATA)

```
    TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
PASSER II-90
                        MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90
********************************************************************************
    **** INTERSECTION 3 3rd Street
            DISTANCE 2 TO 3 SPEED DISTANCE 3 TO 2 SPEED
                1000. FT 30. MPH 1000. FT 30. MPH
            A SIDE QUEUE CLEARANCE B SIDE QUEUE CIEARANCE
                                O SECS
                                O SECS
ARTERIAL PERMISSIBLE PHASE SEQUENCE
    DUAL LEFTS (1+5) NO OVERLAP
```


CROSS ST PHASE SEQUENCE

 DUAL THRUS (4+8) NO OVERIAP| | ARTERIAL STREET | | | | | | CROSS STREET | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PHASE | (NEMA) | $5[5]$ | 6 | $1[5]$ | 2 | $3[1]$ | 4 | $7[1]$ | 8 |
| VOLUMES | (VPH) | 200 | 1610 | 300 | 1080 | 0 | 200 | 0 | 355 |
| SAT FLOW RATE | (VPHG) | 1710 | 5400 | 3420 | 5400 | 1710 | 1577 | 1710 | 1606 |
| MINIMUM PHASE | (SEC) | 10 | 15 | 10 | 15 | 0 | 10 | 0 | 10 |

```
(ERROR.MSG)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION PASSER II-90 MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90 **** CODING ERROR MESSAGES
NO APPARENT CODING ERRORS
```

(ART.SUMY)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
PASSER II-90 MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90
**** BEST PROGRESSION SOLUTION SUMMARY ****
OS
Main Avenue
DISTRICT Va 03/31/92
RUN NO. 1

CYCLE LENGTH	$=90 \mathrm{SECS}$	(MAXIMIN CYCLE $=72 \mathrm{SECS}$			
EFEICIENCY	. 21	(FAIR PROGRESS	ON		
ATTAINABILITY	$=.55$	(MAJOR CHANGE REQ'D)			
BAND A	$=18 \mathrm{SECS}$	AVERAGE SPEED	$=$	30	MPH
BAND B	$=20 \mathrm{SECS}$	AVERAGE SPEED	$=$	30	MPH

NOTE: ARTERIAL PROGRESSION EVALUATION CRITERIA

EFFICIENCY	$0.00-0.12-$ "POOR PROGRESSION"
	$0.13-0.24-$ "FAIR PROGRESSION"
	$0.25-0.36-$ "GOOD PROGRESSION"
	$0.37-1.00-$ "GREAT PROGRESSION"

ATTAINABIIITY $1.00-0.99$ - "INCREASE MIN THRU PHASE"
0.99 - 0.70 - "FINE-TUNING NEEDED"
0.69 - 0.00 - "MAJOR CHANGES NEEDED"
(BEST.SOLN)

BEST SOLUTION
CYCLE LENGTH $=90$ SECS BAND $A=18 \mathrm{SECS} \quad$ BAND $B=20 \mathrm{SECS}$
BAND: . 21 EFFICIENCY . 55 ATTAINABILITY
AVERAGE PROGRESSION SPEED - BAND $A=30 \mathrm{MPH} \quad$ BAND $B=30 \mathrm{MPH}$

(BEST.SOLN)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
PASSER II-90 MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90
**** INTERSECTION 2 2nd Street OFFSET= 48.0 SECONDS, 53.3 \% ARTERIAL PHASE SEQUENCE IS LT 5 LEADS ($2+5$) CROSS STREET PHASE SEQUENCE IS DUAL THRUS ($4+8$)

		ARTERIAL							
CONCURRENT	PHASES	$2+5$	$2+6$	$1+6$	TOTAL	$4+8$	$3+8$	$3+7$	TOTAL
PHASE TIME	(SECS $)$	25.3	41.6	.0	66.9	23.1	.0	.0	23.1
PHASE TIME	(\%)	28.1	46.2	.0	74.3	25.7	.0	.0	25.7

| PHASE TIME (\%) | 28.146 .2 | 0 | 74.3 | 25.7 | .0 | 0 | 25.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(BEST. SOLN)
PASSER II-90
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
**** INTERSECTION 3 3rd Street OFFSET= 46.8 SECONDS, 52.0% ARTERIAI PHASE SEQUENCE IS DUAL LEFTS ($1+5$)
CROSS STREET PHASE SEQUENCE IS DUAL THRUS ($4+8$)

		ARTERIAL				CROSS STREET			
CONCURRENT	PHASES	$1+5$	1+6	$2+6$	TOTAL	4+8	3+8	3+7	TOTAL
PHASE TIME	(SECS)	18.4	. 0	40.8	59.2	30.8	. 0	. 0	30.8
PHASE TIME	(\%)	20.4	. 0	45.3	65.8	34.2	. 0	. 0	34.2

MOVEMENT/	V/C		TOTAL	AVERAGE		PROB. QUEUE			
NODE NOS.	RATIO	(LOS)	DELAY	DELAY	(LOS)	CLEAR.	(LOS)	STOPS	
	(\%)		(VEH-HR)	(SEC/VEH)		(\%)		(VEH/HR)	(\%)
NB THRU	78	(C)	3.59	36.4	(D)	80	(C)	328. (92)
SB THRU	44	(A)	2.42	25.5	(C)	100	(A)	149. 1	74)
EB THRU	48	(A)	5.81	19.4	(B)	100	(A)	974. (90)
LEFT	70	(C)	2.36	42.5	(D)	83	(C)	190. (95)
WB THRU	72	(C)	10.25	22.9	(C)	99	(B)	1470.	91)
LEET	53	(A)	2.94	35.2	(D)	100	(A)	252. (84)
NODE 3	78	(MAX)	26.37	25.3		80	(MIN)	3363 . (90)

(ART.MOE)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
PASSER II-90 MULTIPHASE ARTERIAI PROGRESSION - 145101 VER 1.0 DEC 90
*** PASSER II-90 BEST SOLUTION SUMMARY - TOTAL SYSTEM PERFORMANCE ***
OS Main Avenue DISTRICT Va 03/31/92 RUN NO. 1

CYCLE LENGTH $=90$ SECS BAND $A=18$ SECS BAND $\mathrm{B}=20$ SECS
BAND: . 21 EFFICIENCY . 55 ATTAINABIIITY
AVERAGE PROGRESSION SREED :
BAND $A=30 \mathrm{MPH} \quad$ BAND $B=30 \mathrm{MPH}$

PERFORMANCE MEASURES	$\begin{gathered} \text { TOTAL } \\ \text { VEHICLES } \\ \text { (VEH/HR) } \end{gathered}$	$\begin{gathered} \text { TOTAL } \\ \text { DELAY } \\ \text { (VEH-HR) } \end{gathered}$	$\begin{gathered} \text { AVERAGE } \\ \text { DELAY } \\ \text { (SEC/VEH) } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { STOPS } \\ & (\mathrm{VEH} / \mathrm{HR})(\%) \end{aligned}$	FUEL CONSUMPTION (GAL/HR)	$\begin{aligned} & \text { MAX MIN } \\ & \text { CYCLE } \\ & \text { (SEC) } \end{aligned}$
TOTAL	: 11689.	79.2	24.4	9282.4(79)	175.2	72

(PIN.SET)

(PIN.SET)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION
PASSER II-90 MULTIPHASE ARTERIAL PROGRESSION - 145101 VER 1.0 DEC 90

TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION PASSER II-90 MULTTPHASE ARTERIAL PROGRESSION - 145101

RER 1.0

05
CYCLE $=90 . \operatorname{SECONDS}$
SPLIT $=123$.
OFFSET $=123$.

Main Avenue OS \quad MAST INT $=1$ SYS OFFSET $=.0$ REF MOVMNT $=0$ REF PNT $=$ BEGIN
INTRSC 3 : 3rd Street COORD PHASE : 0 OFFSET : 46.8 SEC : 52.0\%
DUAI-RING PHASE \#
PHASE SPLIT (SEC)

5	6	1	2	3	4	7	8
18.4	40.8	18.4	40.8	.0	30.8	.0	30.8
$20 . \%$	$45 . \%$	$20 . \%$	$45 . \%$	0.8	$34 . \%$	$0 . \%$	$34 . \%$
--	-	-	--	4	3	8	7
LEAD	-	LEAD	-	LAG	-	LAG	-
$1+5$	$1+6$	$2+6$	$4+8$	$3+8$	$3+7$	MAIN	CROSS
18.4	.0	40.8	30.8	.0	.0	59.2	30.8
46.8	65.2	65.2	16.0	46.8	46.8	46.8	16.0
$52 . \%$	$72 . \%$	$72 . \%$	$18 . \%$	$52 . \%$	$52 . \%$	$52 . \%$	$18 . \%$

(TS.DIAGM)
TEXAS DEPARTMENT OF HIGHWAYS AND PUBLIC TRANSPORTATION PASSER II-90 PHASE SPLIT (\%)
LEFT TURN
CONCURRENT PHASES DURATION (SEC)
CYCLE COUNT (SEC)
CYCLE COUNT (\%)
52.\% $72 . \%$
$72 . \% 18 . \%$
52.
$52 . \%$
52.818 .8

03/31/92 CYCLE $=90 \mathrm{SECONDS}$
RUN NO 1 DISTRICT Va Main Avenue
48.0 S
$\begin{array}{lll}\text { RUN NO } & 1 \\ & & \text { HORIZONTAL SCALE } 1 \text { INCH }=30 \text { SECS } \\ & \text { VERTICAL SCALE } 1 \text { INCH }=1000 \text { FEET } \\ \text { INT } 3 & \text { I }\end{array}$

RUN NO $\begin{array}{lll} \\ & \text { HORIZONTAL SCALE } 1 & \text { INCH }=30 \mathrm{~S} \\ \text { VERTICAL } \\ \text { INT } & & \end{array}$
3rd Str IXXXXX

46.8 S	I
	I
	I

$\begin{array}{ll}\text { INT } 2 & I \\ \text { 2nd } S t r & \text { IXXXXXXXX }\end{array}$

I
I
I
I

I

I	
I	.

(1 inch $=10$ characters)
(1 inch $=6$ lines)
$======\mathrm{XXXXXXXXXXXXXX}$
/////// XXXXXXXXXXXXXX
$======\mathrm{XXXXXXXXXXXXXX}$

1st Str $I=========X X X X X X X X X X X X$ 0.0 S
/A/
30 MPH
18 SECOND BAND

$===$ DUAL LEFTS	$(1+5)$
/// LT 5 LEADS	$(2+5)$

$\begin{array}{llll}\text { XXX DUAL THRUS } & (2+6) \\ \ \backslash I & \text { LT } 1 & \text { LEADS } & (1+6)\end{array}$

TRANSYT OUTpUNO

Node 1, 1st Street

25 sec 34 sec 31 sec. Offset $=0 \mathrm{sec}$. Cycle $=90 \mathrm{sec}$.

Phase Sequence LTIG for EWINS. Protected Dual Lefts ($1+5$) followed by Throughs ($2+6$) for the EW movements and Green Ball (4+8) for the NS movements.

Node 2, 2nd Street

$25 \mathrm{sec} \quad 42 \mathrm{sec} 23 \mathrm{sec}$

$$
\text { Offset }=48 \text { secs. Cycle }=90 \text { sec. }
$$

Phase Sequence ERIG for EWINS. Leading Left ($2+5$) for the EB movement followed by Throughs ($2+6$) for the EW movements and Green Ball ($4+8$) for the NS movements.

Node 3, 3rd Street

$18 \mathrm{sec} \quad 41 \mathrm{sec} 31 \mathrm{sec}$ Offset $=47 \mathrm{sec} . \quad$ Cycle $=90 \mathrm{sec}$.

Phase Sequence LTIG for EWINS. Protected Dual Lefts ($1+5$) followed by Throughs ($2+6$) for the EW movements and Green Ball ($4+8$) for the NS movements.

Editor's Note: The TRANSYT output was produced by a pre-release version of TRANSYT and therefore results may not be reproducible using a later pre-release or release version.

$\begin{gathered} \text { FIEIL } \\ 1 \end{gathered}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Main	Ave						ASE	ME							
1	90	90	10	0	0	3	3	1	1	0	60	0	0	0	0

--- 2 -- NOTE - THE CYCLE INCREMENT IS IGNORED IN A SINGLE CYCLE RUN.
+++ 106 +++ WARNING + THE SEC/STEPS FACTOR IN FIELD 6 IS TOO SMALI FOR CYCLE
LENGTHS ABOVE 60 SECONDS. IT WILL BE INCREASED TO
ALLOW A MAXIMUM OF 60 STEPS/CYCLE.

| 2 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }_{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	3	8	11	7	4	12	5	2	9	1	6	10	0	0	0
7	108	103	0	0	0	104	107	0	0	0	308	303	0	0	0
7	304	307	0	0	0	0	0	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	0	0	3	95	25	100	100	125	120

INTERSECTION: 1st Street
INTERSECTION 1

13	1	0	1	19	4	38	4	21	4	0	0	0	0	0
21	1	1	1	2	0	10	105	101	0	0	0	0	0	0
22	1	3	3	4	0	15	102	106	109	110	0	0	0	0
23	1	5	5	6	0	10	108	-103	104	-107	0	0	0	0
28	108	100	3567	586	0	0	0	25	0	0	0	0	0	0
28	103	100	0	34	0	0	0	25	0	0	0	0	0	0
29	103	0	0	0	2	0	0	0	104	0	0	0	0	0
28	104	100	3551	494	0	0	0	0	0	0	0	0	0	0
28	0	0	0											
28	107	100	0	45	0	0	0	25	0	0	0	0	0	0
29	107	0	0	2	0	0	0	108	0	0	0	0	0	0
28	102	1000	5400	1400	0	0	0	30	0	0	0	0	0	0
28	105	1000	3420	600	0	0	0	30	0	0	0	0	0	0
28	1099	1000	1530	250	0	0	0	30	0	0	0	0	0	0
28	106	1800	5400	1275	0	206	1027	30	0	0	0	212	247	30
28	101	1800	1710	100	0	206	100	30	0	0	0	0	0	0
28	110	1800	1530	250	0	206	250	30	0	0	0	0	0	0
28		0	0	0	0									

INTERSECTION: 2nd Street
INTERSECTION 2

13	2	63	1	19	4	38	4	21	4	0	0	0	0	0	0
21	2	1	1	2	0	10	202	205	0	0	0	0	0	0	0
22	2	3	3	4	0	15	202	206	210	0	0	0	0	0	0
23	2	5	5	6	0	10	204	207	212	0	0	0	0	0	0
28	204	0	1800	10	0	0	0	0	0	0	0	0	0	0	0
28	207	0	1710	255	0	0	0	0	0	0	0	0	0	0	0
28	212	0	1530	255	0	0	0	0	0	0	0	0	0	0	0
28	202	1800	5400	1225	0	102	1145	30	107	45	30	108	35	30	0
28	205	1800	1710	255	0	102	255	30	0	0	0	0	0	0	0
28	206	1000	5400	1420	0	306	1350	30	303	35	30	304	35	30	0
28	210	1000	1530	260	0	306	260	30	0	0	0	0	0	0	0

INTERSECTION 3

13	3	47	1	14	4	39	4	25	4	0	0	0	0	0	0
21	3	1	1	2	0	10	305	301	0	0	0	0	0	0	0
22	3	3	3	4	0	15	302	306	309	310	0	0	0	0	0
23	3	5	5	6	0	10	308	-303	304	-307	0	0	0	0	0
28	308	100	1606	320	0	0	0	25	0	0	0	0	0	0	0
28	303	100	0	35	0	0	0	25	0	0	0	0	0	0	0
29	303	0	0	0	2	0	0	0	304	0	0	0	0	0	0
28	304	100	1577	185	0	0	0	25	0	0	0	0	0	0	0
28	307	100	0	15	0	0	0	25	0	0	0	0	0	0	0
29	307	0	0	0	2	0	0	0	308	0	0	0	0	0	0
28	302	1000	5400	1080	0	202	825	30	207	255	30	0	0	0	0
28	305	1000	1710	200	0	202	200	30	0	0	0	0	0	0	0
28	309	1000	1530	200	0	202	200	30	0	0	0	0	0	0	0
28	306	100	5400	1610	0	0	0	30	0	0	0	0	0	0	0
28	301	100	3420	300	0	0	0	30	0	0	0	0	0	0	0
28	310	100	3060	700	0	0	0	30	0	0	0	0	0	0	0

PLOT AND OPTION CARDS

<PERFORMANCE WITH OPTIMAL SETTINGS>

YOVEN NODE	$\begin{aligned} & \text { MENT/ } \\ & \text { NOS. } \end{aligned}$	$\begin{aligned} & V / C \\ & (\%) \end{aligned}$	TOTAL TRAVEL ($\mathrm{v}-\mathrm{mi}$)	$\begin{aligned} & \text { TRAVEL } \\ & \text { TOTAL } \\ & (v-h r) \end{aligned}$	TIME AVG. $\sec / v)$	$\begin{aligned} & \text { TOTAL } \\ & \text { DELAY } \\ & (v-h r) \end{aligned}$	$\begin{gathered} \text { AVG. } \\ \text { DELAY } \\ (\mathrm{sec} / \mathrm{v}) \end{gathered}$	$\begin{aligned} & \text { UNIFORM } \\ & \text { STOPS } \\ & \text { NO. (\%) } \end{aligned}$	MAX OF EST	BACK UEUE CAP.	FUEL CONS (gal)
NB	THRUP:	75	10.92	6.15	37.8	5.71	35.1	513. (88)	13>	8 C	6.62
	LEFTS:	12	. 63	. 25	26.1	. 22	23.4	26. (75)	108	108 S	. 35
SB	THRUP :	66	9.21	4.83	35.2	4.46	32.5	423. (86)	11>	8 C	5.29
	LEFTS:	19	. 84	. 33	26.6	. 30	23.9	35.(79)	104	1045	. 48
EB	THRU	61	265.33	16.81	43.2	7.92	20.41	1022. (73)	27	120	22.34
	LEFT	83	113.71	10.75	64.5	6.94	41.6	545.(91)	14	80	12.75
	RGHT	39	47.38	2.83	40.7	1.24	17.9	161.(64)	4	40	3.74
WB	THRU	56	434.94	20.47	57.8	5.89	16.6	561.(44)	14	216	25.33
	LEFT	28	34.11	2.20	79.0	1.05	37.9	97. (97)	2	72	2.71
	RGHT	39	85.28	3.76	54.2	. 90	13.0	76. (31)	2	72	4.60
NODE	1:		1002.36	68.37		34.62	24.83	3460.(69)			84.21
SB	THRU :		. 00	. 07	25.9	. 07	25.9	$7 .(73)$	0	0	. 09
	LEFT :	64	. 00	2.37	33.4	2.37	33.4	217. (85)	6>	0	2.93
	RGHT :	\$71	. 00	2.63	37.1	2.63	37.1	222. (87)	6>	0	3.15
EB	THRU		417.89	14.34	42.1	. 33	1.0	127. (10)	5	216	18.19
	LEFT :		86.99	5.06	71.4	2.14	30.2	156. (61)	5	72	6.01
WB	THRU	62	269.12	11.25	28.5	2.23	5.7	257. (18)	11	120	14.15
	RGHT	40	49.27	1.90	26.3	. 25	3.4	24. (9)	1	40	2.35
NODE	2:	71	823.27	37.62		10.01	9.81	1010.(27)			46.87

NB	THRUP:	83	5.97	4.26	48.0	4.02	45.3	285. 1	89)	7>	4 C	4.30
	LEFTS:	12	. 65	. 23	23.2	. 20	20.5	23.1	65)	308	3085	. 32
SB	THRUP:	48	3.45	1.56	30.4	1.42	27.7	146. (79)	4	4	1.75
	LEFTS:	8	. 28	. 10	23.2	. 09	20.5	10.1	64)	304	3045	14
EB	THRU	46	204.68	11.20	37.3	4.33	14.4	535. (50)	14	120	14.55
	LEET	75	37.90	3.95	71.2	2.68	48.3	198.	99)	5	40	4.61
	RGHT :	. 30	37.90	2.21	39.8	. 94	17.0	91.1	45)	2	40	2.75
WB	THRU	69	30.01	10.21	22.8	9.21	20.6	1202. (75)	32>	12C	14.55
	LEFT	56	5.59	3.19	38.3	3.01	36.1	266.	89)	7	8	3.89
	RGHT :	53	13.05	4.02	20.7	3.58	18.4	475. ${ }^{\text {(}}$	68)	13>	8 C	5.76
NODE	3:	83	339.49	40.94		29.49	22.9	3230.1	70)			52.61

All MOEs are in units per hour.

Total Travel	veh-mi/hr	2165
Total Travel Time	veh-hr/hr	147
Total Uniform Delay	veh-hr/hr	68
Total Random Delay	veh-hr/hr	7
Total Delay	veh-hr/hr	74
Average Delay	sec/veh	20.0
Passenger Delay	pax-hr/hr	89
Stops: Total	veh/hr	7700
	Percentage	\%
System Speed	mph	58
Fuel Consumption	gal/hr	15.3
Operating Cost	$\$ / h r$	184
Performance Index	DI	1204

```
Performance Index (PI): Disutility Index (DI):
Disutility Index Delay + Stops
NO. OF SIMULATIONS = 154 NO. OF LINKS = 2370 ELAPSED TIME = 47.6 SEC.
```

TRANSYT-7F TRAFFIC SIGNAL TIMING TABLES

NETWORK-WIDE SIGNAL TIMING PARAMETERS

SYSTEM CYCLE LENGTH $=90$ SECONDS
MASTER OFFSET REFERENCE LOCATION = INTERSECTION NO. 1 START OF INTERVAL 1.

Key to Interval Types:
F : Fixed green.
V : Variable green.
Y : Yellow.
R : All-red.
An ' M ' by an interval length means this is the minimum time available.

ZRSECTION CONTROLLLER SETTINGS

RRSECTION 1 PRETIMED - SPIITS OPTIMIZED

terval Number :	1	2	3	4	5	6	
4trl Length $(\mathrm{sec}):$	19	4	38	4	21	4	
ntrl Length	(\%) :	21	4	44	4	23	4
in Settings	(\%): $100 / 0$	21	25	69	73	96	

zinterv	Typ	e :	v	Y	V	\mathbf{Y}	V
tolits		ec) :	23		42		25
Splits		(\%):	25		48		27
Splits (\%). 25							
ILINKS	MOVING		105		102		108
			101		106		-103
					109		104
					110		-107

offset $=0 \mathrm{sec} \quad 0 \%$.
This is the master controller.
$+++193+++$ WARNING + THE OFFSET FALLS WITHIN 1\% OF AN INTERVAL 1.

NODE 123456789012345678901234567890123456789012345678901234567890 DISTANCE

ROUTE TITLE:
Main Avenue OSO THE DOWN DIRECTION IS EAST BOUND.

SYMBOL KEYS:

Headings:
Link : The link number plotted.
Max Flow : Highest flow rate achieved on the link.
plt. index : platooning index.
PVG : Percentage of arrivals on effective green.
Flow Profile Symbols (vertical axis is in vph):
I : Arrivals which queue, normally on red on unopposed links or during periods of heavy opposing flow on opposed links during. the permitted phase(s)
S : Departures from queue, normally at the saturation flow rate for "protected" links, or maximum flow rate for permitted, opposed links.
0 : Arrivals and departures on green, when below S's or I's, these arrivals join the back of the queue.

Time Scale (horizontal axis):
(BLANK) : Protected or unopposed green, yellow and all-red intervals.

- : Permitted, opposed green, yellow and all-red intervals.
* : Red intervals.
:: : The beginning (lst) and end (2nd) of the thru band.
N : The numbers across the bottom are a time scale in steps.
Notes concering FPDs:

1. To convert TRANSYT-7F's timing units of "steps" to seconds. count the steps, then multiply as follows:
SECONDS $=$ STEPS * 1.50 .
2. The flow profile diagram shows actual green plus yellow and all red. Offsets are adjusted to master controller if any.
3. In the 80 -column output format, the "downbound" links are plotted continuously first, then the "upbound" links are plotted continuously.
```
CYCLE: }90\mathrm{ Seconds, }60\mathrm{ Steps
IINK 102 MAX FLOW 5400 VPH PLT. INDEX . 00 PVG 42%
6000+
    , 
    : SSSSSSSSSSS
    : 
    SSSSSSSSSSS
    sSSSSSSSSSS
    SSSSSSSSSSS
    SSSSSSSSSSS
    SSSSSSSSSSS
SSSSSSSSSSSS
SSSSSSSSSSSS
SSSSSSSSSSSS
3000+ SSSSSSSSSSSSS
SSSSSSSSSSSSS
SSSSSSSSSSSSS
SSSSSSSSSSSSS
SSSSSSSSSSSSS
: \IIIIIIIIIIIIIIIO0000000000000000000000000\IIIIIIIIIIIIIIIIII
1500+IIIIIIIIIIIIIIIIIO000000000000000000000000001IIIIIIIIIIIIIIIIII
    :IIIIIIIIIIIIIIIIIO00000000000000000000000000IIIIIIIIIIIIIIIIIII
    : IIIIIIIIIIIIIIIIIO0000000000000000000000000001IIIIIIIIIIIIIIII
    :IIIIIIIIIIIIIIIIIO0000000000000000000000000000IIIIIIIIIIIIIIIII
    :IIIIIIIIIIIIIIIIIOO000000000000000000000000IIIIIIIIIIIIIIIIII
    :IIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOO*****************
        ****************
        123456789012345678901234567890123456789012345678901234567890
```

LINK 202 MAX ELOW 5400 VPH PLT. INDEX . 72 PVG 89\%
$6000+$
: SS
SS
SS
SS
SSS
$4500+$ SSS
SSS
SSS
SSS
$\begin{array}{ll}: & \text { SSS } 000 \\ \text { SSSOOOOOO }\end{array}$
$3000+$
SS00000000
S00000000000
00000000000000
I0000000000000000
II0000000000000000
$\begin{array}{lr}: 0000 & \text { IIOOO00000000000000 } \\ \text { :0000000 IIOOOOOOO000000000 }\end{array}$
$1500+000000$
:000000000
IIIO000000000000000
: 000000000000
:0000000000000000
IIIIOO00000000000000
IIIIIO000000000000000
:0000000000000000000000 IIIIIO O00000000000000
: 0000000000000000000000000IIIIII
$\star \star \star \star \star \star \star \star \star \pi * * * * * * 245678901234567890$

SYMBOL KEYS:

Headings:

Link : The link number plotted.
Max flow : Highest flow rate achieved on the link.
Plt. index : Platooning index.
PVG : Percentage of arrivals on effective green.
Flow Profile Symbols (vertical axis is in vph):
I : Arrivals which queue, normally on red on unopposed links or during periods of heavy opposing flow on opposed links during. the permitted phase(s)
S : Departures from queue, normally at the saturation flow rate for "protected" links, or maximum flow rate for permitted, opposed links.
0 : Arrivals and departures on green, when below S's or I's, these arrivals join the back of the queue.

Time Scale (horizontal axis):
(BLANK) : Protected or unopposed green, yellow and all-red intervals. . : Permitted, opposed green, yellow and all-red intervals.

* : Red intervals.
:: : The beginning (1st) and end (2nd) of the thru band.
N : The numbers across the bottom are a time scale in steps.
Notes concering FPDs:

1. To convert TRANSYT-7F's timing units of "steps" to seconds, count the steps, then multiply as follows: SECONDS $=$ STEPS * 1.50.
2. The flow profile diagram shows actual green plus yellow and all red. Offsets are adjusted to master controller if any.
<ROUTE SUMMARY REPORT>

Main Avenue		OSO		THE DOWN DIRECTION IS EAST				BOUND.	
MOVEMENT/		TOTAL	TRAVEL TOTAL	TIME	TOTAL	AVG.	UNIFORM	MAX BACK	FUEL
NODE NOS.	v/C	TRAVEL		AVG.	DELAY	DELAY	STOPS	OF Queue	CONS.
	(\%)	(v-mi)	(v-hr) ((sec/v)	(v-hr)	(sec/v)) NO. (\%)	EST.CAP.	(gal)
102	61	265.33	16.81	43.2	7.92	20.4	1022. (73)	27120	22.3
202	: 33	417.89	14.34	42.1	. 33	1.0	127. (10)	$5 \quad 216$	18.2
302	: 46	204.68	11.20	37.3	4.33	14.4	$535 .(50)$	14120	14.5
Forward:	61	887.89	42.35	123	12.58	12.21	1684. (45)	$S P D=21.0$	55.07
106	: 56	434.94	20.47	57.8	5.89	16.6	561. (44)	14216	25.3
206	: 62	269.12	11.25	28.5	2.23	5.7	257. (18)	11120	14.1
306	: 69	30.01	10.21	22.8	9.21	20.61	1202.(75)	$32>12 \mathrm{C}$	14.5
Reverse:	69	734.07	41.94	109	17.33	14.52	2020.(47)	$S P D=17.5$	54.03

All MOEs are in units per hour.

TRAF-NETSIM Simulation of PASSER Optimized Offsets and Splits

This is the same arterial network as used in the PASSER and TRANSYT sample problem and is the simulation of PASSER's optimized offsets and splits.

25 sec 34 sec 31 sec

Phasing is LT I G for EW I NS. Dual Lefts Lead ($1+5$) then thrus ($2+6$) for EW traffic followed by NS green ($4+8$).

Table contains the intervals and duration for each approach, the corresponding NEDIT screen, and the corresponding TRAF-NETSIM Card Types 35 and 36.

Interval	Duration	EBL(5)	EBT(2)	WBL (1)	WBT (6)	North/South(4+8)
1	22	Green	Red	Green	Red	Red
2	3	Yellow	Red	Yellow	Red	Red
3	31	Red	Green	Red	Green	Red
4	3	Red	Yellow	Red	Yellow	Red
5	28	Red	Red	Red	Red	Green
6	3	Red	Red	Red	Red	Yellow

INTERPREZATION OE SIGNAL CODES

```
Y YIEID OR AMBER
GREEN
    RED
    RED WIT:E GREEN RIGH: ARRCW
    RED WITH GREEN IERT ARROW
```

S:OP
REE WITH GREEN DEAGONAL ARROW
NO TURNS-GREEN THRU ARROW
RED WITH LEET AND RIGHT GREEN ARROW NO LEFT TURN-GREEN THRU AND RIGHT

25 sec 42 sec 23 sec
Phasing is ER I G for EW I NS. Lead Left ($1+5$) and then Thru's ($2+6$) for EW traffic followed by NS green ($4+8$).

Table contains the intervals and duration for each approach, the corresponding NEDIT screen, and the corresponding TRAF-NETSIM Card Types 35 and 36.
\qquad -------3

Interval	Duration	EBL (5)	EBT (2)	WBL (1)	WBT (6)	North/South (4+8)
1	22	Green	Green	-	Red	Red
2	3	Yellow	Green	-	Red	Red
3	39	Red	Green	-	Green	Red
4	3	Red	Yellow	-	Yellow	Red
5	20	Red	Red	-	Red	Green
6	3	Red	Red	-	Red	Yellow

$\left.\begin{array}{cccccccccccc}2 & 48 & 1 & 3 & 12 & & 22 & 3 & 39 & 3 & 20 & 3\end{array}\right)$

INTERPRETA:ION OF SIGNAL CODES

0	$Y I E L D ~ O R ~ A M B E R ~$	5	STOS	
i	GREEN		6	RED NIMH GREEN DIAGONAL ARROW
2	RED		7	NO TURNS-GREEN TSRU ARROW
3	RED WITH GREEN RIGHT ARROW	8	RED WETH LEET ANL RIGET GREEN ARROW	
4	RED WITH GREEN LEET ARROW	9	NO IEET TURN-GREEN TARU AND RIGHT	

$18 \sec 41 \mathrm{sec} 31 \mathrm{sec}$
Phasing is LT I G for EW I NS. Dual Lefts Lead $(1+5)$ then thrus $(2+6)$ for EW traffic followed by NS green ($4+8$).

Table contains the intervals and duration for each approach, the corresponding NEDIT screen, and the corresponding TRAF-NETSIM Card Types 35 and 36.

13
2--------3------ 33
23

Interval	Duration	EBL (5)	EBT (2)	WBL (1)	WBT (6)	North/South (448)
1	15	Green	Red	Green	Red	Red
2	3	Yellow	Red	Yellow	Red	Red
3	38	Red	Green	Red	Green	Red
4	3	Red	Yellow	Red	Yellow	Red
5	28	Red	Red	Red	Red	Green
6	3	Red	Red	Red	Red	Yellow

 $\begin{array}{llllllllllll}3 & 47 & 2 & 33 & 13 & 23 & 15 & 3 & 38 & 3 & 28 & 3\end{array}$

STOP
RED WITH GREEN DIAGONAL ARROW
NO TURNS-GREEN THRU ARROW
RED WITH LEET AND RIGHT GREEN ARROW NC LEET TURN-GREEN THRU AND RIGHT

TRAF-NETSIM Simulation of PASSER Optimized Offsets and Splits

Editor's Note: The TRAF-NETSIM output was produced by a pre-release version 3.10 of TRAF-NETSIM and therefore results may not be reproducible using the final release version.

TITTT「TTTTT	RRRRRRRRR	AAAAAAA	FFFFFFFFFFF
TTTTTTTTTTT	RRRRRRRRRR	AAAAAAAAA	FFEFFPFFEFF
I"ITTTTTTTT'T	RRRRRRRRRRRR	AAMAAAAAAAA	FFFFFFFFFFF
T'I'T	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRRRRRRRRRR	AAAAAAAAAAA	EFFFFFF
TTT'	RRRRRRRRRR	AAAAAAAAAAA	FFFFFFF'
TTT	RRR RRR	AAA ANA	FFF
TTTT	RRR RRR	AAA AAA	FEF
T'T'T	RRR RRR	AAA AAA	FEF
TTT	RRR RRR	AAA AAA	F'FF
TTT	RRR RRR	AAA AAA	FFF

MICRO-COMPUTER PROTECTED-MODE VERSION (REQUIRES 80386 AND 80387 OR ABOVE)

VERSION 3.10
RELEASE DATE MAY 1992
TRAF SIMULATION MODEL
DEVELOPED FOR
U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION INTELLIGENT VEHICLE HIGHWAY SYSTEM RESEARCH DIVISION

I - TRAF-NETSIM - 5

I - TRAF-NETSIM - 7
U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION INTELLIGENT VEHICLE HIGHWAY SYSTEM RESEARCH DIVISION

START OF CASE <1

3 NODE ARTERIAL NETWORK FOR TRAINING COURSE
EIXED TIMED SIGNALS AT NODES 1, 2, AND 3

8011	8012	8013	N
11	12	13	
8031--31----1-	-2-	--3-	1
$\begin{gathered} 21 \\ 8021 \end{gathered}$		$\begin{gathered} 23 \\ 8023 \end{gathered}$	I

$\begin{array}{lccl}\text { Phasing LT/G } & \text { ER/G } & \text { LT/G } & \text { FWD---> } \\ \text { Offsets } & 0 & 48 & 47 \\ \text { PASSER splits and offsets. } & & \end{array}$

RUN CONTROL DATA

VALUE
RUN PARAMETERS AND OPTIONS
1 RUN IDENTIFICATION NUMBER

EXT CAS
RUN TYPE CODE $=(0,1)$ IF ANOTHER CASE (DOES NOT, DOES) FOLLOW
$(1,2,3)$
$(-1,-2,-3)$
TO RO CHECK (SIMULATION, ASSIGNMENT, BOTH)
(SIMULATION, ASSIGNMENT, BOTH) ONLY
NETSIM ENVIRONMENTAL OPTIONS
FUEL/EMISSION RATE TABLES ARE NOT PRINTED SIMULATION: PERFORMED RATE TABLES: EMBEDDED

ENVIRONMENTAL MEASURES: CALCULATED
TRAJECTORY FILE: NOT WRITTEN
INPUT UNITS CODE $=(0,1)$ IF INPUT IS IN (ENGLISH, METRIC) UNITS
OUTPUT UNITS CODE $=(0,1,2,3)$ IF OUTPUT IS IN (SAME AS INPUT, ENGLISH, METRIC, BOTH) UNITS CLOCK TIME AT START OF SIMULATION (HHMM)
SIGNAL TRANSITION CODE $=(0,1,2,3)$ IF (NO, IMMEDIATE, 2-CYCLE, 3-CYCLE) TRANSITION WAS REQUESTED RANDOM NUMBER SEED
RANDOM NUMBER SEED TO GENERATE TRAFFIC STREAM FOR NETSIM OR LEVEL I SIMULATION

7200 DURATION (SEC) OF TIME PERIOD NO. 1
LENGTH OF A TIME INTERVAL, SECONDS
MAXIMUM INITIALIZATION TIME, NUMBER OF TIME INTERVALS
NUMBER OF TIME IN'IERVALS BETWEEN SUCCESSIVE STANDARD OUTPUTS
TIME INTERMEDIATE OUTPUT WILL BEGIN AT INTERVALS OF 1800 SECS. FOR 5400 SECS. FOR MICROSCOPIC MODELS NETSIM MOVEMENT-SPECIFIC OUTPUT CODE $=(0,1)$ (IF NOT, IF) REQUESTED FOR NETSIM SUBNETWORK NETSIM GRAPHICS OUTPUT CODE $=(0,1)$ IF GRAPHICS OUTPUT (IS NOT, IS) REQUESTED

TIME PERIOD 1 - NETSIM DATA

I - TRAF-NETSIM - 9

NETSIM TURNING MOVEMENT DATA

LINK		TURN MOVEMENT PERCENTAGES				TURN MOVEMENT POSSIBLE				POCKET LENGTH LEFT		FEET/METERS) RIGHT	
		LEFT	ROU	GHT	GONAL	LEFT	ROU	IGH	AGONAL				
(31,	1)	27	62	11	0	YES	YES	YES	NO	2501	76	2501	76
$(2$,	1)	6	79	15	0	YES	YES	YES	NO	$150 /$	46	200/	61
$(21$,	1)	5	89	6	0	YES	YES	YES	NO	$0 /$	0	$0 /$	0
(11,	1)	8	84	8	0	YES	YES	YES	NO	01	0	$0 /$	0
$(1$,	2)	17	83	0	0	YES	YES	NO	NO	2001	61	$0 /$	0
$(3$,	2)	0	85	15	0	NO	YES	YES	NO	$0 /$	0	$300 /$	91
(12,	2)	50	0	50	0	YES	NO	YES	NO	$0 /$	0	$0 /$	0
$(2$,	3)	14	72	14	0	YES	YES	YES	NO	3001	91	$300 /$	91
$(33$,	3)	11	62	27	0	YES	YES	YES	NO	$250 /$	76	250 /	76
(23,	3)	10	85	5	0	YES	YES	YES	NO	$0 /$	0	$0 /$	0
(13,	3)	8	74	18	0	YES	YES	YES	NO	$0 /$	0	$0 /$	0
(8011,	11)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
$(1$,	11)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8012,	12)	0	100	0	0	NO	YES	NO	NO	01	0	$0 /$	0
(2,	12)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8013,	13)	0	100	0	0	NO	YES	NO	NO	01	0	$0 /$	0
(3,	13)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8021,	21)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(1,	21)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8023,	23)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(3,	23)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8031,	31)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(1.,	31)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
(8033,	33)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0
$(3$,	33)	0	100	0	0	NO	YES	NO	NO	$0 /$	0	$0 /$	0

SPECIFIED FIXED-TIME SIGNAL CONTROL, AND SIGN CONTROL, CODES

I - TRAF-NETSIM - 11


```
CONTROL CODES GO = PRO'TECTED
    NOGO = NOT PERMIMTED
    AMBR = AMBER
    PERM = PERMITTED NOT PROTECTED
    PROT = PROTECTED
    STOP = STOP SIGN
    YLD = YIELD SIGN
```

FIXED TIME CONTROL
OFFSET $=0$ SECONDS
CYCLE LENGTH $=90$ SECONDS
INTERVAL DURATION

1	22
2	3
3	31
4	3
5	28
6	3

	1	1)	12		1)	
LEFT	THRU	RIte diag	LEFT	THRU	RITE	DIAG
PROT	NOGO	NOGO	PROT	NOGO	NOGO	
AMBR	NOGO	NOGO	AMBR	NOGO	NOGO	
NOGO	GO	GO	NOGO	GO	GO	
NOGO	AMBR	Ambr	NOGO	AMBR	AMBR	
NOGO	NOGO	NOGO	NOGO	NOGO	NOGO	
NOGO	Nogo	nogo	Nogo			

APPROACHES (1) 11 , 11

LEFT thru Rite diag left thru' rite diag left thru rite diag NOGO NOGO NOGO NOGO NOGO NOGO $\begin{array}{ll}\text { NOGO NOGO NOGO } & \text { NOGO NOGO NOGO } \\ \text { NOGO NOGO NOGO } & \text { NOGO NOGO NOGO }\end{array}$ $\begin{array}{ll}\text { NOGO NOGO NOGO } & \text { NOGO NOGO NOGO } \\ \text { NOGO NOGO NOGO } & \text { NOGO NOGO NOGO }\end{array}$ NOGO NOGO NOGO NOGO NOGO NOGO AMBR AMBR AMBR PERM GO GO

NODE 2 EIXED TIME CONTROL OFFSET $=48$ SECONDS CYCIE LENGTH $=90$ SECONDS
INTERVAL DURATION

I-T_R-NETSIM - 12

NODE 3 INTERVAL DURATION

1	15
2	3
3	38
4	3
5	28
6	3

NODE
11
INTERVAL DURATION

1

NODE 12
INTERVAL DURATION

10

NODE 13
INTERVAL DURATION

10

NODE 21
INTERVAL DURATION

10

NODE 23
INTERVAL DURATION

10

FIXED TIME CONTROL

OFFSET $=47$ SECONDS

CYCLE LENGTH = 90 SECONDS

SIGN CONTROL
LEFT THRU' RITE DIAG LEFT THRU'RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEPT THRU RITE DIAG GO

SIGN CONTROL
 GO GO

SIGN CONTROL

SIGN CONTROL

SIGN CONTROL

LEFT THRU RITE DIAG LEFT THRU, RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG LEFT THRU RITE DIAG GO

[^2]
SECTION DATA TABLE

SECTION NUMBER

1 2

SECTION

TIME INTERVAL

SUBNE'TWORK

 TYPENETSIM
NETSIM
NETSIM NETSIM NETSIM

CONFIGURATION

0	31	1	2	3	33
0	33	3	2	1	31

0

CONFIGURATION CODES
0 LINEAR
1 CONVERGENT
2 DIVERGENT
3 CONVERGENT AND DIVERGENT

INITIALIZATION STATISTICS

SEQUENCE OF NODES DEFINING SECTION

PRIOR CONTENT (VEHICLES)

CURRENT CONTENT (VEHICLES)

0
162
245
282
289

162
245
282
282
289
289
277

PERCENT DIFFERENCE

10000

51
15
15
2
4

ALl EXISTING SUBNETWORKS REACHED EQUILIBRIUM

NETSIM INTERMEDIATE LINK STATISTICS AT TIME 7:30: 0
ELAPSED TIME IS 0:30: 0 (1800 SECONDS), TIME PERIOD
ELAPSED TIME IS 1800 SECONDS

LINK		$\begin{gathered} \mathrm{V} \\ \mathrm{BY} \\ \mathrm{LEFT} \end{gathered}$	$\begin{aligned} & \text { H } \\ & \text { TURN } \\ & \text { THRU } \end{aligned}$	$\stackrel{C}{C}$ RIGH	$\begin{gathered} \text { E } \\ \text { ENT } \\ \text { DIAGG } \end{gathered}$	C 1	$\begin{gathered} 0 \\ \text { QUE } \\ 2 \end{gathered}$	$\underset{\substack{\mathrm{N} \\ \text { EUES }}}{ }$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{BY} \end{aligned}$	${ }_{\text {L }}^{\text {E }}$	N	T	VEHICLES	VEHICLE	CONTROL D			DEVICE	INDICATIONS		
							,			5	6	7	DISCHARGED	STOPS	INT	LEFT	THRU	RIGHT	DIAG	AMBR	TIME
131	1)	16	28	2																	
12	1)	4	48	${ }_{0}$	0	11	6	7	0	1	6	${ }^{6}$	1124	971	1	PROT					
$(21$.	1)	0	4		0	11	0	7	0	0	0	3	863	669	1	PROT	NOGO	NOGO	-	OFF	0
$(11$.	1)	0	3	1	0	0	0	0	0	0	0	0	311	245	1	NOGO	NOGO	NOGO		OFF	0
1.	2)	8	10	0	0	0	0	2	0	0	0	0	271	219	1	Nogo	NOGO	NOGO	-	OFF	0
(3,	2)	0	29	2	0	2	0	2	0	0	0	3	761	234	3	NOGO	NOGO	NOGO	-	OFF	0
(12,	2)	5	0	3	0	2	2	0	0	0	0	0	884	578	3	-	GO	GO	-	OFF	17
12,	31	4	12	3	0	0	0	0	0	0	0	1	257	215	3	NOGO	-	NOGO	-	OFF	17
1 33,	3)	3	31	7	0	1	9	2	0	0	1		754 1307	586	3	NOGO	co	NOGO	-	OFF	17
(23,	$3)$	1	6	0	0	2	2	${ }_{0}$	0	0	1	0	1307	1232	3	NOGO	GO	GO	-	OFF	25
(13,	3)	0	2	2	0	1	2	0	0	0	0	0	177	139	3	NOGO	NOGO	NOGO	-	OFF	25
(8011,	11)	0	0	0	0	0	0	0	0	0	0	0	100	78	3	NOGO		NOGO	-	OFF	25
(1,	$11)$	0	16	0	0	0	0	0	0	0	0	0	270	0	1	NOGO	NOGO	NOGO	-	OFF	25
18012,	12)	0	0	0	0	0	0	0	0	0	0	0	668		1	-	GO	-	-	OFF	0
(2,	12)	0	1	0	0	0	0	0	0	0	0	0	256	0	1	-	GO	-	-	OFF	
(8013,	13)	0	0	0	0	0	0	0	0	0	0	0	261	0	1	-	GO	-	-	OFF	0
(8021,	13)	0	10	0	0	0	0	0	0	0	0	0	100 592	0	1	-	GO	-	-	OFF	0
(8021,	21)	0	0	0	0	0	0	0	0	0	0	0	592 310	0	1	-	GO	-	-	OFF	0
(8023,	21)	0	12	0	0	0	0	0	0	0	0	0	310 410	0	1	-	GO	-	-	OFF	0
13.	23)	0	5	0	0	0	0	0	0	0	0	0	177	0	1	-	GO	-	-	OFF	0
(8031,	31)		0	0	0	0	0	0	0	0	0	0	309	0	1	-	GO	-	-	OFF	0
1 1,	31)	0	2	0	0	0	0	0	0	0	0	0	1125	0	1	-	GO	-	-	OFF	0
(8033,	33)	0	0	0	0	0	0	0	0		0	0	729	0	1	-	GO	-	-	OFF	0
3,	33)	0	19	0	0	0	0	0	0		0	0	1314	0	1		GO	-	-	OFF	0
					0			0	0		0	0	560	0			GO	-	-	OFF	0
																	GO	-	-	OFF	0

NETSIM INTERMEDIATE LINK STATISTICS AT TIME 8: 0: 0
ELAPSED TIME IS $1: 0: 0(3600$ SECONDS), TIME PERIOD 1 ELAPSED TIME IS 3600 SECONDS

LINK			H ITURNTHRU			C1	$\begin{gathered} \mathrm{O} \mathrm{~N} \\ \text { QUEUES } \end{gathered}$		$\begin{aligned} & T \\ & B Y \end{aligned}$	E N LANE		T	VEHICLES DISCHARGED	VEHICLE STOPS		CONTROL		DEVICE		INDICATIONS		$\begin{aligned} & \text { TIME } \\ & \text { ACTV } \end{aligned}$			
						2	3	4		5	6					7	INT	LEFT	THRU	RIGHT	DIAG		AMBR		
$(31$,	1)	16	31	1	0		7	8	9	0	0	5	4	2247	k			1956	1	PROT	NOGO	NOGO	-	OFF	0
1 2,	1)	3	21	5	0		4	2	0	0	0	1	2	1714		1264	1	PROT	NOGO	NOGO	-	OFF	0		
$(21$,	1)	0	6	0	0	0	1	0	0	0	0	0	621		524	1	NOGO	NOGO	NOGO	-	OFF	0			
$(11$,	1)	3	6	0	0	0	4	0	0	0	0	0	536		450	1	NOGO	NOGO	NOGO	-	OFF	0			
$(1$,	2)	7	19	0	0	0	0	0	0	0	0	3	1512		464	3	NOGO	GO	-	-	OFF	17			
1 3,	2)	0	24	4	0	0	0	0	0	0	0	0	1726		1039	3	-	GO	GO	-	OFF	17			
(12,	2)	4	0	5	0	1	4	0	0	0	0	0	511		418	3	NOGO	-	NOGO	-	OFF	17			
1 2,	3)	5	16	1	0	0	0	1	0	0	0	1	1483		1155	3	NOGO	GO	GO	-	OFF	25			
$(33$,	3)	6	32	4	0	2	4	6	0	0	2	2	2620		2284	3	NOGO	GO	GO	-	OFF	25			
(23,	3)	2	5	0	0	3	1	0	0	0	0	0	355		271	3	NOGO	NOGO	NOGO	-	OFF	25			
(13,	3)	0	3	0	0	2	0	0	0	0	0	0	201		158	3	NOGO	NOGO	NOGO	-	OFF	25			
(8011.	11)	0	0	0	0	0	0	0	0	0	0	0	540		0	1	-	GO	-	-	OFE	0			
1 1,	11)	0	12	0	0	0	0	0	0	0	0	0	1351		0	1	-	GO	-	-	OFE	0			
(8012,	12)	0	0	0	0	0	0	0	0	0	0	0	511		0	1	-	GO	-	-	OFF	0			
$(2$,	12)	0	4	0	0	0	0	0	0	0	0	0	545		0	1	-	GO	-	-	OFF	0			
(8013,	13)	0	0	0	0	0	0	0	0	0	0	0	200		0	1	-	GO	-	-	OFF	0			
$(3$.	13)	0	10	0	0	0	0	0	0	0	0	0	1215		0	1	-	GO	-	-	OFF	0			
(8021,	21)	0	0	0	0	0	0	0	0	0	0	0	621		0	1	-	GO	-	-	OFF	0			
1 1,	21)	0	10	0	0	0	0	0	0	0	0	0	808		0	1	-	GO	-	-	OFF	0			
(8023,	23)	0	0	0	0	0	0	0	0	0	0	0	355		0	1	-	GO	-	-	OFF	0			
$(3$,	23)	0	3	0	0	0	0	0	0	0	0	0	658		0	1	-	GO	-	-	OFF	0			
(8031,	31)	0	0	0	0	0	0	0	0	0	0	0	2250		0	1	-	GO	-	-	OFF	0			
$(1$,	31)	0	0	0	0	0	0	0	0	0	0	0	1446		0	1	-	GO	-	-	OFF	0			
(8033,	33)	0	0	0	0	0	0	0	0	0	0	0	2628		0	1	-	GO	-	-	OFF	0			
13.	33)	0	22	0	0	0	0	0	0	0	0	0	1069		0	1	-	GO	-	-	OFF	0			

NETSIM INTERMEDIATE LINK STATISTICS AT TIME 8:30: 0
ELAPSED TIME IS $1: 30: 0$ (5400 SECONDS), TIME PERIOD 1 ELAPSED TIME IS 5400 SECONDS

CUMULATIVE NETSIM STATISTICS AT TIME 9: 0: 0
ELAPSED TIME IS 2: 0: 0 (7200 SECONDS).
TIME PERIOD
1 ELAPSED TIME IS 7200 SECONDS

NETSIM PERSON MEASURES Of Effectiveness

LI		PERSON MILE	$\begin{gathered} \text { PERSON } \\ \text { TRIPS } \end{gathered}$		$\begin{aligned} & \text { DELAY } \\ & \text { PERSON-MIN } \end{aligned}$	TRAVEL TIME PERSON-MIN
131,	1)	1106.5	5842.2			
2,	1)	1529.4	4486.3		4195.4	6104.6
21.	1)	305.3	1612.0		3657.2	6296.2
11,	1)	266.2	1405.3	*	991.6 861.6	1720.7
1.	2)	1327.9	3896.1		861.6 1289.9	1494.7
3.	2)	842.0	4447.3		1289.9 2396.6	3581.2
(12,	21	251.1	1326.0		2396.6 620.7	3849.5
1 2,	3)	726.1	3833.7		620.7 2102.1	1218.0
$(33$,	3)	1289.9	6810.7		2102.1	3354.9
1 23,	3)	174.8	923.0		5300.2 437.6	7525.9
(13,	3)	98.7	521.3		437.6 242.0	853.4
(8011,	11)		521.3		242.0	476.8
(8012,	11)	688.0	3656.9		341.1	
(8012,	12)	254.6			341.1	1977.5
(8013,	13)	254.6	1344.2		97.5	703.0
(8021),	13)	586.7	3160.3		250.4	1645.7
(8021,	21)	386.2	2060.5			
(8023,	23)		2060.5		157.4	1075.9
$\begin{aligned} & 18031, \\ & 3, \end{aligned}$	23)	314.7	1680.9		132.2	880.8
(1,	31)	706.1				
(8033,	33)	706.1	3729.7		363.2	2042.6
1 3,	33)	531.0	2804.1		259.8	1522

NETSIM VEHICLE-MINUTE STATISTICS BY TURN MOVEMENT

NETSIM SECONDS PER VEHICLE STATISTICS BY TORN HO

NETSIM SECTION SPECIFIC STATISTICS

CUMULATIVE VALUES OF FUEL CONSUMPTION AND OF EMISSIONS

LINK		FUEL CONSUMPTION							VEHICLE EMISSION RATES		$\begin{aligned} & \text { (KG/MILE.HOUR) } \\ & \text { NO } X \end{aligned}$
VEHICLE	TYPE-	AUTO	ALLONS	BUS		M.P.G. TRUCK	BUS		HC	CO	
$(31$,	1)	104.6	0.0	0.0	8.1	0.0	0.0				
1 2,	1)	104.5	0.0	0.0	11.2	0.0	0.0		0.633 0.349	13.068	3.005
$(21$,	$1)$	24.8	0.0	0.0	9.5	0.0	0.0		0.349 0.142	6.280 2.332	1.473
1 11,	1)	21.3	0.0	0.0	9.6	0.0	0.0		0.142	2.332 1.948	0.482
1 1,	2)	80.2	0.0	0.0	12.7	0.0	0.0	t	0.122	1.948 4.555	0.412
3.	2)	68.7	0.0	0.0	9.4	0.0	0.0		0.260 0.409	4.555 7.819	1.277 1.945
12,	2)	18.2	0.0	0.0	10.5	0.0	0.0		0.102	7.819 1.552	1.945 0.351
(2,	3)	51.3	0.0	0.0	11.0	0.0	0.0		0.312	1.5192 5.696	0.351 1.272
$(33$,	3)	127.1	0.0	0.0	7.8	0.0	0.0		0.766	5.696 15.877	1.272 3.546
(13,	3)	12.8 7.0	0.0 0.0	0.0	10.5	0.0	0.0		0.071	1.081	0.247
(8011,	11)	7.0	0.0	0.0	10.7	0.0	0.0		0.039	0.567	0.134
(1) 1,	111	40.9	0.0	0.0	12.6	0.0	0.0		0.216	3.285	0.845
(8012,	121										0.845
(8013,	13)	14.9	0.0	0.0	12.5	0.0	0.0		0.079	1.235	0.322
(3,	13)	34.5	0.0	0.0	12.6	0.0	0.0				
(8021,	21)					0.0	0.0		0.183	2.837	0.729
(802,	211	22.7	0.0	0.0	12.8	0.0	0.0				
(8023,	23)						0.0		0.120	1.864	0.481
(${ }^{3}$ 3,	2311	18.6	0.0	0.0	12.6	0.0	0.0		0.099	1.555	0.398
(1,	31)	41.4	0.0	0.0	13.0	0.0					
(8033,	33)			0.0		0.0	0.0		0.218	3.307	0.843
3,	33)	29.7	0.0	0.0	13.7	0.0	0.0		0.156	2.370	
SUBNETWO	RK-	823.2	0.0	0.0	10.5	0.0					
					10.5	0.0	0.0		0.243	4.383	1.048

EMISSION STATISTICS FOR TRUCKS AND BUSES ARE NOT AVAILABLE

TOTAL CPU TIME FOR THIS RUN $=660.37$ SECONDS $\quad\{33 \mathrm{Mhz} .486\}$
LAST CASE PROCESSED

Editor's Note: The output was produced by a pre-release version of CORFLO and therefore results may not be reproducible using a later pre-release or release version. Large portions of the output were deleted for the sake of brevity.

TГTTTTTTTTT	RRRRRRRRR	AAAAAAA	FEFFFFFFFFF
TTTTTTTTTTT	RRRRRRRRRR	AAAAAAAAA	FFFFFFFFFFF
TTTTTTTTTTT	RRRRRRRRRRRR	AAAAAAAAABA	FFFFFFFFFFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRRRRRRRRRRR	AAAAAAAAAAA	FFFFFFF
TTT	RRRRRRRRRRR	AAAAAAAAAAA	FFFFFFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
MICRO-CO (REQUI	MPUTER PROTEC 80386 AND	EED-MODE VERS 80387 OR ABOV	

VERSION 3.10 RELEASE DATE MAY 1992

TRAF SIMULATION MODEL
DEVELOPED FOR
U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION
INTELLIGENT VEHICLE HIGHWAY SYSTEM RESEARCH DIVISION

FREEWAY LINKS

FREEWAY SUBNETWORK PARAMETERS

+ INDICATES A DEFAULT VALUE, ASSIGNED INTERNALI,Y BY THE MODEL

LINK	LENGTH	$- \text { LANES- }$				-CHANNEL- C U		LEVEL I LINKS			*OPP.	LOST	Q DISHDWY.			RTOR PED	
							DESTINATION NODE										
	FT/ M		$\begin{aligned} & \text { PKT } \\ & \text { L } \end{aligned}$	GRD PCT	LINK TYPE	R ${ }^{\text {B2 }} 3456$					TIME SEC						
						B23456	LEFT	THRU	RGHT			SPE					
(8011, $\left(\begin{array}{rl} \\ 15, & 11\end{array}\right)$	010	3	00	0									MPH	KMPH	CODE	CODE	
(15, 11)	800/ 244	2	10	0	1 1*	001000	10	15	12	0	15						
$(12,11)$	800/ 244			0	1**	000000 000000	12	8011	10	0	8011	2.5 2.5	2.2	0/	0	0	0
(10, 11)	400/ 122		01	3	1 *	000000	8011	10	15	0	- 10	2.5 2.5	2.2	$25 /$	40	1	0
					1*	000000	15	12	8011	0	12	2.5	2.2	301	48	0	0
$\begin{array}{rrr}(7012, & 12) \\ (16, & 12)\end{array}$	350/ 107										12	2.5	2.2	30/	48	0	0
$\left(\begin{array}{lll}(16, & 12) \\ (11, & 12)\end{array}\right.$	800/ 244		$\begin{array}{ll}0 & 1\end{array}$	0	$1^{\text {1 }}$ *	001000	11	16	0	0	16						0
(11, 12)	800/244		0	0	$1^{\text {1 }}$ *	000000	0	7042	11	0	16	2.5	2.2	$35 /$	56	0	0
			0	0	1 *	000000	16	0	7042	0	0	2.5	2.2	$35 /$	56	0	0 0
											0	2.5	2.2	30/	48	1	0

LINK TYPE
IDENTIFIES THE DISTRIBUTION USED FOR QUEUE DISCHARGE AND START-UP LOST TIME CHARACTERISTICS.

LANE CHANNELIZATION CODES

0	UNRESTRICTED
1	LEEFT TURNS ONLY
2	BUSES ONLY
3	CLOSED
4	RIGHT TURNS ONLY
5	CAR - POOLS
6	CAR - POOLS + BUSES

RTOR CODES

0 RTOR PERMITTED
1 RTOR PROHIBITED

LEVEL I TURNING MOVEMENT DATA

I - CORFLO -4 ,

SPECIFIED FIXED-TIME SIGNAL COMTROL ANOU ETOM

NODE 12
phase duration

1	30
2	13
3	7
NODE	13

Phase duration
FIXED TIME CONTROL OFFSET $=0$ SECOND APPROACHES

ACTUATED CONTROLLER PHASE SPECIFICA'TIONS

time period 1 - Levele 2 dati

			LEVEL II LINKS																	
					-LANES-				-CHANNEL-											
					U				U							Q DIS HDWY. SEC	FREE SPEED			
			LENGTH		L	PKT		GRD	R	DESTINATION NODE				OPP. NODE	TIME SEC				RTOR PED	
	L I		FT /	M	L	L		PCT	B23456	LEFT	THRU	RGHT	DIAG				MPH/K	MPH	CODE	CODE
	21.	25)	900/	274	2	1	0	0	000000	24	27	26	0	27	2.5*	2.2.*	35/	56	1	0
	27,	$25)$	600/	183	2	1	1	0	000000	26	21	24	0	21	2.5*	2.2*	$35 /$	56	1	0
	26,	25)	1200/	366	2	0	0	0	000000	21	24	27	0	24	2.5*	2.2*	30%		1	0
1	24,	25)	600/	183	2	0	0	0	000000	27	26	21	0	26	2.5*	2.2*	$30 /$	48	1	0
	22,	26)	$900 /$	274	2	1	0	0	000000	25	29	0	0	29	2.5*	2.2*	$35 /$		0	0
	29,	26)	1800/	549	2	0		0	000000	0	22	25	0	22	2.5*	2.2*	$35 /$		0	0
1	25,	26)	1200/	366	2	0	0	0	000000	29	0	22	0	0	2.5*	2.2*	$30 /$	48	1	0

* indicates a default value, assigned internally by the model

LANE CHANNELIZATION CODES

0 UNRESTRICTED
1 LEFT TURNS ONLY
2 BUSES ONLY
3 CLOSED
4 RIGHT TURNS ONLY
4
5
5
CAR - POOLS
5 CAR - POOLS
6 CAR - POOLS + BUSES

Level il turning movement data

| $(21$, | $25)$ |
| :--- | :--- | :--- |
| $(27$, | $25)$ |
| $(26$, | $25)$ |
| $(24$, | $25)$ |
| $(22$, | $26)$ |
| $(29$, | $26)$ |
| $(25$, | $26)$ |

TURN MOVEMENT PERCENTAGES TURN MOVEMENT POSSIBLE LEET THROUGH RIGHT DIAGONAL LEFT THROUGH RIGHT DIAGONAL

RTOR
CODES
0 RTOR PERMITTED
1 RTOR PROHIBITED

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

PEDESTRIAN

 CODES0 NO PEDESTRIANS
1 LIGHT
2 MODERATE
HEAVY

BLOCKAGE (PCT) (SECS)

0	0
0	0
0	0
0	0
0	0
0	0
0	0

YES	NO
YES	NO
YES	NO
YES	NO
NO	NO
YES	NO
YES	NO

POCKET LENGTH (FEET/METERS) LEFT RIGHT

$140 /$	43	$0 /$	0
$100 /$	30	$120 /$	37
$0 /$	0	$0 /$	0
$0 /$	0	$0 /$	0
$140 /$	43	$0 /$	0
$0 /$	0	$160 /$	49
$0 /$	0	$0 /$	0

phase duration

1	43
2	43
3	14
NODE	26

Phase duration
$\begin{array}{ll}1 & 35 \\ 2 & 15\end{array}$
35
15
PERM GO RITE DIAG LEFT THRU RITE DIAG
NOGO GO

YIELD OR AMBER

GREEN

RED
RED WITH GREEN RIGHT ARROW
RED WITH GREEN LEET ARROW
STOP
RED WITH GREEN DIAGONAL ARROW
RED WITS-GREEN THRU ARROW
NO LEFT TURN-GPEDN RIGHT GREEN ARROW
CON'TROL CODES

> NOGO $=$ NOT PERMITTED
> PROT $=$ PROTECTED
YLD $=$ YIELD SIGN

CYCLE LENG'TH $=100$ SECONDS

	21	25							APPRO	ACHES									
PERM	THRU GO	RITE	DIAG	LEFT	THRU	RITE	DIAG		$(26$	25									
NOGO N	NOGO	NOG		PERM	GO	GO		NOGO	THRU	RI'TE	DIAG	LEFT	THRU	RIT	DIAG				
PROT N	NOGO	NOGO		NOGO	NOGO	NOGO		PERM	NOGO	NOGO		NOGO	NOGO	NOGO	DIAG	LEFT	THRU	RITE	DIAG,
		NOGO		PROT	NOGO	NOGO		NOGO	$\begin{aligned} & \text { GO } \\ & \text { NOGO } \end{aligned}$	GO		PFFRM	GO	GO					
FIXED	TIME	CON	I							GO		NOGO	NOGO	GO					

MAX. NUMBER OF ASSI GTMEAT ITERTIOASSA 10

MAX.NUMBER OF CAPACITY CALIBRATIONS 2
CARRY-OVER CAPACITY FACTOR (\%) $=75$
TYPE OF OBJECTIVE FUNCTION
(0:USER OPTIMAL, 1:SYSTEM OPTIMAL) = 0
IMPEDANCE FUNCTION PARAMETERS:

$$
\begin{aligned}
& \text { ALPHA }=60 / 100+ \\
& \text { BETA }=40 / 10+
\end{aligned}
$$

TYPE (0:FHWA, 1:MODIFIED DAVIDSON) $=0 \quad+$

$$
(+) \text { : INDICATES DEFAULT VALUE }
$$

REQUESTED INTERMEDIATE OUTPUT CODE $=0$
1: PATH ASSIGNMEN'I'S
2: TREE CONSTRUCTS
3: DETAILED O-D TREES
4: MLI OU'IPUTS 1,2 AND 3

TRIP TABLE
FOR EACH ORIGIN NODE, TABIEE PROVIDES LISTING OF PAIRS OF DATA : DESTINATTON NODF./VOLUME
ORIGIN NODE (8001) 8010/ 100 8017/ 80
8020/30 8031/30
8028/120
8034/120
$8006 / 3000$
2029/ 50 8015/ 60
IN'IERNAL CENTROIDS
CENTRO1D
LINK

| 2026 | $(26$, | $22)$ |
| :--- | :--- | :--- | :--- |
| 2029 | $(29$, | 261 |

PROPERTIES OF BUS STATIONS

STATION NO.	LANE SERVICED	LINK			DIST UPST FEET	ROM NODE ERS	CAPACITY (BUSES)	MEAN DWELL (SEC)	TYPE	Percent of buses
1	0	1	13.	141						STOPPING
2	0	1	15,	16)	460	140	1	30	1	
							2	50	1	100

THE TYPE CODE identifies the Applicable statistical distribution of dwell time
BUS ROUTE PATHS

1-CORFLO-10

ORIGIN NODE VOLUME (VPH)	
8001	3840
8006	3940
TRAEFIC ASSIGNMENT	SINK VOLUMES
DESTINATION NODE	VOLUME (VPH)
2026	850
2029	330

DESTINA'TION TRIP TABLE
FOR EACH DES'IINATION NODE, TABLE PROVIDES LIS'IING OF DATA PAIRS: ORIGIN NODE/VOLUME

I-CORFLO-11

TRAFFIC ASSIGNMENT RESULTS
FREFLO SUBNETWORK

TRAFFIC ASSIGNMENT RESULTS

FREFLO SUBNETWORK

I-CORFLO-12

INITIALIZATION STATISTICS

PRIOR CONTENT (VEHICLES)
0
0
0
191
66
108
300
82
237
368
87
280
402
299

PERCENT DIFEERENCE

FREFLO
LEVEL I
LEVEL I I
LEVEL I
FREFLO
LEVEL I
LEVEL II
FREFLO
LEVEL I
LEVEL I I
gREFLO
EVEI, I
LEVEL I I
EREFLO
FREFLO
LEVEL II

CURRENT CONTENT (VEHICLES)

191
66
66
66
108
108
300
78
239
368
368
87
87
280
280
402
402
89
299
299
416
307

EQUILIBRIUM ATTAINED
EQUILIBRIUM AT'I'AINED EQUILIBRIUM ATTAINED

ALI EXISTING SUBNE'TWORKS REACHED EQUILIBRIUM
SPIILBACK ON LEVEL L LINK (115, 15) OCCURS 13 PERCENT OF THE TIME DURING TIME INTERVAL 4. SPILIBACK ON LEVEI, 2 LINK (21 , 25) OCCURS 12 PERCENT OF THE TIME DURING TIME INTERVAL 10

FREFLO INTERMEDIATE STATISTICS AT TIME 8:50: 0

LEVEL I INTERMEDIATE LINK STATISTICS AT TIME 8:50: 0
ELAPSED TIME IS $0: 20: 0$ (1200 SECONDS), TIME PERIOD 1 ELAPSED TIME IS 1200 SECONDS

L INK	VEHICLE LEFT THRU		CONTENT RITE DIAG		VEHICLE	QUEUES	$\begin{array}{r} B Y \\ 5 \end{array}$	$\underset{6}{\text { LANE }}$	$\begin{aligned} & \text { VEHICLES } \\ & \text { IN OUT } \end{aligned}$		NUMBER STOPS	PHASE	ME IS 1200 SECONDS CONTROL DEVICE INDICATIONS				
(7012, 12)	0					- -	-	-					LEFT	THRU	RITE	DIAG	TIME ACTV
$(16,12)$	0	$\begin{aligned} & 3 \\ & 4 \end{aligned}$			21											diag	
(12, 12)	0	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	0	0	21	00	0		160	168	103						
				0	0 0	00	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	143	142	105	1	NOGO	GO	-	-	0
						II			111	111	92		NOGO	-	GOGO	-	0

IEVEL II INTERMEDIATE LINK STATISTICS AT TIME 8:50: 0

CUMULATIVE FREEWAY STATISTICS AT TIME 8:50: 0
ELAPSED TIME IS 0:20: 0 (1200 SECONDS), TIME PERIOD 1 ELAPSED TIME IS 1200 SECONDS

CUMULATIVE LEVEL, I STATISTICS AT TIME 8:50: 0
ELAPSED TIME IS $0: 20: 0(1200$ SECONDS), TIME PERIOD 1 ELAPSED TIME IS 1200 SECONDS
LINK STATISTICS

LINK		VEHICLE MINUTES					RATIO	MINUTES/MILE	
		VEHICLE		MOVE	DELAY	TO'IAL	MOVE/	TOTAL	DELAY
		MILES	TRIPS	TIME	TIME	TIME	TOTAL,	TIME	TIME
(7012,	12)	11.14	168	19.22	88.63	107.85	0.18	9.68	7.96
(16,	12)	21.51	142	37.11	32.45	69.57	0.53	3.23	1.51
(11,	12)	16.82	111	33.64	35.46	69.10	0.49	4.11	2.11
SUBNETWORK=		593.36	1942	19.16	16.38	35.55	0.54	3.59	1.66
		--- VE		CLE-HO	RS ---				

SECONDS/VEHICLE		-----	AVERAGE VOLUME	VALUES	OCCUP	S'TORAGE
TOTAL	DELAY	STOPS				
TIME	TIME	(PCT)	VPH	MPH	VEH.	(PCT)
38.5	31.7	61	504	6.2	4.8	9.1
29.4	13.7	73	426	18.6	3.5	4.0
37.4	19.2	82	333	14.6	3.5	4.3
1.10	0.51	1.1		16.7	106.4	5.6
-- MIN	TES/ --	PER				
VEHIC	E-TRIP	TRIP				

LEVEL I BUS STATISTICS

I-CORFLO-15

MOVEMENT SPECIFIC LEVEL I STATISTICS

L INK		MOVEMENT SPECIFIC LEVEL I STATISTICS											
		VEHICLE-MIl,			VEHICLE-TRIPS								
		LEFT	THRU	RIGHT				SPEED (MPH)			STOP S (PCT)		
(7012,	12)	3.84			LEF 1		R I GHT	LEFT	THRU	RIGHT	LEFT	S P THRU	
$(16$,	12)	0.00	7.29 19.53	0.00	58	110	0	2.7			LEFT		RIGHT
$(11$,	12)	3.79	19.53 0.00	1.97 13.03	0	129	13	0.0	18.6 18.3	0.0 21.9	100.0	40.9	0.0
			0.00	13.03	25	0	86	15.3	18.3 0.0	21.9 14.4	0.0	74.4	69.2
									0.0	14.4	88.0	0.0	81.4

LEVEL, I SECONDS PER VEHICLE STATISTICS BY TURN MOVEMENT

LEVEL I VEHICLE-MINUTES STATISTICS BY TURN MOVEMENT

V	E	H	I	C	L	E

LINK
$\begin{array}{rr}(7012, & 12) \\ (16, & 12)\end{array}$

LEFT	$\begin{gathered} \text { MOVE TIME } \\ \text { THRU } \end{gathered}$	RIGHT	DELAY TIME			TOTAL TIME		
			LEFT	THRU	RIGHT	LEFT	THRU	RIGHT
6.63	12.58	0.00	77.68	10.95				RIGHT
0.00	33.70	3.40	0.00	10.95 30.46	0.00	84.32	23.53	0.00
7.58	0.00	26.06	7.29	30.46 0.00	2.00 28.17	0.00	64.17	5.40
			. 2	0.00	28.17	14.87	0.00	54.23

RATIO		MOVE/TOTAL
LEFT	THRU	RIGHT
0.08	0.53	0.00
0.00	0.53	0.63
0.51	0.00	0.48

LINK STATISTICS

LINK
(26, 22)
23, 22)

BUS TRIPS
2.0
2.0
2.0

MOVING TIME
(MINUTES)

DELAY TIME
(MINUTES)
M / T
3.0
1.5
0.16
0.20

NO. OF STOPS

PERSON TRIPS
TRAVEL, TIME:
(MINUTES)
50.0
(MINUTES)
3.5
1.9

Kll.OGRAMS
CO PERSON-MI
PER GALIION
$\begin{array}{ccc}\text { GALLONS } & \text { GRAMS PER MILE } \\ \text { OF FUEL } & \text { CO } & \text { HC }\end{array}$

SUBNETWORK RESULTS ASSUME 100 PERCENT AUTO TRAFFIC

DATA FOR LINKS WITH SPEED EXCEEDING 20 MPH ARE APPROXIMATIONS
BUSES ARE ASSUMED EQUIVALENT TO 2.5 AU'TOS FOR THESE ESTIMATES.

I - CORFLO - 17

I. INK			HICLF-MILE MOVEMENT SPECIFIC IFVEL II STATISTICS												
1		2! ${ }^{\text {a }}$													
	21.				RIGH'T	LEFT	THRU	RIGHT							
			26.14	38.63	4.06				LEF'T'		THRU	R ICHT	I.EFT	STOPS (PCT)	
1	21.	251	3.40	33.10	12.80	154	229	24		1.3					RIGII'
1	26.	25)	2.82	19.21	12.80 19.64	30	293	112		16.8	11.6	9.9	77.6	81.2	
1	24.	25)	0.00	19.36	5.18	12	86	87		14.9	15.1	11.9	18.7	86.0	87.9 83.2
1	22.	261				0	171	45		0.0	11.4	16.7	68.0	71.8	89.2 49.5
1	29.	26)	12.47 0.00	30.72 145.70	0.00	73	182					15.1	0.0	71.1	31.6
1	25,	$26)$	1.00 34.43	145.70 0.00	38.58	0	182 429	0 113	t	15.3	22.9	0.0			31.6
			34.43	0.00	13.98	152	0 0	113		0.0	27.2	26.2	93.6 0.0	71.2	0.0
								62		4.3	0.0	15.4	0.0	30.9	0.0
													-3	0.0	89.3

IEEVEL II VEHICLE-MINUTES STATISTICS BY TURN MOVEMENT

v	F	H	I	C	1.	E	

LINK
$(21$,
$(27$,
(25)
$(26$,
(25)
(25)
$(29$,
(25)
$(25$,
(26)

RATIO		MOVE/TOTAI,
LEFT	THRU	RIGHT
0.04	0.33	0.28
0.48	0.34	0.34
0.50	0.50	0.56
0.00	0.38	0.50
0.44	0.66	0.00
0.00	0.78	0.75
0.14	0.00	0.51

CUMULATIVE NETWORK-WIDE BUS STATISTICS AT TIME B:SO: 0
ELAPSED TIME IS $0: 20: 0(1200$ SECONDS), TIME PERIOD 1 ELAPSED TIME IS 1200 SECONDS
ROUTE STATISTICS
ROUTE
BUS TRIPS
TOTAL
MEAN
PERSON TRIPS
TRAVEL TIME (SEC/BUS)
298.5100 TRAVEL TIME (BUS-MIN.)
19.9
21.9
328.5

100

PERSON
TRAVEL TIME
(MINUTES)
497.5
547.5

TOTAL VEHICLE- MILE $=9350.04$
AVERAGE SPEED $(\mathrm{MPH})=30.83$ TOTAL CPU TIME FOR THIS RUN $=146.43$ SECONDS

LAST CASE PROCESSED

FRESIM Ouput for Existing Conditions Sample Problem

Editor＇s Note：The FRESIM output was produced by a pre－release version of FRESIM and therefore results may not be reproducible using a later pre－release or release version．Portions of the output were deleted for the sake of brevity．

	$\underline{*}$		
TTTTTTTTTTT	RRRRRRRRR	AAAAAAA	FFEFFEFFEFE
тTTTTTTTTT＇	RRRRRRRRRRR	AAAAAAAAA	FFFFFFFEFEE
тTTTTTTTT「T	RRRRRRRRRRR	AAAAAAAAAAA	FFFPEFFEFEF
TT＇T	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFF
T「T	RRRRRRRRRRRR	AAAAAAAAAAA	FFFEPFF
TTT	RRRRRRRRRRR	AAMAAAAAAAA	FEFEFFF
T＇「T	RRR RRR	AAA AAA	FFE
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFE
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FFE
MICRO－COMPUTER PROTECTED－MODE VERSION（REQUIRES 80386 AND 80387 OR ABOVE）			

$$
\begin{array}{rr}
\text { VERSION } & 3.10 \\
\text { RELIEASE DATE } & 6 / 01 / 91
\end{array}
$$

TRAF－FRESIM SIMULATION MODEL
DEVELOPED FOR
U．S．DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION
IVHS RESEARCH DIVISION
$\begin{array}{ccccc}1 & 1 & 2 & 2 & 3 \\ -5--0-1 M & 3 \\ \text { SIM DATA FILE NAME: GW } \times \text { CV DAT }\end{array}$ 8
-0
0
FRESIM SAMPLE PROBLEM, GW PARKWAY, EXISTING GEOMETRICS AND VOLUMES FRESIM SAMPLE
$>$: Last revised on 12-21-1991 at 21:24:48

TRAF SIMULATION MODEL
DEVELOPED FOR
U. S. DEPARTMENT OF TRANSPORTATION

FEDERAL HIGHWAY ADMINISTRATION
TRAFFIC SYSTEMS DIVISION

```
START OF CASE & 1
```

FRESIM DATA FILE NAME: GW X CV.DA'I
FRESIM SAMPLE PROBLEM, GW PA ARKWAY, EXISTING GEOMETRICS AND VOLUMES
>: Last revised on 12-21-1991 at 21:24:48
DATE $=11 / 27 / 91$
USER $=$ SMART TRANSPORTATION ENGINEER
AGENCY $=$ SMART STATE DOT RUN CONTROL DATA

VALUE
RUN PARAMETERS AND OPTIONS

RUN IDENTIFICATION NUMBER
NEXT CASE CODE $=(0,1)$ IF ANOTHER CASE (DOES NOT, DOES) FOLLOW
ERESIM OFELINE INCIDENT DETECTION CODE $=(0,1)$ IF OFFLINE INCIDENT DETECTION (IS NOT, IS) BEING PERFORMED

RUN TYPE CODE $=(1,2,3)$ IF (STMUHATION, TRAF. ASSIGNMT., BOTH) TO BE EXECUTED $(-1,-2,-3)$ IF ONLY DIAGNOSTICS ARE BEING PERFORMED ON (SIMULATION, TRAF. ASSIGNMT., ALL) DATA

FRESIM ENVIRONMENTAL CODE OF FORM, XY
$X=(0,1)$ IF EUEL/EMISSION RATES (NOT, ARE) PRINTED
$Y=0,1, \ldots, 7$, DENOTES CONDITIONS ON SIMUIATION, OUTPUT, RATE TABLES, TRAJECTORY FIIE
CLOCK TIME AT START OF SIMULATION, HOURS AND MINUTES
RANDOM NUMBER SEED
DURATION (SEC) OF TIME PERIOD NO. 1
IENGTH OF A TIMF. INTERVAL, SECONDS
FRESIM TIME STEP DURATION IN TENTHS-OF-A-SECOND
MAXIMUM INITIALIZATION TIME, NUMBER OF TIME INTERVALS
NUMBER OF TIME INTERVALS BETWEEN SUCCESSIVE STANDARD OUTPUTS
TIME INTERMEDIATE OUTPUT WILL BEGIN AT INTERVALS OE, 300 SECS. FOR 1500 SECS. FOR MICROSCOPIC MODELS

TIME PERIOD 1 - ERESIM DATA

I- FRESIM-5

	FRESIM LINK VOLUME	
	FLOW RATE	
	(VINK	PEH/HOUR)

[^3]FRESIM LANE ALIGNMENT TABLE

DISTANCE FROM

LINK TYPE
CODES
R : R R MP
F : FREEWAY

REASON CODES
1 :
INDICANT AT THE ON-RAMP GORE. ENTRIES IN THE 'IABHEAU
INDIFATE THE MAINLINE FREEWAY LANES WHICH RECEIVES THE TRAFFIC FROM THE UPSTREAM ON-RAMP LANES
ALIGNMENT AT THE OFF-RAMP GORE. ENTRIES IN THE TABLEAU INDICATE THE OFF-RAMP LANES WHICH RECIEVE THE TRAFFIC FROM THE UPSTREAM MAINLINE FREEWAY LANES

3 : ALIGNMENT DUE TO A LANE ADD OR DROP ENTRIES
THE TABLEAU INDICATE THE IANES DO
OR DROP WHICH RECIEVE THE TRAE
finc opstream lane
保
INDICATE THE DOWNSTREAM LANES WHICH RECIEVE THE TRAFFIC
FROM THE UPSTREAM LANES

TABLE OF FREEWAY WARNING SIGNS

FRESIM ORIGIN - DESTINATION TRIP TABLE

| ORIGIN NODE | (8062) | $50 /$ | 0.260 | $61 / 0.740$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ORIGIN NODE | (8053) | $50 / 0.260$ | $61 / 0.740$ | |
| ORIGIN NODE | (8041) | $50 / 0.260$ | $61 /$ | 0.740 |

TIME PERIOD 1 - fRESIM DATA
$\star * * * *$ WARNING - MESSAGE NUMBER 705, ROUTINE ANTWRN, PARAMETER(S) - P1 $=7809$

TIME INTERVAL NUMBER	SUBNETWORK TYPE
1	FRESIM
2	FRESIM
3	FRESIM
4	FRESIM

INITIALIZATION STATISTICS

PRIOR CONTENT (VEHICLES)

0
69
121
135

135

PERCENT DIFFERENCE

10000
75
11
EQUILIBRIUM ATTAINED

ALL EXISTING SUBNETWORKS REACHED EQUILIBRIUM

LINK STATISTICS

	LINK		VEHICLES		LANE CHNG	$\begin{aligned} & \text { CURR } \\ & \text { CONT } \end{aligned}$	AVG CONT	VEHMILES	$\begin{aligned} & \text { VEH- } \\ & \text { MIN } \end{aligned}$	SECONDS/VEHICLE			M/T	VEH-MIN/ VEH-MILE		VOLUME VEH/LN/HR	$\begin{gathered} \text { DENSITY } \\ \text { VEH/LN-MILE } \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & \text { MILE/HR } \end{aligned}$	$\begin{aligned} & \text { LINK } \\ & \text { TYPE } \end{aligned}$		
			TOTAL TIME	MOVE TIME						$\begin{aligned} & \text { DELAY } \\ & \text { TIME } \end{aligned}$	TOTAL	delay									
1	41	10)			512	512	179	8	9.0	97.6	134.8	15.7	15.2	0.5	0.97	1.38	0.04	1032.	23.8	43.44	FRWY
									1515.4	130.9	58.9	72.0	0.45	3.19	1.76	1347.	71.7	18.80	FRWY		
	10,	11)	730	658	664	133	98.0	474.8	1515.4									33.71	FRWY		
	11,	50)	997	994	949	51	49.1	414.6	738.0	44.5	34.5	10.0	0.78	1.78	0.40	1988.	59.0				
	50,	61)	777	773	147	14	12.6	146.8	188.7	14.6	13.5	1.1	0.93	1.29	0.09	1552.	33.	46.67	FRWY		
							6.3	53.9	95.1	26.1	25.4	0.7	0.97	1.77	0.05	876.	25.8	33.98	RAMP		
1	53,	10)	217	218	0	6	6.3											31.24	RAMP		
1	62.	11)	340	339	0	8	8.4	65.4	125.6	21.8	17.1	4.7	0.79	1.92	0.41	1382.	44.2				
(50,	60)	217	217	0	2	2.1	20.6	31.4	8.7	8.3	0.4	0.95	1.52	0.07	870.	22.1	39.37	RAMP		

NETWORK STATISTICS
VEHICLE-MILES $=1273.7$, VEHICLE-MINUTES $=2829.0$, MOVING/TOTALTRIPTIME $=0.630$, AVERAGE CONTENT $=185.6$, CURRENT CONTENT $=222.0, \operatorname{SPEED}($ MPH $)=27.01$, TOTAL DELAY (VEH-MIN) $=1048.12$, TRAVEL TIME (MIN)/VEH-MILE $=2.22$, DELAY TIME (MIN)/VEH-MILE $=0.82$

FRESIM CUMULATIVE VALUES OF FUEL CONSUMPTION

FRESIM CUMULATIVE VALUES OF EMISSION

IINK		LINK 'IYPE		VEAICLE	FMISSIONS	$\begin{aligned} & \text { (GRAMS / } \\ & \text { IIC } \end{aligned}$	M (1,N:)		
VEHICIE	'I'YPE-		1.	2	3	4	5	6	7
$(41$,	10)	FRWY	0.11	0.11	0.00	0.00	0.00	0.00	0.00
$(10$,	11)	ERWY	0.30	0.34	0.00	0.00	0.00	0.00	0.00
(11,	50)	FRWY	0.36	0.40	0.00	0.00	0.00	0.00	0.00
$(50$,	61)	FRWY	0.27	0.31	0.00	0.00	0.00	0.00	0.00
1 53,	10)	RAMP	0.04	0.05	0.00	0.00	0.00	0.00	0.00
1 62,	11)	RAMP	0.10	0.15	0.00	0.00	0.00	0.00	0.00
150,	60)	RAMP	0.13	0.14	0.00	0.00	0.00	0.00	0.00
SUBNETWO	RK-		0.28	0.31	0.00	0.00	0.00	0.00	0.00
LINK		LINK 'IYPE		VEHICLE	EMISSIONS	$\begin{aligned} & \text { (GRAMS/ } \\ & \text { CO } \end{aligned}$	MILE)		
VEHICIE	TYPE-		1	2	3	9	5	6	7
(41,	10)	FRWY	8.68	9.25	0.00	0.00	0.00	0.00	0.00
(10,	11)	FRWY	21.79	25.22	0.00	0.00	0.00	0.00	0.00
(11,	50)	fRWY	29.43	32.24	0.00	0.00	0.00	0.00	0.00
(50,	61)	ERWY	21.99	25.09	0.00	0.00	0.00	0.00	0.00
(53,	10)	RAMP	2.90	3.84	0.00	0.00	0.00	0.00	0.00
(62,	11)	RAMP	6.67	11.04	0.00	0.00	0.00	0.00	0.00
(50,	60)	RAMP	7.69	8.32	0.00	0.00	0.00	0.00	0.00
GUBNETWO	RK-		21.33	24.20	0.00	0.00	0.00	0.00	0.00
LINK		LINK TYPE		VEHICLE	EMISSIONS	$\begin{aligned} & \text { (GRAMS / } \\ & \text { NO } \end{aligned}$	MILE)		
VEHICLE	TYPE-		1	2	3	4	5	6	7
1 11.	10)	FRWY	0.50	0.19	0.00	0.00	0.00	0.00	0.00
$(10$,	11)	ERWY	1.27	1.22	0.00	0.00	0.00	0.00	0.00
$(11$,	50)	FRWY	1.41	1.34	0.00	0.00	0.00	0.00	0.00
(50,	61)	FRWY	1.06	1.08	0.00	0.00	0.00	0.00	0.00
153,	10)	RAMP	0.19	0.20	0.00	0.00	0.00	0.00	0.00
$(62$.	11)	RAMP	0.52	0.57	0.00	0.00	0.00	0.00	0.00
(50,	60)	RAMP	0.52	0.53	0.00	0.00	0.00	0.00	0.00
SUBNET'WO	RK-		1.13	1.10	0.00	0.00	0.00	0.00	0.00

VEHICLE TYPES 1, $2=$ AUTO, VEHICLE TYPES 3, 4, 5, $6=$ TRUCK, VEHICLE TYPE $7=$ TRANSIT BUS

FRESIM INTERMEDIATE LINR STATISTICS AT TIME 1630 o

LINK			CON.		VEH DIS	$\begin{aligned} & \text { TURN } \\ & \text { LEFT } \end{aligned}$	MOVEMENT		$\begin{aligned} & \text { DELAY/ } \\ & \text { VEH. } \end{aligned}$	AVG SPEED	METER CODE	LANE CHNG		
			THRU	RT.										
1	8041 ,	41)	7	1017	0	1017	0	N/A	N/A	0	2
(41,	10	,	55	970	0	970	0	14.7	23.2	0	390		
	10,	11)	145	1370	0	1320	0	109.1	15.2	0	1138		
	11,	50)	44	2003	454	1549	0	10.4	33.5	0	2045		
	50,	61)	10	1519	0	1549	0	ع1.1	46.5	0	344		
	61,	8061)	N/A	N/A	0	0	0	N/A	N/A	0	0		
	8053 ,	53)	0	134	0	434	0	N/A	N/A	0	0		
	53,	10)	7	434	0	434	0	0.8	33.7	0	0		
	8062,	62)	0	681	0	681	0	N/A	N/A	0	0		
	62,	11)	8	680	0	680	0	4.8	31.2	0	0		
	50,	60)	3	453	0	453	0	0.4	39.3	0	0		
(60,	8060)	N/A	N/A	0	0	0	N/A	N / A	0	0		

FRESIM INTERMEDIATE LINK STATISTICS AT TIME 16
TABLE OF VEHICLE CONTENT BY LANE

LINK			L INK	DISTANCE TO UPSTR. NODE (FT)	LANE IDENTIFICATION NUMBER										
			LENGTH (FT)		1	2	3	4	5	6	7	8	9	10	11
1	41.	10)	1000	1000	25	29	0	0	0	0	0	0	0	0	0
1	10,	11)	3610	150 360	7	5	0	0	0	0	0	0	1	0	0
(10 ,	11)	3610	3610	31	91	0	0	0	0	0	0	0	0	0
$($	11,	50)	2200	320	3	6	0	0	0	2	0	0	0	0	0
1	11.	50)	2200	1850	9	15	0	0	0	0	0	0	0	0	0
1	11,	50)	2200	2200	3	5	0	0	0	1	0	0	0	0	0
1	50,	61)	1000	1000	6	1	0	0	0	0	0	0	0	0	0
1	53.	10)	1300	1300	6	0	0	0	0	0	0	0	0	0	0
(62.	11)	1000	1000	8	0	0	0	0	0	0	0	0	0	0
<	50,	60)	500	500	3	0	0	0	0	0	0	0	0	0	0

I.INK LINK TYPE

VEHICLE TYPE-
$\left(\begin{array}{cl} \\ 41, & 10 \\ (10 & 1\end{array}\right)$ FRWY
$\left(\begin{array}{ll}10, & 10) \\ (10, & 50\end{array}\right)$ FRWY
(11, 11) FRWY
$\left(\begin{array}{lll}50, & 61) & \text { FRWY } \\ 53, & 10) & \text { RAMP } \\ 62, & 11) & \text { RAMP }\end{array}\right.$
$(62, \quad 11)$ RAMP

SURNE'TWORK-

FRESIM CUMULATIVE-VALO

$+8$

	M.P.G.									
4	5	6	7	1	2	3	4	5	6	7
0.00	0.00	0.00	0.00	12.94	17.13	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	7.45	11.13	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	8.53	14.29	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	1467.50	2428.87	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	22.40	33.67	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.80	16.28	23.19	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	2517.45	4712.63	0.00	0.00	0.00	0.00	. 0.00
0.00	0.00	0.00	0.00	10.09	15.56	0.00	0.00	0.00	0.00	0.00

FRESIM CUMULATIVE VALUES OF EMISSION

[^4]

ROADSIM STAND-ALONE VERSION FOR MICRO-COMPUTERS

$$
\text { RELEASE DATE }=3 / 21 / 86
$$

tTtettettit	RRRRRRRRR	AAAAAAA	FF
TTTTTTTTTT	RRRRRRRRRR	AAAAAAAAA	FFFFFFFFFEF
TTTTTTTITTT	RRRRRRRLRRRR	AAAAAAAAAAA	FFFFFFEFFEF
TTT	RRR RRR	AAA AAA	FFE
TTT	RRR RRR	AAA AAA	FFF
TTT	RRRRRRRRRRR	AAAAAAAAAAA	FFFFFFF
TTT	RRRRRRRRRRR	AAAAAAAAAAA	FFFFFEF
TTT	RRR RRR	AAA AAA	FFF
TTT	RRR RRR	AAA AAA	FEF
TTT	RRR RRR	AAA AAA	FEF
TTT	RRR RRR	AAA AAA	FEE
TTT	RRR RRR	AAA AAA	FFF

TRAF SIMULATION MODEL DEVELOPED FOR
U. S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION TRAFFIC SYSTEMS DIVISION

1-ROADSIM - 1

START OF CASE 1

CARD FILE LIST

I - ROADSIM - 2

CARD FILE LIST (CONT.)
SEQ.

44	: 8	71054390223002656								17
44	: 7									17
46	6	5	0297114711	50022252	7530081	00				17
47	5	4	668301114632	216						17
48	: 4	3	02216716	50012842	2820711	41				17
49	: 3	2	018413411	50038414	5446364	59			k	17
50	- 2	1	040592559	500					,	17
51	: 18	000								18
52	: 8000	1								18
53	: 1	2							54235	18
54	: 2	3		0	41541	12691	-63641	-63468 200	54235	18
55	3	4		5	51355	41356	-22071	-4259256 $254-131$	6853 71463	18
56	4	5		0	-11335	4		$254-131$ 7	71463	18
57	5	6		1222	-62872	-32873	33508	2 722-200	11571 6512	18
58	6	7		0	-5 364	-5		5114347	6512 81959	18
59	7	8		0	51600	71601	52300	51143103	81959	18
60	8	9		600	61100	31650	-12300	-4		18
61	9	10		700	12558	-6		269246	6811	18
62	10	011								59
63	1				0	0450	550			59
64	2				0	130	40			59
65	3	30	72	158100	960	2110	9065	65		59
66	4	65	266	620100	96	285	10065	65		170
67	0									210
68	1									

SEQ." :

MEAN FREE FLOW SPEED $=55 \mathrm{MPH}$ *
STD DEVIATION OF MEAN SPEED $=15$ PCT OF MEAN SPEED
MAXIMUM ACCELERATION FACTOR TO ACCOUNT FOR HORSEPOWER RESTRAINT = 81 PCT*
MAXIMUM SPEED FACTOR TO ACCOUNT FOR HORSEPOWER RESTRAINT = $90 \mathrm{PCT} *$
MEASURE OF PASS SUPPRESSING INFLUENCE UPSTREAM OF A CURVE, TO THE RIGHT = 10 SEC*
SPEED BIAS-
FOR RECREATIONAL VEHICLES $=-2.2$ FT/SEC*
$\begin{array}{lll}\text { FOR RECREATIONAL VEHICLES } \\ \text { FOR TRUCKS AND BUSES }= & -2.2 \\ -1.5 & \mathrm{FT} / \mathrm{SEC}^{*}\end{array}$
NOMINAL FORWARD SIGHT DISTANCE $=1800 \mathrm{FT}$
RANDOM NUMBER SEEDS TO SELECT INTERARRIVAL HEADWAYS AND VEHICLE TYPES FOR ENTERING VEHICLES-
IN DIRECTION ONE $=7581^{*}$
IN DIRECTION TWO $=7591^{*}$
RANDOM NUMBER SEEDS TO SELECT DESIRED SPEEDS FOR ENTERING VEHICLES-
IN DIRECTION ONE $=7601^{*}$
IN DIRECTION ONE $=761{ }^{*}$
RANDOM NUMBER SEED FOR PASSING MANEUVER DECISIONS = 7621*

* INDICATES A DEFAULT VALUE ASSIGNED INTERNALLy BY THE MODEL

RURAL ROAD J.INK CHARACIERISTICS

*DISTRIBUTIONS OF HEADWAYS, SPEEDS AND PLATOON SIZES WILL BE OUTPUT FOR THIS LINK.
***THESE REPRESENT SECTIONS OF THE ROADWAY WHERE THE PASSING SIGHT DISTANCE DIFFERS EROM THE DEFAULT NOMINAL VALUE OF 1800 FT.

RURAI, ROAD VEHICLE CHARACTERISTICS

* Indicates that all parameters for this vehicle type and fleet component assume default vaiues

ENTRY VOLUMES

I - ROADSIM - 9

. IN NORMAL LANE - NOT PASS

1. NOT COMMITTED TO COMPLETE. (I.E., WOULD PULL AHEAD OF COMMITTED TO COMPLETE PASS (I.E.' WOULD PULL AHEAD OE
OTHER VEHICLE EVEN IF LARGE DECELERATION WERE USED). OTHER VEHICLE EVEN IF LARGE DECELERATION
AHEAD OF IMPEDER (MEASURE NOSE TO NOSE).
2. AHEAD OF IMPEDER (MEASURE NOSE TO NOSE)
. ANOTHER VEHICLE, IF ANY.
ANOTHER VEHICLE, TF ANY.
3. ENDING PASS, AND HAS TWO
4. ENDING PASS AND HAS ONE REVIEW BEFORE VACATING THE PASSING LANE.
5. FREE, UNIMPEDED BY OTHER VEIIICLES
6. OVERTAKING LEADER BUT MORE THAN 8 FT/SEC EASTER.
7. FOLLOWING A LEADER.
8. PASSING ANOTHER (SAME DIRECTION) VEHICLE.
9. ENDING A PASS.

2 O N E $\begin{array}{lllllll} & & & & & & \\ & & & & & & \\ & & & & & & \\ & T & R & L & L & \\ V & Y & C & I & I & A & \\ E & P & A & V & N & N & D I S T \\ H & E & T & \text { R } & \text { K } & \text { E } & \text { (FT) }\end{array}$

DIRECTION 2
$\begin{array}{ll}\text { L } & \\ \text { E } & \text { F } \\ \text { A } & \text { O } \\ \text { D } & \text { L } \\ & \\ \text { T } & \text { T } \\ \text { G } & \text { G } \\ \text { T } & \text { T }\end{array}$

3	2	1	10	1	23480	0	136	0
3	2	6	10	1	23389	133	139	0
1	0	3	10	1	23316	136	70	0
4	2	3	10	1	21734	139	86	0
1	0	3	10	1	21621	70	74	0
1	0	7	10	1	21537	86	85	0
1	0	4	10	1	21468	74	2	0
1	0	3	10	1	21404	85	83	0
1	0	4	10	1	21335	2	91	0
4	2	1	8	1	18878	83	77	0
1	0	3	8	1	18788	91	25	0
1	0	1	8	1	18750	77	94	0
1	0	2	8	1	18709	25	140	0
1	0	7	8	1	18658	94	141	0
1	0	4	8	1	18615	140	143	0
4	2	7	8	1	18497	141	145	0
1	0	2	8	1	18412	143	146	0
1	0	4	8	1	18370	145	148	0
1	0	5	8	1	18326	146	149	0
4	2	3	8	1	18268	148	151	0
1	0	4	8	1	18181	149	152	0
1	0	2	8	1	18146	151	98	0
1	0	7	8	1	18100	152	104	0
1	0	7	8	1	18054	98	99	0
3	2	6	8	1	18008	104	101	0
4	2	3	8	1	17956	99	105	0
1	0	2	8	1	17872	101	109	0
4	2	5	8	1	17827	105	114	0
3	2	5	8	1	17739	109	153	0
3	2	4	8	1	17684	114	154	0
2	1	4	8	1	17629	153	30	0
4	2	7	8	1	17573	154	113	0
1	0	2	8	1	17488	30	3	0
1	0	6	8	1	17439	113	10	0
1	0	4	8	1	17397	3	12	0
3	2	3	8	1	17357	10	16	0
1	0	5	8	1	17298	12	20	0
1	0	3	8	1	17257	16	18	0
1	0	5	8	1	17206	20	29	0
1	0	6	8	1	17141	18	14	0
1	0	3	8	1	16910	29	26	0
1	0	6	8	1	16765	14	33	0
1	0	1	6	1	12794	26	17	0
1								

00

Abstract

55 55 55 53 53 53 53 53 53 46 46 46 46 46 45 44 44 44 44 44 42 42 42 42 42 42 42 42 41 41 41 40 40 40 40 40 40 40 40 40 39 39 30

12
13
13
13
13
13
13
14
14
15
15
15
15
15
15
15
15
15
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
19
19
19
19
19
19
19

23497
23309
23166
22987
21921
21714
20145
20005
18764
18658
17561
17384
17232
17117
17008
16801
16608
16046
13439
13336
13216
13097
12994
12038
11948
11872
11810
11761
11698
11622
11549
11474
11416
11292
10925
8875

61
55
49
54
162
160
157
155
131
128
52
46
51
7
50
44
43
42
41
34
38
125
123
124
122
121
120
119
118
115
107
35
13
27
32
21
24
23
22
19

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0	133	73	121	0
0	133	73	87	0
0	70	70	87	1
0	70	57	94	-1
0	70	61	67	0
0	70	89	104	-1
0	86	67	67	0
0	91	68	110	-2
0	91	69	109	0
0	25	81	104	2
0	141	80	80	0
0	113	92	101	2
0	12	85	87	2
0	18	82	104	2
0	14	86	95	2
0	14	87	87	0
0	26	94	95	2
0	33	94	94	0
0	33	78	78	0
0	33	82	95	-1
0	33	78	104	0
0	33	79	109	0
0	33	79	95	0
0	33	80	80	0
0	40	69	104	0
0	40	67	77	-1
0	40	54	104	0
0	40	54	80	0
0	40	56	104	2
0	40	55	104	0
0	40	56	109	2
0	40	59	110	2
0	40	59	81	0
0	40	59	110	-1
0	40	61	78	1
0	39	67	67	0
0	1	88	88	0
0	1	73	80	-2
0	1	74	79	0
0	57	74	114	2
0	57	73	88	-2
0	58	74	88	0
0	58	74	74	0
0				

24
23
22
$\begin{array}{lllll}1 & 0 & 1 & 19 & 1 \\ 1 & 0 & 4 & 19 & 1 \\ 1 & 0 & 4 & 19 & 1 \\ 1 & 0 & 2 & 19 & 1\end{array}$ \qquad 24
23
22
19
8
$\begin{array}{ll}32 & 0 \\ 21 & 0 \\ 24 & 0 \\ 23 & 0 \\ 22 & 0\end{array}$

DIRECTION 1

\qquad
$<\rightarrow$

0	38
0	38
0	38
0	38
0	38
0	38
0	38
0	38
0	35
0	13
0	13
0	13
0	21
0	23
0	19
0	19
0	19
0	108
0	111
0	97
0	97
0	100
0	100
0	100
0	100
0	100
0	5
0	5
0	90

62	62	
62	80	
61	114	-
61	87	-
61	72	-
60	79	-
62	101	-
62	102	-
94	96	
91	102	-
98	114	-
97	102	
81	85	-
83	123	-
84	109	
84	85	
90	94	
89	102	
67	67	
67	67	
67	85	
66	66	
60	102	
60	102	
60	110	
60	108	
87	87	
67	67	
69	109	

0	3	0	0	30	8	1	0
0	3	0	0	30	108	1	0
-1	3	0	0	30	116	1	0
-2	3	0	0	30	112	1	0
-2	3	0	0	29	111	1	0
-3	3	0	0	29	106	2	1
-1	3	0	0	29	102	1	0
-1	3	0	0	27	97	1	0
1	1	0	0	24	100	4	2
-1	1	0	0	23	96	1	0
-1	3	0	0	21	150	1	0
2	1	0	0	18	147	1	0
-1	1	0	0	14	144	4	2
-1	3	0	0	14	142	1	0
0	3	0	0	12	95	1	0
0	1	0	0	11	11	1	0
0	1	0	0	11	9	1	0
2	1	0	0	7	92	1	0
0	1	0	0	6	87	3	2
0	1	0	0	6	81	4	2
0	3	0	0	6	5	1	0
0	1	0	0	4	4	1	0
0	1	0	0	4	15	1	0
0	3	0	0	4	90	3	2
0	3	0	0	4	6	1	0
0	3	0	0	4			

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

FP
-129
F
P
S
S

S	S		
T	T	M	2
A	A	A	0
T	G	R	N
E	E	G	E

95
91
94
94
94
L
E
A
D
T
G
T

[^5]EXPLANATION OF CODES
STATE CODES
0. IN NORMAL LANE - NOT PASSING.

1. NOT COMMITTED TO COMPLETE
. COMMITTED TO COMPLETE PASS (I.E., WOULD PULL AKEAD OF OTHER VEHICLE EVEN IF LARGE DECELERATION WERE USED).
2. AHEAD OF IMPEDER (MEASURE NOSE TO NOSE)
3. CLEAR OF IMPEDER AND MAKING DECISION ABOUT PASSING

ANOTHER VEHICLE, IF ANY.
ENDING PASS, AND HAS TWO
REVIEW PERIODS BEEORE VACATING THE PASSING LANE.
6. ENDING PASS AND HAS ONE REVIEW BEFORE VACATING THE PASSING LANE.

1. FREE, UNIMPEDED BY OTHER VEHICLES
2. OVERTAKING LEADER BUT MORE THAN 8 FT/SEC FASTER.
3. FOLLOWING A LEADER
4. PASSING ANOTHER (SAME DIRECTION) VEHICLE.
5. ENDING A PASS.
6. PASSING ANOTHER (SAME DIRECTION) VEHICLE.
7. ENDING A PASS.

CUMULATIVE ROADSIM STATISTICS SINCE BEGINNING OF SIMULATION
ELAPSED SIMULATION TIME IS 0 HOURS, 30 MINUTES, 0 SECONDS
LINK STATISTICS STRATIFIED BY VEHICLE CATEGORY (A=AUTOS, $R=$ REC. VEH., $T=T R U C K S / B U S E S)$

OF ONLY THOSE VEHICLES WHICH TRAVELED TIRECTION 2 AND FOR OVERALL (I.E. BOTH DIRECTIONS), DESCRIBE, THE OPERATIONAL PERFORMANCE (

WHEN THE NUMBER OF VEHICLE TRIPS IS SO SMALL THAT IT DOES NOT REPRESENT AN ADEQUATE SAMPLE, IT IS POSSIBLE FOR THE COMPUTED VALUE OF THE MEAN OF ACTUAL TRAVEL TIMES TO BE LESS THAN THE MEAN VALUE OF ZERO-TRAFFIC TRAVEL TIMES. THIS CONDITION, WHICH WILL PRODUCE NEGATIVE DELAYS ON THE NEXT PAGE, CAN ONLY BE RESOLVED BY EXTENDING THE SIMULATION TIME. PREFERABLY, VEHICLE TRIPS SHOULD EXCEED 30 FOR EACH VEHICLE CATEGORY

LINK DELAY TIMES STRATIEIED BY VFHICLE CATEGORY MEAN DELAY TIMES BY CATEGORY (SEC.) - GEOMETRIC/TRAFFIC/TOTAL

STANDARD DEVIATION BY CAT

(8000, 1)	. 01	. 01	0								L VEHIC	LES
$(1,2)$. 21	2.21	2.4	. 07	. 01	. 0	.01	.0/	. 0			
(2, 3)	$1.0 /$	7.91	2.4 8.9	1.3/	1.2/	2.5	1.01	2.01	3.0	. 0	. 01	. 0
(3, 4)	. 61	5.41	6.0	2.7\%	$5.8 /$	8.5	$3.8 /$	$5.3 /$	9.1	1.8	$2.1 /$	2.5
(4, 5)	1.8/	3.3/	6.0 5.1	1.7/	4.9/	6.6	$2.9 /$	$3.2 /$	6.1	1.8 1.2	$7.1 /$	9.0
5, 6)	$3.6 /$	10.21	13.8	1.6/	$2.8 /$ 8.61	14.4	$2.1 /$	2.51	4.6	$1.2 /$	4.8/	6.0
6, 7)	2.21	$7.4 /$	7.6 7.6	$3.6 /$.81	8.6/ $6.2 /$	12.2 7.0	4.8/	$8.4 /$	13.2	3.91	3.1/	5.0 13.5
8, 9)	2.17	$14.8 /$	16.9	3.51	11.3/	14.8	8.5/	$6.8 /$ 10.5%	7.3	. 31	7.21	7.5
9, 10)	$2.3 /$	14.17	16.6	$3.5 /$	11.1/	14.6	$10.8 /$	$10.3 /$ 7.61	19.0	3.81	13.51	17.3
(10,8011)	. 01	. 21	10.2	2.4/	6.71	9.1	1.8/	4.41	18.7 9.2	4.61	12.3/	16.9
				0/	. $2 /$. 2	. 01	. 11	9.2	$2.9 /$	7.01	9.9
DIRECTION 1	14.3/		87.6						.	. $0 /$. 21	. 2
				$21.1 /$	60.91	82.0	$32.7 /$	55.81	88.5	19.4/	68.21	876
(8011, 10)	. $0 /$.1/										
(10, 9)	. 51	4.11	4.6	. 017	.01	. 0	. 01	.01	0			
(9, 8)	. $4 /$	6.1/	4.6	2.1/	2.51	4.6	$3.4 /$	2.81	6.2	. 01	. $1 /$. 1
(8, 7)	1.8/	4.61	6.5	$1.2 /$	4.01	5.2	$3.1 /$	3.81	6.2	1.3/	3.71	5.0
(7, 6)	. 1.1	6.71	6.4	1.4/	3.5/	4.9	1.7/	2.61	4.9	$1.1 /$	5.41	6.5
(6, 5)	1.71	14.61	6. 5	.6/	4.3/	4.9	. 01	5.01	4.3	1.8/	4.01	5.8
5, 4)	1.61		16.3	3.0/	11.5/	14.5	5.01	14.3/	19.3	.1/	5.91	6.0
4, 3)	1.71	6.71	5. 4	1.3/	$3.4 /$	4.7	2.3/	2.7\%	19.3 5.0	2.61	$14.4 /$	17.0
3, 2)	4.3/	19.91	8.4 24.2	2.01	5.1/	7.1	$2.9 /$	4.11	5.0 7.0	1.8/	3.61	5.3
2, 1)	2.3/	10.6/	24.2	$5.4 /$	16.7/	22.1	8.5 /	$14.9 /$	23.4	$2.0 /$	6.01	8.0
(1,8000)	2.0/	$10.6 /$	12.9	2.3/	9.6/	11.9	2.5/	9.7\%	23.4 12.2	5.51	18.4/	23.9
			- 4	.0/	. $4 /$. 4	.01	. 41	12.2	2.41	10.3/	12.6
DIRECTION 2	14							.4	. 4	. 01	. $4 /$. 4
			91	19.3/	$60.4 /$	79.6	27.9/	59.51	87.4	18.2/	$71.5 /$	89.7
OVERALL	14.4/	75.31	89.7	20.01	60.6/	80.6	$30.1 /$	57.81	87.9	18.7/		
											70.01	8

AUTO	R.V. TRUCK		
	ALL.		
.1	.2	.2	
3.7	3.6	3.8	3.1
7.3	6.5	6.8	7.8
4.5	3.9	4.4	4.4
2.5	2.7	2.4	2.5
5.2	4.9	5.0	5.1
2.9	2.8	3.0	2.9
8.8	8.6	8.8	8.8
6.2	8.5	5.7	6.3
3.3	4.1	3.0	3.3
.2	.2	.2	.2

.1	.2	.2	
3.8	4.2	4.9	4.2
3.7	4.2	3.6	3.7
2.9	3.4	3.7	3.2
4.4	3.3	4.4	4.4
8.0	7.9	9.1	8.4
1.2	1.4	1.0	1.1
2.8	3.0	2.9	2.9
5.2	5.8	5.9	5.4
2.6	2.5	2.5	2.6
.1	.1	.1	.1

PASSES ATTEMPTED/COMPLETED/ABORTED BY GATECORT

DIstributions of vehicle headways, vellicle spefds and platoon sizes in direction 1
LINK
HEADWAYS, SEC NO. PCT CUM

SPEEDS, FT/SEC NO. PCT CUM
PLATOON SIZES
NO. PCT
CUM
18000,
1)

	1.T		0	. 0	. 0
1	LT	2	1	. 3	. 3
2.	LTT	3	59	17.5	$1 \% .8$
3	1.T	4	84	24.9	42.7
	L.T	5	70	20.8	63.5
5	LT	6	41	12.2	75.7
	LT	10	47	13.9	89.6
	I,T	15	15	4.5	94.1
	LT	20	10	3.0	97.0
20	LT	25	4	1.2	98.2
25	LT9	99	6	1.8	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	31	9.2	9.2
70	TO	80	44	13.1	22.3
80	TO	90	152	45.1	67.4
90	TO	100	87	25.8	93.2
100	TO	110	23	6.8	100.0

1
2
3
4
5
6
$7-9$
$10-14$
$15-19$
$20-24$
$25-199$

14	24.6	24.6
9	15.8	40.4
5	8.8	49.1
6	10.5	59.6
3	5.3	64.9
2	3.5	68.4
10	17.5	86.0
5	8.8	94.7
2	3.5	98.2
0	.0	98.2
1	1.8	100.0

(1, 2)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LTT 999	

0	.0	.0
67	20.0	20.0
73	21.8	41.8
38	11.3	53.1
28	8.4	61.5
22	6.6	68.1
53	15.8	83.9
30	9.0	92.8
15	4.5	97.3
3	.9	98.2
6	1.8	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	66	19.7	19.7
70	TO	80	41	12.2	31.9
80	TO	90	126	37.6	69.6
90	TO	100	79	23.6	93.1
100	TO	110	23	6.9	100.0

1	25	29.4	29.4
2	13	15.3	44.7
3	13	15.3	60.0
4	6	7.1	67.1
5	11	12.9	80.0
6	3	3.5	83.5
$7-9$	11	12.9	96.5
$10-14$	2	2.4	98.8
$15-19$	1	1.2	100.0
$20-24$	0	.0	100.0
$25-199$	0	.0	100.0

1
2, 3)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

0	.0	.0
143	43.2	43.2
69	20.8	64.0
16	4.8	68.9
13	3.9	72.8
8	2.4	75.2
30	9.1	84.3
16	4.8	89.1
14	4.2	93.4
5	1.5	94.9
17	5.1	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	117	35.3	35.3
70	TO	80	38	11.5	46.8
80	TO	90	122	36.9	83.7
90	TO	100	43	13.0	96.7
CO	TO	110	11	3.3	100.0

1	14	20.6	20.6
2	9	13.2	33.8
3	9	13.2	47.1
4	6	8.8	55.9
5	6	8.8	64.7
6	4	5.9	70.6
$7-$	9	15	22.1
$10-14$	4	5.9	98.6
$15-19$	1	1.5	100.0
$20-24$	0	.0	100.0
$25-199$	0	.0	100.0

, What
DISTRIBUTIONS OF VEHICLE HEADNAYS, VEHICLE SPES PLATOON SIZES NO. PCT CUM
LINK HEADWAYS, SEC NO. PCT CUM

SPEEDS, ET/SEC NO. PCT CUM

0	LTT	1	0	.0	.0
1	L.T	2	160	46.9	46.9
2	L.T	3	66	19.4	66.3
3	LTT	4	24	7.0	73.3
4	I.T	5	13	3.8	17.1
5	L.T	6	8	2.3	79.5
6	LT	10	24	7.0	86.5
10	LT	15	11	3.2	89.7
15	LT	20	10	2.9	92.7
20	L.T	25	4	1.2	93.8
25	LT T 999	21	6.2	100.0	

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	157	46.0	46.0
10	TO	80	39	11.4	57.5
80	TO	90	115	33.7	91.2
90	TO	100	21	6.2	97.4
100	TO	110	9	2.6	100.0

1
2
3
4
5
5
6
$7-9$
$10-14$
$15-19$
$20-24$
$25-199$
$\begin{array}{ll}1.6 & 100.0\end{array}$
$\begin{array}{ll}.0 & 100.0 \\ .0 & 100.0\end{array}$

48

3, 4)

DISTRIBUTIONS OF VEHICLE HEADWAYS, VEHICLE SPEEDS AND PLATOON SIZES IN DIRECTION
LINK HEADWAYS, SEC NO. PCT CUM SPEEDS, FT/SEC NO. PCT CUM PLATOON SIZES NO. PCT CUM
6, 7)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

0	.0	.0
238	67.8	67.8
59	16.8	84.6
4	1.1	85.8
5	1.4	87.2
4	1.1	88.3
2	.6	88.9
9	2.6	91.5
6	1.7	93.2
5	1.4	94.6
19	5.4	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	237	67.5	67.5
70	TO	80	59	16.8	84.3
80	TO	90	52	14.8	99.1
90	TO	100	3	.9	100.0
100	TO	110	0	.0	100.0

1
2
3
4
5
6
$7-$
$10-14$
$15-19$
$20-24$
$25-199$

6	14.6	14.6
4	9.8	24.4
3	7.3	31.7
3	7.3	39.0
2	4.9	43.9
0	.0	43.9
14	34.1	78.0
5	12.2	90.2
3	7.3	97.6
1	2.4	100.0
0	.0	100.0

8)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

1	.3	.3
188	58.2	58.5
55	17.0	75.5
18	5.6	81.1
6	1.9	83.0
4	1.2	84.2
5	1.5	85.8
7	2.2	87.9
5	1.5	89.5
4	1.2	90.7
30	9.3	100.0

0	TO	10	0	.0	.0
10	TO	20	5	1.5	1.5
20	TO	30	7	2.2	3.7
30	TO	40	74	22.9	26.6
40	TO	50	83	25.7	52.3
50	TO	60	14	4.3	56.7
60	TO	70	106	32.8	89.5
70	TO	80	32	9.9	99.4
80	TO	90	2	.6	100.0
90	TO	100	0	.0	100.0
100	TO	110	0	.0	100.0

1	
2	
3	
4	
5	
7	
7	-
10	-14
$15-19$	
20	-24
$25-199$	

7	13.7	13.7
8	15.7	29.4
9	17.6	47.1
5	9.8	56.9
3	5.9	62.7
2	3.9	66.7
7	13.7	80.4
7	13.7	94.1
3	5.9	100.0
0	.0	100.0
0	.0	100.0

8, 9)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

0	.0	.0
217	67.2	67.2
47	14.6	81.7
6	1.9	83.6
3	.9	84.5
2	.6	85.1
3	.9	86.1
4	1.2	87.3
8	2.5	89.8
7	2.2	92.0
26	8.0	100.0

0	TO	10
10	TO	20
20	TO	30
30	TO	40
40	TO	50
50	TO	60
60	TO	70
70	TO	80
80	TO	90
90	TO	100
100	TO	110

0	.0	.0
0	.0	.0
0	.0	.0
0	.0	.0
0	.0	.0
2	.6	.6
270	83.6	84.2
23	7.1	91.3
25	7.7	99.1
3	.9	100.0
0	.0	100.0

1	6	13.0	13.0
2	5	10.9	23.9
3	8	17.4	41.3
4	4	8.7	50.0
5	4	8.7	58.7
6	2	4.3	63.0
$7-9$	6	13.0	76.1
$10-14$	8	17.4	93.5
$15-19$	3	6.5	100.0
$20-24$	0	.0	100.0
$25-199$	0	.0	100.0

INK
HEADWAYS, SEC NO. PCT CUM

SPEEDS, FT/SEC NO. PCT CUM
PLATOON SIZES NO. PCT CUM

0	L.T	1	0	.0	.0
1	LT	2	52	16.0	16.0
2	LT	3	0	.0	16.0
3	LT	4	0	.0	16.0
4	LT	5	0	.0	16.0
5	LT	6	0	.0	16.0
6	LT	10	0	.0	16.0
10	LT	15	0	.0	16.0
15	LT	20	0	.0	16.0
20	LT	25	0	.0	16.0
25	LT 999	274	84.0	100.0	

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	125	38.3	38.3
70	TO	80	124	38.0	76.4
80	TO	90	63	19.3	95.7
90	TO	100	14	4.3	100.0
100	TO	110	0	.0	100.0

1	
2	
3	
4	
5	
7	-
7	-14
10	-19
15	-19
20	-24
25	-199

249	90.9	90.9
13	4.7	95.6
4	1.5	97.1
3	1.1	98.2
3	1.1	99.3
2	.7	100.0
0	.0	100.0
0	.0	100.0
0	.0	100.0
0	.0	100.0

DISTRIBUTIONS OF VEHICLE HEADWAYS, VEHICLE SPEEDS AND PLATOON SIZES IN DIRECTION
LINK HEADWAYS, SEC NO. PCT CUM SPEEDS, FT/SEC NO. PCT CUM PLATOON SI2ES

NO. PCT CUM

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

0	.0	.0
11	2.8	2.8
71	18.3	21.1
95	24.5	45.6
67	17.3	62.9
41	10.6	73.5
72	18.6	92.0
28	7.2	99.2
3	.8	100.0
0	.0	100.0
0	.0	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	1	.3	.3
60	TO	70	56	14.4	74.7
70	TO	80	81	20.9	35.6
80	TO	90	179	46.1	81.7
90	TO	100	59	15.2	96.9
100	TO	110	12	3.1	100.0

1		19	25.0
2	7	95.0	
3	11	14.5	34.2
4	7	9.2	57.9
5	9	11.8	69.7
6	5	6.6	76.3
$7-9$	12	15.8	92.1
$10-14$	3	3.9	96.1
$15-19$	1	1.3	97.4
$20-24$	2	2.6	100.0
$25-199$	0	.0	100.0

(10, 9)
$\begin{array}{rlr}0 & \text { LT } & 1 \\ 1 & \text { LT } & 2 \\ 2 & \text { LTT } & 3 \\ 3 & \text { LT } & 4 \\ 4 & \text { LT } & 5 \\ 5 & \text { LT } & 6 \\ 6 & \text { LT } & 10 \\ 10 & \text { LT } & 15 \\ 15 & \text { LT } & 20 \\ 20 & \text { LT } & 25 \\ 25 & \text { LT9 } & 99\end{array}$

$$
\begin{array}{rrr}
0 & .0 & .0 \\
116 & 30.4 & 30.4 \\
88 & 23.0 & 53.4 \\
30 & 7.9 & 61.3 \\
19 & 5.0 & 66.2 \\
22 & 5.8 & 72.0 \\
42 & 11.0 & 83.0 \\
39 & 10.2 & 93.2 \\
19 & 5.0 & 98.2 \\
5 & 1.3 & 99.5 \\
2 & .5 & 100.0
\end{array}
$$

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	7	1.8	1.8
60	TO	70	143	37.4	39.3
70	TO	80	54	14.1	53.4
80	TO	90	111	29.1	82.5
90	TO	100	59	15.4	97.9
100	TO	110	8	2.1	100.0

1	
2	
3	
4	
5	
7	-
10	-14
15	-19
20	-24
$25-199$	

18	18.9	18.9
14	14.7	33.7
18	18.9	52.6
11	11.6	61.2
12	12.6	76.8
8	8.4	85.3
12	12.6	97.9
2	2.1	100.0
0	.0	100.0
0	.0	100.0
0	.0	100.0

(9, 8)

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT9 99	

0	.0	.0
194	49.6	49.6
75	19.2	68.8
8	2.0	70.8
12	3.1	73.9
6	1.5	75.4
31	7.9	83.4
32	8.2	91.6
16	4.1	95.7
5	1.3	96.9
12	3.1	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	4	1.0	1.0
50	TO	60	0	.0	1.0
60	TO	70	125	32.0	33.0
70	TO	80	121	30.9	63.9
80	TO	90	123	31.5	95.4
90	TO	100	9	2.3	97.7
100	TO	110	9	2.3	100.0

1	16	17.8	17.8
2	12	13.3	31.1
3	15	16.7	47.8
4	8	8.9	56.7
5	13	14.4	71.1
6	10	11.1	82.2
$7-9$	13	14.4	96.7
$10-11$	3	3.3	100.0
$15-19$	0	.0	100.0
$20-24$	0	.0	100.0
$25-199$	0	.0	100.0

DISTRIBUTIONS OF VEHICLE HEADWAYS, VEHICLE SPEEDS AND PLATOON SIZES IN DIRECTION 2
LINK HEADWAYS, SEC NO. PCT CUM SPEEDS, FT/SEC NO. PCT CUM PLATOON SIZES NO. PCT

0	LT	1
1	LT	2
2	LT	3
3	LT	4
4	LT	5
5	LT	6
6	LT	10
10	LT	15
15	LT	20
20	LT	25
25	LT 999	

0	.0	.0
255	63.3	63.3
60	14.9	78.2
6	1.5	79.7
7	1.7	81.4
4	1.0	82.4
25	6.2	88.6
18	4.5	93.1
6	1.5	94.5
7	1.7	96.3
15	3.7	100.0

0	TO	10	0	.0	.0
10	TO	20	0	.0	.0
20	TO	30	0	.0	.0
30	TO	40	0	.0	.0
40	TO	50	0	.0	.0
50	TO	60	0	.0	.0
60	TO	70	160	39.7	39.7
70	TO	80	221	54.8	94.5
80	TO	90	19	4.7	99.3
90	TO	100	3	.7	100.0
100	TO	110	0	.0	100.0

1
2
3
4
5
6
$7-9$
$10-14$
$15-19$
$20-24$
$25-199$

12	11.6	17.6
7	10.3	27.9
10	14.7	42.6
10	14.7	57.4
5	7.4	64.7
3	1.4	69.1
11	16.2	85.3
8	11.8	97.1
1	1.5	98.5
1	1.5	100.0
0	.0	100.0

4, 3)

$$
\begin{array}{rlr}
0 & \text { L.T } & 1 \\
1 & \text { I,T } & 2 \\
2 & \text { L.T } & 3 \\
3 & \text { L'T } & 4 \\
4 & \text { LT } & 5 \\
5 & \text { L.T } & 6 \\
6 & \text { LT } & 10 \\
10 & \text { L.T } & 15 \\
15 & \text { LT } & 20 \\
20 & \text { LT } & 25 \\
25 & \text { LT } 999
\end{array}
$$

2	.5	.5
258	61.3	64.8
62	15.5	80.3
12	3.0	83.3
5	1.2	84.5
9	2.2	86.8
11	2.7	89.5
8	2.0	91.5
5	1.2	92.8
10	2.5	95.3
19	4.7	100.0

0	TO	10
10	TO	20
20	TO	30
30	TO	40
40	TO	50
50	TO	60
60	TO	70
70	TO	80
80	TO	90
90	TO	100
100	TO	110

7	14.0	14.0
6	12.0	26.0
3	6.0	32.0
6	12.0	44.0
2	4.0	48.0
1	2.0	50.0
13	26.0	76.0
5	10.0	86.0
6	12.0	98.0
1	2.0	100.0
0	.0	100.0

(3, 2)
$\begin{array}{rlr}0 & \text { LT } & 1 \\ 1 & \text { LT } & 2 \\ 2 & \text { LT } & 3 \\ 3 & \text { LT } & 4 \\ 4 & \text { LT } & 5 \\ 5 & \text { LT } & 6 \\ 6 & \text { LT } & 10 \\ 10 & \text { LT } & 15 \\ 15 & \text { LT } & 20 \\ 20 & \text { LT } & 25 \\ 25 & \text { LT9 } 99\end{array}$
$\begin{array}{rrr}1 & .3 & .3 \\ 269 & 69.3 & 69.6 \\ 63 & 16.2 & 85.8 \\ 5 & 1.3 & 87.1 \\ 6 & 1.5 & 88.7 \\ 2 & .5 & 89.2 \\ 2 & .5 & 89.7 \\ 7 & 1.8 & 91.5 \\ 6 & 1.5 & 93.0 \\ 7 & 1.8 & 94.8 \\ 20 & 5.2 & 100.0\end{array}$
$\begin{array}{rrr}0 & \text { TO } & 10 \\ 10 & \text { TO } & 20 \\ 20 & \text { TO } & 30 \\ 30 & \text { TO } & 40 \\ 40 & \text { TO } & 50 \\ 50 & \text { TO } & 60 \\ 60 & \text { TO } & 70 \\ 70 & \text { TO } & 80 \\ 80 & \text { TO } & 90 \\ 90 & \text { TO } & 100 \\ 100 & \text { TO } & 110\end{array}$
$\begin{array}{rrr}0 & .0 & .0 \\ 0 & .0 & .0 \\ 0 & .0 & .0 \\ 0 & .0 & .0 \\ 0 & .0 & .0 \\ 4 & 1.0 & 1.0 \\ 233 & 60.1 & 61.1 \\ 121 & 31.2 & 92.3 \\ 29 & 7.5 & 99.7 \\ 1 & .3 & 100.0 \\ 0 & .0 & 100.0\end{array}$
1
2
3
4
5
6
$7-9$
$10-14$
$15-19$
$20-24$
$25-199$

5	11.9	11.9
3	7.1	19.0
3	7.1	26.2
4	9.5	35.7
2	4.8	40.5
1	2.4	42.9
11	26.2	69.0
6	14.3	83.3
6	14.3	97.6
1	2.4	100.0
0	.0	100.0

0	.0	.0
148	36.4	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
0	.0	36.4
259	63.6	100.0

0	TO	10
10	TO	20
20	TO	30
30	TO	40
40	TO	50
50	TO	60
60	TO	70
70	TO	80
80	TO	90
90	TO	100
100	TO	110

0	.0	.0
0	.0	.0
0	.0	.0
2	.5	.5
0	.0	.5
3	.7	$\mathbf{2} .2$
354	87.0	8.2
38	9.3	97.5
8	2.0	99.5
2	.5	100.0
0	.0	100.0

1	
2	
3	
4	
5	
6	
7	-
10	-14
15	-19
20	-24
25	-199

198	76.4	76.4
28	10.8	87.3
14	5.4	92.7
7	2.7	95.4
4	1.5	96.9
4	1.5	98.5
3	1.2	99.6
1	.4	100.0
0	.0	100.0
0	.0	100.0
0	.0	100.0

distributions of mean speed and travel times, by vehicle type and by direction
LINR

DIRECTION 1

VEHICLE TYPE	NUMBER	MEAN SPEED (MPH)	ECTIO		(SEC.)	NUMBER	MEAN SPEED (MPH)	MEAN T	TRAVEL TIME ZERO	(SEC.)
			MEAN TR	AVEL TIM ZERO						
								IDEAL	$\begin{aligned} & \text { ZERO } \\ & \text { TRAFE } \end{aligned}$	ACTUAL
			IDEAL	TRAFFI	ACTUAL					
						218	46.9	257	271	348
		17.4	257	272	345	20	47.5	265	284	344
1	184	47.2	265	286	347	47	47.0	261	278	347
2	13	47.1	261	279	346	47 36	46.7	261	304	350
3	45	47.1 45.9	261	323	356	36	46.7	261		

OVERALL SPEED HISTOGRAMS

I-ROADSIM - 27

MAXBAND - MAXIMAL BANDWIDTH TRAFEIC SIGADL

ART

**** MAXBAND INPUT CARDS ****

[^6]THIS IS AN ARTERY PROBLEM.
NAME OF ARTERY:
NO HALSTED S
LOWER CYCLE LIMIT: 60.00 SECS
ST

ARTERY IS ENTERED FROM: NORTH
UNTTS: ENGLISH

*** ARTERY WIDE VALUES ***

WEIGHT OF SOUTHBOUND DIRECTION OF ARTERY (W(1)):
WEIGHT OF NORTHBOUND DIRECTION OF ARTERY (W (2)): 1.0000

* (0 -- GIVEN; 1 -- COMPUTED FROM VOLUME INFORMATION

NOTE : REGARDLESS OF THEIR SOURCES, THESE WEIGHTS WERE SCALED USING THE WITHIN ARTERY WEIGHTS FOR SINGLE ARTERY PROBLEM. THESE WEIGHTS WERE SCALED USING BOTH WITHIN AND CROSS ARTERY WEIGHTS FOR NETWORK PROBLEM.

* (0 -- SPLITS GIVEN; 1-- SPLITS COMPUTED FROM VOLUME AND CAPACITY INFORMATION)
+10 -- PATTERN NOT ALLOWED; 1 -- PATTERN ALLOWED)
PATTERN 1-- SOUTHBOUND LEFT LEADS GREEN; NORTHBOUND LEET LAGS GREEN GREEN: NORTHBOUND LEFT IEADS GREEN attern 4 -- SOUTHBOUND LEFT LAGS GREEN; NORTHBOUND LEFT LAGS GREEN

I - MAXBAND 86-3

MINIMUM GREEN TIMES FOR APPROACHES -- FRACTIONS OF CYCLE

SIGNAL	NORTHBOUND		SOUTHBOUND		EASTBOUND		WESTBOUND	
NO.	through	LEFT	THROUGH	LEFT	THROUGH	LEFT	through	Left
1	0.2500	0.1000	0.2500	0.1000	0.2750	0.0000	0 0.2750	0.0000
2	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	0 0.2750	0.0000
3	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	$0 \quad 0.2750$	0.0000
4	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	0.2750	O 0.0000
5	0.2500	0.0000	0.2500	0.0000	0.2750 ,	0.0000	0 0.2750	$0 \quad 0.0000$
6	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	$0 \quad 0.2750$	$0 \quad 0.0000$
7	0.3000	0.0000	0.3000	0.0000	0.2750	0.0000	$0 \quad 0.2750$	$0 \quad 0.0000$
8	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	0.0000	0.0000
9	0.2500	0.0000	0.2500	0.0000	0.2750	0.0000	0.2750	0.0000
10	0.2500	0.1000	0.2500	0.1000	0.2750	0.0000	0.2750	0.0000
11	0.2500	0.0000	0.2500	0.0000	0.0000	0.0000	$0 \quad 0.2750$	00.0000
12	0.2500	0.0000	0.2500	0.0000	0.0000	0.0000	$0 \quad 0.2750$	00.0000
13	0.2500	0.1000	0.2500	0.1000	0.2750	0.0000	0.2750	0.0000
	*** LINK Values ***							
$\begin{aligned} & \text { SIGNAL } \\ & \text { NO. } \end{aligned}$		LENGTH (FEET)	SOUTHBOUND SPEED (MILES/HOUR)	TOLERANCE (MILES/HOUR)	LENGT (FEET		NORTHBOUND SPEED (MILES/HOUR)	TOLERANCE (MILES/HOUR)
1	---	1320.00	30.00	0.00	1320.0		30.00	0.00
2	---	900.00	30.00	0.00	900.0		30.00	0.00
	--	650.00	30.00	0.00	850.0		30.00	0.00
	--	1250.00	30.00	0.00	1000.0		30.00	0.00
6		750.00	30.00	0.00	800.0		30.00	0.00
6	--	1975.00	30.00	0.00	2050.0		30.00	0.00
8	---	950.00	30.00	0.00	700.0		30.00	0.00
9		1100.00	30.00	0.00	1325.0		30.00	0.00
10		1325.00	30.00	0.00	1275.0		30.00	0.00
11	---	1200.00	30.00	0.00	1349.0		30.00	0.00
12	--	2625.00	30.00	0.00	2700.0		30.00	0.00
13		1575.00	30.00	0.00	1350.0		30.00	0.00

SIGNAL
NO.
1
2
3
4
5
6
7
8
9
10
11
12

SIGNAL
NO.
1
2
3
4
5
6
7

11

VOLUMES on mizi
SOUTHBOUND
THROUGH LEFT

NORTHBOUND	
THROUGH	LEFT
268.00	56.00
238.00	0.00
280.00	0.00
286.00	0.00
318.00	0.00
364.00	0.00
390.00	0.00
306.00	0.00
398.00	0.00
336.00	48.00
472.00	0.00
366.00	0.00
314.00	56.00

562.00	212.00	722.00	0.00	708.00	0.00
606.00	0.00	106.00	0.00	112.00	0.00
724.00	0.00	98.00	0.00	60.00	0.00
796.00	0.00	258.00	0.00	238.00	0.00
846.00	0.00	314.00	0.00	592.00	0.00
848.00	0.00	308.00	0.00	398.00	0.00
1076.00	0.00	414.00	0.00	1166.00	0.00
828.00	0.00	180.00	0.00	0.00	0.00
732.00	0.00	130.00	0.00	134.00	0.00
700.00	86.00	410.00	0.00	402.00	0.00
608.00	0.00	0.00	0.00	130.00	0.00
610.00	0.00	0.00	0.00	4.00	0.00
504.00	46.00	498.00	0.00	808.00	0.00

capacities on approaches -- vehicles per hour

SOUTHBOUND		EASTBOUND		WESTBOUND	
THROUGH	LEFT	THROUGH	LEFT	THROUGH	LEFT
4500.00	1500.00	3000.00	0.00	3000.00	0.00
3000.00	0.00	1500.00	0.00	1500.00	0.00
3000.00	0.00	1500.00	0.00	1500.00	0.00
3000.00	0.00	1500.00	0.00	1500.00	0.00
3000.00	0.00	3000.00	0.00	3000.00	0.00
3000.00	0.00	3000.00	0.00	3000.00	0.00
3000.00	0.00	4500.00	0.00	4500.00	0.00
3000.00	0.00	1500.00	0.00	0.00	0.00
3000.00	0.00	1500.00	0.00	1500.00	0.00
3000.00	1500.00	1500.00	0.00	1500.00	0.00
3000.00	0.00	0.00	0.00	1500.00	0.00
3000.00	0.00	0.00	0.00	1500.00	0.00
3000.00	1500.00	1500.00	0.00	1500.00	0.00

I - MAXBAND 86-5
**** MPCODE PERFORMANCE PLOT ****
BEST OBJECTIVE FUNCTION VALUE = BEST OBJECTIVE FUNCTION VALUE BEST OBJECTIVE FUNCTION VALUE BEST OBJECTIVE FUNCTION VALUE BEST OBJECTIVE FUNCTION VALUE =
0.0439204
0.0955509
0.2405473
0.2731403
0.4673791

MPCODE HAS BEEN SUCCESSFULLY COMPLETED.
A REPORT BASED ON THE OPTIMAL SOLUTION WILL BE WRITTEN.
**** MPCODE STATISTICS ****

NUMBER OF BRANCH AND BOUND ITERATIONS PERFORMED: 3355 NUMBER OF BRANCH AND BOUND REINVERSIONS PERFORMED: 24
MAXIMUM NUMBER OF ITERATIONS PERFORMED BY A LINEAR PROGRAM: 85
MAXIMUM NUMBER OF REINVERSIONS PERFORMED BY A LINEAR PROGRAM: 2
NUMBER OF SOLUTIONS FOUND: 5 VALUE OF OBJECTIVE FUNCTION AT LAST SOLUTION: 0.467379
**** MAXBAND SOLUTION REPORT ****
THIS IS AN ARTERY PROBLEM.
NAME OF ARTERY: NO HALSTED ST
ARTERY IS ENTERED FROM: NORTH
NUMBER OF INTERSECTIONS: 13 UNITS: ENGLISH
*** ARTERY WIDE INFORMATION ***
CYCLE TIME: 63.54 SECS SOUTHBOUND BANDWIDTH (B(1)): 0.2337 NORTHBOUND BANDWIDTH (B(2)): 0.2337 (FRACTION OF CYCLE) (FRACTION OF CYCLE)

EFFICIENCY (\%): $23.37 \quad$ ATTAINABILITY (\%): 93.48
(EFFICIENCY - AVERAGE FRACTION OF CYCLE LENGTH FOR PROGRESSION)
(ATTAINABILITY - AVERAGE FRACTION OF ARTERIAL MINIMUM THROUGH GREENS FOR PROGRESSION)
OBJECTIVE FUNCTION (C(1)B(1) $+C(2) B(2)): 0.467379$
ALL Phase starting times are relative to the start of green in the southbound direction at signal 1 .

$\begin{aligned} & \text { SI GNAL } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { NODE } \\ \text { NO. } \end{gathered}$	$\begin{gathered} \text { SEQUENCE } \\ \text { NO. } \end{gathered}$	CROSS STREET NAME	LEFT TURN PATTERN SELECTED	$\begin{aligned} & \text { SI GNAL } \\ & \text { NO. } \end{aligned}$
1	1	1	ROOSEVELT	3	1
2	2	2	$14 S T$ ST		
3	3	3	16 TH ST		
4	4	4	CANALPORT		
5	5	5	18 TH 5 T		
6	6	6	CERMAK		
7	7	7	ARCHER		
8	8	8	26 TH ST		
9	9	9	29 TH ST		
10	10	10	31 ST ST	3	10
11	12	11	33RD ST		
12	14	12	37TH ST		
13	15	13	39TH ST	3	13

** PHASE SETTINGS -- FRACTIONS OE CYCLE **

BEGIN	END	DURATION	BEGIN	END	DURATION	BEGIN	END	DURATION	TIME
$\begin{array}{r} .8958 \\ .8958 \end{array}$. 1733	0.2775	. 4233	. 0000	0.5767	. 0000	. 2337	0.2337	0.0000
	. 0000	0.1042	. 4233	. 1733	0.7500	. 1896	. 4233	0.2337	0.0000
		0.0000	.0741	. 3491	0.2750	. 4721	. 7058	0.2337	0.0000
		0.0000	. 0741	. 3491	0.2750	. 7174	. 9511	0.2337	0.0000
		0.0000	. 0741	. 3491	0.2750	. 7940	. 0277	0.2337	0.0000
		0.0000	. 0741	. 3491	0.2750	. 3955	. 6292	0.2337	0.0000
		0.0000	. 4792	. 8725	0.3933	. 0265	. 2602	0.2337	0.0000
		0.0000	. 4792	. 8725	0.3933	. 0915	. 3252	0.2337	0.0000
		0.0000	.0147	. 4264	0.4117	.4736	. 7073	0.2337	0.0000
		0.0000	. 0147	. 4264	0.4117	. 7338	. 9675	0.2337	0.0000
		0.0000	. 0519	. 3713	0.3194	. 7419	. 9755	0.2337	0.0000
		0.0000	. 0519	. 3713	0.3194	. 4477	. 6814	0.2337	0.0000

I - MAXBAND 86-7
** PIIASE SETTINGS -- ERACTIONS OF CYCLE **

$\begin{gathered} \text { S I GNAL } \\ \text { NO. } \end{gathered}$	DIRECTION	BEGIN	END	DURATION	ADVANCED BY QUEUE CLEAR TIME									
7	SOUTHBOUND	$.4079$. 9885	0.5806			0.0000							
	NORTHBOUND	$.4079$. 9885	0.5806			0.0000 0.0000	$\begin{array}{r} .9885 \\ .9885 \end{array}$	$\begin{array}{r} .4079 \\ .4079 \end{array}$	$\begin{aligned} & 0.4194 \\ & 0.4194 \end{aligned}$.4483 .7145	.6819 .9482	0.2337	0.0000
8	SOUTHBOUND	. 3944	. 0914	0.6970			0.0000	. $0914{ }^{\text {t }}$						
	NORTHBOUND	. 3944	. 0914	0.6970			0.0000	. 09914	.3944 .3944	$\begin{aligned} & 0.3030 \\ & 0 \end{aligned}$. 7880	. 0217	0.2337	0.0000
9	SOUTHBOUND	. 8402	. 5652	0.7250			0.0000				4641	6978	0.2331	0.0000
	NORTHBOUND	. 8402	. 5652	0.7250			0.0000	. 5652	$.8402$	0.2750	. 1815	.4152	0.2337	0.0000
									. 8402	0.2750	. 9902	. 2239	0.2337	0.0000
10	SOUTHBOUND NORTHBOUND	.4746 .5342	. 8891	0.4145	. 3746									
	NORTHBOUND	. 5342	. 8891	0.3549	. 3746	$.4746$	0.1000	$.8891$	$.5342$	$\begin{aligned} & 0.5855 \\ & 0.6451 \end{aligned}$	$\begin{array}{r} .6554 \\ .5342 \end{array}$	$\begin{aligned} & .8891 \\ & .7679 \end{aligned}$	$\begin{aligned} & 0.2337 \\ & 0.2337 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$
11	SOUTHBOUND	. 8348	. 5352	0.7005			0.0000	. 5352						
	NORTHBOUND	. 8348	. 5352	0.7005			0.0000	. .5352	.8348 .8348	0.2995 0.2995	.0846 .0517	. 3183	0.2337	0.0000
12	SOUTHBOUND	. 8091	. 5341	0.7250			0.0000	. 5341					0.2337	0.0000
	NORTHBOUND	. 8091	. 5341	0.7250			0.0000	.5341 .5341	.8091 .8091	0.2750	. 0235	. 2572	0.2337	0.0000
13	SOUTHBOUND	. 5868											0.2337	0.0000
	NORTHBOUND	. 5868	. .8368		. 4868	. 5868	0.1000	. 8368	. 5868	0.7500	. 5868	. 8205	0.2337	0.0000
			. 8368	0.2500	. 4868	. 5868	0.1000	. 8368	.5868	0.7500	. 6031	. 8368	0.2337	0.0000
		- -	GREEN	- - - -	- - -	HASE LEFT	ETTINGS	SECONDS ----	RED	- - - -	- - -	-	BAND	- - - -
$\begin{aligned} & \text { S I GNAL } \\ & \text { NO. } \end{aligned}$	DIRECTION	BEGIN												ADVANCED BY OUEUE CLEAR
	DIRECTION	BEGIN	END	DURATION	TIME									
1	SOUTHBOUND	0.0	26.9	26.9	56.9	11.0	17.6	26.9	0.0					
	NORTHBOUND	11.0	26.9	15.9	56.9	0.0	6.6	26.9	11.0	36.6 47.7	0.0 12.0	14.8 26.9	$\begin{aligned} & 14.8 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
2	SOUTHBOUND	22.2	4.7	46.1			0.0	4.7						
	NORTHBOUND	22.2	4.7	46.1			0.0	4.7	22.2	17.5	$\begin{aligned} & 30.0 \\ & 45.6 \end{aligned}$	44.8 60.4	14.8 14.8	0.0 0.0
3	SOUTHBOUND	22.2	4.7	46.1			0.0	4.7						
	NORTHBOUND	22.2	4.7	46.1			0.0	4.7	22.2 22.2	17.5	50.5	1.8 40.0	14.8 14.8	0.0
4	SOUTHBOUND	55.4	30.5	38.6			0.0							0.0
	NORTHBOUND	55.4	30.5	38.6			0.0	30.5	55.4 55.4	$\begin{aligned} & 25.0 \\ & 25.0 \end{aligned}$	1.7 5.8	16.5 20.7	14.8	0.0
5	SOUTHBOUND	27.1	0.9	37.4								20.7	14.8	0.0
	NORTHBOUND	27.1	0.9	37.4			0.0	0.9 0.9	27.1	26.2	30.1	44.9	14.8	0.0
							0.0	0.9	27.1	26.2	46.6	61.5	14.8	0.0
6 N	SOUTHBOUND	23.6	3.3	43.2			0.0	3.3	23.6					
	NORTHBOUND	23.6	3.3	43.2			0.0	3.3	23.6	$\begin{aligned} & 20.3 \\ & 20.3 \end{aligned}$	$\begin{aligned} & 47.1 \\ & 28.4 \end{aligned}$	62.0	14.8 14.8	0.0
7 S	SOUTHBOUND	25.9	62.8	36.9			0.0							
	NORTHBOUND	25.9	62.8	36.9			0.0	62.8 62.8	25.9 25.9	$\begin{aligned} & 26.7 \\ & 26.7 \end{aligned}$	28.5 45.4	43.3	14.8	0.0

[^7]
*** MAXBAND TIME-SPACE DIAGRAM ***

THE TIME SCALE HAS BEEN CHANGED TO 4 SEC/CHAR
THE ORIGINAL INPUT SCALE OF 2 SEC/CHAR CANNOT ACCOMMODATE A T-S PLOT WITH PROGRESSION BANDS OF BOTH DIRECTIONS FULLY SHOWN.

**** SUMMARY OF MAXBAND BEST SIGNAL TIMING SOLUTION ${ }^{*} \star \star *$

OFFSET POINT $=22.2 \operatorname{SEC}(34.9 \%)$. REFERENCED TO START OF PHASE NUMBER 1.
INTERSECTION NO. 4

**** SUMMARY OF MAXBAND BEST SIGNAL TIMING SOLUTION (CONTINUED) ****

**** MAXBAND END ****

This Page Intentionally Blank

Editor's Note: The newer SOAP-84 Release 84.04 uses the NEMA phase numbering scheme.

VERSION: 84.02
SIGNAL OPERATIONS ANALYSIS PACKAGE
Office of implementation ...federal highway administration
TECHNICAL SUPPORT MESSAGE CENTER: (904) 392-0378

I-SOAP-84-1

* WARNING: THE PERIODS BEGINNING AT THE FOLLOWING TIMES ARE EXCLUDED FROM THE COMPUTATIONS:

1300. 11115.1130 .1145 .1200 .1215 .1230 .1245.
1301. 1315. 1330. 1345.

1	* 700	* 200.000	*	30.000	*	225.000	*	40.000	*	120.000	*	25.000	*	190.000	*	45.000
2	715	* 225.000	*	35.000	*	210.000	*	35.000	*	100.000	*	20.000	*	175.000	*	30.000
3	730	* 230.000	*	45.000	*	230.000	*	40.000	*	120.000	*	25.000	*	195.000	*	50.000
4	* 745	* 225.000	*	40.000		225.000	*	40.000	*	125.000	*	25.000	*	200.000	*	50.000
5	* 800	* 250.000	*	35.000	*	250.000	*	35.000	*	100.000	*	30.000	*	175.000	*	55.000
6	* 815	* 240.000	*	35.000		240.000	*	35.000	*	110.000	*	30.000		185.000	*	30.000
7	* 830	* 225.000	*	35.000	*	225.000	*	40.000	*	120.000	*	25.000	*	190.000	*	45.000
8	* 845	* 200.000	*	30.000	*	210.000	*	35.000	*	100.000	*	20.000	*	175.000	*	50.000
9	* 900	* 150.000	*	25.000	*	150.000	*	25.000	*	100.000	*	12.500	*	175.000	*	25.000
10	* 915	* 150.000	*	25.000		150.000	*	25.000	*	100.000	*	12.500	*	175.000	*	25.000
11	* 930	* 150.000	*	25.000	*	150.000	*	25.000	*	100.000	*	12.500	*	175.000	*	25.000
12	* 945	* 150.000	*	25.000		150.000	*	25.000	*	100.000	*	12.500	*	175.000	*	25.000
13	* 1000	* 131.250	*	28.750		168.750	*	23.750	*	75.000	*	12.500	*	162.500	*	22.500
14	* 1015	* 131.250	*	28.750		168.750	*	23.750	*	75.000	*	12.500	*	162.500	*	22.500
15	* 1030	* 131.250	*	28.750		168.750	*	23.750	*	75.000	*	12.500	*	162.500	*	22.500

TABLE NO. 2

SPECIFIED GROWTH FACTORS FOR VOLUME ADJUSTMENT

--- Remaining periods deleted from output.

TABLE NO. 3
SPECIFIED PERCENTAGE OF TRUCKS FOR VOLUME ADJUSTMENT

TABLE NO. 4
CALCULATED TRAFFIC VOLUMES (VEHICLES PER 15 MINUTE PERIOD)

nemalning periods deleted from output.

SABLE NO. SIED SATURATION FLOW (\# OF LANES OR VEHICLES PER HOUR OF GREEN TTME)

$\star \star$ Remaining periods deleted from output

TABLE NO. 6
HEADWAYS (SEC./VEHICLE) TO BE USED IN SATURATION FLOW RATE CALCULATIONS IF THE \# OF LANES WERE SPECIFIED

TABLE NO 7
CALCULATED SATURATION FLOWS (VEHICLES PER 15 MINUTES OF GREEN TIME)

TABLE NO. 8
MINIMUM GREEN TIME PER CYCLE TO EACH MOVEMENT

TABLE NO. 10
SPECIFIED OR DEFAULT VALUES FROM CONTROL CARD PARAMETERS

TABLE NO. 19
Left turn saturation flow based on opposing thru volume (per 15 Minute period)

--- Remaining periods deleted from output.

TABLE NO. 20
volume saturation flow ratios based on unadjusted volumes

	V/S	* TIME	*	NBT	*	NB		SBT		SBL		EBT	*	L		WBT	*	WBL	*
																		*	
*	1	* 700	,	. 259	*	. 082	*	. 292	*	. 105	*	. 156	*	. 074	*	. 246	*	. 134	*
*	2	* 715	*	. 292	*	. 096	*	. 272	*	. 092	*	. 130	*	. 060	*	. 227	*	. 089	*
*	3	* 730	*	. 298	*	. 124	*	. 298	*	. 105	*	. 156	*	. 074	*	. 253	*	. 149	*
*	4	* 745	*	. 292	*	. 110	*	. 292	*	. 105	*	. 162	*	+.074	*	. 259	*	. 149	
*	5	* 800	*	. 324	*	. 096	*	. 324	*	. 092	*	. 130	*	*.089	*	. 227	*	. 164	*
*	6	* 815	*	. 311	*	. 096	*	. 311	*	. 092	*	. 143	*	. 089	*	. 240	*	. 089	*
*	7	* 830	*	. 292	*	. 096	*	. 292	*	. 105	*	. 156	*	. 074	*	. 246	*	. 134	*
*	8	* 845	*	. 259	*	. 082	*	. 272	*	. 092	*	. 130	*	. 060	*	. 227	*	. 149	*
*	9	* 900	*	. 194	*	. 069	*	. 194	*	. 066	*	. 130	*	. 037	*	. 227	*	. 074	*
*	10	* 915	*	. 194	*	. 069	*	. 194	*	. 066	*	. 130	*	. 037	*	. 227	*	. 074	
*	11	* 930	*	. 194	*	. 069	*	. 194	*	. 066	*	. 130	*	. 037	*	. 227	*	. 074	*
*	12	* 945	*	. 194	*	. 069	*	. 194	*	. 066	*	. 130	*	. 037	*	. 227	*	. 074	*
*	13	* 1000	*	. 170	*	. 079	*	. 219	*	. 063	*	. 097	*	. 037	*	. 211	*	. 067	*
	14	* 1015	*	. 170	*	. 079	*	. 219	*	. 063	*	. 097	*	. 037	*	. 211	+	. 067	
*	15	* 1030	*	. 170	*	. 079	*	. 219	*	. 063	*	. 097	*	. 037	*	. 211	,	. 067	*

TABLE NO. 21
VOLUMES ADJUSTED FOR SNEAKERS AND PERMISSIVE LEFT TURNS (PER 15 MINUTE PERIOD)

	700	212.180	*	15.900	*	238.702	*	26.200		127.308		25.750	*	201.571		46.350	
2	715	238.702	*	21.050	*	222.789	*	21.050	*	106.090		20.600	*	185.658		30.900	
3	730	244.007	*	32.504	*	244.007	*	27.354	*	127.308		25.750	*	206.876		51.500	
4	745	238.702	*	27.354	*	238.702	*	27.354	*	132.613		25.750	*	212.180		51.500	
5	800	265.225	*	22.204	*	265.225	*	22.204	*	106.090		30.900	*	185.658		56.650	
6	815	254.616	*	22.204	*	254.616	*	22.204	*	116.699		30.900	*	196.266		30.900	
7	830	238.702	*	21.050	*	238.702	*	26.200	*	127.308		25.750	*	201.571		46.350	
8	845	212.180	*	15.900	*	222.789	*	21.050	*	106.090	*	20.600	*	185.658		51.500	
9	* 900	159.135	*	7.750	*	159.135	*	7.750	*	106.090		12.875	*	185.658		25.750	
10	* 915	159.135	*	7.750	*	159.135	*	7.750	*	106.090	*	12.875	*	185.658		25.750	
11	930	159.135	*	7.750	*	159.135	*	7.750	*	106.090		12.875	*	185.658		25.750	
12	* 945	159.135	*	7.750	*	159.135	*	7.750	*	106.090		12.875	*	185.658		25.750	
13	* 1000	139.243	*	13.249	*	179.027	*	8.099	*	79.567	*	12.875	*	172.396		23.175	
14	* 1015	139.243	*	13.249		179.027	*	8.099	*	79.567		12.875	*	172.396		23.175	
15	1030	139.243	*	13.249		179.027	*	8.099	*	79.567		12.875	*	172.396		23.175	

[^8]TABLE NO. 22
CRITICAL VOLUME SATURATION FLOW RATIOS FOR each phase based on adjusted VOlumes

TABLE NO. 23
SUM OF CRITICAL FLOW RATIOS FOR ALL PHASES
\star YCAP * TIME * TOTAL
TOTAL

*	700	*	674
* 2	715	*	631
* 3	730	*	. 709
* 4	745	*	. 695
5	* 800	*	. 698
* 6	815	*	. 698
- 7	830	*	. 679
8	* 845	*	. 608
9	* 900	*	. 478
* 10	* 915	*	. 478
* 11	* 930	*	. 478
* 12	* 945	*	. 478
- 13	* 1000	*	. 501
- 14	* 1015	*	. 501
15	* 1030		. 501

- R R Remalning perlods deleted from output

TABLE NO. 24
CYCLE LENGTH (SECONDS)
*CYCLE * TIME * TOTAL *
*CYCLE * TIME * TOTAL *

* 2 * $715 *$ 60.000 60.000 *

3 * 730 * 65.000 *
4 * 745 * 65.000 *

* 5 * 800 * 65.000 *

* $815 * 65.000$
$*$

* 845 * 60.000
* 900 * 55.000 *
$9 * 900 * 555.000 *$
$10 * 915 * 55.000 *$
. 11 * $930 * 555.000$
* $12 * 945 * 555.000$ *
* 13 * 1000 * 50.000 *
* 14 * 1015 * 50.000 *
-- Remaining perlods deleted from output

TABLE NO. 28
CALCULATED GREEN PLUS AMBER TIME FOR EACH PHASE (SECONDS PER CYCLE)

*GRN / P	* TIME		PHASE 1		PHASE 2	* PHASE 3			PHASE 4	* PHASE 5		* PHASE 6 *		
	*******		*********		********		********							
* 1	* 700	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	
* 2	* 715	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	
* 3	* 730	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	*
* 4	* 745	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	*
* 5	* 800	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	*
* 6	- 815	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	*
* 7	* 830	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	
* 8	* 845	*	10.000	*	32.031	*	10.745	*	9.884	*	17.340	*	. 000	*
* 9	* 900	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	*
* 10	* 915	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	*
* 11	* 930	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	
* 12	- 945	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	*
* 13	* 1000	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	*
* 14	* 1015	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	
* 15	* 1030	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	
* 16	* 1045	*	10.000	*	19.669	*	10.000	*	10.331	*	10.000	*	. 000	

TABLE NO. 29
GREEN Plus amber time for each thru movement and protected left turn (SECONDS per cycle)

1	700	32.031	10.000	*	32.031	*	10.000		20.629	*	10.745	*	27.224		17.340	
2	715	32.031	10.000		32.031	*	10.000		20.629		10.745	*	27.224		17.340	
3	730	32.031	10.000	*	32.031	*	10.000	*	20.629	,	10.745	*	27.224		17.340	
4	745	32.031	10.000	*	32.031	*	10.000	*	20.629	*	10.745	*	27.224	*	17.340	
5	800	32.031	10.000		32.031		10.000		20.629		10.745		27.224		17.340	
6	815	32.031	10.000	*	32.031	*	10.000	*	20.629	*	10.745	*	27.224	*	17.340	
7	830	32.031	10.000		32.031		10.000		20.629	*	10.745		27.224		17.340	
8	845	32.031	10.000	*	32.031	*	10.000	*	20.629	*	10.745	*	27.224		17.340	
9	900	19.669	10.000	*	19.669	*	10.000		20.331		10.000	*	20.331	*	10.000	
10	915	19.669	10.000	*	19.669	*	10.000		20.331	*	10.000	*	20.331	*	10.000	
11	930	19.669	10.000	*	19.669	*	10.000		20.331		10.000		20.331		10.000	
* 12	945	19.669	10.000	*	19.669	*	10.000		20.331		10.000		20.331	*	10.000	
* 13	* 1000	19.669	10.000	*	19.669	*	10.000	*	20.331		10.000		20.331		10.000	
* 14	* 1015	19.669	10.000	*	19.669	*	10.000	*	20.331	*	10.000	*	20.331	*	10.000	
15	0	19.669	10.000		19.669	*	10.000	*	20.331		10.000		20.331		10.000	

-- Remaining periods deleted from output

TABLE NO. 30
CALCULATED UNSATURATED GREEN TIME FOR UNPROTECTED LEFT TURNS (SECONDS PER CYCLE)

from outp

- Remalning perlods deleted from output.

TABLE NO. 31
CALCULATED EFFECTIVE GREEN/CyCLE RATIO FOR EACH MOVEMENT (INCLUDING LEFT TURN RELEASE ADJUSTMENT)

TABLE NO. 33
CALCULATED DEGREE OF SATURATION (VOLUME/CAPACITY) (IF X = 999.999, NO GREEN TIME)

- Remaining periods deleted from output.

TABLE NO. 36
CALCULATED VALUES OF UNIFORM DELAY (SECONDS/VEHICLE)

1	* 700	22.353	*	32.565	*	23.376		32.363	*	29.258	*	35.742	*	26.265		31.587	
2	715	23.376	*	32.376	*	22.752		33.024	*	28.386	*	35.176	*	25.604	*	30.039	
3	* 730	23.592	,	34.333	*	23.592		33.729	*	29.258	-	35.742	*	26.493	*	32.139	
4	745	23.376	*	33.580	*	23.376		33.521	*	29.484	*	35.742	*	26.724	*	32.139	
5	* 800	24.498	*	34.063	*	24.498		33.982	*	28.386		26.326	*	25.604	*	32.710	
6	* 815	24.036	*	33.685	*	24.036		33.619	*	28.815		36.326	*	26.041	*	30.039	
7	* 830	23.376	*	33.065	*	23.376		33.521	*	29.258		35.742	*	26.265		31.587	
8	* 845	22.353	*	31.887	*	22.752	*	31.885	*	28.386	*	35.176	*	25.604	*	32.139	
9	* 900	19.876	*	21.286	*	19.876		21.316	*	17.843		24.774	*	20.088	*	25.769	
10	* 915	19.876	*	21.286	*	19.876		21.316	*	17.843	*	24.774	*	20.088	*	25.769	
11	* 930	19.876	*	21.286	*	19.876		21.316		17.843		24.774	*	20.088		25.769	
12	* 945	19.876	*	21.286	*	19.876		21.316	*	17.843	*	24.774	*	20.088	*	25.769	
13	* 1000	19.293	*	22.280	*	20.494		20.429	*	17.202	*	24.774	*	19.675		25.564	
14	* 1015	19.293	*	22.280	*	20.494		20.429	*	17.202	*	24.774	*	19.675	*	25.564	
15	* 1030	19.293	*	22.280	*	20.494		20.429	*	17.202	*	24.774	*	19.675		25.564	

-- Remaining periods deleted from output.

TABLE NO. 37
CALCULATED VALUES OF RANDOM AND SATURATION DELAY (SECONDS/VEHICLE)

1	* 700	*	1.901	*	5.821	*	2.942	*	7.308	*	3.019	*	15.217	*	3.672		8.671
2	715	*	2.942	*	6.653	*	2.246	*	7.479	*	1.860	*	9.818	*	2.673		3.627
3	* 730	*	3.238	*	15.952	*	3.238	*	10.914	*	3.019	*	15.217	*	4.111		11.454
4	745	*	2.942	*	11.105	*	2.942	*	10.238	*	3.434	*	15.217	*	4.620		11.454
5	* 800	*	4.905	*	10.970	*	4.905	*	10.063	*	1.860	*	20.755	*	2.673		14.910
6	815	*	3.960	*	9.746	*	3.960	*	8.966	*	2.358	*	20.755	*	3.292		3.627
7	* 830	*	2.942	*	8.088	*	2.942	*	10.238	*	3.019	*	15.217	*	3.672	\star	8.671
8	* 845	*	1.901	*	4.846	*	2.246	*	5.433	*	1.860	*	9.818	*	2.673	*	11.454
9	* 900	*	2.402	*	1.818	*	2.402	*	1.709	*	. 825	*	2.935	*	3.451		9.351
10	* 915	*	2.402	*	1.818	*	2.402	*	1.709	*	. 825	*	2.935	*	3.451	*	9.351
11	* 930	*	2.402	*	1.818	*	2.402	*	1.709	*	. 825	*	2.935	*	3.451		9.351
* 12	* 945	*	2.402	*	1.818	*	2.402	*	1.709	*	. 825	*	2.935	*	3.451		9.351
* 13	* 1000	*	1.656	*	2.776	*	3.624	*	1.300	*	. 514	*	2.935	*	2.635		7.607
14	* 1015	*	1.656	*	2.776	*	3.624	*	1.300	*	. 514	,	2.935	*	2.635		7.607
15	* 1030	*	1.656	*	2.776	*	3.624	*	1.300	*	. 514	*	2.935	*	2.635		7.607

- Remaining periods deleted from output

TABLE NO. 38

AVERAGE UNIT DELAY (SECONDS/VEHICLE)

-- Remaining periods deleted from output

TABLE NO. 39
TOTAL DELAY PER APPROACH (VEHICLE HOURS PER 15 MINUTE PERIOD)

TDELAY TIME **************		$\text { * } 1-\text { NBT }$		* 2 - NBL		- SBT			SBL	- EBT		* 6 - EBL		* 7 - WBT		* 8-WBL			
1	* 700			*	1.429	*	. 329	*	1.745	*	. 454	*	1.141	*	. 364		1.676	*	. 518
2	* 715	*	1.745	*	. 391	*	1.547	*	.406	*	. 891	*	. 257	*	1.458	*	. 289		
3	* 730	*	1.819	*	. 647	*	1.819	*	. 511	*	1.141	*	. 364		1.759	*	. 624		
4	* 745	*	1.745	*	. 511	,	1.745	*	. 501	*	1.213	*	. 364	*	1.847	*	. 624		
5	* 800	*	2.166	*	. 451	*	2.166	*	.441	*	. 891	*	.490	*	1.458	*	. 749		
6	* 815	*	1.980	*	. 435	*	1.980	*	.426	*	1.011	*	.490		1.599	*	. 289		
7	* 830	*	1.745	*	. 412	*	1.745	*	. 501	*	1.141	*	. 364	*	1.676	*	. 518		
8	- 845	*	1.429	*	. 315	*	1.547	*	. 374	*	. 891	*	. 257	*	1.458	*	. 624		
9	* 900	*	. 985	*	. 165	*	. 985	*	. 165	*	. 550	*	. 099	*	1.214	*	. 251		
* 10	* 915	*	. 985	*	. 165	*	. 985	*	. 165	*	. 550	*	. 099	*	1.214	*	. 251		
* 11	* 930	*	. 985	*	. 165	*	. 985	*	. 165	*	. 550	*	. 099		1.214	*	. 251		
* 12	* 945	*	. 985	*	. 165	*	. 985	*	. 165	*	. 550	*	. 099	*	1.214	*	.251		
* 13	* 1000	*	. 810	*	. 206	*	1.199	*	. 148	*	. 392	*	. 099	*	1.068	*	. 214		
* 14	* 1015	*	. 810	*	. 206	*	1.199	*	. 148	*	. 392	*	. 099	*	1.068	*	. 214		
* 15	* 1030	*	. 810	*	. 206	*	1.199	*	. 148	*	. 392	*	. 099	*	1.068	*	. 214		

TABLE NO. 44
CALCULATED NUMBER OF VEHICLES STOPPED (PER 15 MINUTE PERIOD)

TABLE NO. 45
CALCUATED EXCESS FUEL CONSUMPTION (GALLONS PER 15 MINUTE PERIOD)

*	U	TIME		- NBT		NBL		SBT		SBL		EB		EB		- WBT		- WBL	
		**																	
	1	* 700	*	2.701	*	. 489	*	3.215	*	. 665	*	1.870	*	. 472	*	2.887	*	. 754	
*	2	* 715	*	3.215	*	. 576	*	2.898	*	. 587	*	1.493	*	. 354	*	2.564	*	. 454	
*	3	* 730	*	3.328	*	. 847	*	3.328	*	. 707	*	1.870	*	. 472	*	3.003	*	. 875	
*	4	* 745	*	3.215	*	. 707	*	3.215	*	. 700	*	1.971	*	. 472	*	3.124	*	. 875	
*	5	* 800	*	3.825	*	. 621	*	3.825	*	. 614	*	1.493	*	. 603	*	2.564	*	1.010	
*	6	* 815	*	3.566	*	. 609	*	3.566	*	. 603	*	1.676	*	. 603	*	2.776	*	. 454	*
*	7	- 830	*	3.215	*	. 592	*	3.215	*	. 700	*	1.870	*	. 472	*	2.887	*	. 754	
*	8	* 845	*	2.701	*	. 477	*	2.898	*	. 562	*	1.493	*	. 354	*	2.564	*	. 875	
*	9	* 900	*	2.034	*	. 324	*	2.034	*	. 324	*	1.207	*	. 179	*	2.456	*	. 399	
*	10	* 915	*	2.034	*	. 324	*	2.034	*	. 324	*	1.207	*	. 179	*	2.456	*	. 399	
*	11	* 930	*	2.034	*	. 324	*	2.034	*	. 324	*	1.207	*	. 179	*	2.456	*	. 399	
*	12	* 945	*	2.034	*	. 324	*	2.034	*	. 324	*	1.207	*	. 179	*	2.456	*	. 399	
*	13	* 1000	*	1.712	*	. 390	*	2.394	*	. 297	*	. 869	*	. 179	*	2.213	*	. 350	
	14	* 1015	*	1.712	*	. 390	*	2.394	*	. 297	*	. 869	*	. 179	*	2.213	*	. 350	
*	15	* 1030	*	1.712	*	. 390	*	2.394	*	. 297	*	. 869	*	. 179	*	2.213	*	. 350	

LE F T T UR N C H E C K (PER 15 MINUTE PERIOD)

PERIOD		NORTHBOUND		SOUTHBOUND		EASTBOUND		WESTBOUND	
NO.	TIME	VOL	CAP	VOL	CAP	VOL	CAP	VOL	CAP
1	700	31.	51.	41.	58.	26.	31.	46.	60.
2	715	36.	54.	36.	52.	21.	31.	31.	60.
3	730	46.	50.	41.	51.	26.	31.	52.	60.
4	745	41.	51.	41.	52.	26.	31.	52.	60.
5	800	36.	46.	36.	47.	31.	31.	57.	60.
6	815	36.	48.	36.	49.	31.	31.	31.	60.
7	830	36.	51.	41.	52.	26.	31.	46.	60.
8	845	31.	54.	36.	58.	21.	31.	52.	60.
9	900	26.	70.	26.	71.	13.	38.	26.	38.
10	915	26.	70.	26.	71.	13.	38.	26.	38.
11	930	26.	70.	26.	71.	13.	38.	26.	38.
12	945	26.	70.	26.	71.	13.	38.	26.	38.
13	1000	30.	64.	24.	78.	13.	38.	23.	38.
14	1015	30.	64.	24.	78.	13.	38.	23.	38.
15	1030	30.	64.	24.	78.	13.	38.	23.	38.
16	1045	30.	64.	24.	78.	13.	38.	23.	38.
29	1400	21.	73.	23.	73.	19.	38.	27.	38.
30	1415	21.	73.	23.	73.	19.	38.	27.	38.
31	1430	21.	73.	23.	73.	19.	38.	27.	38.
32	1445	21.	73.	23.	73.	19.	38.	27.	38.
33	1500	30.	70.	31.	75.	26.	38.	28.	38.
34	1515	30.	70.	31.	75.	26.	38.	28.	38.
35	1530	30.	70.	31.	75.	26.	38.	28.	38.
36	1545	30.	70.	31.	75.	26.	38.	28.	38.
37	1600	31.	53.	41.	60.	26.	31.	46.	57.
38	1615	36.	59.	36.	56.	21.	31.	31.	60.
39	1630	46.	52.	41.	53.	26.	31.	52.	57.
40	1645	41.	53.	41.	54.	26.	31.	52.	57.
41	1700	36.	47.	36.	49.	31.	31.	57.	57.
42	1715	36.	49.	36.	51.	31.	31.	31.	57.
43	1730	36.	53.	41.	54.	26.	31.	46.	57.
44	1745	31.	56.	36.	60.	21.	31.	52.	57.

MOVEMENTS:			$\begin{gathered} \text { DELAY } \\ \text { (VEH-HRS) } \end{gathered}$	STOPS (\%)	EXC FUEL (GAL)	EXC LEFT (VEH)	MAXIMUM QUEUE	$\begin{gathered} V / C \\ \text { RATIO } \end{gathered}$	LEFT TURN PROTECTION	TREATMENT VEH/CYC	PH 1	$\begin{aligned} & \text { SE } \\ & \text { PH } 2 \end{aligned}$	U E PH 3	CE PH 4	PH 5	PH 6
NB	THRU	:	41.60	90.8	79.84		22.4	. 93				XXXX				
	LEFT	:	9.46	92.5	15.01	. 0	4.1	. 94	PERM	1.0	XXXX					
SB	THRU	:	43.77	91.6	83.57		22.4	. 93				XXXX				
	LEFT	:	9.56	92.1	15.27	. 0	3.6	. 81	PERM	1.0	XXXX					
EB	THRU	:	25.43	87.7	47.12		12.0	. 78					XXXX	XXXX		
	LEFT	:	8.24	96.8	11.67	. 0	2.7	. 99	RES'T	. 0			$x \times x x$			
WB	THRU	:	42.40	91.8	79.86		18.6	. 91						XXXX	XXXX	
	LEFT	:	12.62	96.4	18.64	. 0	5.0	. 99	REST	. 0					XXXX	

SUMMARY : $193.09 \quad 91.3 \quad 350.99 \quad 22.4 \quad .09$

DESIGN AND EVALUATION SUMMARY

2 PHASE $N-S$	3 PHASE E-W	EXAMPLE NO. 3
SEQUENCE: 4 (LT) SEQUENCE: 10 (ETW)	ELORIDA \& GATOR	

SOA P I N P U T E C H O

NO. CARD ID A	B	NBT	NBL	SBT	SBL	EBT	EBL	WBT	WBL	COMMENT	
$39: ~ E N D ~$	0	0	0	0	0	0	0	0	0	0	

+++ END OF SOAP JOB +++
+++ GOOD NEWS: NO ERRORS ENCOUNTERED DURING THIS JOB +++

This Page Intentionally Blank

$$
\%
$$

TRAFFICACTUATEDCONTROLLERSSETTINGS LOCATION: BROAD \& MAIN DIALS: 1 PHASES: 4 DATE: 11-11-1992

CONTROLIER:
COORDINATOR:
WALK REST MODIFIER ACTIVE

This Page Intentionally Blank

APPENDIX II

TRAFFIC MODEL SUMMARY COMPARISON TABLES

This Page Intentionally Blank

TRAFFIC MODEL SUMMARY COMPARISON TABLES

It in this handbook deal with integrated signal systems, urban network simulation and ,on with the freeway system. In deciding which traffic model(s) is appropriate for project study, it is helpful to compare the models side-by-side in terms of their program features. The following summary comparisons tables were therefore deemed

NSYT-7F (Network and Arterial) versus PASSER II (Arterial) Signal Timing F-NETSIM vs. CORFLO NETFLO 1 vs. CORFLO NETFLO 2 Urban Network jlation
ESM versus FREFLO Freeway Network Simulation
fd Arterial Signal Timing
fiost commonly used programs, TRANSYT-7F and PASSER II, provide the analyst with fare packages that provide "similar" capabilities, but really attack the problem from pproathes. PASSER II is very effective at selecting signal phasing alternatives and T-7F has been recognized for its ability to analyze cycle length, green splits, and offsets. ANSYT-7F is a "platoon level" simulator of traffic, it is accepted that it can more y "simulate" the behavior of traffic as compared to PASSER II while also outputing a larger of statistics as well.
filysts have felt that the above programs could and should be run in "tandem" and the recent of the updated Arterial Analysis Package (AAP) permits this to be accomplished while zing the task of translating data between the two packages.

Fk, Arterial, and Intersection Simulation

se of TRAF-NETSIM for traffic simulation has been available in some form since the mid 8. The current release, TRAF-NETSIM Version 3.1 provides detailed simulation capabilities ined with extensive Measures-of-Effectiveness (MOE) output in a microcomputer environment. detailed simulation does not come without a negative aspect - that being execution times which the very long depending mainly on the size of network, number of vehicles on the network, and simulation time.
tre the network problem to be analyzed is large and the level of detail in computation of the DE's are not as critical to the analysis, CORFLO modules NETFLO 1 and 2 are more ropriate. The reduced level of computation detail permits much shorter execution times than AF-NETSIM and permits larger networks to be simulated.

Freeway Simulation

Urban areas are experiencing increased freeway congestion while construction of new freeways in most cases not feasible for a number of reason. Improvements to existing freeways dominate most freeway design and operations analysis efforts. Because the facilities are already congested, the level of detail required in any specific freeway improvement project is critical because the marginal change in performance with respect to any design element is at a much higher rate than at lower congestion levels. FRESIM provides a high level of detail in its simulation and generated MOEs. Like TRAF-NETSIM, such a level of detail can require significant execution time. Thus it is most appropriately used when detailed design or operational analysis is required.

FREFLO sacrifices some of FRESIM's high level of computational detail for a faster execution time. FREFLO can therefore model much larger networks with a greatly reduced execution time. It therefore is a good tool for large system planning efforts or for preliminary system design alternative selection.

Traffic Model Summary Comparison Tables

The Summary Comparison Tables in this Chapter provide a detailed and quick means for judging which traffic model is most appropriate for meeting project objectives.

TRANSYT-7F (Rel 7.0) / PASSER II-90 Comparison

TRAFFIC MODEL SUMMARY COMPARISON TABLES

acted models in this handbook deal with integrated signal systems, urban network simulation and Fir integration with the freeway system. In deciding which traffic model(s) is appropriate for Husion in a project study, it is helpful to compare the models side-by-side in terms of their \$abilities or program features. The following summary comparisons tables were therefore deemed propriate:
(1) TRANSYT-7F (Network and Arterial) versus PASSER II (Arterial) Signal Timing
(2) TRAF-NETSIM vs. CORFLO NETFLO 1 vs. CORFLO NETFLO 2 Urban Network Simulation
(3) FRESIM versus FREFLO Freeway Network Simulation

Wetwork and Arterial Signal Timing
The two most commonly used programs, TRANSYT-7F and PASSER II, provide the analyst with two software packages that provide "similar" capabilities, but really attack the problem from different approathes. PASSER II is very effective at selecting signal phasing alternatives and TRANSYT-7F has been recognized for its ability to analyze cycle length, green splits, and offsets. Since TRANSYT-7F is a "platoon level" simulator of traffic, it is accepted that it can more accurately "simulate" the behavior of traffic as compared to PASSER II while also outputing a larger number of statistics as well.

Some analysts have felt that the above programs could and should be run in "tandem" and the recent release of the updated Arterial Analysis Package (AAP) permits this to be accomplished while minimizing the task of translating data between the two packages.

Network, Arterial, and Intersection Simulation

The use of TRAF-NETSIM for traffic simulation has been available in some form since the mid 1970's. The current release, TRAF-NETSIM Version 3.1 provides detailed simulation capabilities combined with extensive Measures-of-Effectiveness (MOE) output in a microcomputer environment. Such detailed simulation does not come without a negative aspect - that being execution times which can be very long depending mainly on the size of network, number of vehicles on the network, and total simulation time.

Where the network problem to be analyzed is large and the level of detail in computation of the MOE's are not as critical to the analysis, CORFLO modules NETFLO 1 and 2 are more appropriate. The reduced level of computation detail permits much shorter execution times than TRAF-NETSIM and permits larger networks to be simulated.

TRANSYT－7F（Rel 7．0）／PASSER II－90 Comparison

Freeway Simulation

Urban areas are experiencing increased freeway congestion while construction of new freewh in most cases not feasible for a number of reason. Improvements to existing freeways dompan most freeway design and operations analysis efforts. Because the facilities are already congex the level of detail required in any specific freeway improvement project is critical becausy marginal change in performance with respect to any design element is at a much higher rater at lower congestion levels. FRESIM provides a high level of detail in its simulation and generas MOEs. Like TRAF-NETSIM, such a level of detail can require significant execution time. it is most appropriately used when detailed design or operational analysis is required.

FREFLO sacrifices some of FRESIM's high level of computational detail for a faster executio time. FREFLO can therefore model much larger networks with a greatly reduced execution timin It therefore is a good tool for large system planning efforts or for preliminary system desion \boldsymbol{W}^{4} alternative selection.

Traffic Model Summary Comparison Tables

The Summary Comparison Tables in this Chapter provide a detailed and quick means for judging which traffic model is most appropriate for meeting project objectives.

TRANSYT-7F (Rel 7.0) / PASSER II-90 Comparison

	TRANSYT-7F	PASSER II
Function	Optimized arterial (and network) signal timing where bandwidth is unimportant or unattainable and performance optimization desired.	Optimized arterial signal timing where driver perceived progression is important.
Model Type	Macroscopic, deterministic optimization.	Deterministic optimization.
Optimization Objective	Disutility Index (DI) defined as: [delay and stops] or [excess fuel consumption] or [excess operating cost] plus optionally [double count links] and/or [maximum back of queue penalty] Performance Index defined as: - Dl (from above) - PROS (progression opportunities) - PROS / DI Options: - bandwidth constraints - link delay and stops specific weights	Bandwidth Efficiency (E) = (sum of both through bands) / ($2 \times$ cycle length) Options: - directional prioritization permitted - progression bands may vary by $+/-2$ mph
Optimization Technique	"Hill-climbing" technique as offsets and splits varied. Explicit external bandwidth constraints can be optionally specified.	Time-series search-and-find optimization for cycle length, phase sequence, and offsets (Webster split with post bandwidth determination fine-tuning adjustments).
Phasing Optimization	User specified phase sequences, not an optimization variable.	Selection based on bandwidth efficiency optimization.

	TRANSYT-7F	PASSER II
Cycle Optimization	Selection based on a "coarse" simulation and user specified minimum and maximum values.	Selection based on bandwidth efficiency optimization and user specified minimum and maximum values.
Offsets Optimization	Selection based on overall optimization subject to optionally specified bandwidth constraints.	Selection based on bandwidth efficiency optimization.
Split Optimization	Splits based on overall optimization subject to user minimums and optionally specified bandwidth constraints. For semi-actuated phases (intervals), timing set to achieve a user specified desired degree of saturation. Slack time assigned to non-actuated phases.	Webster split - subject to user minimums.
Signal Conventions	Interval based.	NEMA phase based (single or dual ring with fixed overlap sequence).
Left Turn Treatment	Protected, Permitted, Protected plus Permitted, Sneakers (left on clearance)	Protected, Permitted, Protected plus Permitted, Permitted plus Protected
Existing Evaluation	Evaluate existing via user specified cycle length, phasing, and splits.	Evaluate existing via phases and minimum greens equal to splits.
Actuated Signals	For semi-actuated phases (intervals), timing set to achieve a user specified desired degree of saturation.	Factor or 0.85 applied to pretimed delay calculation.
Preprocessors	7FDIM (Native) EZ-TRANSYT ${ }^{\bullet}$ Transtek Software PRE-TRANSYT ${ }^{\bullet}$ Strong Concepts Quick-7F, CalTrans AAP ${ }^{\bullet}$ Univ. of FL (Arterial Analysis Package)	PASSETUP ${ }^{\circ}$ TTI (Native) AAP © Univ. of Fl. (Arterial Analysis Package) PREPASSR ${ }^{\circ}$ Strong Concepts
User Aids	AAP QuickHCS McT7F ${ }^{\bullet}$ University of Florida (Program Package Shell)	PASETUP adjusted volume ASSISTANT PASETUP adjusted saturation flow ASSISTANT PASETUP minimum green time ASSISTANT AAP QuickHCS

	TRANSYT-7F	PASSER II
Input Data Reports	Input data deck echo.	Run control and systemwide data. - systemwide data - embedded data (parameters) - intersection data
Cycle Length Evaluation Reports	Average delay (sec/veh) Percent stops Fuel consumption (gal/hr) Disutility index DI Number of saturated links Performance index PI	Bandwidth efficiency versus cycle length.
Existing Timing Reports	Intersection, route, and system performance with initial settings report: See best solution report for specific MOE's.	Same as best solutions report when phasing and offsets are user specified, minimum cycle length equals maximum cycle length, and sum of critical minimum greens equals cycle length.
Controller Timings Reports	Intersection controller settings (by interval): - interval length (sec) (\%) - \quad pin settings (\%) - allowable movements per interval - offset	Pin settings (by NEMA phase/movement) - dual-ring phase split (sec) (\%) - concurrent phases (sec) - cycle count (sec) (\%)
Intersection (Movement) Performance Reports	Intersection and movement performance with optimal settings report: degree of saturation total travel (veh-mi) total travel time (veh-hr) total delay (veh-hr) average delay ($\mathrm{sec} / \mathrm{veh}$) uniform stops (no.) (\%) maximum back of queue and queue capacity fuel consumption	Best solution report by intersection and movement: phase sequence offset (sec. and \%) splits (sec. and \%) degree of saturation and V/C based LOS total delay (veh-hr) average delay ($\mathrm{sec} / \mathrm{veh}$) and delay based LOS probability of queue clearance and queue LOS stops (veh/hr) (\%) fuel consumption

	TRANSYT-7\%	
System and Route/Artery Reports	Systemwide performance report: total travel (veh-mi/hr) total travel time (veh-hr/hr) total uniform delay (veh-hr/hr) total random delay (veh-hr/hr) total delay (veh-hr/hr) average delay ($\mathrm{sec} / \mathrm{veh}$) passenger Delay (pax-hr/hr) total stops (veh/hr) (\%) system speed (mph) fuel Consumption (gal/hr) operating cost (\$/hr) performance index DI, PI, or PROS Route (directional) summary report (user specified or an AAP optionally requested): total travel (veh-mi) total travel time (veh-hr) average travel time ($\mathrm{sec} / \mathrm{veh}$) total delay (veh-hr) average delay ($\mathrm{sec} / \mathrm{veh}$) total Stops (no.) (\%) maximum back of queue and capacity fuel Consumption (gal) Route (total) summary report (same MOE's as above system report).	Total system performance: total (veh-hr) and average delay ($\mathrm{sec} / \mathrm{veh}$) total stops (veh/hr) (\%) fuel consumption (gal/hr) bandwidth efficiency versus cycle length table Best solution report for artery: - bandwidth efficiency - bandwidth attainability, $A=\left(B_{r}+B_{f}\right) /\left(G_{f}^{\prime}+G_{r}^{\prime}\right)$ $=$ sum of bandwidths $/$ sum of critical arterial greens cycle length bandwidths
Graphical Outputs	Time-space diagram. Time-location diagram. Flow profiles. Platoon Dispersion Diagram (via PPD program and TRANSYT-7F .GDT file).	Time-space diagram. LEART (simple arterial simulation/animation)

This Page Intentionally Blank

TRAF-NETSIM / CORFLO NETFLO 1 / CORFLO NETFLO 2 Comparison

TRAF-NETSIM / CORFLO NETFLO 1 / CORFLO NETFLO 2 Comparison

	TRAF-NETSIM	CORFLO NETFLO 1	CORFLO NETFLO 2
Function	Detailed urban street network and vehicle simulation.	Intermediate detailed urban street network and vehicle simulation.	Less detailed urban street network and vehicle simulation.
Model Type and Primary Vehicle Movement Model	Microscopic, stochastic vehicle and driver carfollowing simulation.	Event stepping, stochastic vehicle and driver simulation.	Macroscopic platoon formation and dispersion modelled as flow histograms.
Simulation Timing	Time stepping (1 second) simulation with vehicle state updated every time step. Multiple time period capability. Control devices updated every second.	Normally event based. Each vehicle is moved ahead as far as possible each time the vehicle is processed and is then scheduled to be processed again some time (event) in the future. Multiple time period capability. Pre-timed control devices normally updated at change of interval. Actuated devices updated every second due to interaction with detectors.	Flow histograms are processed every "time interval" usually equal to the average network cycle length. Multiple time period capability.
Relative Execution Speed	Slow	Fast	Fast
Fleet Components	Carpools, Cars, Trucks, Buses.	Carpools, Cars, Trucks, Buses.	Cars, Trucks, Buses (No carpools).
HOV Lanes	Buses and carpools.	Buses and carpools.	Buses only.

	TRAF-NETSIM	CORFLO NETFLO 1	CORFLO NETFLO 2
Link Representation, Operation, and Inputs	Link and pocket lengths, 1 or 2 turn pockets for either left and/or right turns, channelized lanes, grade, headway, lost time, free flow speed, right-turn-on-red, pedestrians. Up to 7 approach lanes. Turn percentages and destination. Conditional link-to-link turning percentages. Short and long term incidents/blockages. Link-to-link lane alignment. Parking location and maneuvers.	Link and pocket lengths, 1 or 2 turn pockets for either left and/or right turns, channelized lanes, grade, headway, lost time, free flow speed, right-turn-on-red, pedestrians. Up to 6 approach lanes. Turn percentages and destination. Percentage of time a lane is blocked. Diversion.	Link and pocket lengths, 1 or 2 turn pockets for either left and/or right turns, channelized lanes, grade, headway, lost time, free flow speed, right-turn-on-red, pedestrians. Up to 6 approach lanes. Turn percentages and destination. Percentage of time a lane is blocked.
Bus Operation	Follows fixed path where routes are defined by a series of stations and routes have a fixed headway. Stations are stops or pullouts.	Same as TRAF-NETSIM. Follows fixed path where routes are defined by a series of stations and routes have a fixed headway.	Same as TRAF-NETSIM. Follows fixed path where routes are defined by a series of stations and routes have a fixed headway.
Pedestrians	Stochastically assigned blockages of turning vehicles.	Stochastically assigned blockages of turning vehicles	Stochastically assigned blockages of turning vehicles.

	TRAF-NETSIM	CORFLO NETFLO 1	CORFLO NETFLO 2
Signs and Pretimed Signals	Stop and Yield signs. Up to 12 Intervals with offset coordination. Time Period specific phasing patterns.	Stop and Yield signs. Up to 9 Intervals with offset coordination. Time Period specific phasing patterns.	Stop and Yield signs. Up to 9 Intervals with offset coordination. Time Period specific phasing patterns.
Actuated Signals	Type 170 / NEMA, single or dual-ring, fully actuated or semi-actuated with detector(s) fully specified for each lane and approach. Background cycle with yield points, permissive periods, and force-offs for each phase. Most all Type 170 and NEMA signal control parameters may be input. Detector inputs include lane, location, length, detector group type, delay time, carryover time, and passage or presence. Pedestrian actuated phases.	Fully or semi-actuated, single ring controller with presence detector location and length specified for each lane and approach (up to 5 approaches). For coordinated signal, inputs are yield point and yield interval for non-actuated phase 1; minimum initial green time and force off points for other than phase 1 ; and recall switch. For non-coordinated actuated control, phase 1 can be actuated or non-actuated. Non-actuated input is minimum duration. Actuated inputs are minimum initial interval and maximum phase duration beyond minimum initial; and recall switch.	No actuated signals.

RAF-NETSIM			
Stochastic Features	Driver type (10). Vehicle type based on user specified fleet component percentages (up to 16). Free flow speed entered for link but adjusted for vehicle and driver type. Turn movement assignment. Queue discharge headway.	Driver type (10). Vehicle type based on user specified fleet component percentages (up to 16). Free flow speed entered for link but adjusted for vehicle and driver type. Turn movement assignment. Queue discharge headway.	
Queue Modeling	Spillback and spillover explicitly modeled.	Spillback and spillover explicitly modeled.	Spillback modelled.
Environmental Outputs	Fuel consumption and emissions by link and vehicle type.	Fuel consumption and emissions by link and vehicle type.	Fuel consumption and emissions by link and vehicle type.
Other Features	Source and sink nodes. Fleet component vehicle occupancies. Vehicle type specifications. Link aggregation outputs. TRAF-NETSIM and FRESIM can be joined into a single network for simulation. (When CORSIM released by FHWA.)	Source and sink nodes. Fleet component vehicle occupancies. Works with TRAF traffic assignment module. NETFLO 1 \& 2 and FREFLO subnetworks can be joined into a single network for simulation of large systems.	Source and sink nodes. Fleet component vehicle occupancies. Works with TRAF traffic assignment module. NETFLO $1 \& 2$ and FREFLO subnetworks can be joined into a single network for simulation of large systems.

	TRAF-NETSIM	CORFLO NETFLO 1	CORFLO NETFLO 2
Changeable Embedded Parameters	Left turn jumper probabilities, left and right turn speeds, end-of-stopped queue lane switching gap, probability of joining a spillback, left turn lagger probability, vehicle fleet type length, near and far side gap distribution, amber phase response, left turn gap response, pedestrian delay distribution, free-flow speed distributions, short term event duration distribution, lost time/headway distribution, and bus dwell time distribution.		None
	TRAF-EDIT - "Smart" and "Quick" line editor.	TRAF-EDIT - "Smart" and "Quick" line editor.	TRAF-EDIT - "Smart" and "Quick" line editor.
Preprocessors	NEDIT - full screen editor.	None	

	TRAF-NETSIM		
Outputs	Complete input echo reports. Intermediate link specific reports. - veh. content by movement and lane. - veh. discharged, stopped. - control device indications.	Complete input echo reports. Intermediate link specific reports. - veh. content by movement and queues by lane. - vehicles in and out. - control device indications.	Complete inpritectis Intermediate link specific reports. - veh. content by approach and queues by movement. - vehicles discharged. - control device indications.
Outputs continued next page	Cumulative statistics link reports. - veh. trips and miles. - veh. minutes of move, delay, and total time. - sec./veh. total, delay, queue, and stop time. - average link stops, volume, speed, occupancy, storage, and phase failures. - average and maximum queue by lane. - person miles, trips, delay, and travel time. - movement specific veh. miles, trips, speed, and stops. - movement specific veh. minutes moving, delay, and total time.	Cumulative statistics link reports. - veh. trips and miles. - veh. minutes of move, delay, and total time. - sec./veh. total, delay, queue, and stop time. - average link stops, volume, speed, occupancy, and storage. - person miles, trips, delay, and travel time. - movement specific veh. miles, trips, speed, and stops. - movement specific veh. minutes moving, delay, and total time.	Cumulative statistics link reports. - veh. trips and miles. - veh. minutes of move, delay, and total time. - sec./veh. total and delay time. - average link stops, volume, and speed. - person miles, trips, delay, and travel time. - movement specific veh. miles, trips, speed, and stops. - movement specific veh. minutes moving, delay, and total time.

	TRAF-NETSIM	CORFLO NETFLO 1	CORFLO NETFLO 2
Outputs (Continued)	- movement specific seconds/vehicle total, delay, queue, and stop time. Bus route and link statistics. - bus and person trips. - total, moving, delay time, and stops. TRAF-NETSIM section specific vehicle miles; delay and total time; average speed, stops, and content.	- movement specific seconds/vehicle total, delay, queue, and stop time. Bus route and link statistics. - bus and person trips. - total, moving, and delay time, and stops. Traffic assignment results.	- movement specific seconds/vehicle total, move and delay time. Bus route and link statistics. - bus and person trips. - total, moving, and delay time, and stops. Traffic assignment results.
Postprocessors	GTRAF SNETG (static) and ANETG (animated) graphics.	GCOR SGCOR (static) graphics.	GCOR SGCOR (static) graphics.
Capacity	Links - 500. Nodes - 250. Actuated controllers - 100. Vehicles - 10,000	Links - 250. Nodes - 70. Actuated controllers - 20. Vehicles - 10,000	Links - 500. Nodes - 240. Actuated controllers - None
Limitations	No explicit U-turns, preemptive phases, merge logic, or discretionary lane changing. Lane changes for downstream turns occur by lane "jumping" at upstream end of link. Turn percentages cannot be assigned by vehicle type nor can lane distribution be assigned by user.	No explicit U-turns, preemptive phases, merge logic, or discretionary lane changing. Lane changes for downstream turns occur by lane "jumping" at upstream end of link. Turn percentages cannot be assigned by vehicle type nor can lane distribution be assigned by user.	Turn pockets modelled as channelized lanes. No spillover modelling. Spillback/Capacity Reduction model for feeding links based on link storage capacity only. Turn percentages cannot be assigned by vehicle type nor can lane distribution be assigned by user.

FRESIM / FREFLO Comparison

FRESIM / FREFLO Comparison

	FRESIM	FREFLO
Function	Very detailed urban freeway network (individual freeway components) and vehicle/driver simulation for detailed design and operational analysis.	Less detailed urban freeway network simulation for large area analysis with short execution times.
Model Type and Primary Vehicle Movement Model	Microscopic, stochastic vehicle and driver car-following simulation.	Macroscopic, discrete roadway segment, input- output (conservation) model based on a dynamic speed-density equilibrium model.
Simulation Timing	Time stepping (normally 1 second) simulation with vehicle state updated every time step. Multiple time period capability.	Time interval based updates. Multiple time period capability.
Control devices (ramp meters) updated every time step.	Fast	
Relative Execution Speed	Slow	Entry volumes. Turning percentages.
Multiple Time Period	Entry volumes. Features	Link characteristics. Origin-Destination percentages.
Incident specification.		
Incidents specification (actually specified as		
beginning at some time after the start of		
simulation for a given duration).		

	FRESIM	
Bus Operations	Currently no provision for bus operation even though buses are represented by a vehicle type.	Bus paths can be specified. Bus volume specified as a mean headway.
Link Representation / Operation	Up to 5 mainline freeway links. Up to 3 auxiliary lanes - acceleration, deceleration, and full. Ramps and freeway-to-freeway connectors can have up to 3 lanes. Lane drops and adds. Multiple destination lanes. Free-flow speed. Link-to-link lane alignment. Advanced warning signs for exit ramps, incidents, and lane drops. Merging, weaving, and lane-changes explicitly modelled. Truck restrictions or bias to specific lanes. Lane barriers.	Up to 9 lanes per link. User specified lane capacity - vph. Free-flow speed. Equilibrium speed-density relationship user choice. One or two source links and one on-ramp per link One or two destination (through movement) links and one off-ramp per link. One or two destination (through movement) link and one off-ramp turning percentages per link. On-ramps place traffic directly onto freeway while off-ramps take it directly off the freeway. Merging and weaving are not modelled nor are ramp links. Ramp links act as point sources and sinks of traffic flow. Ramps do not connect to other links (networks). Connections between freeways or other networks is accomplished by using one of the two source or destination links in place of a ramp link.

	FRESIM	FREFLO
Incidents and Temporary Events	Incident modelling by link, lane, length, duration, and severity (blockage and rubbernecking factor).	Reduced lanes or constraint on capacity for regular or special purpose lanes.
Ramp Metering	Clock Time, Speed Control, Demand Capácity, Gap-Acceptance.	Capacity constrained.
Input Report and Link Specific Outputs	Complete input echo reports. Intermediate link specific reports. - link vehicle content and discharge. - link average delay and speed. - link lane changes. - link vehicle content by lane. Cumulative statistics link reports. - vehicles in, out, miles, minutes, and lane changes. - current and average vehicle content. - vehicle minutes/vehicle mile of total and delay time. - ratio moving/total time. - seconds/vehicle total, moving, and delay time. - average volume/lane/hour, density, and speed. - fuel consumption and miles-per-gallon by vehicle type. - vehicle emissions (HC, COs, NOX) by vehicle type	Complete input echo reports. Trip table and traffic assignment report if traffic assignment employed by user. Intermediate link specific reports. - vehicles content by movement and lane. - vehicles discharged by type. - link volumes for regular and special lanes. - speed by vehicle type and for regular and special lanes. - density by vehicle type and for regular and special lanes. Cumulative statistics link reports. - vehicle trips and miles. - vehicle minutes of move, delay, and total time. - ratio moving/total time. - minutes/mile total and delay time. - seconds/vehicle total and delay time. - average link volume and speed. - person miles, trips, delay, and travel time.

	FRESIM	
System Outputs	System-wide performance report: - vehicle-miles - vehicle-minutes - moving/total trip time ratio - average network content - current network content - average network speed - total delay - travel time in minutes/vehicle-mile - delay time in minutes/vehicle-mile - fuel consumption and miles-per-gallon by vehicle type - vehicle emissions (HC, CO, NOX) by vehicle type Detector processing reports: - point processing (normally volume, speed, and/or occupancy) - MOE algorithm off-line estimation - On-line incident detection report - Off-line incident detection report	System-wide performance report: - vehicle trips and miles. - vehicle hours of move, delay, and total time. - ratio moving/total time. - minutes/mile total and delay time. - minutes/vehicle-trip. - average speed. - person miles, trips, delay, and travel time.
Preprocessors	FEDIT - FRESIM Editor (full-screen) TURNVOL - turning volume estimator given turning percentages and entry volumes. INTOFRE - converts INTRAS (predecessor to FRESIM) input file to FRESIM input file.	TRAFEdit - "Smart" and "Quick" line editors. FEDIT - FRESIM Editor can generate FREFLO input file excluding features unique to FREFLO. TURNVOL - turning volume estimator given turning percentages and entry volumes.

	FRESIM	
Postprocessors	CONTOUR provides character based printer plot of speed and density by time period for first freeway segment. Animation and static graphics program planned for the future.	GCOR program SCORG (static) graphics. Curved links and overpasses can be explicitly coded for graphics.
Capacity	200 Links 120 Nodes 3000 Vehicles 20 freeway segments as defined by a unique pair of freeway (not ramp) Entry and Exit nodes.	500 Links
Other Features	Program computed with optional user overridden roadway segment specific Origin-Destination percentages for controlling vehicle paths.	CORFLO traffic assignment module may be applied to FREFLO.
TRAF-NETSIM and FRESIM can be joined into a single network for simulation. (When CORSIM released by FHWA.)	NETFLO 1 \& 2 and FREFLO subnetworks can be joined into a single network for simulation of large systems.	
Additional Strengths		Cannot model bus operations Cannot model lane width effects
Limitations	Ramps cannot have lane adds/drops or auxiliary lanes.	Lane changing, merging, and weaving not modelled.

APPENDIX III TRAFFIC MODEL SPECIFIC REFERENCES

(Jan 1982 - Nov 1991 and some additional references for 1992)

PASSER II

TRANSYT
*

TRAF-NETSIM

CORFLO (NETFLO 1 \& 2 AND FREFLO)
FRESIM
ROADSIM
PASSER III
MAXBAND
SOAP
FREQ

This Page Intentionally Blank

PASSER II

ing sIGNALS TO COORDINATED TRAFFIC SIGNAL SYSTEMS. Machemehl-R.B.; Lee-C.E. Texas Univ. at in. Center for Transportation Research. Texas State Dept. of Highways and Public Transportation, Austin. Federal Eway Administration, Austin, TX. Texas Div. FHWATX84232601F, Aug 83. 94p.

ALYSIS OF REDUCED-DELAY OPTIMIZATION AND OTHER ENHANCEMENTS TO PASSER 2-80 - PASSER
4. Final Report. Research rept. Mar-Aug 83. Chang-E.C.; Messer-C.J.; Marsden-B.G. Texas Transportation Inst., coge Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public insportation, Austin. TTI218833751F, FHWATX84503751F. Apr 84. 129p.
4
ITERIAL ANALYSIS PACKAGE (AAP) USER'S MANUAL. Courage, KG; Wallace, CE; Reaves, DP. Florida fiversity, Gainesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Office Research and Development, 400 7th Street, SW Washington D.C. 20590. Nov 1986 311p. REPORT NO: FNA-IP-86-001; FCP 32Q9-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Fringfield Virginia 22161

FIERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-87. Chang, ECP; Messer, CN; Garzia, RU. Institute Iransportation Engineers. ITE Journal VOL. 58 NO. 11 Nov 1988 pp 27-31 Figs. 3 Ret.. AVAILABLE FROM: Institute 1 Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

1
ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER H-87. MICROCOMPUTER USER'S GUIDE. FINAL REPORT. Chang, Ef̧-P; Lei, JC-K; Messer, CJ. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Ilustin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1988 105p 28 Fig. 1 Tab. 14 Ret. 2 App.. REPORT NO: FHWATX-88/467-1; Res Rept 467-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-90: PROGRAM USER'S MANUAL (REVISED). Final research rept. Chang-E.C.P.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. TTI21886467, RR4672F, FHWATX904672F. Jun 91. 120p.

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. VOLUME 1. TECHNICAL REPORT. FINAL REPORT. Chang, ECP; Messer, CJ. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration Turner Fairbank Hwy Res Critr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1985 86p. REPORT NO: FHWARD-86/20. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. Chang, EC-P; Messer, CJ; Cohen, SL. Transportation Research Board. Transportation Research Record N1057 1986 pp 10-19 8 Fig. 6 Tab. 20 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

EVALUATION TOOLS OF URBAN INTERCHANGE DESIGN AND OPERATION. Radwan, AE; Hatton, RL. Transportation Research Board. Transportation Research Record N1280 1990 pp 148-155 6 Fig. 5 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

HEURISTIC PROGRAMMING APPROACH TO ARTERIAL SIGNAL TIMING. Rogness, RO; Messer, CJ. Transportation Research Board. Transportation Research Record N906 1983 pp 67-75 3 Fig. 6 Tab. 25 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

IMPLEMENTATON OF TRAFFIC SIGNAL TIMING PLANS IN COORDINATED ARTERIAL SYSTEMS. Courage, Kg. Florida University, Gainesville Transportation Research Center Gainesvile Florida 32611. Jan 1990 25p. REPORT NO: UTC-UF-268-3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

INVESTIGATION OF OPTIMAL TIME TO CHANGE ARTERIAL TRAFFIC SIGNAL-TIMING PLAN. Jrew, BK; Parsonson, PS; Chang, EC-P. Transpontation Research Board. Transportation Research Record N1057 1986 pp 20-29 6 Fig. 10 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PASSER II-84 MICROCOMPUTER ENVIRONMENT SYSTEM-PRACTICAL SIGNAL-TIMING TOOL. Chang, EC-P; Marsden, BG; Derr, BR. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 113 NO. 6 Nov 1987 pp 625-641 Figs. Tabs. Refs.. REPORT NO: ASCE Paper 21941. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

POSSIBLE PASSER II ENHANCEMENTS. Rogness, RO (North Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp 42-485 Fig. 6 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 1: TECHNICAL REPORT. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 141p 22 Fig. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 2: USER'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 30p 7 Fig. 2 Tab. 8 Ref.. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Williams, L. Federal Highway Administration, Office of R\&D. Public Roads VOL. 50 NO. 3 Dec 1986 pp $91-96$ Figs. 3 Ref.. AVAILABLE FROM: Government Printing Office Superintendent of Documents Washingion D.C. 20402

THE PASSER II-84 SYSTEM: A PRACTICAL SIGNAL TIMING TOOL. Marsden, BG; Chang, CP; Derr, BR. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 3 Mar 1987 pp 31-36 Figs. 1 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

THE PASSER II-87 MICROCOMPUTER PROGRAM. Chang, EC-P. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 11 Nov 1988 pp 574-578 Figs. Tabs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

TRAFFIC SIGNAL TIMING PROGRAM PASSER II-84. Chang, E C.P; Messer, CJ. Texas Transportation Institute. Texas Transportation Researcher VOL. 20 NO. 2 Apr 1984 pp 7-9. AVAlLABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

TRANSYT-7F OR PASSER II, WHICH IS BETTER - A COMPARISON THROUGH FIELD STUDIES. Shui-Ying Wong, Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Transportation Research Board. Transportation Research Record N1324, 1991, pp 83-97. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418.

WARRANTS FOR INTERCONNECTION OF ISOLATED TRAFFIC SIGNALS. Research rept. Sep 79-Aug 86 (Final). Chang-E.C.; Messer-C.J. Texas Transportation Inst., College Station. Texas State Dept. of Highways and Public Transportation, Austin. Transportation Planning Div. Federal Highway Administration, Austin, TX. Texas Div. TTI21880293, FHWATX86672931F. Aug 86. 77p.
y's NEW IN SIGNAL TIMING OPTIMIZATION MODELS?. Wilbur, AD. Institute of Transportation Engineers. ITE GI VOL. 61 NO. 4 Apr 1991 pp $41-45$ Figs. 1 Tab. Refs.. AVAILABLE FROM: Institute of Transportation Engineers school Street, SW, Suite 410 Washington D.C. 20024-2729

TRANSYT-7F

IICROCOMPUTER VERSION OF TRANSYT. Lines, CJ; Logie, M. PTRC Education and Research Services Limited. Fning \& Transport Res \& Comp, Sum Ann Mtg, Proc VOL. P249 1984 p 71. AVAILABLE FROM: PTRC Education 3 Research Services Limited 110 Strand London WC2 England

PERMITTED-MOVEMENT MODEL FOR TRANSYT-7F. Wallace, CE; White, FJ; Wilbur, AD. Transportation Research oard. Transportation Research Record N1112 1987 pp 45-51 2 Fig. 2 Tab. 18 Ref.. AVAILABLE FROM: Transportation ;osearch Board Publications Otfice 2101 Constitution Avenue, NW Washington D.C. 20418
izPROGRESSION-BASED OPTIMIZATION MODEL IN TRANSYT-7F. Hadi, A. and Waliace, C.; Transportation fosearch Center, University of Florida, Gainesvilie, Fl. Transportation Research Board 71st Annual Meeting Preprint.

A SURVEY OF TRANSYT-7F APPLICATIONS. Wilbur, T. Printerhall Limited. Traffic Engineering and Control VOL. 26 MO. 10 Oct 1985 pp 498.5011 Fig. 7 Ref.. AVAILABLE FROM: Printerhail Limited 29 Newman Street London England

FACCOMMODATING, TRANSIT IN TRANSYT. Yagar, S. Transportation Research Board. Transportation Research Record N1181 1988 pp 68-76 11 Fig. 1 Tab. 4 Ref.. AVAlLABLE FROM: Transpontation Research Board Publications Oftice 2101 Constitution Avenue, NW Washington D.C. 20418

ADVANCES IN THE PC INTERFACE OF THE TRANSYT-7F TRAFFIC SIMULATION MODEL. LEONARD, JD; RECKER, WW. INSTITUTE OF TRANSPORTATION ENGINEERS MEETING 1989 PP 536-541 ENGLISH

APPLICATION OF TRANSYT-7F IN CHINA. Wong, SY. Institute of Transportation Engineers. ITE Journal VOL. 58 NO. 8 Aug 1988 pp 38-42 Figs. Tabs. Refs.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

ARTERIAL ANALYSIS PACKAGE (AAP) USER'S MANUAL. Courage, KG; Wallace, CE; Reaves, DP. Florida University, Gainesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Office of Research and Development, 400 7th Street. SW Washington D.C. 20590. Nov 1986311 . REPORT NO: FHWA-IP-86-001; FCP 3209-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ARTERIAL PRIORITY OPTION FOR THE TRANSYT-7F TRAFFIC-SIGNAL-TIMING PROGRAM. Moskaluk, MJ; Parsonson, PS. Transportation Research Board. Transportation Research Record N1181 1988 pp 57-60 2 Fig. 2 Tab. 2 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ARTERIAL PRIORITY OPTION FOR THE TRANSYT-7F TRAFFIC-SIGNAL-TIMING PROGRAM. MOSKALUK, J; PARSONSON, PS. NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH WASHINGTON DC. 1988 27 PP ENGLISH

ARTERIAL PROGRESSION-NEW DESIGN APPROACH. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Board. Transportation Research Record N881 1982 pp 53-59 4 Fig. 2 Tab. 9 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-90: PROGRAM USER'S MANUAL (REVISED). Finai research rept. Chang-E.C.P.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway Administration, Austin. TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. TTl21886467, RR4672F, FHWATX904672F. Jun 91. 120p.

ASSESSING THE TRAFFIC IMPACTS OF TRANSPORTATION AND LAND DEVELOPMENT SCENARIOS. Deakin EA; Skabardonis, A. Eno Foundation for Transportation, Incorporated. Transportation Quartarty VOL. 39 NO. 4 Oct 1985 pp 605-626. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

AT LAST - A TRANSYT MODEL DESIGNED FOR AMERICAN TRAFFIC ENGINEERS. Wallace, CE (Florida Universiny, Gainesville). Institute of Transportation Engineers. ITE Journal VOL 53 NO. 8 Aug 1983 pp 28-31 11 Ret.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

AUTOMATIC UPDATING OF TPAFFIC VOLUME DATA FOR SIGNAL TIMING PLAN DEVELOPMENT. FINAL REPORT. VOLUME 1. Kell, JH; Fullerton, W. JHK and Associates P.O. Box 3727 San Francisco California 94119; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1987 45p. REPORT NO: FHWARD-87/081; Rept No 4725. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

AUTOMATIC UPDATING OF TRAFFIC VOLUME DATA FOR SIGNAL TIMING PLAN DEVELOPMENT. FINAL REPORT. VOLUME 2. Kell, JH; Fullerton, W. JHK and Associates P.O. Box 3727 San Francisco California 94119; Federal Highway Administration Tumer Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1987 264p. REPORT NO: FHWARD-87/112; Rept No 4725. AVAlLABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

CALIBRATION OF TRANSYT PLATOON DISPERSION MODEL FOR PASSENGER CARS UNDER LOW-FRICTION FLOW CONDITIONS (ABRIDGMENT). McCoy, PT; Balderson, EA; Hsueh, RT; Mohaddes, AK (Nebraska University, Lincoin). Transportation Research Board. Transportation Research Record N905 1983 pp 48-52 1 Fig. 5 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Otfice 2101 Constitution Avenue, NW Washington D.C. 20418

CASE STUDY EVALUATION OF THE SAFETY AND OPERATIONAL BENEFITS OF TRAFFIC SIGNAL COORDINATION. Berg, WD; Kaub, AR; Belscamper, BW. Transportation Research Board. Transportation Research Record N1057 1986 pp 58-64 9 Fig. 4 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue. NW Washington D.C. 20418

COMPARATIVE ASSESSMENT OF 1985 HCM DELAY MODEL. Sadegh, A; Radwan, AE. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 2 Mar 1988 pp 194-208 Figs. Tabs. Refs. Apps. REPORT NO: ASCE Paper 22278. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

COMPARISON OF MACROSCOPIC MODELS FOR SIGNALIZED INTERSECTION ANALYSIS. Hagen, LT; Courage, KG. Transportation Research Board. Transportation Research Record N1225 1989 pp 33-44 14 Fig. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CONCURRENT USE OF MAXBAND AND TRANSYT SIGNAL TIMING PROGRAMS FOR ARTERIAL SIGNAL OPTIMIZATION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N906 1983 pp 81-84 2 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DELAY MODELS FOR MIXED PLATOON AND SECONDARY FLOWS. Rouphail, NM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 3 Mar 1988 pp 131-152 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22254. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

DESIGN, PERFORMANCE AND PLANNING OF SIGNALIZED ARTERIAL TRAFFIC NETWORKS. Finai rept. Rao-T.S.C.S. California Univ., Berkeley. Dept. of Civil Engineering. RAOTRAFFIC871, Dec 87. 398p.

ENERGY AND EMISSION CONSEQUENCES OF IMPROVED TRAFFIC SIGNAL SYSTEMS. Kahng, SJ; May, AD (California University, Berkeley). Transportation Research Board. Transportation Research Record N881 1982 pp 34-41 11 Fig. 3 Tab. 23 Rel.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
 10017
VaLUATION OF SIGNAL TIMING VARIABLES BY USING A SIGNAL TIMING OPTIMIZATION PROGRAM. Mao, CM; Messer, $\mathfrak{C l}$; Rogness, RO (Texas State Department of Highways \& Public Transp; Texas Transportation Institute; Forth Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp 48-52 y2Fig. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
Evaluation tools of urban interchange design and operation. Radwan, aE; Hatton, rl. Transportation Research Board. Transportation Research Record N1280 1990 pp 148-155 6 Fig. 5 Tab. 11 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
FHWA-SPONSORED PROJECT PROVES COST EFFECTIVENESS OF SIGNAL TIMING OPTIMIZATION. Euler, GW; ISchoene, GW (Federal Highway Administration). Transportation Research Board. Transporration Research News N103 Nov 1982 pp 2-4 2 Tab. 1 Phot. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
FLOW PROFILE COMPARISON OF A MICROSCOPIC CAR-FOLLOWING MODEL AND A MACROSCOPIC PLATOON DISPERSION MODEL FOR TRAFFIC SIMULATION. Mekemson, J., VICOR Associates, Manassas, Va. and Gantz, D. George Mason University, Fairfax, Va. 1990 Winter Simulation Conference Proceedings.
FUEL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. FINAL REPORT. MOGill, R. Oak Ridge National Laboratory Post Office Box X Oak Ridge Tennessee 37830. May 1985 93p. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161
FUEL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. MoGill, R. Oak Ridge National Laboratory Post Office Box X Oak Ridge Tennessee 37830 ; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. May 1985 Final Rpt. 90p 20 Fig. 18 Tab. 7 Ref. 5 App.. REPORT NO: FHWARD-85/053. AVAILABLE FROM: Federal Highway Administration Turner Fairbank Hwy Res Crtr, 6300 Georgetown Pike Washington D.C. 20590
fuel efficient traffic signal operation and evaluation: garden grove demonstration PROJECT. Wagner-McGee Associates 4660 Kenmore Avenue, Suite 825 Alexandria Virginia 22304; California Energy Commission 1516-19th Street Sacramento California 95814. Feb 1983 76p. REPORT NO: P-400-83-004
HEURISTIC PROGRAMMING APPROACH TO ARTERIAL SIGNAL TIMING. Rogness, RO; Messer, ©. Transportation Research Board. Transportation Research Record N906 1983 pp 67-75 3 Fig. 6 Tab. 25 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
IMPLEMENTATION OF TRAFFIC SIGNAL TIMING PLANS IN COORDINATED ARTERIAL SYSTEMS. Courage, KG. Florida University, Gainesville Transportation Research Center Gainesville Fiorida 32611. Jan 1990 25p. REPORT NO: UTC-UF-268-3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161
IMPLEMENTING TRANSYT TRAFFIC SIGNAL TIMING. Dock, FC. Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada. Sep 1984 pp B3-B29 8 Fig. 5 Tab. 12 Ref.. AVAILABLE FROM: Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada
IMPROVED GRAPHIC TECHNIQUES IN SIGNAL PROGRESSION. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Board. Transportation Research Record N957 1984 pp 47-55 11 Fig. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
IMPROVED SIGNAL TIMING PLAN SELECTION. Kessmann, RW; Ku, CS. Kessmann and Associates, Incorporated Houston Texas. Aug 1985 22p. REPORT NO: REPT-1502.02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

IMPROVING SIGNAL TIMING. VOLUME 2. PRETIMED ARTERIAL ROADWAYS. Vermeulen, MJ; Lermat, NP; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. May 1984 204p. REPORT NO: UCB-ITS-RR-84-4; FHWA-CA-TO-83-3-2. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

INTERSECTKN, DIAMOND. AND THREE-LEVEL DIAMOND GRADE SEPARATION BENEFIT-COST ANALYSIS BASED ON DELAY SAVINGS. Rymer, B; Urbanik, T, II. Transportation Research Board. Transportation Research Record N1239 1989 pp 23-29 8 Fig. 2 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washingion D.C. 20418

INVESTIGATION OF OPTIMAL TIME TO CHANGE ARTERIAL TRAFFIC SIGNAL-TIMING PLAN. Jrew, BK; Parsonson, PS; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 20-29 6 Fig. 10 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ITDS: PAST, PRESENT, AND FUTURE. Rathi, AJ; Santiago, AJ; Valentine, DE; Chin, SM. American Society of Civil Engineers. Journal of Transportation Enginearing VOL. 116 NO. 6 Nov 1990 pp 799-808 Figs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

MAKING TRANSYT USAGE EASY WITH MICROS: A CASE STUDY. SESSION 4. Strong, DW; Eckols, RH (Barton-Aschman Associates, Incorporated). Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 9-13 4 Fig. 8 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

MAXBAND-86: PROGRAM FOR OPTIMIZING LEFT-TURN PHASE SEQUENCE IN MULTIARTERIAL CLOSED NETWORKS. Chang, EC-P; Cohen, SL; Liu, C; Chaudhary, NA; Messer, C. Transportation Research Board. Transportation Research Record N1181 1988 pp 61-67 1 Fig. 3 Tab. 16 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

MEASURES OF QUEUEING PERFORMANCE FOR A TRAFFIC NETWORK. Bell-M.C.. Newcastie upon Tyne Univ. (England). Transport Operations Research Group. TORGRR33. Oct 80. 29p. UNITED-KINGDOM.

MODELING OF SHARED LANE USE IN TRANSYT-7F. Wallace, CE; White, FJ. Transportation Research Board. Transportation Research Record N1194 1988 pp 160-166 2 Fig. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

OPTIMIZATION OF LEFT-TURN PHASE SEQUENCE IN SIGNALIZED CLOSED NETWORKS. Final rept. Cohen-S.L. Federal Highway Administration, McLean, VA. Tratfic Systems Div. FHWARD88157, May 88. 38p.

PLAN-CHANGE ALGORITHMS FOR AREA TRAFFIC CONTROL SYSTEMS. Bell-M.C.; Gault-H.E.; Taylor-I.G. Newcastle upon Tyne Univ. (England). Transport Operations Research Group. RR51, Apr 83. 49p. UNITED-KINGDOM.

PLATOON DISPERSION FACTOR IN TRANSYT FOR SWEDISH TRAFFIC CONDITIONS. Hammarstroem, U. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1988 26p. REPORT NO: VTIMEDDELANDE-569A. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22151

POSSIBLE PASSER II ENHANCEMENTS. Rogness, RO (North Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp $42-485$ Fig. 6 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PREDICTING AREA TRAFFIC CONTROL PERFORMANCE WITH TRANSYT/8 AND AN ELEMENTAL MODEL OF FUEL CONSUMPTION. Luk, JYK; Akcelik, R. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 87-101 2 Fig. 7 Tab. 10 Ref.

RELIMINARY TESTING AND EVALUATION OF NEW COMPUTER PROGRAMS FOR TRAFFIC ANALYSIS, TASK: VALUATION OF SUPERCOMPUTER POTENTIAL. Parker-L.E.G. Ontario. Ministry of Transportation. Research and Development Branch, Regina. c1990. 135p. CANADA.

WROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 1: TECHNICAL REPORT. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oet 1988 141p 22 Fig. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical Information Sorvice 5285 Port Royal Road Springfield Virginia 22161

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 2: USER'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Havey, Skabardonis, Incorporated P.O. Box 9156 Borkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 30p 7 Fig. 2 Tab. 8 Ref.. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

QUEUEING MODEL FOR TRANSYT 7. Beil-M.C.. Newcastle upon Tyne Univ. (England). Transport Operations fesearch Group. Science Research Council, Swindon (England). TORGRR34. Oct 80. 30p. UNITED-KINGDOM.

REVIEW OF TRAFFIC MODELLING TECHNIQUES. Pretty, RL (Queensland University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-9 21 Ref.. REPORT NO: Paper 22

ROUNDABOUT CONTROL IS SIGNAL SUCCESS. Beicher, M (West Midiand County Council). Specialist and Professional Press. Surveyor VOL. 163 NO. 4780 Feb 1984 pp 13-14 1 Fig. 1 Phot.

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 2. FINAL REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Baltimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL2, FHWAMD8820. Feb 88. 155p.

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 1. SUMMARY REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Baltimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL1, FHWAMD8819. Feb 88. 33p.

SIGNAL TIMING BASED ON TRANSYT-7F. Davis, SW (City of Fort Wayne, Indiana). Purdue University. Engineering Bulletin of Purdue University N153 1982 pp 131-133. AVAILABLE FROM: Purdue University West Lafayette Indiana 47907

SINGLE-ARTERIAL VERSUS NETWORKWIDE OPTIMIZATION IN SIGNAL NETWORK OPTIMIZATION PROGRAMS (DISCUSSION AND CLOSURE). Johnson, V; Cohen, SL; Chang, ECP. Transportation Research Board. Transportation Research Record N1142 1987 pp 6-15 7 Fig. 11 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

SOME MEASUREMENTS OF ROBERTSON'S PLATOON DISPERSION FACTOR. Axhausen, KW; Korling, H-G. Transportation Research Board. Transportation Research Record N1112 1987 pp 71-775 Fig. 9 Tab. 17 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

STATE OF THE ART REPORT. TRAFFIC MANAGEMENT. TRAFFIC CONTROL. Kinsiea Press Limited. Municipal Engineer VOL. 1 NO. 3 Oct 1984 pp 255-274 11 Fig. 11 Phot. 120 Ref.. AVAlLABLE FROM: Kinslea Press Limited Central Buildings, 24 Southwark Street, London Bridge London England

THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Wiliams, L. Federal Highway Administration, Office of R\&D. Public Roads VOL. 50 NO. 3 Dec 1986 pp 91-96 Figs. 3 Ref.. AVAILABLE FROM: Government Printing Oftice Superimendent of Documents Washington D.C. 20402

THE BANDWIDTH-CONSTRAINED TRANSYT SIGNAL-OPTIMIZATION PROGRAM (DISCUSSION AND CLOSURE). Cohen, SL; Liu, CC; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 1-9 5 Fig. 5 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE USE OF TRANSYT AT SIGNALIZED ROUNDABOUTS. Lines, C. Crabtree, MR. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 6 Jun 1988 pp 332-337 Figs. 9 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

THE VALUE OF FIXED-TIME SIGNAL CO-ORDINATION IN DEVELOPING COUNTRIES. II. IMPROVED BUS MODELING AND RESULTS. Willumsen, LG; Coeymans, JE. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 3 Mar 1989 pp 126-134 Figs. Tabs. Rets.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

TIMING PLAN SENSITIVITY TO CHANGES IN PLATOON DISPERSION SETTINGS. Guebert, AA; Sparks, G. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH $1990131-45$

TRANSYT-7F AND NETSIM, COMPARISON OF ESTIMATED AND SIMULATED PERFORMANCE DATA. Dudek, G; Goode, L; Pcole, M. Institute of Transportation Engineers, ITE Journal, Vol 53., No. 8, Aug 1983, pp 32-34.

TRANSYT-7F OR PASSER II, WHICH IS BETTER - A COMPARISON THROUGH FIELD STUDIES. Shui-Ying Wong, Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Transportation Research Board. Transportation Research Record N1324, 1991, pp 83-97. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418.

TRANSYT-7F USER'S MANUAL. Wallace, CE; Courage, KG; Reaves, DP; Schoene, GW; Euler, GW. Florida University, Gainesville Transportation Research Center Gainesville Fiorida 32611; Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Jun 1984 510p. REPORT NO: UF-TRC-U32 FP-06/07. AVAILABLE FROM: Florida University, Gainesville Transportation Research Center Gainesville Florida 32611

USE OF THREE-DIMENSIONAL CONJUGATE DIRECTIONS SEARCH METHOD TO IMPROVE TRANSYT-7F COMPUTATIONAL EFFICIENCY. Tsay, H-S; Wang, K-T. Transportation Research Board. Transportation Research Record N1225 1989 pp 116-129 7 Fig. 3 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

USING TRANSYT FOR TRAFFIC SIGNAL OPTIMIZATION IN PARRAMATTA. Luk, JYK; Lowrie, PR; Sims, AG (New South Wales Department of Main Roads, Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 12-22 7 Fig. 5 Tab. 21 Ref.

WARRANTS FOR INTERCONNECTION OF ISOLATED TRAFFIC SIGNALS. Research rept. Sep 79-Aug 86 (Final). Chang-E.C.; Messer-C.J. Texas Transportation Inst., College Station. Texas State Dept. of Highways and Public Transportation, Austin. Transponation Planning Div. Federal Highway Administration, Austin, TX. Texas Div. TTI21880293, FHWATX86672931F. Aug 86. 77p.

WHATS NEW IN SIGNAL TIMING OPTIMIZATION MODELS?. Wilbur, AD. Institute of Transportation Engineers. ITE Journal VOL. 61 NO. 4 Apr 1991 pp 41-45 Figs. 1 Tab. Reis.. AVAlLABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024-2729

A COMPARISON OF ARTERIAL AND NETWORK SOFTWARE PROGRAMS. Sadegh, A; Radwan, AE; Mathias, JS. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 8 Aug 1987 pp 35-39 Tabs. 2 Ref.. AVAILABLE froM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024
fadding signals to Coordinated traffic signal systems. Machemehi-R.b.; Lee-C.E. Texas Univ. at Austin. Center for Transportation Research. Texas State Dept. of Highways and Public Transportation, Austin. Federal Highway Administration, Austin, TX. Texas Div. FHWATX84232601F, Aug 83. 94p.

BENEFIT-COST EVALUATION OF LEFT-TURN LANES ON UNCONTROLLED APPROACHES OF RURAL NNTERSECTIONS (ABRIDGMENT). McCoy, PT; Hoppe, WJ; Dvorak, DV. Transportation Research Board. Transportation Research Record N1026 1985 pp 40-43 2 Tab. 26 Ref.. AVAILABLE FROM: Transportation
Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
CAPACITY AND LEVEL OF SERVICE BY SIMULATION--A CASE STUDY OF TRAF-NETSIM. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Wong, S-Y. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp $467-48312$ Fig. 7 Tab. 10 Ref.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

CASE STUDY EVALUATION OF THE SAFETY AND OPERATIONAL BENEFITS OF TRAFFIC SIGNAL COORDINATION. Berg, WD; Kaub, AR; Belscamper, BW. Transportation Research Board. Transportation Research Record N1057 1986 pp 58-64 9 Fig. 4 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

COMPARATIVE ASSESSMENT OF 1985 HCM DELAY MODEL. Sadegh, A; Radwan, AE. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 2 Mar 1988 pp 194-208 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22278. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

COMPARING CAPACITIES AND DELAY ESTIMATES BY HIGHWAY CAPACITY SOFTWARE AND TRAF-NETSIM TO FIELD STUDIES. Wong, S. (Federal Highway Administration, Washington, D.C.). Institute of Transportation Engineers, ITE 1990 Compendium of Technical Papers, pp. 224-227.

COMPARISON OF SOAP AND NETSIM: PRETIMED AND ACTUATED SIGNAL CONTROLS. Nemeth, ZA (Ohio State University). Transportation Research Board. Transportation Research Record N905 1983 pp 84-89 13 Fig. 2 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CONCURRENT USE OF MAXBAND AND TRANSYT SIGNAL TIMING PROGRAMS FOR ARTERIAL SIGNAL OPTIMIZATION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N906 1983 pp 81-84 2 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CONGESTION-BASED CONTROL SCHEME FOR CLOSELY SPACED, HIGH TRAFFIC DENSITY NETWORKS. Lieberman, EB; Rathi, AK; King, GF; Schwartz, SI. Transportation Research Board. Transportation Research Record N1057 1986 pp 49-57 2 Fig. 5 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DELAY AT LIGHT RAIL TRANSIT GRADE CROSSINGS. Research rept. Sep 83-Sep 87. Cline-J.C.; Urbanik-T.; Rymer-B. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI2108433910, FHWATX8733910. Mar 86. 67p.

DELAY ALLEVIATED BY LEFT-TURN BYPASS LANES. Bruce, EL; Hummer, JE. Transportation Research Board. Transportation Research Record N1 2991991 pp 1-8 3 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DELAY MODELS FOR MIXED PLATOON AND SECONDARY FLOWS. Rouphail, NM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 3 Mar 1988 pp 131-152 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22254. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

DEMAND-RESPONSE DECENTRALIZED URBAN TRAFFIC CONTROL. PART 2. NETWORK EXTENSIONS. Gartner, NH; Kaltenbach, MH; Miyamoto, MM. Lowell University, Massachusetts Lowell Massachusetts 01854. Jul 1983 159p. REPORT NO: ULRF-05-2998-2; DOT/OST/P34-85/009. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DEMONSTRATION OF TRAF-NETSIM FOR TRAFFIC OPERATIONS MANAGEMENT. FINAL REPORT. Sulzberg, JD; Demetsky, MJ. Virginia Transportation Research Council P.O. Box 3817, University Station Chariottesville Virginia 22903; Virginia Department of Transportation 1221 East Broad Street Richmond Virginia 23219; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1991 73p 6 Fig. 11 Tab. 34 Ref. 6 App.. REPORT NO: FHWANA-92-R3; VTRC 92-R3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. Chang, EC-P; Messer, CJ; Cohen, SL. Transportation Research Board. Transportation Research Record N1057 1986 pp 10-19 8 Fig. 6 Tab. 20 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

EFFECT OF BUS TURNOUTS ON TRAFFIC CONGESTION AND FUEL CONSUMPTION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N901 1983 pp 33-38 4 Fig. 3 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

N

EFFECT OF LEFT-TURN BAYS ON FUEL CONSUMPTION ON UNCONTROLLED APPROACHES TO STOP-SIGN-CONTROLLED INTERSECTIONS. Dvorak, DV; McCoy, PT (Nebraska University, Lincoln). Transportation Research Board. Transportation Research Record N901 1983 pp 50-53 4 Fig. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

EFFECTS OF PROHIBITING LEFT-TURNS AT SIGNALIZED INTERSECTIONS. FINAL REPORT. Habib, P; Thornhill, W; Kaplan, W. Polytechnic Institute of New York 333 Jay Street Brooklyn New York 11201 Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1984 54p. REPORT NO: FHWA/RD-84/083; FCP 31 A2-022. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

EVALUATION OF CONTROL STRATEGIES FOR BUS PREEMPTION OF TRAFFIC SIGNALS. Smith, MJ. New Jersey Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1985 Final Rpt. 53p 5 Fig. 2 Tab. 3 App.. REPORT NO: FHWA-NJ-RD-85-003. AVAILABLE FROM: New Jersey Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625

EVALUATION OF ROADWAY SITES FOR QUEUE MANAGEMENT. Final rept. Miller-H.J.; Demetsky-M.J. Virginia Transportation Research Council, Charlottesville. Federal Highway Administration, Richmond, VA. Virginia Div. Virginia Dept. of Transportation, Richmond. VTRC92R5, FHWAVA92R5. Dec 91. 126p.

EVALUATION TOOLS OF URBAN INTERCHANGE DESIGN AND OPERATION. Radwan, AE; Hatton, RL. Transportation Research Board. Transportation Research Record N12801990 pp 148-155 6 Fig. 5 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FIRST-GENERATION UTCS SIMULATION. Eiger, A; Chin, S-M (Rensselaer Polytechnic Institute). Transportation Research Board. Transportation Research Record N906 1983 pp 57-60 5 Fig. 5 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FLASHING SIGNALS IN PEAK PERIODS. DEMETSKY, MJ; MORENO, LE IVIRGINIA HIGHWAY AND TRANSPORTATION RESEARCH; COUNCIL). TRANSPORTATION QUARTERLY VOL. 39 JAN19 1985 ENGLISH. REPORT NO: 85

W PROFILE COMPARISON OF A MICROSCOPIC CAR-FOLLOWING MODEL AND A MACROSCOPIC PLATOON FERSION MODEL FOR TRAFFIC SIMULATION. Mekemson, J., VICOR Associates, Manassas, Va. and Gantz, zorge Mason University, Fairfax, Va. 1990 Winter Simulation Conference Proceedings.
(CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. FINAL REPORT. McGill, R. Oak Ridge tonal Laboratory Post Office Box X Oak Ridge Tennessee 37830. May 1985 93p. AVAILABLE FROM: National chnical Information Service 5285 Port Royal Road Springfield Virginia 22161

FEL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. McGill, R. Oak Ridge National Laboratory fort Office Box X Oak Ridge Tennessee 37830 ; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 300 Georgetown Pike McLean Virginia 22101. May 1985 Final Rpt. 90p 20 Fig. 18 Tab. 7 Ref. 5 App.. REPORT .0: FHWA/RD-85/053. AVAILABLE FROM: Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Forgetown Pike Washington D.C. 20590

DENTICAL TRAFFIC STREAMS IN THE TRAF-NETSIM SIMULATION PROGRAM. Rathi, AK; Santiago, AJ. brinterhall Limited. Traffic Engineering and Control VOL. 31 NO. 6 Jun 1990 pp $351-3553$ Fig. 1 Tab. 6 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

MPPACT OF ARTERIAL LANE OBSTRUCTIONS. VOLUME 2: RESEARCH REPORT. FINAL REPORT. Torres, JF; Halati, A; Danesh, M. JFT Associates 5555 Inglewood Boulevard, Suite 102 Culver City California 90230; Federal Slighway Administration 400 7th Street, SW Washington D.C. 20590. Feb 1986 119p. REPORT NO: FHWA/RD-86/139. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

IMPACT OF ARTERIAL LANE OBSTRUCTIONS. VOLUME 3: LANE BLOCKAGE LOGIC CHANGES IN NETSIM. FINAL REPORT. Danesh, M; Halati, A; Torres, JF. JFT Associates 5555 inglewood Boulevard, Suite 102 Culver City California 90230; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Feb 1986 25p. REPORT NO: FHWA/RD-86/140. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

IMPROVED SIGNAL TIMING PLAN SELECTION. Kessmann, RW; Ku, CS. Kessmann and Associates, incorporated Houston Texas. Aug 1985 22p. REPORT NO: REPT-1502.02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ITDS: PAST, PRESENT, AND FUTURE. Rathi, AJ; Santiago, AJ; Valentine, DE; Chin, SM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 116 NO. 6 Nov 1990 pp $799-808$ Figs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

MICROSCOPIC SIMULATION OF TRAFFIC IN NETWORKS: SUPERCOMPUTER EXPERIENCE. Mahmassani, HS; Jayakrishnan, R; Herman, R. American Society of Civil Engineers. Journal of Computing in Civil Engineering VOL. 4 NO. 1 Jan 1990 pp 1-19 Figs. Tabs. Refs. 2 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

NETSIM FOR MICROCOMPUTERS. Sibley, SW. Federal Highway Administration, Office of R\&D. Public Roads VOL. 49 NO. 2 Sep 1985 pp 54-59 3 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

OPAC: A DEMAND-RESPONSIVE STRATEGY FOR TRAFFIC SIGNAL CONTROL. Gartner, NH (Lowell University). Transportation Research Board. Transportation Research Record N906 1983 pp $75-817$ Fig. 1 Tab. 25 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 1: TECHNICAL REPORT. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 141p 22 Fig. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS, VOLUME 2: USER'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 30p 7 Fig. 2 Tab. 8 Ref.. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 2. FINAL REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Baltimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL2, FHWAMD8820. Feb 88. 155p.

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 1. SUMMARY REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Baltimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL1, FHWAMD8819. Feb 88. 33p.

SOME EXPERIENCE WITH THREE URBAN NETWORK MODELS: SATURN, TRANSYT/8 AND NETSIM. Luk, JYK; Stewart, RW (Waterloo University). Australian Road Research Board. Australian Road Research VOL. 14 NO. 2 Jun 1984 pp 82-87 2 Fig. 4 Tab. 18 Ref.

STATISTICAL ANALYSIS OF OUTPUT RATIOS IN TRAFFIC SIMULATION. Gafarian, AV; Halati, A. Transportation Research Board. Träthsportation Research Record N1091 1986 p 29-36 2 Fig. 4 Tab. 5 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE BANDWIDTH-CONSTRAINED TRANSYT SIGNAL-OPTIMIZATION PROGRAM (DISCUSSION AND CLOSURE). Cohen, SL; Liu, CC; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 1.95 Fig. 5 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE DEVELOPMENT OF UTCS/NETSIM/ICG: AN INTEGRATED URBAN TRAFFIC CONTROL SYSTEM - NETWORK SIMULATION - INTERACTIVE COMPUTER GRAPHICS PROGRAM. Eiger, A; Chin, S-M. Rensselaer Polytechnic Institute Department of Civil Engineering Troy New York 12181; Department of Transportat in Office of University Research, 400 7th Street, SW Troy New York 12181.1982 Final Rpt 50p. REPORT NO: DC` 3SPA-DMA-50/83/5. AVAILABLE FROM: Rensselaer Polytechnic Institute Department of Civil Engineering T: New York 12181

THE NETSIM GRAPHICS SYSTEM. Andrews, B; Lieberman, EB; Santiago, AJ. Transportation Research Board. Transportation Research Record N11121987 pp 124-131 14 Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE NEW NETSIM SIMULATION PROGRAM. Rathi, AK; Santiago, AJ. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 5 May 1990 pp 317-320 14 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

TRAF II NETSIM USER GUIDE. FINAL REPORT. Hagerty, BR. Michigan Department of Transportation State Highways Building, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1987 v.p. 1 App.. REPORT NO: FHWA-MI-RD-87-01. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

TRAF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedlin-M.; Andrews-B.; Sheridan-K. KLD Associates, Inc., Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.
fFIC SIGNAL TIMING MODELS FOR OVERSATURATED SIGNALIZED INTERCHANGES. (interim Report March W-January 1992). Kim-Y.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway ministration, Austin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. [18881148, RR11482, FHWATX9211482. Jan 92. 123p.

AFFIC SIMULATION: COURSE NOTES. Young, W; Allsop, R; Cornwell, RR; Gipps, PG; Hoban, CJ; Vandebona, Johnston, DK; Luk, JYK; Taylor, MAP; Richardson, AJ (University College, London; Road Traffic Authority). pnash University, Australia Department of Civil Engineering, Wellington Road Clayton Victoria 3168 Australia 86746-337-6. 1984 Monograph n.p. Figs. Tabs. Phots. Refs.

BAFFIC SOFTWARE INTEGRATED SYSTEM (TSIS). Santiago, AJ; Rathi, AK. ENGINEERING FOUNDATION. RAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 307-13

IRAF-NETSIM: HOW IT WORKS, WHAT IT DOES. Wong, S. (Federal Highway Administration, Washington, D.C.). sstitute of Transportation Engineers, ITE Journal, Vol. 60. No. 4, Apr 1990, pp 22-27.

ITRANSYT-7F AND NETSIM, COMPARISON OF ESTIMATED AND SIMULATED PERFORMANCE DATA. Dudek, G; Goode, L; Poole, M. Institute of Transportation Engineers, ITE Journal, Vol 53., No. 8, Aug 1983, pp 32-34.

UNDERSTANDING THE CUMULATIVE STATISTICS FROM TRAF-NETSIM. Chen, H. and Thor, C. PCTRANSmission Vol 4., No. 2, October 1989.

URBAN NETWORK TRAFFIC SIMULATION: TRAF-NETSIM PROGRAM. Rathi, AK; Santiago, AJ. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 116 NO. 6 Nov 1990 pp 734-743 Refs. 1 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

USER'S GUIDE FOR TRAF II NETSIM IOBJIP Q 44414 ON OBJECTS: SURFACE STREET TRAFFIC SIMULATION MODEL. HAGERTY, BR. MICHIGAN DEPT OF TRANSPORTATION LANSING MICH. 1987 ENGLISH

USING TRAF-NETSIM TO EVALUATE THE EFFECTS OF DRAWBRIDGE OPENINGS ON ADJACENT SIGNALIZED INTERSECTIONS. Yauch, P; Gray, J; Lewis, W. Institute of Transportation Engineers, ITE Journal, Vol. 58, No. 5, May 1988, pp 35-39.

VARIABILITY ASSESSMENT FOR TRAF-NETSIM. Chang, G-L; Kanaan, A. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 116 NO. 5 Sep 1990 pp 636-657 Figs. Tabs. Refs. 3 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

VARIANCE REDUCTION APPLIED TO URBAN NETWORK TRAFFIC SIMULATION. Rathi-A.K.; Venigalla-M.M. Oak Ridge National Lab., TN. Department of Energy, Washington, DC. Sep 91. 31p.

CORFLO (NETFLO I \& II AND FREFLO)

A REVIEW OF CANDIDATE FREEWAY-ARTERIAL CORRIDOR TRAFFIC MODELS. Van Aerde, M; Yagar, S; Ugge, A; Case, ER. Transportation Research Board. Transportation Research Record N1132 1987 pp 53-65 3 Tab. 45 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ANNUAL TRANSPORTATION CONVENTION, 29 JULY-2 AUGUST 1985. SESSION: OPERATION AND UTILIZATION OF ROADS AND STREETS 2. Council for Scientific \& Industrial Res S Africa P.O. Box 395 Pretoria South Africa 0-7988-3576-1. Aug 1985 163p. REPORT NO: CSIR-S-350-VOL-7-TO. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ENHANCED FREFLO: MODELING OF CONGESTED ENVIRONMENTS. Rathi, AK; Lieberman, EB; Yedlin, M. Transportation Research Board. Transportation Research Record N1112 1987 pp 61-715 Fig. 9 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
evaluation of freeway improvement alternatives using Corflo. Liu, C. (AEPCO, Rockville, Md.) and Kanaan, A. (VIGGEN Corporation, Reston, Va.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

EVALUATION OF VEHICLE ACTUATED SIGNAL CONTROL IN URBAN STREET NETWORK. Joubert, HS; Lockwood, DN. National Institute for Transport \& Rd Res, S Af P.O. Box 395 Pretoria 0001 Transvaal South Africa. Aug 1986 $18 p$. REPORT NO: CSIR-RR-468. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

FREEWAY SIMULATION AND CONTROL. Babcock, PS, IV; May, AD; Auslander, DM; Tomizuka, M. California University, Berkeley Institute of Transportation Studies Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Dec 1982 Final Rpt. 469p. REPORT NO: UCB-ITS-RR-82-13. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfieid Virginia 22161

MACRO VS MICRO FREEWAY SIMULATION: A CASE STUDY. Liu, C. and Kanaan, A. (AEPCO, Inc., Rockville, Md.), Santiago, A. (Federal Highway Administration, Mclean, Va.), and Holt, G. (City of Columbus, Columbus, Oh.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

MACROSCOPIC SIMULATION FOR URBAN TRAFFIC MANAGEMENT. VOLUME 1: EXECUTIVE SUMMARY. Lieberman, E. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746 TR-94; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1982 Final Rpt. 25p. REPORT NO: FHWA-RD-80-113. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

MACROSCOPIC SIMULATION FOR URBAN TRAFFIC MANAGEMENT: VOLUME 2: TRAFLO USER'S GUIDE. Lieberman, E; Andrews, B; Davila, M; Yedlin, M. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746 TR-92; Federal Highway Administration 4007 th Street, SW Washington D.C. 20590. Jan 1982 Final Rpt. 214p. REPORT NO: FHWA-RD-80-114. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

REVIEW OF FREEWAY CORRIDOR TRAFFIC MODELS. FINAL REPORT. Van Aerde, M; Yagar, S. Ortario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada. Jun 1985 62p Tabs. Refs.. AVAILABLE FROM: Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada

TRAF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedlin-M.; Andrews-B.; Sheridan-K. KLD Associates, Inc., Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.

TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL USER'S MANUAL. Goldblatt, R; Hagerty, B; Laban, T. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746 ; Michigan Department of Transportation State Highways Building, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1984 Final Rpt. v.p. Figs. Tabs. Refs. 7 App.. REPORT NO: FHWA-MI-RD-85-01. AVAILABLE FROM: KLD Associates Incorporated 300 Broadway Huntington Station New York 11746

TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL. USER'S MANUAL FOR (OBJ)P/Q/444/11 ON OBJECTS, (OBJ)P/Q/444/13 ON OBJECTS. Hagerty, BR. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746. Oct 1984 450p. REPORT NO: FHWA/MI/RD-85/01. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

FRESIM

GMERGING TECHNOLOGICAL TOOLS FOR DETAILED FREEWAY DESIGN AND OPERATIONAL ANALYSIS: TRAFIFRESM, FSMTUTOR, AND FEDIT. Mekemson, J. and Kanaan, A. IVICOR Associates, Manassas, Va.). Proceedings of the 1991 Annual Meeting of the Institute of Transportation Engineers, Washington, D.C.

FEDIT USER INTERFACE FOR FHWA'S TRAF-FRESIM MODEL. Mekemson, J. IVICOR Associates, Inc., Manassas, Va.). Proceedings of the 1992 American Society of Civil Engineers Microcomputers in Transportation Conference.

FRESIM - A FREEWAY SIMULATION MODEL FOR ANALYZING OPERATIONAL AND GEOMETRIC ALTERNATIVES. Halati, A; Torres, J; JFT \& Associates, Pacific Palisades, Ca. and Cohen, S; Federal Highway Administration, Mclean, Va. Paper submitted to Transportation Research Board for 1991 Annual Meeting.

MACRO VS MICRO FREEWAY SIMULATION: A CASE STUDY. Liu, C. and Kanaan, A. (AEPCO, Inc., Rockville, Md.), Santiago, A. (Federal Highway Administration, Mclean, Va.), and Holt, G. (City of Columbus, Columbus, Oh.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

ROADSIM

TWO-LANE TRAFFIC SIMULATION: A FIELD EVALUATION OF ROADSIM. Morates, JM; Paniati, JF. Transportation Research Board. Transportation Research Record N11001986 pp 29-39 11 Fig. 4 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

TRAF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedlin-M.; Andrews-B.; Sheridan-K. KLD Associates, inc., Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.

PASSER III

A REPORT ON THE USERS MANUAL FOR THE MICROCOMPUTER VERSION OF PASSER III-88. INTERIM REPORT. Fambro, DB; Chaudhary, NA; Messer, CJ; Garza, RU. Texas Transportation Institute Texas A\&M University Coliege Station Texas 77843 ; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Sep 1988 132p 22 Fig. 4 Tab. 8 Ref. 6 App.. REPORT NO: FHWA/TX-88/478-1; Res Rept 478-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

APPLICATION GUIDE FOR THE MICROCOMPUTER VERSION OF PASSER III-88. INTERIM REPORT (REVISED). Fambro, DB; Bonneson, JA. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Apr 1990 68p 33 Fig. 4 Tab. 17 Ref. 1 App.. REPORT NO: FHWA/TX-90/478-2F; Res Rept 478-2F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

EVALUATION TOOLS OF URBAN INTERCHANGE DESIGN AND OPERATION. Radwan, AE; Hatton, RL. Transportation Research Board. Transportation Research Record N1280 1990 pp 148-155 6 Fig. 5 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A COMPROMISED APPROACH TO OPTIMIZE TRAFFIC SIGNAL COORDINATION PROBLEMS DURTEX UNSATURATED CONDITIONS. Lan, C; Messer, C; Chaudhary, N; Chang, E., Texas Transportation Institute, Terisil A\&M University, College Station, Tx. Paper submitted for presentation at the 71 st Annual Meeting of The' Transportation Research Board, Washington, D.C.

CONCURRENT USE OF MAXBAND AND TRANSYT SIGNAL TIMING PROGRAMS FOR ARTERIAL SIGMAL OPTIMIZATION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N906 1983 pp 81-84 2 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Boand Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. VOLUME 1. TECHNICAL REPORT. FINAL REPORT. Chang، ECP; Messer, CJ. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101 . Jul 1985 86p. REPORT NO: FHWA/RD-86/20. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DIRECTIONAL. WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. Chang, EC-P; Messer, CJ; Cohen, SL. Transportation Research Board. Transportation Research Record N1057 1986 pp 10-19 8 Fig. 6 Tab. 20 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

MAXBAND-86: FROGRAM FOR OPTIMIZING LEFT-TURN PHASE SEQUENCE IN MULTIARTERIAL CLOSED NETWORKS. Chang, EC-P; Cohen, SL; Liu, C; Chaudhary, NA; Messer, C. Transportation Research Board. Transportation Research Record N1181 1988 pp 61-67 1 Fig. 3 Tab. 16 Ret.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

MAXBAND PROGRAM FOR ARTERIAL SIGNAL TIMING PLANS. Cohen, SL; Littie, JDC. Federal Highway Administration, Office of R\&D. Public Roads VOL. 46 NO. 2 Sep 1982 pp 61-65 9 Ref.. AVAllable FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

OPTIMIZATION OF LEFT TURN PHASE SEQUENCE IN SIGNALIZED NETWORKS USING MAXBAND 86. FINAL REPORT. VOLUME 1: SUMMARY REPORT. Messer, CJ; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 102p. REPORT NO: FHWA/RD-87/109. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

OPTIMIZATION OF LEFT TURN PHASE SEQUENCE IN SIGNALIZED NETWORKS USING MAXBAND 86. FINAL REPORT. VOLUME 2: MAXBAND USER'S MANUAL. Messer, CJ; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 304p. REPORT NO: FHWA/RD-87/110. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

OPTIMIZATION OF LEFT TURN PHASE SEQUENCE IN SIGNALIZED NETWORKS USING MAXBAND 86. FINAL REPORT. VOLUME 3: MAXBAND PROGRAMMER'S MANUAL. Messer, CJ; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 297p. REPORT NO: FHWA/RD-87/111. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 1: TECHNICAL REPORT. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 4007 th Street, SW Washington D.C. 20590. Oct 1988141 p 22 Fig. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical information Service 5285 Port Royal Road Springfield Virginia 22161
ression through a series of internsections with traffic actuated controllers. volume EA'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Foy California 94709 ; Federal Highway Administration 4007 th Street, SW Washington D.C. 20590. Oct 30p 7 Fig. 2 Tab. 8 Ref.. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information ce 5285 Port Royal Road Springfield Virginia 22161
SLLE-ARTERIAL VERSUS NETWORKWIDE OPTIMIZATION IN SIGNAL NETWORK OPTIMIZATION PROGRAMS SCUSSION AND CLOSURE). Johnson, V: Cohen, SL; Chang, ECP. Transportation Research Board. fisportation Research Record N1 1421987 pp 6-15 7 Fig. 11 Tab. 3 Ref.. AVAILABLE FROM: Transportation warch Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

EBANDWIDTH-CONSTRAINED TRANSYT SIGNAL-OPTIMIZATION PROGRAM (DISCUSSION AND CLOSURE). then, SL; Liu, CC; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 1-9 5 Fig. 5 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Ennstitution Avenue, NW Washington D.C. 20418

SOAP

ARTERIAL ANALYSIS PACKAGE (AAP) USER'S MANUAL. Courage, KG; Wallace, CE; Reaves, DP. Florida University, Gainesville Transportation Research Center Gainesville Fiorida 32611; Federal Highway Administration Office of Research and Development, 4007 th Street. SW Washington D.C. 20590. Nov 198631 1p. REPORT NO: FHWA-IP-86-g01; FCP 3209-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

COMPARATIVE ASSESSMENT OF 1985 HCM DELAY MODEL. Sadegh, A; Radwan, AE. American Society of Civii Engineers. Journal of Transportation Engineering VOL. 114 NO. 2 Mar 1988 pp 194-208 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22278. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

COMPARISON OF MACROSCOPIC MODELS FOR SIGNALIZED INTERSECTION ANALYSIS. Hagen, LT; Courage, KG. Transportation Research Board. Transportation Research Record N1225 1989 pp 33-44 14 Fig. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

GUIDELINES FOR LEFT-TURN TREATMENTS AT SIGNAL CONTROLLED INTERSECTIONS. Nemeth, ZA; Mekemson. Ohio State University Engineering Experiment Station, 2070 Neil Avenue Columbus Ohio 43210; Ohio Department of Transportation P.O. Box 899 Columbus Ohio 43216-0899; Federal Highway Administration Washington D.C. 20590. Jun 1983 Final Rpt. 284p Figs. Tabs. Refs. 4 App.. REPORT NO: FHWA-OH-83-003
investigation of optimal time to change arterial traffic signal-timing plan. Jrew, bk; Parsonson, PS; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 20-29 6 Fig. 10 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Williams, L. Federal Highway Administration, Office of R\&D. Public Roads VOL. 50 NO. 3 Dec 1986 pp $91-96$ Figs. 3 Ref.. AVAILABLE FROM: Government Printing Office Superintendent of Documents Washington D.C. 20402

TRAFSIG: A COMPUTER PROGRAM FOR SIGNAL SETTINGS AT AN ISOLATED UNDER- OR OVERSATURATED, FIXED-TIME CONTROLLED INTERSECTION. Reljc, S. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 11 Nov 1988 pp 562-566 Figs. Tabs. Refs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

FREQ

A REVIEW OF CANDIDATE FREEWAY-ARTERIAL CORRIDOR TRAFFIC MODELS. Van Aerde, M; Yagar, S; Ugge, A; Case, ER. Transportation Research Board. Transportation Research Record N11321987 pp 53-65 3 Tab. 45 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FREEWAY SURVEILLANCE AND CONTROL SYSTEM USING SIMULATION MODEL. Ju, R-S; Maze, TH. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 4 Jul 1989 pp 425-437 Figs. Tabs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

REVIEW OF FREEWAY CORRIDOR TRAFFIC MODELS. FINAL REPORT. Van Aerde, M; Yagar, S. Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada. Jun $198562 p$ Tabs. Refs.. AVAILABLE FROM: Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada

USE AND EFFECTIVENESS OF SYNTHETIC ORIGIN-DESTINATION DATA IN A MACROSCOPIC FREEWAY SIMULATION MODEL. Stokes, RW; Morris, DE. Institute of Transportation Engineers. ITE Journal VOL. 56 NO. 4 Apr 1986 pp 43-47 14 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

APPENDIX IV REFERENCES (No Abstracts)

References on Traffic Models for Simulation, Operational Analysis, Signal Timing, Traffic Flow Theory, Capacity, System Control, Case Applications, Fuel Consumption, and Vehicle Emissions (Jan 1982 - Nov 1991 and some additional references for 1992)

This Page Intentionally Blank
erences on Traffic Models for Simulation, Operational Analysis, Signal fing, Traffic Flow Theory, Capacity, System Control, Case Applications, Consumption, and Vehicle Emissions (Jan 1982-Nov 1991 and some jitional references for 1992)

EHAVIORAL APPROACH TO RISK ESTIMATION OF REAR-END COLLISIONS AT SIGNALIZED INTERSECTIONS. Thalel, D; Prashker, JN. Transportation Research Board. Transportation Research Record N1114 1987 pp 96-102. IAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 48

COMPARISON OF ARTERIAL AND NETWORK SOFTWARE PROGRAMS. Sadegh, A; Radwan, AE; Mathias, JS. ditute of Transportation Engineers. ITE Journal VOL. 57 NO. 8 Aug 1987 pp 35-39 Tabs. 2 Ref.. AVAILABLE FROM: Whte of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

COMPARISON OF OBSERVED, ESTIMATED AND SIMULATED QUEUE LENGTHS AND DELAYS AT WERSATURATED SIGNALIZED JUNCTIONS. Shawaly, EAA; Ashworth, R; Laurence, CJD. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 12 Dec 1988 pp 637-642 Figs. Tabs.. AVAILABLE FROM: Printerhall Limited 29 INowman Street London England
4
A COMPARISON OF TWO FREEWAY TRAFFIC SIMULATION MODELS. COHEN, S; ARON, M; PIERRELEE, J. RECHERCHE-TRANSPORTS-SECURITE N28 Doc 1990 PP 113-118 FRENCH. SIMON COHEN, MAURICE ARON, JEAN-CLAUDE PIÉRRELEE ILLUSTRATED INCLUDES BIBLIOGRAPHICAL REFERENCES

A COMPROMISED APPROACH TO OPTIMIZE TRAFFIC SIGNAL COORDINATION PROBLEMS DURING UNSATURATED CONDITIONS. Lan, C; Messer, C; Chaudhary, N; Chang, E., Texas Transportation Institute, Texas A\&M University, College Station, Tx. Paper submitted for presentation at the 71st Annual Meeting of The Transportation Research Board, Washington, D.C.

A CRITIQUE OF CURRENT URBAN ROAD APPRAISAL TECHNIQUES. CITIES AND ROADS. PAPERS FROM TRANSPORT 2000 SEMINAR, UNIVERSITY OF LONDON, 26 NOVEMBER 1985. Mogridge, MJH. Transport 2000 Limited Walkden House, 10 Melton Street London England. 1986 pp 39-40. AVAILABLE FROM: Transport 2000 Limited Walkden House, 10 Melton Street London England

A DECENTRALIZED CONTROL STRATEGY FOR FREEWAY REGULATION. Goldstein, NB; Kumar, KSP (Minnesota University, Minneapolis). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 16B NO. 41982 pp 279-290 8 Fig. 3 Tab. 19 Ref.

A DELAY MODEL FOR MULTIWAY STOP-SIGN INTERSECTIONS. Richardson, AJ. Transportation Research Board. Transportation Research Record N1112 1987 pp 107-114 8 Fig. 3 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A MACROPARTICLE TRAFFIC SIMULATION MODEL TO INVESTIGATE PEAK-PERIOD COMMUTER DECISION DYNAMICS. CHANG, G; MAHMASSANI, HS; HERMAN, R. 1985 ENGLISH

A MACROSCOPIC MODEL FOR THE ANALYSIS OF TRAFFIC OPERATIONS ON RURAL HIGHWAYS. FINAL REPORT. Sananez, JC; Wingerd, L; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720; California Department of Transportation P.O. Box 1499 Sacramento California 95807; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Apr 1985 Final Rpt. 388p Figs. Tabs. Refs. 4 App. REPORT NO: FHWA-CA-TO-85-01. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies Berkeley California 94720

A MARTINGALE APPROACH TO ESTIMATION AND CONTROL OF TRAFFIC FLOW ON MOTORWAYS. Van Maarseveen, MFAM (Instituut Tno Voor Wiskunde, informatieverwerking). Instituut TNO voor Wiskunde Informatieverwerking en Statistiek, Schoemakerstraat 97 Delft Netherlands. Oct 1982 Monograph 8 p 5 Fig. 1 Tab. 11 Ref.

A METHODOLOGY FOR THE ASSESSMENT OF TRUCK LANE NEEDS IN THE TEXAS HIGHWAY NETWORK. FINAL REPORT. Mahmassani, HS; Walton, CM; Mouskos, K; Massimi, JJ; Levinton, I. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Deparment of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Nov 198590 . REPORT NO: FHWATX-86/46+356-3F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

A MICROCOMPUTER-BASED SIMULATION PROGRAM FOR INTERSECTION SITES DURING RECONSTRUCTION. Michalopoutos, PG; Plum, R. Transportation Research Board. Transportation Research Record N1112 1987 pp 132-139 6 Fig. 1 Tab. 6 Ref.. AVAiLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A MICROCOMPUTER VERSION OF TRANSYT. Lines, G; Logie, M. PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mig, Proc VOL. P249 1984 p 71. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

A MODEL FOR SIMULATING TRAFFIC ON TWO- LANE RURAL ROADS: USER GUIDE AND MANUAL FOR TRARR VERSION 3.0. Hoban, GJ; Fawcett, GJ; Robinson, GK. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0313895X 0-86910-182-X. May 1985 Monograph 96p 23 Fig. 8 Tab. 23 Ret.. REPORT NO: ATM 10A

A NATIONAL SURVEY OF SINGLE-POINT URBAN INTERCHANGES. INTERIM REPORT. Bonneson, JA; Messer, \mathbf{G}. Texas Transportation ${ }^{2}$ Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1989 62p 17 Fig. 3 Tab. 11 Ref. 1 App.. REPORT NO: FHWATX-88/1148-1; Res Rept 1148-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161
a note on the neglect of the doppler effect in the modelling of traffic flow as a line of STATIONARY POINT SOURCES. Academic Press Incorporated, Limited. Journal of Sound and Vibration VOL. 85 NO. 3 Dec 1982 pp 442-444 4 Ref.

A PERMITTED-MOVEMENT MODEL FOR TRANSYT-7F. Wallace, CE; White, FJ; Wilbur, AD. Transportation Research Board. Transportation Research Record N1112 1987 pp 45-51 2 Fig. 2 Tab. 18 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A PROBABILISTIC APPROACH FOR DETERMINING THE CHANGE INTERVAL (DISCUSSION AND CLOSURE). Mahalel, D; Zaidei, D; Stein, H. Transportation Research Board. Transportation Research Record N1069 1986 pp 39-45 5 Fig. 27 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A PROGRESSION-BASED OPTIMIZATHN MODEL IN TRANSYT-7F. Hadi, A. and Wallace, C.; Transportation Research Center, University of Florida, Gainesville, FI. Transportation Research Board 71st Annual Meeting Preprint.

A PROPOSED ANALYTICAL TECHNIQUE FOR THE DESIGN AND ANALYSIS OF MAJOR FREEWAY WEAVING SECTIONS. FINAL REPORT. Cassidy, M; Chan, P; Robinson, B; May, AD. Calitornia University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1990 316p Figs. Tabs. 37 Ref. 7 App.. REPORT NO: FHWACAUCBITSRR-90-16; UCB-ITS-RR-90-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

A REASSESSMENT OF THE TRAFFIC SIGNAL CHANGE INTERVAL. Wortman, RH; Fox, TC. Transportation Research Board. Transportation Research Record N1069 1986 pp $62-687$ Fig. 23 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ACCOMMODATING TRANSIT IN TRANSYT. Yagar, S. Transportation Research Board. Transportation Research Record N1181 1988 pp 68-76 11 Fig. 1 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ACCURACY OF CAPACITY MODELS FOR PERMISSIVE LEFT TURNS FROM AN EXCLUSIVE LANE. SESSION 7. Schorr, SM; Jovanis, PP (Forensic Engineering Services, Pennsylvania; Northwestern University, Evanston). Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 1-6 6 Tab. 7 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

ACCURACY OF O-D ESTIMATES FROM TRAFFIC COUNTS. Lam, WHK; Lo, HP. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 6 Jun 1990 pp 358-367 10 Fig. 7 Tab. 8 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

ADAPTIVE SIGNAL CONTROL AT ISOLATED INTERSECTIONS. Lin, FB; Vijayakumar, S. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 5 Sep 1988 pp 555-573 Figs. Refs. 2 App.. AVAlLABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

ADDING SIGNALS TO COORDINATED TRAFFIC SIGNAL SYSTEMS. Machemehl-R.B.; Lee-C.E. Texas Univ. at Austin. Center for Transportation Research. Texas State Dept. of Highways and Public Transportation, Austin. Federal Highway Administration, Austin, TX. Texas Div. FHWATX84232601F, Aug 83. 94 p.

ADVANCES IN THE PC INTERFACE OF THE TRANSYT-7F TRAFFIC SIMULATION MODEL. LEONARD, JD; RECKER, WW. INSTITUTE OF TRANSPORTATION ENGINEERS MEETING 1989 PP 536-541 ENGLISH

AN ANALYSIS OF FUEL CONSUMPTION MODELS. Moore, SE (Nairn (RJ) and Partners Proprietary Limited). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-13 19 Ref.. REPORT NO: Paper 6

AN ANALYSIS OF THE CHARACTERISTICS AND CONGESTION IMPACTS OF TRUCK-INVOLVED FREEWAY ACCIDENTS. FINAL REPORT. Recker, WW; Golob, TF; Hsueh, C-W; Nohalty, P. California University, Irvine Institute of Transportation Studies Irvine California 92717; California Department of Transportation 1120 N Street Sacramento Califomia 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Dec 1988 174p Figs. Tabs. Refs. 3 App.. REPORT NO: FHWACAUCIITS-RR-88-2; F85T017. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

AN APPROXIMATE ANALYSIS OF THE HYDRODYNAMIC THEORY ON TRAFFIC FLOW AND A FORMULATION OF A TRAFFIC SIMULATION MODEL SASAKI, T; FUKUYAMA, M; NAMIKAWA, Y. VNU SCIENCE PRESS UTRECHT NETHERLANDS. 1984 PP 1-20 ENGLISH. TSUNA SASAKI, MASAHARU FUKUYAMA AND YOSHIHARU NAMIKAWA ILLUSTRATED INCLUDES BIBLIOGRAPHICAL REFERENCES NOTE: SOURCE IS MONOGRAPHIC, NOT A SERIES INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY 9 TH : 1984 : DELFT, NETHERLANDS PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY, DELFT, THE NETHERLANDS, 11-13 JULY 1984

AN EVALUATION OF LEFT-TURN ANALYSIS PROCEDURES. Machemehi, RB. Institute of Transportation Engineers. TTE Journal VOL. 56 NO. 11 Nov 1986 pp 37-41 Figs. 1 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

AN EVALUATION OF SIGNAL TIMING AND COORDINATION PROCEDURES VOLUME I: TECHNICAL REPORT; VOLUME II: FIELD MANUAL. Arnold, ED. Jr. Virginia Highway \& Transportation Research Council P.O. Box 3817, University Station Charlottesville Virginia 22903; Virginia Department of Highways and Transportation 1221 East Broad Street Richmond Virginia 23219 Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1985 Final Rpt. v.p. Figs. Tabs. 13 Ref. 3 App.. REPORT NO: FHWA-VA-86-08-09; VHTRC 86-R8, Vol. I. AVAILABLE FROM: Virginia Highway \& Transportation Research Council P.O. Box 3817, University Station Charlottesvilie Virginia 22903

AN EXTENDED TRAFFIC MODEL FOR FREEWAY CONTROL. Cremer, M; May, AD. STUDIES. ITS RESEARCH REPORT NUCB- May 1985 78P. REPORT NO: ITS-RR

APPRAISAL OF EIGHT SMALL AREA TRAFFIC MANAGEMENT MODELS. Australian Road Research Board. Australian Road Research VOL 13 NO. 1 Mar 1983 pp 25-33 7 Tab. 49 Ref.

APPRAISAL OF TRAFFIC STREAM FRICTION. Mahalel, D (Technion-Israel Institute of Technology). Pergamon Press Limited. Transportation Research. Part A: General VOL. 18A NO. 3 May 1984 pp 225-230 6 Fig. 13 Ret.

ARCADY2 AND PICADY2: ENHANCED VERSIONS OF TRRL PROGRAMS FOR USE IN JUNCTION DESIGN. Semmens MC; Taylor, ME (Transport and Road Research Laboratory). Printerhall Limited. Traftic Engineering and Control VOL 26 NO. 5 May 1985 pp 271-272 2 Rei.

ARCADY2: AN ENHANCED PROGRAM TO MODEL CAPACITIES, QUEUES AND DELAYS AT ROUNDABOUTS. RESEARCH REPORT. Semmens, MC. Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England 0266-5247. 1985 31p Figs. Tabs. Refs.. REPORT NO: RR 35. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

ARFCOM: MODELS FOR ESTIMATING LIGHT TO HEAVY VEHICLE FUEL CONSUMPTION. Biggs, DC. AUSTRALLAN ROAD RESEARCH BOARD. RESEARCH REPORT NARR Sep 1988 61P. REPORT NO: 152

ARTERIAL ANALYSIS PACKAGE (AAP) USER'S MANUAL. Courage, KG; Wallace, CE; Reaves, DP. Florida University, Gainesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Otfice of Research and Development, 400 7th Street, SW Washington D.C. 20590. Nov 1986 311p. REPORT NO: FHWA-IP-86-001; FCP 32Q9-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ARTERIAL PRIORITY OPTION FOR THE TRANSYT-7F TRAFFIC-SIGNAL-TIMING PROGRAM. Moskaluk, MJ; Parsonson, PS. Transportation Research Board. Transportation Research Record N1181 1988 pp 57-60 2 Fig. 2 Tab. 2 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ARTERIAL PRIORITY OPTION FOR THE TRANSYT-7F TRAFFIC-SIGNAL-TIMING PROGRAM. MOSKALUK, J; PARSONSON, PS. NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH WASHINGTON DC. 198827 PP ENGLISH

ARTERIAL PROGRESSION--NEW DESIGN APPROACH. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Board. Transportation Research Record N881 1982 pp 53-59 4 Fig. 2 Tab. 9 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ARTERIAL SIGNAL TIMING OPTIMIZATON USING PASSER II-87. Chang, ECP; Messer, CJ; Garia, RU. Institute of Transportation Engineers. ITE Journal VOL 58 NO. 11 Nov 1988 pp 27-31 Figs. 3 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-87. MICROCOMPUTER USER'S GUIDE. FINAL REPORT. Chang, EC-P; Lei, JC-K; Messer, CJ. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1988 105p 28 Fig. 1 Tab. 14 Ret. 2 App.. REPORT NO: FHWATX-88/467-1; Res Rept 467-1. AVAILABLE FROM: National Tectnical Information Service 5285 Port Royal Road Springfield Virginia 22161

ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-90: PROGRAM USER'S MANUAL (REVISED). Final research rept. Chang-E.C.P.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. TTI21886467, RR4672F, FHWATX904672F. Jun 91. 120p.

ASSESSING THE TRAFFIC IMPACTS OF FREEWAY INCIDENTS AND DRIVER INFORMATION. Garrison, D; Mannering, F. Institute of Transportation Engineers. ITE Journal VOL. 60 NO. 8 Aug 1990 pp 19-23 Figs. 14 Ret.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024-2729

SESSING THE TRAFFIC IMPACTS OF TRANSPORTATION AND LAND DEVELOPMENT SCENARIOS. Deakin, EA; thardonis, A. Eno Foundation for Transportation, Incorporated. Transportation Quarterly VOL. 39 NO. 4 Oct 1985 pp \$626. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017
ssessing traffic and emergency benefits of railroad grade separations. Easa, sm; McColl, DR. merican Society of Civil Engineers. Journal of Transportation Engineering VOL. 113 NO. 6 Nov 1987 pp 593-608 Figs. bs. Rats.. REPORT NO: ASCE Paper 21939. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th treet New York New York 10017

IT LAST - A TRANSYT MODEL DESIGNED FOR AMERICAN TRAFFIC ENGINEERS. Wallace, CE (Florida University, beinesville). Institute of Transportation Engineers. ITE Journal VOL. 53 NO. 8 Aug 1983 pp 28-31 11 Ref.. AVAILABLE FOMM: Engineering Societies Library 345 East 47th Street New York New York 10017

NTOMATIC DETECTION OF TRAFFIC INCIDENTS ON A SIGNAL-CONTROLLED ROAD NETWORK. Thancanamootoo, 3; Bell, MGH. NEWCASTLE-UPON-TYNE. RESEARCH REPORT N76 Jun 1988 34P

IUTOMATIC UPDATING OF TRAFFIC VOLUME DATA FOR SIGNAL TIMING PLAN DEVELOPMENT. FINAL REPORT. VOLUME 1. Kell, JH; Fulterton, W. JHK and Associates P.O. Box 3727 San Francisco California 94119; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1987 45p. REPORT NO: FFIWARD-87/081; Rept No 4725. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

AUTOMATIC UPDATING OF TRAFFIC VOLUME DATA FOR SIGNAL TIMING PLAN DEVELOPMENT. FINAL REPORT.
VOLUME 2. Keli, JH; Fullerton, W. JHK and Associates P.O. Box 3727 San Francisco Califomia 94119; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jui 1987 264p. REPORT NO: FHWARD-87/412; Rept No 4725. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

BANDWIDTH-CONSTRAINED DELAY OPTIMIZATION FOR SIGNALSYSTEMS. 1988 PAST-PRESIDENTS' AWARD. Liu. CC. Institute of Transportation Engineers. ITE Journal VOL. 58 NO. 12 Dec 1988 pp 21-26 1 Fig. Tabs. 16 Refs. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

BASIC CONCEPTS IN THE IMAURO SYSTEM FOR DYNAMIC SIMULATION OF TRAFFIC FLOWS: SOME COMMENTS. Goodwin, PB. Oxford University, England Transport Studies Unit, 11 Bevington Road Oxford OX2 6NB England. Jun 1989 20p. REPORT NO: TSU-REF-467. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

BENCHMARK STUDY OF THE I-DYNEV EVACUATION TIME ESTIMATE COMPUTER CODE. Urbanik, T; Moeiler, MP; Barnes, K. Battelle Memorial Institute/Pacific Northwest Labs Battelle Boulevard, P.O. Box 999 Richland Washington 99352. Jun 1988 52p. REPORT NO: PNL-6171. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

BENEFIT-COST EVALUATION OF LEFT-TURN LANES ON UNCONTROLLED APPROACHES OF RURAL INTERSECTIONS (ABRIDGMENT). McCoy, PT; Hoppe, WJ; Dvorak, DV. Transportation Research Board. Transportation Research Record N1026 1985 pp 40-43 2 Tab. 26 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

BTS (VERSION 1.0): BOTTLENECK TRAFFIC SIMULATOR USER'S MANUAL. LIN, WH; HALL, RW. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF. PATH WORKING PAPER, NUCB- 199124 PP ENGLISH. REPORT NO: ITS-PWP-91-1

BUS-STOPS, CONGESTION AND CONGESTED BUS-STOPS. Gibson, J; Baeza, I; Willumsen, L. Printerhall Limited. Tratfic Engineering and Control VOL. 30 NO. 6 Jun 1989 7p Figs. Tabs. Refs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

CALIBRATING SIDRA. RESEARCH REPORT. Akcelik, R. Australian Road Research Board 500 Burwood Highway Vermont South Victoria 3133 Australia 0518-0758 0-86910-433-0. Mar 1990 115p. REPORT NO: ARR180

CALIBRATION OF TRANSYT PLATOON DISPERSION MODEL FOR PASSENGER CARS UNDER LOW-FRICTION FLOW CONDITIONS (ABRIDGMENT). McCoy, PT; Balderson, EA; Hsueh, RT; Mohaddes, AK (Nebraska University, Lincoin). Transportation Research Board. Transportation Research Record N905 1983 pp 48-52 1 Fig. 5 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CAN YOU AFFORD NOT TO USE TRAFFIC MODELS?. Liu, C; Kanaan, A; AEPCO Inc., Rockvile, Md. and Santiago, A; and Lieu, H.; Federal Highway Administration, McLean, Va. Paper presented at the Engineering Foundation Conference on Traffic Management: Issues and Techniques, April, 1991

CAPACITY AND LEVEL OF SERVICE BY SIMULATION--A CASE STUDY OF TRAF-NETSIM. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Wong, S-Y. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 467-483 12 Fig. 7 Tab. 10 Ret.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

CAPACITY FACTOR OR CYCLE TIME OPTIMIZATION FOR SIGNALIZED JUNCTIONS: A GRAPH THEORY APPROACH. Cantarella, GE; Improta, G. Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 22B NO. 1 Feb 1988 pp 1-23 25 Ref.. AVAILABLE FROM: Pergamon Press Limited Headington Hill Hall Oxtord OX3 OBW England

CAR TRAFFIC FORECASTING - BACKSIGHTS, INSIGHTS AND FORESIGHTS. Duffell, JR (Hatfield Polytechnic). Kinslea Press Limited. Municipal Engineer VOL. 109 NO. 6 Jun 1982 pp 132-139 13 Fig. 12 Ref.

CARSIM: CAR-FOLLOWING MODEL FOR SIMULATION OF TRAFFIC IN NORMAL AND STOP-AND-GO CONDITIONS. Benekohal, RF; Treiterer, J. Transportation Research Board. Transportation Research Record N1194 1988 pp 99-111 7 Fig. 4 Tab. 26 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CASE STUDY EVALUATION OF ALTERNATIVE SIGNAL TIMING PLANS FOR AN OVERSATURATED STREET NETWORK. Berg, WD; Lau, KY; Dettmann, DC; Rylander, G. F. (Wisconsin University, Madison). Institute of Transportation Engineers. ITE Journal VOL. 52 NO. 4 Apr 1982 pp 23-27 5 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

CASE STUDY EVALUATION OF THE SAFETY AND OPERATIONAL BENEFITS OF TRAFFIC SIGNAL COORDINATION. Berg, WD; Kaub, AR; Belscamper, BW. Transportation Research Board. Transportation Research Record N1057 1986 pp 58-64 9 Fig. 4 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Characterizing the quality of Traffic service in urban street networks. Herman, R; Ardekani, S. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Nov 1984 Final Rpt. 202p Figs. Tabs. 70 Ref. 2 App. REPORT NO: FHWA-TX-85-44+304-2F. AVAILABLE FROM: Texas University, Austin Center for Transportation Research Austin Texas 78712

COMMENTS ON THE APPLICATION OF QUEUING THEORY TO DELAYS AT SIGNALS. Akcelik, R. Australian Road Research Board. Australian Road Research VOL. 20 NO. 3 Sep 1990 pp 53-61 19 Ref.. AVAILABLE FROM: Australian Road Research Board Executive Director, P.O. Box 156 Nunawading Victoria 3131 Australia

COMPARATIVE ANALYSIS OF LEFT-TURN PHASE SEQUENCING (ABRIDGMENT). Machemehl, RB; Mechler, AM (Texas University, Austin). Transportation Research Board. Transportation Research Record N956 1984 pp 37-40 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

COMPARATIVE ANALYSIS OF MODELS FOR ESTIMATING DELAY FOR OVERSATURATED CONDITIONS AT FIXED-TIME TRAFFIC SIGNALS. Cronje, WB. Transportation Research Board. Transportation Research Record N1091 1986 p 48-59 9 Fig. 8 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FARATIVE ANALYSIS OF TWO LOGIC FOR ADAPTIVE CONTROL OF ISOLATED INTERSECTIONS. Lin, F-B. Soration Research Board. Transportation Research Record N1194 1988 pp 6-14 7 Fig. 11 Ref.. AVAILABLE FROM: \$portation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
PAPATIVE ASSESSMENT OF 1985 HCM DELAY MODEL. Sadegh, A; Radwan, AE. American Society of Civil heers. Journal of Transportation Engineering VOL 114 NO. 2 Mar 1988 pp 194-208 Figs. Tabs. Rets. Apps.. REPORT ASCE Paper 22278. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street Naw York New York 17
IPARING CAPACITIES AND DELAY ESTIMATES BY HIGHWAY CAPACITY SOFTWARE AND TRAF-NETSIM TO ID STUDIES. Wong. S. (Federal Highway Administration, Washington, D.C.). Institute of Transportation Engineers, $T \mathrm{TE}$ ${ }_{50}$ Compendium of Technical Papers, pp. 224-227.
.MPARISON OF FIXED TIME AND FLEXIBLE PROGRESSIVE TRAFFIC CONTROL IN SLOUGH. Lines, CJ; Lucas, CF. FiL Supplementary Report 1984 Monograph 8p 2 Fig. 2 Tab. 7 Ret.. REPORT NO: SR 837

MPARISON OF MACROSCOPIC MODELS FOR SIGNALIZED INTERSECTION ANALYSIS. Hagen, LT; Courage, KG. msportation Research Board. Transportation Research Record N1225 1989 pp $33-4414$ Fig. 10 Ref.. AVAILABLE FROM: unsportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
OMPARISON OF SOAP AND NETSIM: PRETIMED AND ACTUATED SIGNAL CONTROLS. Nemeth, ZA (Ohio State Inversity). Transportation Research Board. Transporation Research Record N905 1983 pp 84-89 13 Fig. 2 Tab. 3 Ref., VAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

COMPUTER APPLICATIONS IN TRAFFIC SIGNAL MANAGEMENT. SESSION 4. Skabardonis, A; May, AD (California Inversity, Berkeiey). 'Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 1-5 4 Fig. 8 Tab. is Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

COMPUTER USER MANUAL FOR PROGRAM "LATM"--A PROGRAM PACKAGE FOR LOCAL AREA TRAFFIC MODELLING. Tayior, MAP. Commonwealth Scientific \& Indus Res Org, Australia Division of Building Research, P.O. Box 56 Highett Vietoria Australia 064302818 8. 1982 Monograph 45p 5 Fig.

CONCURRENT USE OF MAXBAND AND TRANSYT SIGNAL TIMING PROGRAMS FOR ARTERIAL SIGNAL OPTIMIZATION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N906 1983 pp 81-84 2 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CONGESTION-BASED CONTROL SCHEME FOR CLOSELY SPACED, HIGH TRAFFIC DENSITY NETWORKS. Lieberman, EB; Rathi, AK; King, GF; Schwartz, SI. Transportation Research Board. Transportation Research Record N1057 1986 pp 49-57 2 Fig. 5 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

CONGESTION, FLOW AND CAPACITY. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, $24-27$ JULY 1991. Liu, G-Q. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 245-251 10 Fig. Refs.. AVAlLABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

CONSEQUENCES FOR TRAFFIC FLOW DURING A TEMPORARY ROAD-BLOCK (II). Botma, H; Stembord, HL (Deft University Of Technology). Royal Dutch Touring Club ANWB. Verkeerskunde VOL 36 NO. 7 Jul 1985 pp 314-316 2 Fig. 2 Tab. Dutch

CONSIDERATIONS IN THE LENGTH OF THE YELLOW INTERVAL Shanteau, RM. Purdue University. Engineering Bulletin of Purdue University N154 Mar 1983 pp 115-120 2 Fig. 1 Tab. 8 Ref.. AVAILABLE FROM: Purdue University West Lafayette Indiana 47907

CONTROL OF FREEWAY TRAFFIC FLOW. Smulders, SA. S.Smuiders Kervelgaarde 7 Nieuwegein Netherlands. 1990 162p 104 Ref. Dutch. AVAILABLE FROM: S. Smuiders Kervelgaarde 7 Nieuwegein Netherlands

CONTROL STRATEGIES AND DETECTOR PLACEMENT GUIDELINES FOR A 1.5 GENERATION TRAFFIC CONTRO SYSTEM. Kessmann, RW; Ku, CS; Cooper, DL. Kessmann and Associates, Incorporated 18333 Egret Bay Bouleverd Houston Texas 77058. Feb 1985 116p. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Raed Springfield Virginia 22161

CONTROL SYSTEM DESIGN FOR AN INDIVIDUAL SIGNALIZED JUNCTION. Improta, G; Cantarella, GE (Naples University, Italy). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. 2 Apr 1984 pp 147-167 17 Fig. 5 Tab. Refs.

COORDINATION OF ACTUATED ARTERIAL TRAFFIC SIGNAL SYSTEMS. Jovanis, PP; Gregor, JA. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 112 NO. 4 Jul 1986 pp 416-432 6 Fig. 6 Tab. 24 Ref. REPORT NO: ASCE Paper 20775. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street Now York, New York 10017

CURRENT KNOWLEDGE OF RURAL TRAFFIC BEHAVIOR. McLean, JR. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 13-36 8 Fig. 6 Tab. 33 Ref.

DELAY ALLEVIATED BY LEFT-TURN BYPASS LANES. Bruce, EL; Hummer, JE. Transportation Research Board. Transportation Research Record N1299 1991 pp 1-8 3 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research. Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DELAY ANALYSIS FOR FREEWAY CORRIDOR SURVEILLANCE, COMMUNICATION, AND CONTROL SYSTEMS. Dert, BR. Transportation Research Board. Transportation Research Record N1132 1987 pp 77-81 4 Fig. 1 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. . 20418

DELAY AT LIGHT RAAL TRANSIT GRADE CROSSINGS. Research rept. Sep 83-Sep 87. ClineJ.C.; Urbanik-T.; Rymer-B. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI2108433910. FHWATX8733910. Mar 86. 67p.

DELAY MODELS FOR MIXED PLATOON AND SECONDARY FLOWS. Rouphail, NM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 3 Mar 1988 pp 131-152 Figs. Tabs. Reís. Apps.. REPORT NO: ASCE Paper 22254. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

DELAY MODELS OF TRAFFIC-ACTUATED SIGNAL CONTROLS. Lin, FB; Mazdeyasna, F (Clarkson College of Technology, New York). Transportation Research Board. Transportation Research Record N905 1983 pp 33-38 7 Fig. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DEMAND-RESPONSE DECENTRALIZED URBAN TRAFFIC CONTROL. PART 2. NETWORK EXTENSIONS. Gartner, NH; Kaltenbach, MH; Miyamoto, MM. Lowell University, Massachusetts Loweil Massachusetts 01854. Jul 1983 159p. REPORT NO: ULRF-05-2998-2; DOT/OST/P34-85/009. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DEMONSTRATION OF THE EFFECTS OF HARMONIZED SPEED ON EFFICIENCY AND TRAFFIC SAFETY - A TRAFFIC SIMULATION STUDY OF TRAFFIC INTERACTION EFFECTS. REPORT SUMMARY. CarIsson, A; Nilsson, G. National Swedish Road \& Traftic Research institute. Nordic Road and Transport Research VOL. 1 NO. 11989 pp 20-21 1 Fig. 3 Tab.. AVAILABLE FROM: National Swedish Road \& Traffic Research Institute Editor-in-chief S-581 01 Linkoeping Sweden

DEMONSTRATION OF TRAF-NETSIM FOR TRAFFIC OPERATIONS MANAGEMENT. FINAL REPORT. Sulzberg, JD; Demetsky, MJ. Virginia Transportation Research Council P.O. Box 3817, University Station Charlottesville Virginia 22903; Virginia Department of Transportation 1221 East Broad Street Richmond Virginia 23219; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1991 73p 6 Fig. 11 Tab. 34 Ref. 6 App.. REPORT NO: FHWANA-92-R3; VTRC 92-R3. AVAILABLE FROM: National Technical Intormation Service 5285 Port Royal Road Springtield Virginia 22161

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 1: EXECUTIVE SUMMARY, Lawther, JM. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 5p. REPORT NO: FHWA-TS-85-201; FCP 3322-418. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 2: FINAL REPORT. Lawther, JM. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State Coilege Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 106p. REPORT NO: FHWA-TS-85-202; FCP 3322-418. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161
development of a new highway traffic noise prediction model. volume 6: PSUHTRANINDATA USER'S MANUAL. Welz, JP. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 188p. REPORT NO: FHWA-TS-85-206; FCP 3322-418. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DEVELOPMENT OF COMPACT MICROSIMULATION FOR ANALYZING FREEWAY OPERATIONS AND DESIGN. Bullen, AGR (Pittsburgh University, Pittsburgh). Transportation Research Board. Transportation Research Record N841 1982 pp 15-18 4 Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DEVELOPMENT OF GRAPHICS DISPLAYS FOR THE INTEGRATED TRAFFIC DATA SYSTEM. Santiago, AJ; Chin, S-M. Transportation Research Board. Transportation Research Record N1112 1987 pp 140-143 1 Fig.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
t:
DEVELOPMENTAL STUDY OF IMPLEMENTATION GUIDELINES FOR LEFT-TURN TREATMENTS. Lin, HJ; Machemehl, RB (Texas University, Austin). Transportation Research Board. Transporation Research Record N905 1983 pp 96-105 13 Fig. 8 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. VOLUME 1. TECHNICAL REPORT. FINAL REPORT. Chang, ECP; Messer, CJ. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1985 86p. REPORT NO: FHWARD-86/20. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. Chang, EC-P; Messer, CJ; Cohen, SL. Transportation Research Board. Transportation Research Record N1057 1986 pp 10-19 8 Fig. 6 Tab. 20 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DYNAMIC ANALYSIS OF LANE CLOSURE STRATEGIES. Mahmassani, HS; Jayakrishnan, R. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 4 Jul 1988 pp $476-496$ Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22622. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York Now York 10017

DYNAMIC MODEL OF PEAK PERIOD CONGESTION. Ben-Akiva, M; Cyna, M; De Palma, A (Massachusetts Institute of Technolog Ministry of Transpont, France; McMaster University, Canada). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. $18 B$ NO. $4 / 51984$ pp $339-35517$ Fig. 14 Ref.

DYNAMIC MODELS OF COMMUTER BEHAVIOR : EXPERIMENTAL INVESTIGATION AND APPLICATION TO THE ANALYSIS OF PLANNED TRAFFIC DISRUPTIONS. MAHMASSANI, HS (UNIVERSITY OF TEXAS AT AUSTIN). TRANSPORTATION RESEARCH PART A NV199N6 Nov 1990 PP 465-484 ENGLISH

DYNAMIC TRAFFIC CONTROL SYSTEM SCOOT - FURTHER DEVELOPMENTS. Bretherton, RD. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 337-9

Abstract

NEMO: A MODEL FOR THE SIMULATION OF TRAFFIC FLOW IN MOTORWAY NETWORKS. Schwerdteger, T achnical University of Karlsruhe, West Germany). VNU Science Press Bv P.O. Box 2073 Utrecht Netheriands j06764-008-5. 1984 pp 65-87 12 Fig. 18 Ref.

FFECT OF BUS TURNOUTS ON TRAFFIC CONGESTION AND FUEL CONSUMPTION. Cohen, SL (Federal Highway mministration). Transportation Research Board. Transportation Research Record N901 1983 pp $33-384$ Fig. 3 Tab. 13 Ref. IVALABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 0418 ffFECT OF CLEARANCE INTERVAL TIMING ON TRAFFIC FLOW AND CRASHES AT SIGNALIZED INTERSECTIONS. tador, P; Stein, H; Shapiro, S; Tarnoft, P. Institute of Transportation Engineers. ITE Journal VOL. 55 NO. 11 Nov 1985 pp \$6.39 9 Ret.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017 IFFECT OF LEFT-TURN BAYS ON FUEL CONSUMPTION ON UNCONTROLLED APPROACHES TO STOP-SIGN-CONTROLLED INTERSECTIONS. Dvorak, DV; McCoy, PT (Nebraska University, Lincoin). Transportation fesearch Board. Transportation Research Record N901 1983 pp 50-53 4 Fig. 7 Ref.. AVAILABLE FROM: Transportation fresearch Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

GEFFECTIVENESS OF RELEASE TIME MODIFICATION IN ROAD NETWORKS WITH LIGHT SIGNAL SYSTEMS. PT. C. APPENDICES. Schiabbach, K. Technische Hochschule Darmstadt Germany. Jan 1990 202p German. AVAILABLE FROM: Mational Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

EFFECTS OF ARTERIAL PLATOON PROGRESSION ON CAPACITY. Todd, K. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 9 Sep 1988 pp 468-470 Figs. Refs.

EFFECTS OF DESIGN ELEMENTS ON MERGING CAPACTTY. Skabardonis, A; McDonald, M. Institution of Highways and Transportation. Highiways and Transportation VOL. 32 NO. 11 Nov $1985 \mathrm{pp} 14-1811$ Fig. 4 Tab. 11 Ref.. AVAlLABLE FROM: Institution of Highways and Transportation 3 Lygon Place, Ebury Street London SW1 England

EFFECTS OF PROGRESSION QUALITY AND TRAFFIC FLOW NON-STATIONARITY IN DELAYS MODELS AT signalized intersections. highway capacity and level of service. proceedings of the NTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Chodur, J; Tracz, M. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netheriands 905410011 7. 1991 pp $91-973$ Fig. 5 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

EFFECTS OF PROHIBITING LEFT-TURNS AT SIGNALIZED INTERSECTIONS. FINAL REPORT. Habib, P; Thornhill, W; Kaplan, W. Polytechnic Institute of New York 333 Jay Street Brooklyn New York 11201 Federal Highway Administration Tumer Fairank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1984 54p. REPORT NO: FHWARD-84/083; FCP 31A2-022. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

EMERGING TECHNOLOGICAL TOOLS FOR DETALLED FREEWAY DESIGN AND OPERATIONAL ANALYSIS: TRAFFRESIM, FSMTUTOR, AND FEDIT. Mekemson, J. and Kanaan, A. (VICOR Associates, Manassas, Va.). Proceedings of the 1991 Annual Meeting of the Institute of Transportation Engineers, Washington, D.C.

EMPIRICAL STUDY OF ON-THE-STREET OPERATION OF LRT AND BUSES IN CALGARY. Babalola, A; Morrall, JF (Calgary University, Canada). Institute of Transportation Engineers 9803 102A Avenue, 12th Floor Edmonton Alberta Canada. 1983 20p 7 Fig. 4 Tab. 6 Ret. energy and emission consequences of improved traffic signal systems. Kahng, su; May, ad (Calitornia University, Berkeley). Transportation Research Board. Transportation Research Record N881 1982 pp 34-41 11 Fig. 3 Tab. 23 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ENERGY SAVINGS THROUGH SIGNAL TIMING OPTIMIZATION AND COORDINATION. MCGill, JA; Degroot, P; Ugge, A (Ontario Ministry of Transportation \& Communic, Can; Detcan Canada Limited). Wyllie and Ufnal Limited 1 Greensboro Drive, Suite 300 Rexdale Ontario Canada. 1982 pp 236-256 4 Fig. 4 Tab. 8 Ref.

ENGINEERING STRATEGIES FOR MAJOR RECONSTRUCTION OF URBAN HIGHWAYS. VOLUME 2. APPLIO TO THE I-5 RECONSTRUCTION PROJECT. FINAL REPORT. Recker, WW; Waters, CD; Leonard, JD. Califomia Uñ, Irvine Institute of Transportation Studies Irvine California 92717; Federal Highway Administration 400 7th Stre. Washington D.C. 20590; California Department of Transportation 1120 N Street Sacramento Califomia 95814. D*: 291p. REPORT NO: FHWACAUCI/ITS/RR-1. AVAILABLE FROM: National Technical Information Service 5285 Poit ing in Road Springfield Virginia 22161

ENHANCED FREFLO: MODELING OF CONGESTED ENVIRONMENTS. Rathi, AK; Lieberman, EB; Yediñ 1 . Transportation Research Board. Transportation Research Record N1112 1987 pp 61-715 Fig. 9 Tab. 7 Ref.. AVAlU, Is,
FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418,

ENTERING HEADWAY AT SIGNALIZED INTERSECTIONS IN A SMALL METROPOLITAN AREA. Lee, J; Chen': Transportation Research Board. Transportation Research Record N1091 1986 p 117-126 1 Fig. 13 Tab. 7 Ref.. AVAll \& FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

ESTIMATING TIME-DEPENDENT TRIP MATRICES FROM TRAFFIC COUNTS. Willumsen, LG (University Coline London). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 397-411 1 Tab. 15 Ref,

ESTIMATION OF LEFT-TURN TRAFFIC PARAMETERS. Lin, FB; Nadratowski, TT (Clarkson College of Technology). American Society of Civil Engineers. ASCE Journal of Transportation Engineering VOL. 109 NO. 3 May 1983 pp $347-382$ 11 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

ESTIMATION OF ROAD USER COST FACTORS BY ROAD TRAFFIC SIMULATION. GYNNERSTEDT, G. PRESSES DE L'ECOLE NATIONALE DES PONTS ET. COLLOQUE INTERNATIONAL SUR LES ROUTES ET LE VOL. 11984 PP 349-353 ENGLISH

EVALUATING TRAFFIC CAPACITY AND IMPROVEMENTS TO ROAD GEOMETRY. Hoban, \mathbf{C}. International Bank for Reconstruction \& Development 1818 H Street, NW Washington D.C. 20433 0-8213-0965-X. 1987 157p. REPORT NO: TP-74. AVAILABLE FROM: Intemational Bank for Reconstruction \& Development 1818 H Street, NW Washington D.C. 20433

EVALUATION OF 1984 LOS ANGELES SUMMER OLYMPICS TRAFFIC MANAGEMENT. FINAL REPORT. Giuliana, G; Haboian, K; Rutherford, K; Prashker, J; Recker, W. Califomia University, Irvine Institute of Transportation Studies Invine California 92717. Apr 1987 156p Figs. Tabs. Refs. 1 App.. AVAILABLE FROM: California University, Irvine Institute of Transportation Studies Irvine California 92717

EVALUATION OF BUS LANES. Hounsell, NB; McDonald, M. TRANSPORT AND ROAD RESEARCH LABORATORY. TRRL CONTRACTOR REPORT NCR 81988 216P. REPORT NO: 7

EVALUATION OF COMPUTER PROGRAMS FOR PREDICTING THE PERFORMANCE OF SIGNALIZED INTERSECTIONS. Rao, TSCS. California University, Berkeley Department of Civil Engineering Berkeley California 94720. Jan 1988 193p. REPORT NO: RAO/TRAFFIC-88/02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

EVALUATION OF CONTROL STRATEGIES FOR BUS PREEMPTION OF TRAFFIC SIGNALS. Smith, MJ. New Jersey Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1985 Final Rpt. 53p 5 Fig. 2 Tab. 3 App.. REPORT NO: FHWA-NJ-RD-85-003. AVAILABLE FROM: New Jersey Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625

EVALUATION OF DYNAMIC FREEWAY FLOW MODEL BY USING FIELD DATA (DISCUSSION). Derzka, NA; Ugge, AJ; Case, ER; Payne, HJ (Ortario Ministry of Transportation \& Communic, Can). Transportation Research Board. Transportation Research Record N905 1983 pp 52-60 12 Fig. 1 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

EVALUATION OF FREEWAY IMPROVEMENT ALTERNATIVES USING CORFLO. Liu, C. (AEPCO, Rockville, Md.) and Kanaan, A. (VIGGEN Corporation, Reston, Va.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

FIRST-GENERATION UTCS SIMULATION. Eiger, A; Chin, S-M (Rensselaer Polytechnic Institute). Transportation Re Board. Transportation Research Record N906 1983 pp 57-60 5 Fig. 5 Ret.. AVAILABLE FROM: Transportation Re Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FLOW AT ROUNDABOUT ENTRIES. Chin, HC; McDonald, M (Universities Of Singapore And Southampton; Southan University, England). PTRC Education and Research Services Limited. Planning \& Transpont Res \& Comp, Sum Ann Mon Proc 1984 ppl-11 3 Fig. 2 Tab. 10 Ref.

FLOW PROFILE COMPARISON OF A MICROSCOPIC CAR-FOLLOWING MODEL AND A MACROSCOPIC PLATOON DISPERSION MODEL FOR TRAFFIC SIMULATION. Mekemson, J., VICOR Associates, Manassas, Va. and Gantz, George Mason University, Fairfax, Va. 1990 Winter Simulation Conference Proceedings.

FRESIM - A FREEWAY SIMULATION MODEL FOR ANALYZING OPERATIONAL AND GEOMETRIC ALTERNATIVES Halati, A; Torres, J; JFT \& Associates, Pacific Palisades, Ca. and Cohen, S; Federal Highway Administration, McLean, Va Paper submitted to Transportation Research Board for 1991 Annual Meeting.

FREESIM: A MICROSCOPIC SIMULATION MODEL OF FREEWAY LANE CLOSURES (ABRIDGMENT). Rathi, AK; Nemeth, ZA. Transportation Research Board. Transportation Research Record N1091 1986 p $21-241$ Tab. 12 Ref.el AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FREEWAY CAPACITY AND FLOW RELATIONSHIPS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATKNAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Wemple, EA; Moriš; AM; May, AD. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 439-455 14 Fig. 3 Tab. Reis.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfiedd Vermont 05036

FREEWAY SIMULATION AND CONTROL. Babcock, PS, IV; May, AD; Auslander, DM; Tomizuka, M. Calitomia University, Berkeley Institute of Transportation Studies Berkeley California 94720; Califomia Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Dec 1982 Final Rpt. 469p. REPORT NO: UCB-ITS-RR-82-13. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

FREEWAY SIMULATHN MODELS REVISITED. May, AD. Transportation Research Board. Transportation Research Record N1132 1987 pp $94-9989$ Ref. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FREEWAY SPEED-FLOW-CONCENTRATION RELATIONSHIPS: MORE EVIDENCE AND INTERPRETATIONS (WITH DISCUSSION AND CLOSURE). Banks, JH; Furth, PG. Transportation Research Board. Transportation Research Record N1225 1989 pp 53-60 5 Fig. 11 Ref.. AVAILABLE FROM: Transporation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

FREEWAY SURVEILLANCE AND CONTROL SYSTEM USING SIMULATION MODEL. Ju, R-S; Maze, TH. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 4 Jul 1989 pp $425-437$ Figs. Tabs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

FUEL AND TIME IMPLIGATIONS OF MERGING TRAFFIC AT FREEWAY ENTRANCES. Lyons, TJ; Rainford, H ; Kenworthy, JR; Newman, PWG. Murdoch University South Street Murdoch Western Australia Australia. N8/84 1984 Monograph 52p 19 Fig. 4 Tab. 14 Ref.

FUEL CONSUMPTION ANALYSES FOR URBAN TRAFFIC MANAGEMENT. Bowyer, DP; Akcelik, R; Biggs, DC. Institute of Transportation Engineers. TTE Journal VOL. 56 NO. 12 Dec 1986 pp 31-34 Figs. Tabs. 9 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

当 CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. FINAL REPORT. McGill, R. Oak Ridge National Goratory Post Office Box X Oak Ridge Tennessee 37830. May 1985 93p. AVAlLABLE FROM: National Technical bmation Service 5285 Port Royal Road Springtield Virginia 22161

FLL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. McGill, R. Oak Ridge National Laboratory Post Tice Box X Oak Ridge Tennessee 37830 ; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Gorgetown Pike McLean Virginia 22101. May 1985 Final Rpt. 90p 20 Fig. 18 Tab. 7 Ref. 5 App.. REPORT NO: iNARD-85/053. AVAILABLE FROM: Federal Highway Administration Turner Faibbank Hwy Res Cntr, 6300 Georgetown Washington D.C. 20590

IEL CONSUMPTION MODELS: AN EVALUATION BASED ON A STUDY OF PERTH'S TRAFFIC PATTERNS. Pitt, DR; yons, TJ; Newman, PWG; Kenworthy, JR. Murdoch University South Street Murdoch Western Australia. 1984 40p 9 Fig. p Tab. 26 Ref.. REPORT NO: 3/84

JJEL EFFICIENT TRAFFIC SIGNAL OPERATION AND EVALUATION: GARDEN GROVE DEMONSTRATION PROJECT. Wagner-McGee Associates 4660 Kenmore Avenue, Suite 825 Alexandria Virginia 22304; Califomia Energy Commission fif16-19th Street Sacramento California 95814. Feb 1983 76p. REPORT NO: P-400-83-004

FUEL EFFICIENT TRAFFIC SIGNAL TIMING PROGRAM. CITY OF LOS ANGELES DEPT OF TRANSPORTATION LOS ANGELES. Feb 1984 ENGLISH

FIUEL SAVING POTENTIALS OF ISOLATED TRAFFIC SIGNAL INSTALLATIONS. EdhoIm, S; Buren, H. Royal Institute of Technology, Sweden. Rapport 1982 Monograph 40p 16 Fig. 14 Tab. 18 Ref. Swedish. REPORT NO: ITITA-TRL-82-05-17
gap acceptance and traffic Conflict simulation as a measure of risk. McDowell, Mrc; Wennell, j; Storr, PA; Darzentas', J (Royal Holloway College). Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England 0305-1315. N776 1983 Monograph 19p 4 Fig. 16 Tab. 17 Ref. Apps.
general approach to relative offset setiings of Traffic signals. Al-Khalii, Al. Institute of Electrical \& Electronics Engrs, Inc. IEEE Transactions on Systems, Man and Cybernetics 1985 pp 587-594 15 Ref.. REPORT NO: VSMC-N4. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. SUMMARY REPORT. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201 ; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 25p 1 Fig.. REPORT NO: WA-RD 204.1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME I: MANAGEMENT, SURVEILLANCE, CONTROL, AND EVALUATION OF FREEWAY INCIDENTS-A REVIEW OF EXISTING LITERATURE. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 45p 4 Tab. Refs.. REPORT NO: WA-RD 204.2. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME II: ANALYSIS OF FREEWAY incIDENTS IN THE SEATTLE AREA. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201 ; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 85p 1 Fig.. REPORT NO: WA-RD 204.3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME III: SEATTLE-AREA INCIDENT IMPACT ANALYSIS--MICROCOMPUTER TRAFFIC SIMULATION RESULTS. Mannering, F; Jones, B; Garrieon DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seefthe Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington $98504-5201$; REPORT NO: WA-RD 204.4. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtied. Virginia 22161

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME IV: SEATILE-AREA INCIDENT MANAGEMENT--ASSESSMENT AND RECOMMENDATIONS. Mannering, F; Jones, B; Garrison, DH; Sebranko, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 9810s; Washington State Department of Transportation Transportation Building, KF-10 Olympia Washington 98504-5201; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 25p 4 Fig. 2 Tab.. REPORT NO: WA-RD 204.5. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME 4: SEATTLE-AREA INCIDENT IMPACT ANALYSIS: MICROCOMPUTER TRAFFIC SIMULATION RESULTS. Mannering, FL; Garrison, DH; Sabrenke. B. TransNow, Transportation Northwest Washington Univ, Civil Engineering Dept, 135 More Hall FX-10 Seattle Washington 98195. Feb 1990 v.p. Figs. Tabs. Rets. Apps.. REPORT NO: TNW90-13.4. AVAILABLE FROM: TransNow, Transportation Northwest Washington Univ, Civil Engineering Dept, 135 More Hall FX-10 Seattle Washington 98195

GETTING TRAFFIC SYSTEM SOLUTIONS WITH TRAF-FAMILY MODELS. Byun, J., Wong, S., and Stephens, B., (Federal Highway Administration). Institute of Transportation Engineers, ITE 1991 Compendium of Technical Papers, pp 485-491.

GETTING STARTED: SELECTING AND USING COMPUTERIZED TRAFFIC MODELS. MORALES, JM. PUBLIC ROADS VOL. 53 NO. 1 Jun 1989 PP 6-11 ENGLISH

GRAPHICAL REPRESENTATION OF THE EFFECT OF SIGNAL TIMINGS ON DELAY AT 2-STAGE JUNCTIONS USING COMPUTER GRAPHICS. Saavedra, A (Comision De Transporte Urbano). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp. Sum Ann Mtg, Proc 1984 pp217-237 7 Fig. 9 Ref.

GUIDE TO FUEL CONSUMPTION ANALYSES FOR URBAN TRAFFIC MANAGEMENT. Bowyer, DP; Akcalik, R; Biggs, DC. Australian Road Research Board. Australian Road Research Report N32 Oct 1985 98p 33 Fig. 25 Tab. 29 Ref.. AVAILABLE FROM: Australian Road Research Board P.O. Box 156, Bag 4 Nunawading Victoria 3131 Australia

GUIDEBOOK FOR IMPROVING TRAFFIC SIGNAL TIMING. SKABARDONIS, A. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF. RESEARCH REPORT INSTITUTE OF TRANSPORTATION N---8 Nov 1986 ENGLISH. REPORT NO: 6-10

GUIDELINES FOR LEFT-TURN TREATMENTS AT SIGNAL CONTROLLED INTERSECTIONS. Nemeth, ZA; Mekemson. Ohio State University Engineening Experiment Station, 2070 Neil Avenue Columbus Ohio 43210; Ohio Department of Transportation P.O. Box 899 Columbus Ohio 43216-0899; Federal Highway Administration Washington D.C. 20590. Jun 1983 Final Rpt. 284p Figs. Tabs. Rets. 4 App.. REPORT NO: FHWA-OH-83-003
heUristic programming approach to arterial signal timing. Rogness, RO; Messer, C. Transportation Research Board. Transportation Research Record N906 1983 pp $67-753$ Fig. 6 Tab. 25 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

IDENTICAL TRAFFIC STREAMS IN THE TRAF-NETSIM SIMULATION PROGRAM. Rathi, AK; Santiago, Ad. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 6 Jun 1990 pp 351-355 3 Fig. 1 Tab. 6 Ref.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

IMPACT OF ARTERIAL LANE OBSTRUCTIONS. VOLUME 2: RESEARCH REPORT. FINAL REPORT. Torres, JF; Halati, A; Danesh, M. JFT Associates 5555 Inglewood Boulevard, Suite 102 Culver City Calitornia 90230; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Feb 1986 119p. REPORT NO: FHWARD-86/139. AVAILABLE FROM: National Technical information Service 5285 Port Royal Road Springfield Virginia 22161

IACT OF ARTERIAL LANE OBSTRUCTIONS. VOLUME 3: LANE BLOCKAGE LOGIC CHANGES IN NETSIM. FINAL ORT. Danesh, M; Halati, A; Torres, JF. JFT Associates 5555 Inglewood Boulevard, Suite 102 Cuiver City California 30; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Feb 1986 25p. REPORT NO: NARD-86/140. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia : 71
PACT OF PASSING-CLIMBING LANES ON TRAFFIC FLOW ON UPGRADES. Polus, A; Reshetnik, 1. Pergamon Press Gted. Transportation Research. Part A: General VOL. 21A NO. 6 Nov 198714 Ref.. AVAILABLE FROM: Pergamon Press nited Headington Hill Hall Oxford OX3 OBW England

PLEMENTATION OF THE AUSTRALIAN ROUNDABOUT ANALYSIS METHOD IN SIDRA. HIGHWAY CAPACITY AND VEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, ERMANY, 24-27 JULY 1991. Akcelik, R; Troutbeck, R. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 554100117.1991 pp 17-34 9 Fig. 3 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield prmont 05036
tiplementation Of TRAFFIC SIGNAL TIMING PLANS IN COORDINATED ARTERIAL SYSTEMS. Courage, KG. Forida University, Gainesville Transportation Research Center Gainesville Flonida 32611. Jan 1990 25p. REPORT NO: ITC-UF-268-3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161
MPLEMENTING TRANSYT TRAFFIC SIGNAL TIMING. Dock, FC. Roads and Transportation Association of Canada 1765 fe Laurent Boulevard Ottawa Ontario K1G 3V4 Canada. Sep 1984 pp B3-B29 8 Fig. 5 Tab. 12 Ref.. AVAILABLE FROM: Phoads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada
mpORTANCE OF SIMULATION IN TRAFFIC FLOW BEHAVIOR ANALYSIS, SURVEILANCE AND TRAFFIC CONTROL. Stanojevic, M. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik III Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 173-188 14^{4} Fig. 1 Tab. 23 Ref. Serbian

MPROVED CONTINUUM MODELS OF FREEWAY FLOW. Michalopoulos, PG; Beskos, DE (Minnesota University, Minneapolis). VNU Science Press Bv P.O. Box 2073 Utrecht Netheriands 90-6764-008-5. 1984 pp 89-111 6 Fig. 1 Tab. 15 Ref.

IMPROVED GRAPHIC TECHNIQUES IN SIGNAL PROGRESSION. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Board. Transportation Research Record N957 1984 pp 47-55 11 Fig. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

IMPROVED SIGNAL TIMING PLAN SELECTION. Kessmann, RW; Ku, CS. Kessmann and Associates, Incorporated Houston Texas. Aug 1985 22p. REPORT NO: REPT-1502.02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

IMPROVING SIGNAL TIMING, VOLUME 1. ISOLATED INTERSECTIONS. Imada, T; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. May 1984 103p. REPORT NO: UCB-ITS-RR-84-3; FHWA-CA-TO-84-3-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

IMPROVING SIGNAL TIMING. VOLUME 2. PRETIMED ARTERIAL ROADWAYS. Vermeulen, MJ; Lermat, NP; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. May 1984 204p. REPORT NO: UCB-ITS-RR-84-4; FHWA-CA-TO-83-3-2. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

INCORPORATING FUEL CONSUMPTION MODELS INTO URBAN TRAFFIC ANALYSIS TECHNIQUES. NATIONAL ENERGY RESEARCH, DEVELOPMENT AND DEMONSTRATION PROGRAM; END OF GRANT REPORT. Bowyer, DP. Australian Dept of Primary Industries and Energy GPO Box 858 Canberra A.C.T. 2601 Australia 0811-9570 0-642-12708-5. Oct 1988 9p. REPORT NO: NERDDP Report 814

INDO－SWEDISH．TRAFFIC SIMULATION MODEL：A PROGRAM FOR THE MONTE CARLO SIMULATION OF heterogeneous vehicle traffic along single lane，intermediate lane and narrow two lawe ROADS．Brodin，A；Palaniswamy，SP．National Swedish Road \＆Traffic Research Institute Fack S－581 01 Linkoeping Sweden． 1985 124p．REPORT NO：VTIMEDDELANDE－439A．AVAILABLE FROM：National Technical Information Senvice 5285 Port Royal Road Springfield Virginia 22161

INSECT WITH TRAFFIC SIGNALS：VALIDATON REPORT．RJ NAIRN AND PARTNERS PTY LTD 7 CENTENNLAL AVENUE Randwick New South Wales Australia．Jun 1986 61p

INTEGRATED MODELING OF FREEWAY FLOW AND APPLICATION TO MICROCOMPUTERS（ABRIDGMENT）． Michalopoulos，PG；Lin，J．Transportation Research Board．Transportation Research Record N1091 1986 p 25－28 1 Fig． 6 Ref．．AVAILABLE FROM：Transportation Research Board Publications Office 2101 Constitution Avenue，NW Washington D．C． 20418

INTERSECTION，DIAMOND，AND THREE－LEVEL DIAMOND GRADE SEPARATION BENEFIT－COST ANALYSIS BASED ON DELAY SAVINGS．Rymer，B；Urbanik，T，II．Transportation Research Board．Transportation Research Record N1z39 1989 pp 23.298 Fig． 2 Tab． 4 Ref．．AVAILABLE FROM：Transportation Research Board Publications Office 2101 Constitution Avenue，NW Washington D．C． 20418

INTERSECTION SIMULATION MODEL：INSECT．Cotterill，PJ；Mcore，SE；Tudge，R（Rj Nairn and Partners Proprietary Limited；New South Wales Department of Main Roads，Australia）．Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572－1431．VOL． 12 NO． 41984 pp 171－182 9 Fig． 18 Ref．

INTERSECTIONS．PROCEEDINGS：INSTITUTE OF TRANSPORTATION ENGINEERS DISTRICT 7 －CANADA ： TWELFTH ANNUAL MEETING．Gillett，R；Teply，S；Babey，GM；Hunt，JD；Stephenson，B；Solomon，HL；Mah，M．Institute of Transportation Engineers RTAC， 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada． 1987 pp 8．1－102 31 Fig． 16 Tab． 22 Ref．．AVAft：ABLE FROM：Institute of Transportation Engineers RTAC， 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada

INTRODUCTION TO RURAL TRAFFIC SIMULATION．Hoban，CJ．Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7． 1983 pp 37－48 4 Fig． 11 Ref．

INVESTHGATION OF OPTIMAL TIME TO CHANGE ARTERIAL TRAFFIC SIGNAL－TIMING PLAN．Jrew，BK；Parsonson， PS；Chang，EC－P．Transportation Research Board．Transportation Research Record N1057 1986 pp 20－29 6 Fig． 10 Tab． 6 Ref．．AVAILABLE FROM：Transportation Research Board Publications Office 2101 Constitution Avenue，NW Washington D．C． 20418

ITDS：A DATA BASE DRIVEN INTERFACE TO TRAFFIC MODELS USING A MICROCOMPUTER．Santiago，AJ．Federal Highway Administration，Office of R\＆D．Public Roads VOL． 49 NO． 4 Mar 1986 pp 122－126．AVAILABLE FROM： Engineering Societies Library 345 East 47th Street New York New York 10017

ITDS：PAST，PRESENT，AND FUTURE．Rathi，AJ；Santiago，AJ；Valentine，DE；Chin，SM．American Society of Civil Engineers．Journal of Transportation Engineering VOL． 116 NO． 6 Nov 1990 pp 799－808 Figs．Refs． 1 App．AVAILABLE FROM：American Society of Civil Engineers 345 East 47th Street New York New York 10017－2398

KNOWLEDGE BASE ON SEMI－ACTUATED TRAFFIC－SIGNAL CONTROL．Lin，F－B．American Society of Civil Engineers． Joumal of Transportation Engineering VOL． 117 NO． 4 Jul 1991 pp 398－417 Figs．Tabs．Refs． 2 App．．AVAILABLE FROM： American Society of Civil Engineers 345 East 47th Street New York New York 10017－2398

LABOR SAVING METHODS FOR IMPROVED OPERATION OF COMPUTER－CONTROLLED TRAFFIC SIGNAL SYSTEMS： 1．5 GENERATION SYSTEM FUNCTIONAL DESCRIPTION AND SOFTWARE DEVELOPMENT GUIDELINES．Kessmann， RW；Ku，CS；Cooper，DL．Kessmann and Associates，Incorporated 18333 Egret Bay Boulevard Houston Texas 77058．Mar 1985 106p．AVAILABLE FROM：National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

LABOR SAVING METHODS FOR IMPROVED OPERATION OF COMPUTER－CONTROLLED TRAFFIC SIGNAL SYSTEMS： EXECUTIVE SUMMARY．Kessmann，RW；Ku，CS；Cooper，DL．Kessmann and Associates，Incorporated 18333 Egret Bay Boulevard Houston Texas 77058．Mar 1985 38p．AVAILABLE FROM：National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

MEASURES OF QUEUEING PERFORMANCE FOR A TRAFFIC NETWORK. Bell-M.C.. Newcastle upon Tyne Univ. (England). Transport Operations Research Group. TORGRR33. Oct 80. 29p. UNITED-KINGDOM.

MEASURING AND ANALYZING CYCLIC FLOW PROFILES WITH A PORTABLE MICROCOMPUTER. Robertson, DI; Wood, K (Transport and Road Research Laboratory). Printerhall Limited. Traffic Engineering and Control VOL. 25 NO. 1 Jan 1984 pp 27-28 2 Fig. 4 Ref.

MEASURING LEVEL OF SERVICE OF TWO-LANE HIGHWAYS BY OVERTAKINGS. Morrall, JF; Wemer, A. Transportation Research Board. Transportation Research Record N1287 1990 pp 62-69 7 Fig. 3 Tab. 9 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

MEASURING SATURATION FLOW AT TRAFFIC SIGNALS USING A HANDHELD MICROCOMPUTER. Wood, K. Printerhall Limited. Traflic Engineering and Control VOL. 27 NO. 4 Apr 1986 pp 174-175 2 Fig. 6 Ref.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London England

MEASURING SIGNAL PLATOON FLOW. VIRKLER, MR; MADSEN, RW; SUTTON, JH. JOURNAL OF URBAN PLANNING AND DEVELOPMENT VOL. 117 NO. 5 Oct 1991 PP 513-528 ENGLISH

MELBOURNE ON-ROAD, HALF SECOND SPEED AND FUEL CONSUMPTON, PEAK DATA (1978), COLD-START DATA (1982) AND FUELS DATA (1982). Lansell, SR; Chittleborough, CC; Watson, HC. Melboume University, Australia Department of Mechanical Engineering, Grattan Street Parkville Victoria 3053 Australia. 1984 Monograph 29p 1 Fig. 7 Tab. 5 Ret.. REPORT NO: TG1/84

METHODS OF EVALUATION USED IN ARRB SIMULATION STUDIES. Hoban, CJ. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 133-154 5Fig. 7 Tab. 25 Ref.

MICROCOMPUTERABASED INTEGRATED TRAFFIC SYSTEM: MARKET STUDY AND CONCEPTUAL DESIGN. Stowart, S; Sims, D; Quinn, M; Jang, K. Transport Canada Complexe Guy Favreau, 601-200 Dorchester Boulevard West Montreal Quebec Canada. Jul 1985 81p 13 Fig. 3 Tab. French. REPORT NO: E 6747. AVAILABLE FROM: Transport Canada Complexe Guy Favreau, 601-200 Dorchester Boulevard West Montrea! Quebec Canada

MICROSCOPIC SIMULATION OF TRAFFIC IN NETWORKS: SUPERCOMPUTER EXPERIENCE. Mahmassani, HS; Jayakrishnan, R; Herman, R. American Society of Civil Engineers. Journal of Computing in Civil Engineering VOL. 4 NO. 1 Jan 1990 pp 1-19 Figs. Tabs. Refs. 2 App.. AVAlLABLE FROM: American Society of Civil Engineers 345 East 47th Stre New York New York 10017-2398

MICROPROCESSOR AIDS TO OPTIMIZING UTC SIGNAL PERFORMANCE. Robertson, GD (West Yorkshire Metropolitan County Council). Printerhall Limited. Traffic Engineering and Control VOL. 26 NO. 1 Jan 1985 pp 4-8 6 Fig. 4 Ref.

MICROSCOPIC SIMULATION OF ENERGY CONSUMPTION AND EXHAUST AS EMISSION IN ROAD TRAFFIC. Benz, T. Karlsruhe University, West Germany Kaiserstrasse 127500 Karlsruhe West Germany. Dec 1984 127p German. REPORT NO: NP-7770068. AVAILABLE FROM: National Technical Iniormation Service 5285 Port Royal Road Springfield Virginia 22161

MICROSCOPIC SIMULATION OF FUEL CONSUMPTION AND EXHAUST EMISSIONS OF ROAD TRAFFIC (MISEVA). Benz, T. Karlsruhe University, West Germany Institut fuer Verkehrswesen Karlsruhe West Germany. $1985128 p$ German. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

MICROSCOPIC SIMULATION OF VEHICLES IN AN URBAN NETWORK. ADVANTAGES AND DISADVANTAGES OF THE EVENT-SCANNING METHOD. Aron, M (Institute for Rapid Transit). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mig, Proc 1984 pp13-24 6 Fig. 4 Rei.

MODELING AND FILTERING OF FREEWAY TRAFFIC FLOW. Smulders, SA. Mathematisch Centrum Amsterdam Netherlands. 1987 22p. REPORT NO: CWI-OS-R8706. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

NEW ALGORITHM FOR SOLVING THE MAXIMUM PROGRESSION BANDWIDTH (WITH DISCUSSION AND CLOSURE), Tsay, H-S; Lin, L-T; Chang, EC-P. Transportation Research Board. Transportation Research Record N1194 1988 pp 15-90 9 Fig. 3 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue NW Washington D.C. 20418

NEW DIRECTIONS FOR INTER-URBAN TRAFFIC MODELS?. KIRBY, HR. HIGHWAYS AND TRANSPORTATION VOL. 36 NO. 7 Jul 1989 PP 6-11 ENGLISH

NORTH CAROLINA'S COMPREHENSIVE TRAFFIC SIGNAL TIMING OPTIMIZATION PROGRAM. MARTIN, RL. OHIO TRANSPORTATION ENGINEERING CONFERENCE 1988 PP 106-112 ENGLISH

NORTH CAROLINA'S TRAFFIC SIGNAL MANAGEMENT PROGRAM FOR ENERGY CONSERVATION. 1987 TRANSPORTATION ENERGY CONSERVATION AWARD IN MEMORY OF FREDRICK A. WAGNER. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 12 Dec 1987 pp 35-38. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

OBJECT-ORIENTED PROGRAMMING IN TRAFFIC SIMULATION. Rodriguez-moscoso, 山; Shin-miao CHIN; Santiago, A; Roland, R. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 177-90

OIL OVERCHARGE PROGRAM PROVIDES FUNDING FOR SIGNAL TIMING IMPROVEMENTS. Eular, GW; Wibur, A. institute of Transportation Engineers. ITE Journal VOL 56 NO. 10 Oct 1986 pp 19-22 15 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

ON-LINE CALCULATION OF SIGNAL INTERSECTION PERFORMANCE. FINAL REPORT. Pandya, SM; May, AD; Auslander, DM. Calitornia University, Berkeley Institute of Transportation Studies Berkeley California 94720; Califomia Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1987 68p Figs. Tabs. 17 Ref.. REPORT NO: FHWA-CA-UCB-ITS-WP-8. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

ON-LINE OPTIMIZATION OF SIGNAL COORDINATION - THE SCOOT METHOD. Robertson, DI; Hunt, PB; Bretherton, RD; Bowen, GT. Council for Scientific \& Industrial Res S Africa P.O. Box 395 Pretoria South Africa 0-7988-2505-7. 1982 12p 2 Fig. 2 Tab. 3 Ref.

ON THE KINEMATICS AND QUANTUM DYNAMICS OF TRAFFIC FLOW. Baker, RGV (New South Wales University, Australia). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 17 B NO. 1 Feb 1983 pp 55-66 13 Ret.

ON THE MODELLING OF FLOWS IN TRANSPORT SYSTEMS. Taylor, MAP; Gipps, PG (Commonwealth Scientific \& Indus Res Org, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-23 15 Fig. 4 Tab. Refs.. REPORT NO: Paper 23
"ONE AND ONE-HALF GENERATION" TRAFFIC CONTROL SYSTEMS. Kessmann, RW; Ross, P (Kessmann \& Associates, Houston). Institute of Transportation Engineers. ITE Journal VOL. 54 NO. 6 Jun 1984 pp 35-37 1 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

OPAC: A DEMAND-RESPONSIVE STRATEGY FOR TRAFFIC SIGNAL CONTROL. Gartner, NH (Loweil University). Transportation Research Board. Transportation Research Record N906 1983 pp 75-81 7 Fig. 1 Tab. 25 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

OPERATIONAL EFFECTIVENESS OF PASSING LANES ON TWO-LANE HIGHWAYS. PHASE II - TECHNICAL REPORT. Harwood, DW; St. John, AD. Midwest Research Institute 425 Volker Boulevard Kansas City Missouri 64110; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike Mclean Virginia 22101. Jun 1986 42p. REPORT NO: FHWARD-86/195. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

OVERSATURATION DELAY ESTIMATES WITH CONSIDERATION OF PEAKING. Rouphail, N., Univerk Chicago and Akcelik, R., Australian Road Research Board, Victoria, Australia. Transportation Research Boarf
71 st Annual Meeting, Washington, D.C.

PARAMETER ESTIMATION FOR THE PEAK TRAFFIC MODEL. Alfa, AS (Ahmadu Bello University, Nigeria), Breach Science Publishers Limited. Transportation Planning and Technology VOL. 7 NO. 41982 pp 281-287
PASSER $11-84$ MICROCOMPUTER ENVIRONMENT SYSTEM-PRACTICAL SIGNAL-TIMING TOOL Marsden, BG; Derr, BR. American Society of Civil Engineers. Journal of Transportation Engineering VOL 113 IV. 1987 pp 625-641 Figs. Tabs. Refs.. REPORT NO: ASCE Paper 21941. AVAILABLE FROM: American Sa Engineers 345 East 47th Street New York New York 10017

PASSER IV QUICK RESPONSE PROCEDURES. Research rept. Cunagin-W.D.; Leev.Y. Texas Transportation Mir College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Pirt Transportation, Austin. TTI218802811, FHWATX85192811. May 85. 81p.

PICADY2: AN ENHANCED PROGRAM TO MODEL CAPACTTIES, QUEUES AND DELAYS AT MAJORMINOR PRIORTT JUNCTIONS. RESEARCH REPORT. Semmens, MC. Transport and Road Research Laboratory Old Wokingham Poad Crowthorne RG11 6AU Berkshire England 0266-5247. 1985 32p Figs. Tabs. Refs.. REPORT NO: RR 36. AVALABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

PLAN-CHANGE ALGORITHMS FOR AREA TRAFFIC CONTROL SYSTEMS. Bell-M.C.; Gault-H.E.; Taylor-I.G. Newresth upon Tyne Univ. (England). Transport Operations Research Group. RR51, Apr 83. 49p. UNITED-KINGDOM. ${ }^{\text {P }}$.

PLATOON DISPERSION FACTOR IN TRANSYT FOR SWEDISH TRAFFIC CONDITIONS. Hammarstroem, U. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1988 26p. REPORT NO: VTIMEDDELANDE-569A. AVAILABLE FROM: National Technical information Service 5285 Port Royal Road Springfield Virginia 22161

POSSIBLE PASSER II ENHANCEMENTS. Rogness, RO (North Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp $42-485$ Fig. 6 Tab. 8 Ref.. AVAILABLE FROM: Transportation Researc' Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

POTENTIAL IMPACT OF SPEED REDUCTION AT FREEWAY LANE CLOSURES: A SIMULATION STUDY (ABRIDGMENT). Nemeth, ZA; Rathi, AK. Transportation Research Board. Transportation Research Record N1035 1985 pp 82-84 3 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PREDICTING AREA TRAFFIC CONTROL PERFORMANCE WITH TRANSYT/8 AND AN ELEMENTAL MODEL OF FUEL. CONSUMPTION. Luk, JYK; Akcelik, R. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 87-101 2 Fig. 7 Tab. 10 Ref.

PREDICTION OF TRAFFIC FLOW BY AN ADAPTIVE PREDICTION SYSTEM. Lu, J. Transportation Research Board. Transportation Research Record N1287 1990 pp 54-61 10 Fig. 17 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

PREFERENTIAL CONTROL WARRANTS OF LIGHT RAIL TRANSIT MOVEMENTS. Radwan, AE; Hwang, K (Arizona State University, Tempe; Virginia Polytechnic Institute \& State University). Transportation Research Board. Transportation Research Record N1010 1985 pp 69.759 Fig. 1 Tab. 1 Ref. AVAlLABLE FROM: Transportation Research Board Publications Oftice 2101 Constitution Avenue, NW Washington D.C. 20418

PRELIMINARY TESTING AND EVALUATON OF NEW COMPUTER PROGRAMS FOR TRAFFIC ANALYSIS, TASK: EVALUATION OF SUPERCOMPUTER POTENTIAL. Parker-L.E.G. Ontario. Ministry of Transportation. Research and Development Branch, Regina. c1990. 135p. CANADA.

PROGRESS WITH RURAL TRAFFIC SIMULATION. Hoban, CJ; McLean, JR (Arb). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 23-33 1 Fig. 4 Tab. 29 Ref.
gogRESSION ADJUSTMENT FACTORS AT SIGNALIZED INTERSECTIONS. Rouphail, NM. Transportation Research perd. Transportation Research Record N1225 1989 pp 8-17 12 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Transportation wearch Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

TOGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME TECHNICAL REPORT. FINAL REPORT. Skabardanis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 rorkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 141p 22 9. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical Information Service 285 Port Royal Road Springfield Virginia 22161

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 4SER'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley zalifornia 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 30p 7 Fig. 2 Tab. Ref. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

IPROPOSALS FOR A SINGLE-LANE TRAFFIC SIMULATION MODEL. Gynnerstedt, G; Palaniswamy, SP. National Swedish fload \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden 0347-6049. N398A 1984 Monograph 8p 1 Ref.

QUALITY OF TRAFFIC SERVICE. Ardekani, S; Herman, R. Texas University, Austin Center for Transportation Research Austin Texas 78712 Res Rpt. 304-1; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jun 1982 intm Rpt. 110p. REPORT NO: FHWATX-82/17+304-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

QUEUEING MODE FOR TRANSYT 7. Bell-M.C.. Newcastle upon Tyne Univ. (Engiand). Transport Operations Research Group. Science Research Council, Swindon (England). TORGRR34. Oct 80. 30p. UNITED-KINGDOM.

REDUCING TRAFFIC CONGESTION IN HERALD SQUARE. Rathi, AK; Lieberman, EB. Institute of Transportation Engineers. ITE Journal VOL. 56 NO. 9 Sep 1986 pp 27-31 Figs. Tabs. 1 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

REPRESENTING TRAFFIC FLOW PROFILES FROM SAMPLE DATA. Mathews, DH; Phillips, JG (Transport and Road Research Laboratory; Advisa Research \& Consultancy Services). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc 1984 pp 121-133 6 Fig. 3 Tab. 9 Ref.

RESEARCH INITIATIVES FOR TRAFFIC SIGNAL CONTROL SYSTEMS. Transportation Research Board. Transportation Research Circular N380 Oct 1991 15p. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

REVIEW OF FREEWAY CORRIDOR TRAFFIC MODELS. FINAL REPORT. Van Aerde, M; Yagar, S. Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada. Jun 1985 62p Tabs. Refs.. AVAILABLE FROM: Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada

REVIEW OF TRAFFIC MODELLING TECHNIQUES. Pretty, RL (Queensiand University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-9 21 Ret.. REPORT NO: Paper 22

REVIEW OF TRAFFIC SIMULATIONS FOR INTELLIGENT VEHICLE-HIGHWAY SYSTEM EVALUATION. UNDERWOOD, SE. UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH. IVHS TECHNICAL REPORT ; N90-1 Jan 1990 ENGLISH. REPORT NO: 0

ROUNDABOUT CONTROL IS SIGNAL SUCCESS. Belcher, M (West Midland County Council). Specialist and Professional Press. Surveyor VOL. 163 NO. 4780 Feb 1984 pp 13-14 1 Fig. 1 Phot.

SATURN - A BRIGHT STAR. Carlisle, JS; Tudge, RT. Institution of Engineers, Australia 11 National Circuit Barton A.C. 2600 Australia. 1985 pp $42-462$ Fig. 11 Ref.. REPORT NO: No. 85/11. AVAILABLE FROM: Institution of Engineers, Australia 11 National Circuit Barton A.C.T. 2600 Australia

SCENE 1: A MODEL OF PARKING-LOT ENTRANCE AND EXIT CONDITIONS. Poon, WF; Young. W. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 6 Jun 1989 pp 304-310 Figs. Tabs. Reis.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

SCOOT DATA AND ROUTE GUIDANCE. SECOND INTERNATIONAL CONFERENCE ON ROAD TRAFFIC MONITORING. Hounsell, NB; McDonald, M. Institution of Electrical Engineers Savoy Place London WC2R OBL England 0-85296373-4. 1989 pp 191-194 9 Ref.. AVAILABLE FROM: Institution of Electrical Engineers Savoy Place London WC2R OBL Engiand

SECOND CONFERENCE ON TRAFFIC, ENERGY AND EMISSIONS, MELBOURNE, MAY 1982. PROGRAM AND PAPERS. Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Austraiia. May 1982 Monograph n.p. Figs. Tabs. Refs.

SEGMENTWIDE TRAFFIC RESPONSIVE FREEWAY ENTRY CONTROL: FREEWAY CORRIDOR MODELING, CONTROL STRATEGY, AND IMPLEMENTATION PLAN. Kahng, SJ; Jeng, C-Y; Campbell, JF; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley Caliornia 94720; Califomia Department of Transportation 1120 N Street Sacramento Calitornia 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1984 Final Rpt. 171p Figs. Tabs. 24 Rei. 6 App.. REPORT NO: FHWA-CA-TO-84-5. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720

SEGMENTWIDE TRAFFIC RESPONSIVE FREEWAY ENTRY CONTROL: FREEWAY CORRIDOR MODELING, CONTROL STRATEGY, AND IMPLEMENTATION PLAN. Kahng, SJ; Jeng, CY; Campbell, JF; May, AD. California University, Berkeley Institute of Transportation Studies, 109 Mctaughlin Hall Berkeley California 94720. Aug 1984 186p. REPORT NO: UCB-ITS-RR-84-5; FIWACATO-84/5. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

SETTING CHANGE INTERVALS AT SIGNALIZED INTERSECTIONS. Chan, Y; Liao, T. Institute of Transportation Engineers. ITE Joumal VOL. 57 NO. 2 Feb 1987 pp 45-50 Figs. 22 Ref.. AVAILABLE FROM: Institute of Transporation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

SIDRA-2 DOES IT LANE BY LANE. Akcelik, R. Austraian Road Research Board 500 Bunwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 137-149 3 Fig. 1 Tab. 19 Ref.

SIDRA-2 FOR TRAFFIC SIGNAL DESIGN. Akcelik, R (Australian Road Research Board). Printerhali Limited. Tratic Engineering and Control VOL. 26 NO. 5 May 1985 pp 256-261 6 Fig. 8 Ref.

SIGNAL-CONTROLLED ROUNDABOUTS. Flanagan, TB; Salter, RJ (Bradford University, England). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc 1983 pp 181-192 5 Fig. 4 Tab. 9 Ref.. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

SIGNAL IMPROVEMENTS SAVE TIME AND FUEL. Brohard, T. Public Works Journal Corporation. Public Works VOL 117 NO. 2 Feb 1986 pp 52-53. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 2. FINAL REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Battimore, MD. Maryland Div. Maryland State Highway Administration, Battimore. AW085285046 VOL2, FHWAMD8820. Feb 88. 155p.

SIGNAL SYSTEMS: METHODOLOGY FOR PRONECT SELECTION. VOLUME 1. SUMMARY REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Battimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL1, FHWAMD8819. Feb 88. 33p.

SIGNAL TIMING BASED ON TRANSYT-7F. Davis, SW (City of Fort Wayne, Indiana). Purdue University. Engineering Bulletin of Purdue University N153 1982 pp 131-133. AVAILABLE FROM: Purdue University West Lafayette Indiana 47907

2ill. USER'S MANUAL. Lieberman; Lai, J; Ellington, RE. Federal Highway Administration Research, Development Gology, 6300 Georgetown Pike McLean Virginia 22101. Jul 1983 Final Rpt. 135p 36 Fig. 2 App.. REPORT NO: - Pp-82-19. AVAILABLE FROM: Federal Highway Administration Office of Implementation McLean Virginia 22101

GN: A PHASE-BASED OPTIMIZATION PROGRAM FOR INDIVIDUAL SIGNAL-CONTROLLED JUNCTIONS. Silcock, Ing, A. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 5 May 1990 pp 291-98 8 Fig. 2 Tab. 15 Ref.. LABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England
IUT AND META, TWO MOTORWAY TRAFFIC SIMULATION MODELS : CONCEPTUALIZATION, CALIBRATION AND IDATION. COHEN, S. INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS. RAPPORT INRETS, NN108 198970 PP FRENCH
inaz - A MICROSCOPIC SIMULATION MODEL OF TRAFFIC FLOW ON TWO-LANE RURAL ROADS. Brannote, U Fruhe Universitaet, West Germany). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 tralia 0572-1431. VOL. 12 NO. 51984 pp 88-92 4 Fig. 5 Ref.
fULATION AND OPTIMIZATION OF TRAFFIC FLOW ON INTERCITY NETWORKS. Hu, YC; Schonfeld, P. Maryland wersity, College Park Transportation Studies Center College Park Maryland 20742. Jul 1983 288p. REPORT NO: (WAMD-83/05. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 161

MULATION MODEL APPLIED TO JAPANESE EXPRESSWAY. Makigami, Y; Nakanishi, T; Seill, K (Ritsumeikan hiversity). American Society of Civil Engineers. Journal of Transportation Engineering VOL. 110 NO. 1 Jan 1984 pp 94-111 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017
mULATION MODELL FOR THE ANALYSIS OF COMPLEX TRAFFIC WEAVING PROBLEMS. O'Leary, TJ (Arizona State Jhiversity). Transportation Planning and Technology VOL. 8 NO. 21983 pp 101-115 7 Fig. 4 Tab. 11 Ref.

GIMULATION OF DELAYS AND QUEUE LENGTHS AT OVER-SATURATED PRIORITY HIGHWAY JUNCTIONS. Salter, RJ (Bradford University, England). Australian Road Research Board. Australian Road Research VOL. 12 NO. 4 Dec 1982 pp 239-246 8 Fig. 7 Ref.

SIMULATION OF TRAFFIC FLOW AT SIGNAL-CONTROLLED ROUNDABOUTS. Salter, RJ; Okezue, OG. Printerhall Limited. Traffic Engineening and Control VOL. 29 NO. 3 Mar 1988 pp 142-147 Figs. Tabs. 1 Ref.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London England

SIMULATION OF TRAFFIC FLOW PARAMETERS ON A SERIES OF SIGNALIZED INTERSECTIONS. Savic, D. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik III Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 189-199 4 Fig. 5 Tab. Serbian

SIMULATION OF VEHICLE EMISSIONS AT INTERSECTIONS. Lee, F-P; Lee, CE; Machemehl, RB; Copeland, CR, Jr. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1983 intrm Rpt. n.p.. REPORT NO: FHWATX-84/17+250-1

SIMULTANEOUS ANALYSIS OF A SIGNALIZED INTERSECTION. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Ozaki, H. Balkema (AA) P.O. Box 16753000 BR Rotterdam Natheriands 905410011 7. 1991 pp 271-282 9 Fig. 3 Tab. Reis.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

SIMULTANEOUS OPTIMIZATION OF SIGNAL SETTINGS AND LEFT-TURN TREATMENTS. Rouphail, NM; Radwan, AE. Transportation Research Board. Transportation Research Record N1287 1990 pp 1-10 6 Fig. 4 Tab. 28 Ref.. AVAILABLE FROM: Transportation Research Board Publications Oftice 2101 Constitution Avenue, NW Washington D.C. 20418

SINGLE-ARTERIAL VERSUS NETWORKWIDE OPTIMIZATION IN SIGNAL NETWORK OPTIMIZATION PROGRAMS (DISCUSSION AND CLOSURE). Johnson, V; Cohen, SL; Chang, ECP. Transportation Research Board. Transportation Research Record N1142 1987 pp 6-15 7 Fig. 11 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

$$
\text { IV }-29
$$

SOME EXPERIENCE WITH THREE URBAN NETWORK MODELS: SATURN, TRANSYT/8 AND NETSIM. Luk, JYk Stewart, RW (Watertoo University). Australian Road Research Board. Australian Road Research VOL. 14 NO. 2 dun 1gen pp 82-87 2 Fig. 4 Tab. 18 Ref.

SOME MEASUREMENTS OF ROBERTSON'S PLATOON DISPERSION FACTOR. Axhausen, KW; Korling, Hecs Transportation Research Board. Transportation Research Record N1112 1987 pp 71-77 5 Fig. 9 Tab. 17 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

SOME MICROCOMPUTER APPLICATIONS IN TRAFFIC ENGINEERING IN CHILE. Ortuzar, J, de D. PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc VOL P249 1984 pp 73-75 4 Rof.. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

SOME PROPERTIES OF MACROSCOPIC TRAFFIC MODELS. Ross, P. Transportation Research Board. Transportation Research Record N1194 1988 pp 129-134 2 Fig. 12 Ref.. AVAILABLE FROM: Transponation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

SSTOP - A SIGNAL SYSTEM OPTIMIZATION PROGRAM. McGill. J (Ontario Ministry of Transportation \& Communic, Can). Institute of Transportation Engineers. ITE Journal VOL. 54 NO. 3 Mar 1984 pp 38-40. AVAlLABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

STATE OF THE ART REPORT. TRAFFIC MANAGEMENT. TRAFFIC CONTROL. Kinslea Press Limited. Municipal Engineer VOL. 1 NO. 3 Oct 1984 pp 255-274 11 Fig. 11 Phot. 120 Ref.. AVAILABLE FROM: Kinslea Press Limited Central Buildings, 24 Southwark Street, London Bridge London England

STATE SIGNAL TIMING OPTIMIZATION PROGRAMS. Arnold, ED. Institute of Transportation Engineers. ITE Journal VOL. 59 NO. 2 Feb 1989 pp 33-35 1 Tab. 1 Ref.. AVAlLABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washtigton D.C. 20024

STATISTICAL ANALYSIS OF OUTPUT RATIOS IN TRAFFIC SIMULATION. Gafarian, AV; Halati, A. Transportation Research Board. Transportation Research Record N1091 1986 p 29-36 2 Fig. 4 Tab. 5 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

STOP PROBABILITY AND DELAY ESTIMATIONS AT LOW VOLUMES FOR SEMI-ACTUATED TRAFFIC SIGNALS. LUh, JZ; Lee, CY. Operations Research Society of America. Transportation Science VOL 25 NO. 1 Feb 1991 pp 65-82 Figs. Tabs. Reis.. AVAILABLE FROM: Operations Research Society of America Mount Royal and Guilford Avenue Baltimore Maryland 21202

STREET-WISE SCOOT MOVES TRAFFIC THAT OTHER SYSTEMS CAN'T REACH. Bowen, GT; Vincent, RA. Business Press International Limited. Surveyor Public Authority Technology VOL. 165 NO. 4875 Dec 1985 pp 8-9 2 Fig. 1 Phot.. AVAILABLE FROM: Business Press International Limited Throwley Way Sutton Suprey United Kingdom

STUDY AND NUMERICAL MODELLING OF NON-STATIONARY TRAFFIC FLOW DEMANDS AT SIGNALIZED INTERSECTIONS. Chodur, J; Tracz, M (Cracow Technicai University). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 134-154 13 Fig. 1 Tab. 12 Ref.

TESTING DELAY MODELS WITH FIELD DATA FOR FOUR-WAY, STOP SIGN-CONTROLLED INTERSECTIONS. Zion, M; List, GF; Manning, C. Transportation Research Board. Transportation Research Record N1225 1989 pp 83-90 10 Fig. 6 Tab. 8 Ref. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

TESTING OF DYNAMIC MODELS FOR SIGNAL CONTROLLED INTERSECTIONS. Beskos, DE; Okutani, I; Michalopoulos, P (Minnesota University, Minneapolis; Shinshu University Japan). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. $4 / 51984$ pp $397-4083$ Fig. 3 Tab. 10 Ref.

THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Williams, L. Federal Highway Administration, Office of R\&D. Public Roads VOL 50 NO. 3 Dec 1986 pp $91-96$ Figs. 3 Rei.. AVAILABLE FROM: Government Printing Office Superintendent of Documents Washington D.C. 20402

BANDWIDTH-CONSTRAINED TRANSYT SIGNAL-OPTIMIZATION PROGRAM (DISCUSSION AND CLOSURE). en, SL; Liu, CC; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 1-9 9. 5 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, Washington D.C. 20418
CALCULATION OF THE ORIGIN DESTINATION MATRIX FROM THE MEASUREMENT OF TRAFFIC FLOWS BASED 1 THE HYPOTHESIS OF PROPORTIONAL ASSIGNMENT. Cascetta, E (Napies University, Italy). Casa Editrice la copla. Vie e Trasporti VOL. 51 NO. 486 Jan 1982 pp 25-35 3 Fig. 3 Tab. 5 Ref. Halian

YE DEVELOPMENT OF TRANSIM - A DISPLAY ORIENTED TRAFFIC SIMULATION MODEL. Foster, D; Smare, AD west Yorkshire Metropolitan County Council). Echo Press Limited. Municipal Engineer VOL. 110 NO. 6 Jun 1983 pp $11-2055$ Fig.

HE DEVELOPMENT OF UTCSNETSIMICG: AN INTEGRATED URBAN TRAFFIC CONTROL SYSTEM - NETWORK mULATION - INTERACTIVE COMPUTER GRAPHICS PROGRAM. Eiger, A; Chin, S-M. Rensselaer Polytechnic Institute mpartment of Civil Engineering Troy New York 12181; Department of Transportation Office of University Research, 400 Th Street, SW Troy New York 12181. 1982 Final Rpt 50p. REPORT NO: DOT-RSPA-DMA-50/83/5. AVAILABLE FROM: ;ansselaer Polytechnic institute Department of Civil Engineering Troy New York 12181

HE EFFECTS OF PELICAN CROSSING FACILITIES IN A LINKED SIGNAL SYSTEM: A SIMULATION STUDY. Taylor, 6. Newcastle upon Tyne University, England Transpont Operations Research Group, Claremont Road Newcastle NE1 7RU liyne and Wear England. May $198442 p 15$ Fig. 2 Tab. 14 Ref.. REPORT NO: 55

THE EFFECTS OF TRAFFIC CONTROL OPERATION SYSTEMS WITH SPECIAL REGARD TO THE NOISE SITUATION W THE VICINITY OF INTERSECTIONS. Teichgraeber, W; Elsner, A; Gudehus, V. Bundesminister fuer Verkehr, Abteilung Itrassenbau Lennestrasse 30 D-5300 Bonn West Germany. 1985 40p German. REPORT NO: 443. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

THE FUEL-EFFICIENT TRAFFIC SIGNAL MANAGEMENT PROGRAM: EVALUATION OF THE FOURTH AND FIFTH FUNDING CYCLES. Skabardonis, A; Singh, R; Deakin, EA. California University, Berkeley Institute of Transportation Studies Berkeley California 94720 0192-4095; California Department of Transportation 1120 N Street Sacramento California 95814. Apr 1988 30p 6 Tab. 9 Ref.. REPORT NO: UCB-ITS-RR-88-8. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies Berkeley California 94720

THE NETSIM GRAPHICS SYSTEM. Andrews, B; Lieberman, EB; Santiago, Al. Transportation Research Board. Transportation Research Record N1112 1987 pp 124-131 14 Fig. 6 Rel.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE NEW NETSIM SIMULATION PROGRAM. Rathi, AK; Santiago, AJ. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 5 May 1990 pp 317-320 14 Ref.. AVAILABLE FROM: Printerhail Limited 29 Newman Street London W1P 3PE England

THE PASSER II-84 SYSTEM: A PRACTICAL SIGNAL TIMING TOOL. Marsden, BG; Chang, CP; Derr, BR. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 3 Mar 1987 pp 31-36 Figs. 1 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

THE PASSER II-87 MICROCOMPUTER PROGRAM. Chang, EC-P. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 11 Nov 1988 pp 574-578 Figs. Tabs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

THE POTENTIAL FOR ROUTE GUIDANCE IN ON-LINE COMPUTER CONTROLLED UTC (URBAN TRAFFIC CONTROL) NETWORKS. TRAFFIC OPERATION AND MANAGEMENT. PROCEEDINGS OF SEMINAR M HELD AT THE PTRC SUMMER ANNUAL MEETING, UNIVERSITY OF SUSSEX, ENGLAND, 15-18 JULY 1985, VOLUME P269. McDonald, M; Hounsell, NB. PTRC Education and Research Services Limited 110 Strand London WC2 England 0266-4593 086050-154-X. 1985 pp $33-433$ Fig. 1 Tab. 21 Ref.. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

THE PROBLEM OF PERFORMANCE EVALUATION AT SIGNALIZED INTERSECTONS WITH VARIOUS TRAFFIC CONTROL STRATEGIES. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Hsu, T-P. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 173 -180 9 Fig. 3 Tab. Rets.. AVAILABLE FROM: Balkem (AA) Publishers Old Post Road Brookfield Vermont 05036

THE SCOOT ON-LINE TRAFFIC SIGNAL OPTIMIZATION TECHNIQUE. Hunt, PB; Robertson, DI; Bretherton, RD; Royle, MC. Printerhall Limited. Traffic Engineering and Control VOL. 23 NO. 4 Apr 1982 pp 190-192 2 Fig. 2 Tab. 3 Ref.

THE TEXAS MODEL FOR INTERSECTION TRAFFIC-A USER-FRIENDLY MICROCOMPUTER VERSION WITH ANIMATED GRAPHICS SCREEN DISPLAY. Lee, CE; Machemehl, RB. Transportation Research Board. Transportation Research Record N1142 1987 pp 1.52 Fig. 1 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

THE TWO AND A HALF LANE RURAL ROAD. Hoban, C. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 59-70 4 Fig. 5 Tab. 29 Ref.

THE USE OF BINARY CHOICE DECISION PROCESS FOR ADAPTIVE SIGNAL CONTROL. Lin, F-B. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 3 May 1989 pp 270-282 Figs. Tabs. Refs. 2 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

THE USE OF MICRO SIMULATION FOR THE DESIGN OF WEAVING SECTIONS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Vermijs, RGMM. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410 011 7. 1991 pp 419-427 6 Fig. 4 Tab. Refs.. AVAlLABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036
(:
THE USE OF SIMULATION AS AN AID TO TRAFFIC ACCIDENT RESEARCH. Comer, JPA (Queensland Institute of Technology). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0869101277. 1983 pp 171-178

THE USE OF SIMULATION IN THE ROAD DESIGN PROCESS. Golding, S (Queensland Main Roads Department, Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0869101277.1983 pp 105-118 5 Fig. 7 Ref.

THE USE OF THE QDELAY SURVEY METHOD IN THE ESTIMATION OF FUEL CONSUMPTION AT SIGNALZED INTERSECTIONS. Richardson, AJ (Monash University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-11 1 Fig. 20 Ref.. REPORT NO: Paper 24

THE USE OF TRANSYT AT SIGNALIZED ROUNDABOUTS. Lines, \mathbf{G}; Crabtree, MR. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 6 Jun 1988 pp 332-337 Figs. 9 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

THE VALUE OF FIXED-TIME SIGNAL CO-ORDINATION IN DEVELOPING COUNTRIES. II. IMPROVED BUS MODELING AND RESULTS. Willumsen, LG; Coeymans, JE. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 3 Mar 1989 pp 126-134 Figs. Tabs. Refs.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London England

THE VTI TRAFFIC SIMULATION MODEL. A DESCRIPTION OF THE MODEL AND PROGRAM SYSTEM. Brodin, A; Carisson, A; Bolling, A. National Swedish Road \& Traftic Research Institute. VTI Meddelanden N321 1982 Monograph 193p Figs. Tabs. 11 Ref. Swedish

THE VTI TRAFFIC SIMULATION MODEL: DESCRIPTION AND SOME APPLICATIONS. CARLSSON, A. NEW ZEALAND ROADING SYMPOSIUM NEW ZEALAND ROADING VOL 31987 PP $451-463$ ENGLISH

THREE-DIMENSIONAL RELATIONSHIPS AMONG TRAFFIC FLOW THEORY VARIABLES. Gilchrist, RS; Hall, FL. Transportation Research Board. Transportation Research Record N1225 1989 pp $99-1089$ Fig. 13 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

DESIGN OF TRAFFIC SIGNALS. Sakita, M. Transportation Research Board. Transportation Research Record 1986 pp 83-87 4 Fig. 1 Tab. 5 Ret.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 tion Avenue, NW Washington D.C. 20418
GOF INTERGREEN PERIODS AT SIGNALIZED INTERSECTIONS: THE GERMAN METHOD. Retzko, HG; Bolzee, thate of Transportation Engineers. TTE Joumal VOL. 57 NO. 9 Sep 1987 pp 23-26 Figs. Refs.. AVAILABLE FROM: wo of Transporation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

WG PLAN SENSITIVITY TO CHANGES IN PLATOON DISPERSION SETIINGS. Guebert, AA; Sparks, G. HEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 131-45
aRD INTELLIGENT TRAFFIC SIGNAL DESIGN SYSTEM. Pattnaik, SB; Rajeev, S; Mukundan, A. American Society ;inl Engineers. Joumal of Transportation Engineering VOL 117 NO. 5 Sep 1991 pp 524-539 Figs. Refs. 1 App.. LLABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

WARDS A REVIEW OF THE CONCEPT OF LEVEL OF SERVICE FOR TWO- LANE RURAL ROADS. Hoban, ω. jiralian Road Research Board. Australian Road Research VOL. 13 NO. 3 Sep 1983 pp 216-218 2 Fig. 2 Tab. 9 Ref. MF 2fF II NETSIM USER GUIDE. FINAL REPORT. Hagerty, BR. Michigan Department of Transportation State Highways iflding, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 4007 th Street, SW eschington D.C. 20590. Mar 1987 v.p. 1 App.. REPORT NO: FHWA-MI-RD-87-01. AVAILABLE FROM: National Technical "omation Service 5285 Port Royal Road Springtield Virginia 22161
faAF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedin-M.; Andrews-B.; Sheridan-K. KLD Associates, Fc., Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.
RAFFIC MANAGEMENT. RTS ENGLISH ISSUE NUMBER 6. A COMPARISON OF TWO MOTORWAY TRAFFIC $\$$ SMULATKON MODELS. Cohen, S; Aron, M; Pierrelee, J-C. Institut National Recherche sur Transp et Securite. Recherche fransports Securite N6 Feb 1991 pp 113-118 Figs. Tabs.. AVAILABLE FROM: Institut National Recherche sur Transp et Securte 2, Avenue du General Malleret-Joinville, BP 3494114 Arcueil Cedex France

TRAFFIC MODELING TO EVALUATE POTENTIAL BENEFITS OF ADVANCED TRAFFIC MANAGEMENT AND W-VEHICLE INFORMATION SYSTEMS IN A FREEWAY ARTERIAL CORRIDOR. GARDES, Y; MAY, AD. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF BERKELEY CALIF. JUn 199015 PP ENGLISH
traffic modeling and simulation. Heydecker, bg. engineering foundation. traffic control METHODS. PROCEEDINGS OF THE FIFTH $1990345-51$

TRAFFIC MODELLING IN KUWAIT:: 1., DEVELOPMENT OF A SATURN NETWORK DATABASE. MCSHEEN, JR; HALE, RC. TRAFFIC ENGINEERING \& CONTROL VOL. 30 NO. 101989 PP 466-473 ENGLISH

TRAFFIC MODELLING IN KUWAIT.: 2, DEVELOPMENT OF A MULTI-MODAL TRAFFIC MODEL FOR THE KUWAIT METROPOLITAN AREA. HALE, RC; MCSHEEN, JR. TRAFFIC ENGINEERING \& CONTROL VOL 30 NO. 10 Nov 1989 PP 534-544 ENGLISH

TRAFFIC MODELING TECHNIQUES FOR THE DEVELOPING WORLD. TIMBERLAKE, RS. NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH WASHINGTON DC. 1988 ENGLISH

TRAFFIC MODELLING: 1969-1989. Gipps, PG. Australian Road Research Board. Australian Road Research VOL 20 NO. 1 Mar 1990 pp 22-29. AVAILABLE FROM: Australian Road Research Board Executive Director, P.O. Box 156 Nunawading Victoria 3131 Australia
traffic modelling: a review of needs and capabilities. taylor, map; ogden, kw; sZwed, n. AUSTRALIAN ROAD RESEARCH BOARD PROCEEDINGS 1986 PP 84-95 ENGLISH

TRAFFIC MODELS AND ROAD TRANSPORT INFORMATICS (RTI) SYSTEMS. STERGIOU, B; STATHOPOULOS, A. TRAFFIC ENGINEERING \& CONTROL VOL 30 NO. 121989 PP 580-586 ENGLISH

TRAFFIC OPERATION ON BUSY TWO-LANE RURAL ROADS IN THE NETHERLANDS. Botma, H. Transportmen : Research Board. Transportation Research Record N1091 1986 p 127-131 2 Fig. 3 Tab. 7 Ref.. AVAllable From: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

TRAFFIC OPERATIONS OF BASIC ACTUATED TRAFFIC CONTROL SYSTEMS AT DIAMOND INTERCHANGES ,
W; Chang-M-S. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1985 Final Rpt. 76p 30 Fig. 8 Tab. 8 Ret. REPORT NO: FHWATX-85/75+344-2F; Res Rpt. 344-2F. AVAILABLE FROM: Texas Transportation Institute Texas A\&M University Coliege Station Texas 77843

TRAFFIC PATTERNS IN UNSTABLE TRAFFIC FLOW ON FREEWAYS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Kuhne, R. Bakkema (AA) P.O. Box 16753000 BR Rotterdam Netheriands 9054100117.1991 pp 211.22314 Fig. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfieid Vermont 05036

TRAFFIC PLATOON DISPERSION MODELING. Denney, RW, Jr. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 2 Mar 1989 pp 193-207 Figs. Rets. 1 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

TRAFFIC-RESPONSIVE SIGNAL CONTROL AT ISOLATED JUNCTIONS. Bell, MGH; Cowell, MPH; Heydecker, BG. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 273-94

TRAFFIC SIGNAL TIMING AS A TRANSPORTATION SYSTEM MANAGEMENT MEASURE: THE CALIFORNIA EXPERIENCE. Deakin, EA; Skabardonis, A; May, AD. Transportation Research Board. Transportation Research Record N1081 1986 pp 59-65 1 Fig. 4 Tab. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution AvenuerNW Washington D.C. 20418

TRAFFIC SIGNAL TIMING MODELS FOR OVERSATURATED SIGNALIZED INTERCHANGES. (Interim Report March 1989-January 1992). Kim-Y.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. TT1218881148, RR11482, FHWATX9211482. Jan 92. 123p.

TRAFFIC SIGNAL TIMING OPTIMIZATION IN LARGE NETWORKS. VLAHOS, NJ; JOVANIS, PP. Aug 1987 ENGLISH. SUBMITTED FOR PRESENTATION AT THE JANUARY, 1988 ANNUAL MEETING OF THE TRANSPORTATION RESEARCH BOARD AUGUST, 1987

TRAFFIC SIGNAL TIMING OPTIMIZATION STUDY FOR THE CITY OF SAN DIEGO. PRC VOORHEES SAN DIEGO CALIF. Feb 1984 ENGLISH

TRAFFIC SIGNAL TIMING PROGRAM PASSER II-84. Chang, E C-P; Messer, CJ. Texas Transportation Institute. Texas Transportation Researcher VOL. 20 NO. 2 Apr 1984 pp 7-9. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

TRAFFIC SIMULATION STUDIES: A REVIEW. KATTI, BK; CHARI, SR. INDIAN HIGHWAYS VOL. 13 NO. 4 Apr 1985 PP 5-13 ENGLISH

TRAFFIC SIMULATION STUDY FOR TWO-LANE RURAL HIGHWAY OVERTAKING IMPROVEMENTS. OKURA, I; MATSUMOTO, K. AUSTRALIAN ROAD RESEARCH BOARD PROCEEDINGS 1990 PP 43-56 ENGLISH

TRAFFIC SIMULATION: COURSE NOTES. Young, W; Allsop, R; Cornwell, RR; Gipps, PG; Hoban, CJ; Vandebona, U; Johnston, DK; Luk, JYK; Taylor, MAP; Richardson, AJ (University College, London; Road Traffic Authority). Monash University, Australia Department of Civil Engineering, Wellington Road Clayton Victoria 3168 Australia 0-86746-337-6. 1984 Monograph n.p. Figs. Tabs. Phots. Refs.

TRAFFIC SOFTWARE INTEGRATED SYSTEM (TSIS). Santiago, AJ; Rathi, AK. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 307-13

IOM MACROSCOPIC TRAFFIC SIMULATION MODEL USER'S MANUAL. Goldblatt, R; Hagerty, B; Laban, T. KLD etes Incorporated 300 Broadway Huntington Station New York 11746; Michigan Department of Transportation State mys Buiding, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 400 7th ${ }_{4}$ SW Washington D.C. 20590 . Oct 1984 Final Rpt. v.p. Figs. Tabs. Refs. 7 App.. REPORT NO: FHWA-MI-RD-85-01.
1ABLE FROM: KLD Associates Incorporated 300 Broadway Huntington Station New York 11746
FLOM MACROSCOPIC TRAFFIC SIMULATION MODEL. USER'S MANUAL FOR (OBJ)P/Q/444/11 ON OBJECTS, (1) $/$ Q/444/13 ON OBJECTS. Hagerty, BR. KLD Associates Incorporated 300 Broadway Huntington Station New York \$6. Oct 1984 450p. REPORT NO: FHWAMI/RD-85/01. AVAILABLE FROM: National Technical Information Service 5285 Royal Road Springfield Virginia 22161

IF-NETSIM: HOW IT WORKS, WHAT IT DOES. Wong, S. (Federal Highway Administration, Washington, D.C.). Institute fransportation Engineers, ITE Journal, Vol. 60. No. 4, Apr 1990, pp 22-27.

IF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedlin-M.; Andrews-B.; Sheridan-K. KLD Associates, 2, Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.

AFSIG: A COMPUTER PROGRAM FOR SIGNAL SETTINGS AT AN ISOLATED UNDER- OR OVERSATURATED, XED-TIME CONTROLLED INTERSECTION. Relic, S. Printerhall Limited. Traffic Engineering and Control VOL 29 NO. Nov 1988 pp 562-566 Figs. Tabs. Refs.. AVAlLABLE FROM: Printerhall Limited 29 Newman Streat London Engiand

IRANSPORTATION AND TRAFFIC THEORY. PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON IRANSPORTATION AND TRAFFIC THEORY, HELD JULY 8-10, 1987, AT THE MASSACHUSETTS INSTTTUTE OF IECHNOLOGY, CAMBRIDGE, MASSACHUSETTS. CONTINUED FROM TRIS ACCESSION NO 24XXXX. Gartner, NH; Wison, NHM. Massachusetts Institute of Technology Center for Transportation Studies Cambridge Massachusetts 02139 0-444-01227-3. 1997 506p Figs. Tabs. Refs.. AVAlLABLE FROM: Elsevier North-Holland Incorporated 52 Vanderbitt Avenue New York New York 10017

TRANSYT-7F AND NETSIM, COMPARISON OF ESTIMATED AND SIMULATED PERFORMANCE DATA. Dudek, G; Goode, L; Poole, M. Institute of Transportation Engineers, ITE Journal, Vol 53., No. 8, Aug 1983, pp 32-34.

TRANSYT-7F OR PASSER II, WHICH IS BETTER - A COMPARISON THROUGH FIELD STUDIES. Shui-Ying Wong, Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Transportation Research Board. Transportation Research Record N1324, 1991, pp 83-97. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418.

TRANSYT-7F USER'S MANUAL. Wallace, CE; Courage, KG; Reaves, DP; Schoene, GW; Euler, GW. Florida University, Gainesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Jun 1984 510p. REPORT NO: UF-TRC-U32 FP-06/07. AVAILABLE FROM: Florida University, Gainesville Transportation Research Center Gainesville Flonida 32611

TWO-LANE TRAFFIC SIMULATION: A FIELD EVALUATION OF ROADSIM. Morales, JM; Paniati, JF. Transportation Research Board. Transportation Research Record N1100 1986 pp 29-39 11 Fig. 4 Tab. 6 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

TWO-PHASE TRAFFIC SIGNAL TIMING WITH 'CONFLICT POINT METHOD. YANG, P. AUSTRALIAN ROAD RESEARCH VOL. 19 NO. 2 Jun 1989 PP 155-163 ENGLISH

TWO TRAFFIC-RESPONSIVE AREA TRAFFIC CONTROL METHODS: SCAT AND SCOOT. Luk, JYK (Australian Road Research Board). Printerhall Limited. Traffic Engineering and Control VOL 25 NO. 1 Jan 1984 p 143 Tab. 17 Ref.

UNDERSTANDING THE CUMULATIVE STATISTICS FROM TRAF-NETSIM. Chen, H. and Thor, C. PC-TRANSmission Vol 4., No. 2, October 1989.

UNSIGNALISED ISOLATED INTERSECTION SIMULATION MODEL. Stanojevic, M. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik ill Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 201-209 7 Fig. 7 Ref. Serbian

URBAN TRAFFIC MODELS FOR OPERATIONAL ANALYSES AND ECONOMIC APPRAISALS. NEW ZEALAND ROADNG SYMPOSIUM 1987. VOLUME 3. Fisk, CS; Dunn, RCM. National Roads Board, Now Zealand P.O. Box 12-041 Wellingtion Now Zealand 0-477-07156-2. 1987 pp 475-481 2 Ref.. AVAILABLE FROM: National Roads Board, New Zealand P.O. Box 12-041 Wellington New Zealand

URBAN TRAFFIC NETWORK FLOW MODELS. Williams, JC; Mahmassani, HS; Herman, R. Transportation Research Board. Transportation Research Record N1112 1987 pp 78-88 14 Fig. 1 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

USE AND EFFECTIVENESS OF SYNTHETIC ORIGIN-DESTINATION DATA IN A MACROSCOPIC FREEWAY SIMULATION MODEL Stokes, RW; Morris, DE. Institute of Transportation Engineers. ITE Journal VOL 56 NO. 4 Apr 1986 pp 43-47 14 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

USE OF PREDICTED VEHICLE ARRIVAL INFORMATION FOR ADAPTIVE SIGNAL CONTROL-AN ASSESSMENT. Lin, F-B; Cooke, D; Vijayakumar, S. Transportation Research Board. Transportation Research Record N1112 1987 pp $89-98$ 12 fig. 1 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
use of three-dimensional conjugate directions search method to improve transyt-7f COMPUTATIONAL EFFICIENCY. Tsay, H-S; Wang, K-T. Transportation Research Board. Transportation Research Record N1225 1989 pp 116-129 7 Fig. 3 Tab. 11 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

USE OF TRAFFIC SIMULATION TO EVALUATE RURAL ROAD IMPROVEMENT ALTERNATIVES. Hoban, C. Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada. 1985 pp 3-20 6 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Roads and Transporation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada

USER-FRIENDLY TEXAS MODEL-GUIDE TO DATA ENTRY. FINAL REPORT. Lee, CE; Machemehl, RB; Inman, RF; Copeland, CR, Jr; Sanders, WM. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Nov 1985210 p 11 Fig. 6 Tab. 3 Rei. 3 App. REPORT NO: FHWATX-86/54+361-1F; Res Rept 361-1F. AVALLABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

USER GUIDE TO CONTRAM VERSION 4. Leonard, DR; Gower, P. Transport and Road Research Laboratory Old Wokingham Road Crowthome RG11 6AU Berkshire England 0305-1315 GRATIS. 1982 Monograph 68p 4 Fig. 6 Ref.. REPORT NO: SR 735

USER'S GUIDE FOR TRAF II NETSIM (OBJ)P Q $444^{\prime} 14$ ON OBJECTS: SURFACE STREET TRAFFIC SIMULATION MODEL. HAGERTY, BR. MICHIGAN DEPT OF TRANSPORTATION LANSING MICH. 1987 ENGLISH

[^9]TRAF-NETSIM TO EVALUATE THE EFFECTS OF DRAWBRIDGE OPENINGS ON ADJACENT SIGNALIZED seCTIONS. Yauch, P; Gray, J; Lewis, W. Institute of Transportation Engineers, ITE Journal, Vol. 58, No. 5, May pp 35-39.
6 TRANSYT FOR TRAFFIC SIGNAL OPTIMIZATION IN PARRAMATTA. Luk, JYK; Lowrie, PR; Sims, AG (New Wales Department of Main Roads.Australia). Australian Road Research Board 500 Burwood Road Vermont South ta 3133 Australia 0572-1431. 1982 pp 12-22 7 Fig. 5 Tab. 21 Ref.
${ }^{*} G$ VOLUME-TO-CAPACITY RATIOS TO SUPPLEMENT DELAY AS CRITERIA FOR LEVELS OF SERVICE AT /FFIC SIGNALS. Berry, DS. Transportation Research Board. Transportation Research Record N1112 1987 pp 23-28 4 7 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW hington D.C. 20418

IDATION OF A TRAFFIC MODEL. Cronje, WB. Transportation Research Board. Transportation Research Record N1069 3 pp 73-79 6 Fig. 11 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 rastitution Avenue, NW Washington D.C. 20418
(RIABILITY ASSESSMENT FOR TRAF-NETSIM. Chang, G-L; Kanaan, A. American Society of Civil Engineers. Journal Transportation Engineering VOL. 116 NO. 5 Sep 1990 pp 636-657 Figs. Tabs. Refs. 3 App.. AVAILABLE FROM: berican Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

ARIANCE REDUCTION APPLIED TO URBAN NETWORK TRAFFIC SIMULATION. Rathi-A.K.; Venigaila-M.M. Oak idge National Lab., TN. Department of Energy, Washington, DC. Sep 91. 31p.

EHICLES, PCUS AND TCUS IN TRAFFIC SIGNAL CALCULATIONS. Heydecker, BG (University College, London). finterhall Limited. Traffic Engineering and Control VOL. 24 NO. 3 Mar 1983 pp 111-114 13 Ref.

KEHICULAR FUEL-CONSUMPTION MAPS AND PASSENGER VEHICLE FLEET PROJECTIONS. Santiago, AJ (Federal Highway Administration). Transportation Research Board. Transportation Research Record N901 1983 pp 5-11 7 Fig. 1 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

VOLUME-DELAY RELATIONSHIP AT FOUR-WAY-STOP CONTROLLED INTERSECTIONS: A RESPONSE-SURFACE MODEL. Chan, Y; Flynn, Lلـd; Stocker, KJ. Institute of Transportation Engineers. ITE Journal VOL. 59 NO. 3 Mar 1989 pp 27-34 Figs. Tabs. 16 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

VTI TRAFFIC SIMULATION MODEL - A USER GUIDE. Boiling, A; Junghard, O. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1987 48p Swedish. REPORT NO: VTIMEDDELANDE-542. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

VTI TRAFFIC SIMULATION MODEL-REVISED USER GUIDE. Bolling, A; Junghard, O; Soerensen, G. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1988 56p Swedish. REPORT NO: VTIMEDDELANDE-580. AVAILABLE FROM: Nationai Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

VTI TRAFFIC SIMULATION MODEL. A PROGRAM FOR THE MONTE CARLO SIMULATION OF VEHICLE TRAFFIC ALONG TWO-LANE RURAL ROADS. AN APPLICATION OF JSP AND SIMULA 67 LANGUAGE. REVISED EDITION. Brodin, A. National Swedish Road \& Traffic Research Institute. VTI Topics N322A 1983 Monograph 81p 1 Fig. 6 Ref.

WAITING TO CROSS A MAJOR STREAM AT AN UNCONTROLLED ROAD JUNCTION. Hurdie, VF; Hauser, E; Steuart, GN; Golias, JC. Toronto University Press Toronto Ontario Canada 080202461 0. 1983 pp 292-230 3 Fig. 16 Ref.

WARRANTS FOR INTERCONNECTION OF ISOLATED TRAFFIC SIGNALS. Chang-E.C.; Messer-C.J. Texas Transportation Inst., College Station. Texas State Dept. of Highways and Public Transportation, Austin. Transportation Planning Div. Federal Highway Administration, Austin, TX. Texas Div. TTI21880293, FHWATX86672931F. Aug 86. 77p.

WHATS NEW IN SIGNAL TIMING OPTIMIZATION MODELS?. Wilbur, AD. Institute of Transportation Engin Joumal VOL. 61 NO. 4 Apr 1991 pp 41-45 Figs. 1 Tab. Refs.. AVAILABLE FROM: Institute of Transportation Engine
School Street, SW, Suite 410 Washington D.C. 20024-2729
WORK ZONE ANALYSIS MODEL FOR THE SIGNALIZED ARTERIAL. Joseph, CT; Radwan, E; Rouphail fith FROM: Transportation Research Board Publications Office 2101 N1194 1988 pp 112-119 4 Fig. 2 Tab. 4 Ref.. AVAILABLE

APPENDIX V REFERENCES AND ABSTRACTS

References and Abstracts of Traffic Models for Simulation, Operational Analysis, Signal Timing, Traffic Flow Theory, Capacity, System Control, Case Applications, Fuel Consumption, and Vehicle Emissions (Jan 1982 - Nov 1991 plus additional references for 1992)

This Page Intentionally Blank
ferences and Abstracts of Traffic Models for Simulation, Operational halysis, Signal Timing, Traffic Flow Theory, Capacity, System Control, Case pplications, Fuel Consumption, and Vehicle Emissions (Jan 1982-Nov 1991 fus additional references for 1992)
(BEHAVIORAL APPROACH TO RISK ESTIMATION OF REAR-END COLLISIONS AT SIGNALIZED INTERSECTIONS. thalel, D; Prashker, JN. Transportation Research Board. Transportation Research Record N1114 1987 pp 96-102. VAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 0418

A conceptual approach to estimating the risk of rear-end collisions at a signalized intersection is presented. It is argued that the creation of a large option zone increases the range of the indecision zone, the direction implication of which is an increase in the risk of rear-end collisions. With the aid of field data collected for two warning intervals (3 and 6 sec) before the red light, a large option zone is shown to increase the variance underlying the stopping probability curve, and thus to determine a larger range for the indecision zone. Data from urban intersections support the basic argument that a long warning period causes a significant increase in the number of rear-end collisions. This paper appeared in Transportation Research Record No. 1114, Traffic Control Devices and Rail-Highway Grade Crossings.
a COMPARISON OF ARTERIAL AND NETWORK SOFTWARE PROGRAMS. Sadegh, A; Radwan, AE; Mathias, JS. Institute of Transpertation Engineers. ITE Journal VOL 57 NO. 8 Aug 1987 pp $35-39$ Tabs. 2 Ref.. AVAILABLE FROM: Insitute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

An attempt is reported to identify available computer software pertinent to traftic signal timing of arterial and network systems and to conduct a comparative assessment of a selected group of programs. Currently available sotware was inventoried, and 18 software packages were chosen to be evaluated. Five preprocessors were evaluated and the results tabulated. The results of 12 network software programs are tabulated. Four popular and widely used software programs were thoroughly assessed and the results were compared with the NETSIM model. A comparative assessment was conducted on 6 programs to estimate the execution time on three types of computers (micro, mini, and mainframe). It is noted that the selection of one software program over another depends primarily on the user's specific needs.

A COMPARISON OF OBSERVED, ESTIMATED AND SIMULATED QUEUE LENGTHS AND DELAYS AT OVERSATURATED SIGNALIZED JUNCTIONS. Shawaly, EAA; Ashworth, R; Laurence, CJD. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 12 Dec 1988 pp 637-642 Figs. Tabs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

In this study, data collection at two selected approaches to signalized junctions has been performed in the urban area of the City of Sheffield, England, so as to check the validity of Cating's formulae and examine the limitation of their use. A video system has been used to collect the required data. The results showed a considerabie variation in the departure patterns of vehicles crossing the stop-line during the peak hours not only during a particular peak period, but also on different dates. For this reason, a simulation technique has been used in order to supplement the collected data
a COMPARISON OF TWO FREEWAY TRAFFIC SIMULATION MODELS. COHEN, S; ARON, M; PIERRELEE, J. RECHERCHE-TRANSPORTS-SECURITE N28 Dec 1990 PP 113-118 FRENCH REFERENCES

A COMPROMISED APPROACH TO OPTIMIZE TRAFFIC SIGNAL COORDINATION PROBLEMS DURING UNSATURATED CONDITIONS. Lan, C; Messer, C; Chaudhary, N; Chang, E., Texas Transportation Institute, Texas A\&M University, Colige Station, Tx. Paper submitted for presentation at the 71st Annual Meeting of The Transportation Research Boand, Washington, D.C. In this paper, we present a methodology to optimize the traffic signal coordination problem on an arterial network simultaneously considening delay minimization and progression bandwidth maximization criteria. This approach generates a compromised solution to these two conflicting criteria and, sometimes, produces less-delay and leaebandwidth timing solutions compared to conventional MAXBAND solutions and sometimes the outcome is the reverse. In general, there is usually a trade-off between delay and bandwidth under the well-timed traffic signal system.

A CRITKUE OF CURRENT URBAN ROAD APPRAISAL TECHNIQUES. CITIES AND ROADS. PAPERS FROM TRANSPORT 2000 SEMINAR, UNIVERSTTY OF LONDON, 26 NOVEMBER 1985. Mogridge, MJH. Transport 2000 Limitud Walkden House, 10 Melton Street London England. 1986 pp 39-40. AVAILABLE FROM: Transport 2000 Limited Walkden House, 10 Melton Street London England

Tratfic models are of three basic types: (a) models which track each vehicle through a network in real time; (B) models which treat "packets" of vehicles in small time periods; and (c) models which apply steady state equilibrium relationships between speed and flow, (or delay and flow at junctions). The two models critically reviewed here, coba (cost benefit analysis) and stem (strategic transport evaluation model), are both of type c, which give different answers to types a and b for the same problem. (TRRL)

A DECENTRALIZED CONTROL STRATEGY FOR FREEWAY REGULATION. Goldstein, NB; Kumar, KSP (Minnesota University, Minneapolis). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 16B NO. 41982 pp 279-290 8 Fig. 3 Tab. 19 Ref.

A multilevel decentralized control scheme, the cascading technique, with application to the regulation of traffic on an uban freeway is presented. Performance of the decentralized system is compared to the performance of a centralized and a fixed time control structure. It is shown that the decentralized structure performs better than the centralized structure when incidents (lane closures) occur on the freeway. The freeway is modeled in terms of the aggregate variables section density and section speed, and is considered as a system of interconnected subsystems. (Author/TRRL)

A DELAY MODEL FOR MULTIWAY STOP-SIGN INTERSECTIONS. Richardson, AJ. Transportation Research Board. Transportation Research Record N1112 1987 pp 107-114 8 Fig. 3 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A limited number of empirical studies have examined the capacity and delay characteristics of multiway stop signs, and some simulation studies have been reported, but no analytical models of delay at multiway stop signs are available in the published literature. The objective of the research reported in this paper, therefore, is the development of such an analytical model of delays experienced at multiway stop-sign intersections. The paper draws on previously reported empirical observations to provide values of critical input parameters, and uses these within the framework of an M/G/1 queuing model to predict delays. Delays at a multiway stop sign are shown to be the result of a set of complex interactions between the flows on all approaches to the intersection. It is shown that there are primary, secondary, and tertiary influences on the delays experienced on the approach; namely, the flow on that approach, the flows on conflicting approaches, and the flows on opposite approaches. In comparison with previously quoted results for multiway stop-sign intersections, the model shows good agreement in terms of capacities and levels of service for various demand splits. What the model adds, however, is the ability to predict levels of performance over a much wider range of operating conditions. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

A MACROPARTICLE TRAFFIC SIMULATION MODEL TO INVESTIGATE PEAK-PERIOD COMMUTEA DECISION DYNAMICS. CHANG, G; MAHMASSANI, HS; HERMAN, R. 1985 ENGLISH

hCROSCOPIC MODEL FOR THE ANALYSIS OF TRAFFIC OPERATIONS ON RURAL HIGHWAYS. FINAL REPORT. nez, JC; Wingerd, L; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall dey California 94720; California Department of Transportation P.O. Box 1499 Sacramento California 95807; Federal way Administration 400 7th Street, SW Washington D.C. 20590. Apr 1985 Final Rpt. 388p Figs. Tabs. Refs. 4 App.. OORT NO: FHWA-CA-TO-85-01. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies loy California 94720

This report presents the deveiopment of a macroscopic simulation model for the analysis of traffic operations over long sections of rural highways. The simulation model, RURAL2, is a deterministic model which calculates traffic performance on rural highways for a given supply (geometrics) and demand (traffic) information. Five types of subsections can be analyzed: freeway, divided and undivided multilane, two-lane, and passing lane sections. The model uses the procedures for capacity and level of service evaluation presented in the new Highway Capacity Manual. To perform the simulation, the roadway section must be divided into "homogeneous" subsection-i.e., subsections with uniform geometric and traffic characteristics. Subsection boundaries are established based upon changes in road geometrics and/or traffic demand characteristics. RURAL2 calculates traffic performance measures, such as average speed, travel time, vehicle delay, vehicle travel hours and vehicle travel miles. A subsection dependency logic has been incorporated to account for upstream dependency effects on downstream traffic periormance. Data collected on several sites in California were used to calibrate and validate the simulation model. A cast-study using 40 -mile section of California State Route 20 was conducted. The existing design configuration was evaluated and compared with three other design strategies. Conclusions were drawn regarding the location of highway improvements based on the simulation experiment results. Future areas of research have been identified. An appendix is included describing alternative methodologies to handle subsection dependency. A complete documentation of the simulation model is provided. (Author)

A MARTINGALE APPROACH TO ESTIMATION AND CONTROL OF TRAFFIC FLOW ON MOTORWAYS. Van Maarseveen, MFAM' (Instituut Tno Voor Wiskunde, Informatieverwerking). Instituut TNO voor Wiskunde Informatieverwerking en Statistiek, Schoemakerstraat 97 Delft Netherlands. Oct 1982 Monograph 8p 5 Fig. 1 Tab. 11 Ref.

A stochastic continuous-time aggregate variable model which emphasizes the stochastic elements of traffic flow on motorways is presented. The model consists of a nonlinear dynamic system with a Martingale forcing term. The problem of estimating local traffic conditions from noisy disaggregate data (detector measurements) is discussed. Using results of abstract Martingale theory with respect to nonlinear optimal filtering for counting process observations a recursive estimation algorithm is obtained. The algorithm, which is very appropriate for use in automatic motorway control and surveillance systems, periorms very well. Finally, the optimal control of traffic flow is discussed with an emphasis on speed control. (TRRL)

A METHODOLOGY FOR THE ASSESSMENT OF TRUCK LANE NEEDS IN THE TEXAS HIGHWAY NETWORK. FINAL REPORT. Mahmassani, HS; Walton, CM; Mouskos, K; Massimi, 山; Levinton, I. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Deparment of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Nov 1985 90p. REPORT NO: FHWATX-86/46+356-3F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Special truck lanes have been proposed as a measure for deaing with the increasing traffic of larger and heavier trucks on the Texas highway system. This report describes an integrated network modeling methodology for the study of truck lane needs in the Texas highway network. Ht consists of three major components: critical link programming, network traffic assignment, and optimal link selection/network design. The critical link programs allow the user to diagnose and assess the adequacy of the links in a highway network for handing excessive truck traffic under specified conditions. The traffic assignment model is essential for the prediction of link flow patterns and subsequent user costs calculation in response to particular changes in the network corresponding to truck-related link improvements. The assignment problem addressed here allows the asymmetric interaction between cars and trucks sharing the roadway in the determination of link travel times. The optimal link improvement selection problem is cast as a discrete network design problem with multiple improvement options per link. One of its main features is the detinition of link improvement in terms of both lane addition (capacity expansion) and operating scheme (lane access restrictions to cars and trucks).

A MICROCOMPUTER-BASED SIMULATION PROGRAM FOR INTERSECTION SITES DURING RECONSTRUCTION. Michalopoulos, PG; Plum, R. Transportation Research Board. Transportation Research Record N1112 1987 pp 132 -139 6 Fig. 1 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The problem of traffic control at intersections during reconstruction is addressed in this paper. This includes not only the appropriate type of control but also evaluation of the effects of geometrics on traffic operations. Evaluation of the alternatives is accomplished through microscopic simulation using an efficient microcomputer-based program specifically developed for this purpose. The program, which runs on the IBM PC, is interactive, menu driven, and has extensive graphic capabilities for easy data entry and better inspection and understanding of the results. It allows for simulation of four-way intersections or T-intersections controlled either by stop signs in all directions or by traffic signals. Because of the modeling used by the program, reliable results can be obtained in a short period of time. Input to the program is entered interactively and includes the number of lanes for each approach, the saturation flow rate for each lane, vehicle clearance times, and vehicle demands. In addition, when traffic signals are simulated, the phasing arrangement and signal timings are entered. Printed outputs for each lane include the number of vehicles serviced and statistics dealing with delays, stops, and queue sizes. In addition to the printed outputs, the program is capable of showing on a graphics screen the simulation of the intersection, including traffic signal indications, queue formation and dissipation, and vehicle arrivals and departures. Design tables and curves are developed for quick determination of the control policy and evaluation of is effectiveness. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

A MICROCOMPUTER VERSION OF TRANSYT. Lines, CJ; Logie, M. PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc VOL. P249 1984 p 71. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

The TRANSYT method of coordinating traffic signals was conceived at TRRL in 1966 and has subsequently been extensively developed. Various versions of the program have been distributed to more than 300 users in over 40 countries. The method consists of a traffic model that predicts vehicle delay and stops, and an optimizer that systematically atters signal timings until a set are found that minimize a weighted sum of vehicie delay and stops. Until recently, the program has usually run on large mainframe computers. The past few years have seen a rapid growth in the numbers of microcomputers and now machines with 16 bit central processors have become available. These are sutficiently powerful to run large complex FORTRAN programs, so TRRL decided to place a contract with MVA Systematica to modity TRANSYT to run on a 16 bit microcomputer; the intention was to give more tratfic engineers ready access to the program and, by making the program easier and more convenient to use, greatly encourage its use. The program was modified to run on an IBC personal computer with 256k bytes of memory and the additional IBM 8987 high speed arithmetic card. The modified TRANSYT program has all the features of the latest mainframe version 8 except that the maximum network that can be handied has been reduced to about 25 junctions and 100 links. Program running times have been kept as short as possible; a four junction 18 link network taking approximately nine minutes to optimize the signal timings. The program is available under license from TRRL. (TRRL) Microcomputer Applications in Developing Countries. Proceedings of Seminar F heid at the 12th PTRC Summer Annual Meeting, University of Sussex, England, July 10-13, 1984. For the covering abstract of the seminar see IRRD 283731 (TRIS 458582).

A MODEL FOR SIMULATING TRAFFIC ON TWO- LANE RURAL ROADS: USER GUIDE AND MANUAL FOR TRARR VERSION 3.0. Hoban, $\mathbf{C J}$; Fawcett, Gj; Robinson, GK. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0313895 X 0-86910-182-X. May 1985 Monograph 96p 23 Fig. 8 Tab. 23 Ref.. REPORT NO: ATM 10A

TRARR is a rural traffic simulation model developed at the Australian Road Research Board. The model can be used to investigate the effects on traffic operations of changes in either the road or traffic characteristics. TRARR has been used at ARRB on specific case studies requested by road authonties, and in general investigations of leval of service and guidelines for rural road improvements. The model has also been provided to numerous organizations outside ARRB, many of them outside Australia. A new version, TRARR 3.0, has recently been released, with improved transportability and simplified user requirements. TRARR requires input data on the traffic stream, road characteristics, and what is to be observed and recorded. It then reviews the progress of each vehicle at frequent intervals as it moves along the simulated road. Decision rules for catching up, overtaking, merging and other aspects of behavior are largely determined by the vehicle/driver characteristics supplied in one of the input files. Many of these parameters have been derived from other ARRB research projects. Outputs include travel time,

MATIONAL SURVEY OF SINGLE-POINT URBAN INTERCHANGES. INTERIM REPORT. Bonneson, JA; Messer, CJ. Xxas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 ¢ Street, SW Washington D.C. 20590. Mar 1989 62p 17 Fig. 3 Tab. 11 Ref. 1 App.. REPORT NO: FHWATX-88/1148-1; ${ }_{5}$ Rept 1148-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 2161

Current trends in the design of diamond interchanges include several new configurations which are well suited to certain topographical and traffic demand constraints. Of these new types, it appears that the single-point uban interchange (SPUI) has generated the most interest. This interim report summarizes the research conducted during the first year of a three-year study. Specifically, the first year's research activity has focused on a field survey and evaluation of six SPUls located in five states. The data collected during this field study were used to assess both the design and the operation of SPUIs. In this regard, selected design, operational, safety, structural, and economic issues have been presented and discussed in this report. Subsequent project reports will focus on an examination of SPUI capacity and delay based on analytic traffic models and field data. As a result of the survey and evaluation process, it appears that the SPUI is a viable alternative to other diamond interchange configurations in certain situations. It is adaptable to locations where right-of-way is limited and appears to operate efficiently under traditional NEMA 8-phase control. On the other hand, it does not appear to be well-suited to continuous frontage road situations because of capacity restrictions that resulf from an additional signal phase.

A NOTE ON THE NEGLECT OF THE DOPPLER EFFECT IN THE MODELLING OF TRAFFIC FLOW AS A LINE OF STATIONARY POINT SOURCES. Acadernic Press incorporated, Limited. Journal of Sound and Vibration VOL 85 NO. 3 Dec 1982 pp 442-444 4 Ref.

Many traffic noise prediction models consider that a line of stationary point sources emit the standard spectrum of a vehicle moving in a direction perpendicular to the line between observer and vehicle. In practice, however, most vehicles will have a velocity component towards the observer which will result in a changed noise spectrum because of the Doppler effect. A formula is derived to predict the influence of the steepness of the spectrum on the leg of a traftic flow. It is shown that the error caused by neglecting the Doppler effect is only 0.015 db for a noise source with a speed of $100 \mathrm{~km} / \mathrm{h}$. This error vanishes for a flat spectrum and for steep spectra with high levels. It appears that the Doppler effect can be neglected in traffic noise modelling. (TRRL)

A PERMITTED-MOVEMENT MODEL FOR TRANSYT-7F. Wallace, CE; White, FJ; Wilbur, AD. Transportation Research Board. Transportation Research Record N1112 1987 pp 45-51 2 Fig. 2 Tab. 18 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The TRANSYT-7F program has become one of the most widely used tools for traftic flow analysis and traffic signal timing optimization in the United States and several other countries. Although the model is one of the most useful, it is currently limited to the modeling of protected or unopposed traffic movements. Permitted-only left-turn operations can be approximated by adjusting the maximum flow rate and delaying the start of the effective green phase, but it is the user's responsibility to determine the appropriate values of these parameters. Permitted plus protected operations cannot be modeled at all. A project to develop an algorithm that will allow the explicit modeling of opposed, permitted traffic movements is described. The model was calibrated with field data collected in the suburban areas in and around Washington, D.C., by personnel of the FHWA Office of Tratfic Operations. The field data were analyzed using multiple regression to produce the model. In addition, explicit treatment of left-turn "sneakers" has also been developed. Development of both algorithms and their implementation in the TRANSYT-7F program is described. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

$$
\text { V - } 5
$$

A PROBABILISTIC APPROACH FOR DETERMINING THE CHANGE INTERVAL (DISCUSSION AND CLOSURE). Mahalel, D; Zaidel, D; Stein, H. Transportation Research Board. Transportation Research Record N1069 1986 pp 39-45 5 Fig. 27 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Determination of the change interval is a crucial step in signal timing. In the recommendations of the Institute of Tratfic Engineers for determining the change interval, the length of the yellow light is so calculated that the "reasonable" driver can pass the stop line before the onset of the red light. Field data show that the normative, reasonable driver model fails empirically, particularly at low approach speeds. The common approach to determine the change interval fails to consider the possibility of rear-end accidents. It does not offer rational, empirical measures for evaluating the joint risk of right-angle and rear-end collisions for various durations of change intervals and for different combinations of yellow and red clearance intervals. A proposed alternative approach relies on the stopping probability function of tratfic at the intersection approach. It is shown that the range of the indecision zone that can be inferred from the stopping probability function is related to the risk of rear-end accidents. Similarly, the stopping function and the speed distribution are related to the risk of right-angle collisions. Finally, it is demonstrated how the concepts of stopping probability function and indecision zone might be used in practice to determine the change interval. This paper appeared in Transportation Research Record N1069, Traffic Control Devices and Rail-Highway Crossings.

A PROGRESSION-BASED OPTIMIZATION MODEL IN TRANSYT-7F. Hadi, A. and Wallace, C.; Transportation Research Center, University of Florida, Gainesville, Fl. Transportation Research Board 71st Annual Meeting Preprint.

The forward progression opportunities (PROS) concept has been developed as an alternative for design and evaluation of the arterial signal timing. The concept expands upon the maximal bandwidth approach by considering time-space progression opportunities that do not necessarily extend throughout the length of the route. This paper presents the implementation of the PROS concept for application on multiple arterials within networks, using TRANSYT-7F.

A PROPOSED ANALYTICAL TECHNQUE FOR THE DESIGN AND ANALYSIS OF MAJOR FREEWAY WEAVING SECTIONS. FINAL REPORT. Cassidy, M; Chan, P; Robinson, B; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento Califomia 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1990 316p Figs. Tabs. 37 Ref. 7 App.. REPORT NO: FHWACAUCBITSRR-90-16; UCB-ITS-RR-90-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Weaving occurs when merging traffic streams entening a freeway from an on-ramp cross over diverging traffic streams exiting the freeway via a nearby off-ramp. The intense lane-changing activity which typically occurs in weaving areas can create signiticant operational problems. Thus, weaving sections often represent botleneck locations in urban freeway systems. The research documented in this report has sought to develop and calibrate a more reliable technique for evaluating weaving performance. Specifically, a procedure is proposed for the design and analysis of major weaving areas (a subset of all weaving configurations). Such weaving sections are often used at freeway to freeway interchanges. The proposed procedure predicts vehicle flow rates in critical regions within a weaving area as a function of prevailing traffic flow and geometric conditions. Predicted flows are then used to assess the capacity sufficiency and/or level of service of the subject weaving site. Such a methodology represents a more disaggregate approach to evaluating weaving operation than existing evaluation procedures. The proposed model was developed using large amounts of empirical and simulation data. Much of the research effort was directed toward identifying the traffic flow and geometric factors that influence the behavior of traffic streams operating at weaving locations. Results indicate that traffic behavior in weaving areas can generally be predicted.

A REASSESSMENT OF THE TRAFFIC SIGNAL CHANGE INTERVAL. Wortman, RH; Fox, TC. Transportation Research Board. Transportation Research Record N1069 1986 pp 62-68 7 Fig. 23 Rei.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Data from field studies of intersections in Arizona and information from the literature were used to make an in-depth examination of the traffic signal change interval. This examination included a review of the traditional concept and theory on which the determination of the change interval has been based and an evaluation of the applicability of this theory. The analysis of driver behavior and characteristics indicates that the majority of drivers do not conform to the model, which assumes a constant or uniform deceleration rate. In fact, the deceleration profile is related to
 intersection was made based on the time from the intersection at the onset of the yellow interval. This analysis revealed that the time for the last vehicle to clear the intersection is more critical in the design of the yellow interval. It is concluded that a uniform 4-sec yellow interval would be acceptable. This paper appeared in Transportation Research Record N1069, Traffic Control Devices and Rail-Highway Crossings.

RELATIONSHIP BE TWEEN VEHICLE DETECTOR OCCUPANCY AND DELAY ATSIGNAL-CONTROLLED JUNCTIONS. young. CP. Printerhall Limited. Tratic Engineering and Control VOL. 29 NO. 3 Mar 1988 pp 131-134 Figs. 1 Tab. 2 Ref.. NAILABLE FROM: Printerhall Limited 29 Newman Streat London England

A method is described of measuring system performance using vehicle occupancy data collected from inductive-loop vehicle detectors. It provides an effective replacement of the conventional numberplate survey. The factors involved are numerous and complex. The results presented here were obtained inter alia during the investigation of signal control strategies. It is believed that the conclusions lead to a useful and inexpensive method of comparing junction performance. At 3 junctions a linear relationship has been found between observed values of mean delay per vehicle and observed values of mean occupancy per vehicle per detector. This is subject to the proviso that there are enough vehicle detectors, appropriately placed in the traffic lanes approaching the junction. This conclusion is reinforced from a traffic simulation computer program. Proposais are given for detector layouts to enable comparisons to be made between various signal control strategies.

A REPORT ON THE USERS MANUAL FOR THE MICROCOMPUTER VERSION OF PASSER III-88. INTERIM REPORT. Fambro, DB; Chaudhary, NA; Messer, CJ; Garza, RU. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Sep 1988 132p 22 Fig. 4 Tab. 8 Ref. 6 App.. REPORT NO: FHWATX-88/478-1; Res Rept 478-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This report describes the User's Manual for the microcomputer version of PASSER III-88, a practical computer program designed to assist transportation engineering professionals in the analysis of pretimed or traffic-responsive, fixed-sequence signalized diamond interchanges. The program can evaluate existing or proposed signalization strategies, determine signalization strategies which minimize the average delay per vehicle, and calculate signal timing plans for interconnecting a series of interchanges along continuous one-way frontage roads. in addition, the program can evaluate the effectiveness of various geometric design alternatives, e.g., lane configurations, U-turn lanes, and channelization. The report describes procedures for installing the program on your microcomputer and use of the three interactive, user-friendly menus for data entry and editing, running the program, and managing input and output files. Coding instructions, output interpretation, and background information are described verbally and supplemented with examples from the program. Input and output from two example problems, an isolated interchange and a fromtage road progressive system, are also included in the report. Several appendices provide additional information for advanced users of the program. Research study title: Operations and Design Applications Using PASSER III-85.

A REVIEW OF CANDIDATE FREEWAY-ARTERIAL CORRIDOR TRAFFIC MODELS. Van Aerde, M; Yagar, S; Ugge, A; Case, ER. Transportation Research Board. Transportation Research Record N1132 1987 pp 53-65 3 Tab. 45 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

In order to select a model for application in Ontario's freeway-arterial corridors, a review of potential candidates was performed. The criteria for evaluating suitable alternatives included the quality of the path selection technique, the ability to represent dynamic queuing effects, the accuracy and detail of the traffic flow model, and the resolution of the traffic signal representation on parallel arterials. The following models were initially considered: MACK, FREFLO, FRECON, INTRAS, TRAFFICQ, FREQ, CORQ, CORCON, SCOT, TRAFLO, DYNEV, CONTRAM, SATURN, and MICRO-ASSIGNMENT. On the basis of a literature review and a preliminary evaluation of fundamental requirements, some of these initial models were found to be clearly incompatible with the objective of modeling dynamic assignment and queuing in freeway-aterial corridors. Of the remaining models, which included FREQ, CORQ, TRAFLO, DYNEV, CONTRAM, and SATURN, none could fully satisty all major criteria. However, it appeared that some could potentially be upgraded, given that a considerable amount of further development effort was applied. In this respect, CONTRAM and CORQ appeared most promising because of their superior
V-7
queuing-based assignment techniques and their treatment of time varying queues and demands. This paper appeared in Transportation Research Record No. 1132, Freeway Management and Operations.

a Review of the chariacteristics of traffic flow from the point of view of passenger traffic CONTROL. Cvetanovic, L. Ro Prometni Centar. Suvrement Promet VOL. 8 NO. 31986 pp 127-134 7 Ref. Serbian. AVAILABLE FROM: Ro Prometni Centar Cvijete Zuzoric 5 Zagreb Croatia Yugoslavia

The article discusses the macroscopic and microscopic characteristics of a traffic flow model. Based on the microscopic approach, it analyzes traffic flow behavior in a single lane with vehicles following one another, and, according to the behavior of pairs of vehicles, it presents a conclusion on the behavior of traffic flow in general. Based on the macroscopic approach, it analyzes traffic flow as a stationary phenomenon represented by general average speed, traffic density and intensity. (TRRL)

A ROAD CLASSIFICATION FOR USE IN TRAFFIC MODELLING. Phillips, G; Reeson, D (Local Government Operational Research Unit). Transport and Road Research Laboratory. TRRL Supplementary Report N763 1984 9p 4 Fig. 3 Tab. 7 Ref.. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

Traffic flow characteristics vary substantially from site to site throughout the country. As a result, it is frequently useful to group sites into similar types. General information on each road type can then be used to help estimate traffic flow characteristics at a particular site of a given road type. This report describes a grouping of road sites that is objective and that broadly reflects the underlying mix of journey purposes giving rise to the traffic at the site. The classitication is based on the availability of sample data on a weekday in August and a weekday in a neutral month such as May or October. The classification has found application in the DTP Coba method of economic evaluation of major road schemes. (Author/TRRL)

A SIMULATION MOODEL FOR THE EVALUATION OF WEAVING CAPACITY. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Nakamura, H; Kuwahara, M; Koshi, M. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 259-270 14 Fig. 2 Tab. 9 Ref.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brooktield Vermont 05036

Statistical analyses of observed volumes are usually employed in order to estimate capacities of highway elements. Capacity of weaving sections, however, is affected by many variables such as four directions of flows and variety of lane configurations, and it is difficult to estimate capacity of weaving sections through statistical analysis based on observed capacity data for various geometries and flow conditions. It is therefore considered that the capacity value may be reproduced by the aggregation of individual driver behaviors. Using vehicie trajectory data obtained from observations on several weaving sections on urban expressways in the Tokyo area, such microscopic variables as spacings and relative speeds of weaving vehicles were analyzed. Based on these analyses, a simulation model which is intended to estimate weaving capacity was developed. Such maneuvers of weaving vehicles as lane changing and acceptable gap searching which affect capacity were particularly precisely modeled. The model was validated for two congested weaving sections of the Tokyo Metropolitan Expressway. Simulated values of capacities were found to fit well with the observed ones.

A SIMULATION STUDY OF ROAD IMPROVEMENT ALTERNATIVES FOR THE BRUCE HIGHWAY FROM CABBAGE

 TREE CREEK TO KOLAN RIVER. Cox, RL (Queensland Main Roads Department, Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 155-170 5 Fig. 2 Tab. 3 Phot. 2 Ref.The experience of the Main Roads Department in Queensland with the traffic simulation model known as TRARR is described. Experience with data collection is detailed as well as simulation findings for a 42.6 km section of the Bruce Highway leading north from Bundaberg. The main findings relate to the staging of two of the road improvement atternatives, the degree of benefit provided by short lengths of auxiliary lane compared with that for longer lengths and the difference in traffic performance for each direction of travel. The problem of processing a long length of road in a single computer run is also detailed. The paper was presented in Session 5: Further Applications. (TRRL) Program and papers from Workshop on Rural Traftic Simulation, Vermont South, Victoria, June 2-3, 1983. The paper was presented in Session 5: Further Applications.

FECIAL PURPOSE PARALLEL COMPUTER FOR TRAFFIC SIMULATION. GROL, HJM; BAKKER, AF. ISPORTATION RESEARCH BOARD NATIONAL RESEARCH WASHINGTON DC. Jan 199116 PP ENGLISH
H.J.M. VAN GROL, A.F. BAKKER PAPER NO. 910287 PREPARED FOR PRESENTATION AT THE 70TH
ANNUAL MEETING OF THE TRANSPORTATION RESEARCH BOARD, WASHINGTON, D.C., JAN. 1991
INCLUDES BIBLIOGRAPHICAL REFERENCES TRANSPORTATION RESEARCH BOARD NATIONAL
RESEARCH COUNCIL

JRVEY OF TRANSYT-7F APPLICATIONS. Wilbur, T. Printerhall Limited. Traffic Engineering and Control VOL. 26 NO. bat 1985 pp 498-501 1 Fig. 7 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

Abstract

The results are presented of a survey carried out by the Federal Highway Administration as part of the National Signal Timing Optimization Project (NSTOP) to obtain current information on the use of the TRANSYT-7F program in the USA as a tool to develop optimal signal timing plans. Information represented included where the project network was located, the number of intersections that were retimed, whether the intersections operated fixed time, semi-actuated or fully actuated. The survey was sent to approximately 300 individuals; sixty-nine users responded. Results are presented for Dallas, California, Pennsylvania, Missouri, Forida, lllinois and Michigan. Among the conclusions drawn from the survey are: local agencies are using the TRANSYT-7F program successfully and the optimized signal timing plans are resulting in improved traffic flow, fewer stops, less delay and reduced fuel consumption. Coliecting and coding the large amount of input data required by TRANSYT-7F was the biggest problem encountered by most agencies, both in terms of cost and staff time. New microcomputer hardware and software should heip to alleviate this problem.

time-SERIES FORECAST OF AVERAGE DAILY TRAFFIC VOLUME. Benjamin, J. Pergamon Press Limited. ransportation Research. Part A: General VOL. 20A NO. 1 Jan 1986 pp $51-604$ Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Pergamon Press Limited Headington Hill Hall Oxford OX3 OBW England

This paper presents a procedure for forecasting average daily traffic using a time-series analysis. The procedure assumes a logistic function to model traffic volume over a period of years. Model parameters are estimated using ordinary least-squares regression. The method was tested empincally. Model parameters were found to be significant for each of the three different thoroughfares. Further, time-series forecasts compared favorably to observed traffic and to interpolated forecasts for the same period. The method is simpler to use and more economical than the standard demand forecasting procedure and is recommended where land-use patterns are stabie and only small modifications to the thoroughtare network are planned. (Author/TRRL)

A TRAFFIC FLOW MODEL WITH TIME DEPENDENT O-D PATTERNS. Vaughan, R; Hurdle, VF; Hauer, E (Newcastie University, Canada; Toromo University, Canada). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 155-178 12 Fig. 7 Ref.

A myriad of trips, each with its own origin, destination, and departure time, interact on a network to produce an intricate pattern of traffic flows. The task of traffic flow theory is to weave a web of cause and effect which - given the triad of origin, destination, and departure time - can replicate the major features of what one would observe in reality. Traditionally, this theory has dealt with exceedingly simple origin-destination structures, a fact which may have limited its applicability. The aim of this paper is to remove this limitation. The building blocks of the broader theory are: a road which traffic may enter and leave at any point, a speed-flow relationship which may vary along the road and depends on the local capacity, and a description of the pattern of trip making by origin, destination, and departure time. We show that the reconstitution of the traftic flow pattern from these building blocks requires two equations: a 'local equation' which governs what happens in a small space-time neighborhood just as in the traditional theories, and a 'history equation' which supplies all the pertinent information about the evolution of the flow pattern which is needed to specity its future course. The use of these two equations is illustrated by a numerical example. (Author/TRRL) Papers presented during the Ninth International Symposium on Transportation and Traffic Theory held in Delft the Netherlands, 11-13 July 1984.

A TRAFFIC MODEL OF PLATOON AND SECONDARY FLOWS. RAUPHAIL, NM. ARCHIVES OF TRANSPORT QUARTERLY VOL. 2 NO. 21990 PP 85-97 ENGLISH

PRESENTS A METHODOLOGY FOR ESTIMATING THE EFFECT OF TRAFFIC SIGNAL COORDINATION ON delay and level of service at signalized intersections nagui m. Rauphail illustrated INCLUDES BIBLOGRAPHICAL REFERENCES Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 49-90 17 Fig. 5 Tab. 13 Ref.

TRARR is a rural traffic simulation model developed at the Australian Road Research Board, which is now available to users outside ARRB. A detailed manual has previously been published, and is available with the program in updated computer-readable form. This paper provides an introductory guide for those wishing to use the program for the first time. Instructions are given for setting up the simulation program and running it with standard input files. Further guidelines are presented for creating a file of road data and conducting a structured simulation experiment using different road improvement proposals and various traffic conditions. The interpretation and analysis of simulation results are also brietly discussed. The guide has been revised to take account of changes introduced in TRARR Version 2.3, and is available separately as ARRB Internal Report AIR 359-7A. (Author/TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermont South, Victoria, June 2-3, 1983. This paper was presented in Session 2: The TRARR Rural Traffic Simulation Model.

ACCOMMODATING TRANSIT IN TRANSYT. Yagar, S. Transportation Research Board. Transportation Research Record N1181 1988 pp 68-76 11 Fig. 1 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Although the TRANSYT traffic model simulates transit vehicies in mixed traffic operation, it does not adequately consider the effects of bus or streetcar stops on the traveled roadway near signalized intersections. Specifically, it assumes that transit vehicles loading and unloading passengers do not delay other vehicles. This reduces the validity of TRANSYT evaluations for cycles in which buses stop at or very near signalized intersections. The overall TRANSYT predictions and optimizations for an average cycie will be seriously threatened if total bus or streetcar dwell time per hour is significant. Therefore, an alternative type of network formulation, which uses dummy nodes and dummy links with appropriate link costs, is proposed for modeling the effects of transit stops on intersection performance. Although it requires one dummy node and four or six dummy links for each transit stop that delays traffic, it sig'nificantly improves TRANSYT's realism for such operations. Parameters for these dummy links have been tested over a wide range, and a set of operational values is recommended. Flow profiles illustrating the need for the effects of the recommended formulation are presented in this paper. This paper appears in Transportation Research Record No. 1181, Urban Traffic Systems and Parking.

ACCURACY OF CAPACITY MODELS FOR PERMISSIVE LEFT TURNS FROM AN EXCLUSIVE LANE. SESSION 7. Schort, SM; Jovanis, PP (Forensic Engineering Services, Pennsylvania; Northwestern University, Evanston). Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 1-6 6 Tab .7 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

This research evaluated the accuracy of models of left turn capacities by comparing their estimates with actual field observations. In addition, the research explored the structure of selected capacity models through a series of parametric sensitivity analyses. These tests were intended to reveal those parameters which are most important in each left turn capacity model. Armed with this information, a traffic engineer will know which parameters need to be most accurately measured in the field to obtain reliable capacity estimates. The research concluded by discussing desirable attributes to left turn capacity estimation models. (Author) This paper was presented during the Institute of Transportation Engineers 54th Annual Meeting, San Francisco, California, September 23-27, 1984.

ACCURACY OF O-D ESTIMATES FROM TRAFFIC COUNTS. Lam, WHK; Lo, HP. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 6 Jun 1990 pp 358-367 10 Fig. 7 Tab. 8 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

The model based on entropy maximization (EM) technique is the most commonly used method for the estimation of an origin-destination (O-D) matrix from traffic counts. However, the accuracy of this model has not yet been well defined. The paper examines how data information affects the EM model performance and estimates the effects of information variability on model accuracy. Empirical results from Shenzhen, a special economic zone in China, are presented. Finally, some important conclusions and suggestions have been drawn for possibie improvements and applications of the EM model.

TIVE SIGNAL CONTROL AT ISOLATED INTERSECTIONS. Lin, FB; Vijayakumar, S. American Society of Civil mers. Journal of Transportation Engineering VOL. 114 NO. 5 Sep 1988 pp 555-573 Figs. Refs. 2 App.. AVAlLABLE in: American Society of Civil Engineers 345 East 47th Street New York New York 10017

Abstract

Discussed here are the issues and the research needs related to the development of adaptive control logic for application at isolated intersections. The paper focuses on the information needs for adaptive control, the selection between a binary choice process and a sequencing process for timing adjustment, and future research needs. To be widely applicable, an adaptive control logic needs a vehicle-monitoring system that can provide reliable information and facilitate simultaneous use of real time advance information.

IING SIGNALS TO COORDINATED TRAFFIC SIGNAL SYSTEMS. Machemenl-R.B.; Lee-C.E. Texas Univ. at Austin. ther for Transportation Research. Texas State Dept. of Highways and Public Transportation, Austin. Federal Highway ginistration, Austin, TX. Texas Div. FHWATX84232601F, Aug 83. 94p.

Abstract

This study investigates the effect of adding or removing traffic signals within a coordinated, signal-controlled street network. The report includes a discussion of coordinated signal systems; arterial street network configurations; optimization of signal settings for progressive movements; simulation of traffic on street networks with specified off-peak vehicuiar volumes and different intersection control strategies; and analyses of statistical data resulting from the simulation of traffic on several representative street networks. A signal timing optimization program, PASSER II, was used to determine the signai timing patterns for each of twelve representative street networks that were aperated under different control strategies. The computer program called NETSIM was then used to simulate traffic on the networks and produce statistics concerning the relative effectiveness of the various control schemes. A total of 98 different network cases were simulated by NETSIM.

TDVANCES IN THE PC INTERFACE OF THE TRANSYT-7F TRAFFIC SIMULATION MODEL. LEONARD, JD; RECKER, WW. INSTITUTE OE TRANSPORTATION ENGINEERS MEETING 1989 PP 536-541 ENGLISH

JOHN D. LEONARD AND WILFRED W. RECKER ILLUSTRATED INSTITUTE OF TRANSPORTATION ENGINEERS MEETING COMPENDIUM OF TECHNICAL PAPERS

f AN ANALYSIS OF FUEL CONSUMPTION MODELS. Moore, SE (Naim (RJ) and Partners Proprietary Limited). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-13 19 Ref.. REPORT NO: Paper 6

This paper describes the requirements of fuel consumption models to be used by traffic and transportation engineers. These models are necessary for two broad areas; firstly for inciusion in traffic or transportation models and, secondly, for estimating fuel usage from traftic data collected as part of on-street surveys. The model selected by the traffic or transport engineer is simply a trade- off between the accuracy required for his particular purpose versus the cost he is prepared to pay for that accuracy. With particular regard to Australia, previous work in the area of fuel consumption/ traffic and transportation models is outlined. At this stage, it is considered that there is not a single model which meets all the requirements of traffic and transport engineers. Various forms of fuel consumption models, which best meet the requirements af traffic and transport engineers, are described and procedures for estimating these models are proposed. The basis for this estimation is a procedure in which a relationship between instantaneous fuel consumption and power is developed. Power is in tum related to instantaneous velocity and acceleration; also included is road gradient and "average fleet vehicle" mass and engine capacity (a). The paper was presented as Paper 6-Session 2-Fuel Consumption Modelling (1) (SAE 82136). The number of the covering abstract of the conference is TRIS no. 367871. (TRRL) Second Conference on Traffic, Energy and Emissions, Melbourne, May 1982. Program and Papers.
an analysis of the characteristics and congestion impacts of truck-involved freeway ACCIDENTS. FINAL REPORT. Recker, WW; Golob, TF; Hsueh, C-W; Nohaty, P. Califomia University, Invine Institute of Transportation Studies invine California 92717; California Department of Transportation 1120 N Street Sacramento Calitomia 95814; Federai Highway Administration 400 7th Street, SW Washington D.C. 20590. Dec 1988 174p Figs. Tabs. Refs. 3 App.. REPORT NO: FHWACAUCIITS-RR-88-2; F85T017. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

This report is concerned with the characteristics and consequences of over 9,000 truck-invoived freeway accidents and non-accident incidents in a three-county case study region in Southern California. The research was conducted in two major phases: (1) identrification of the number and type of truck-involved accidents occurring on freeways
in the region, together with statistical analyses of the influence of a wide range of conditions on the frequency and severity of these accidents; and (2) estimation of the impact of these accidents on the freeway system in terms of congestion and delay, and estimation of the total annual economic costs of these accidents. Chapler Two its the results of statistical analyses of the salient characteristics of over 9,000 truck-involved freeway accide, hat occurred in the region during 1983-84. Chapter Three focuses on the immediate consequences of these accidents: accident severity (i.e., injuries and fatalities), incident duration, and lane closure. Chapter Four is an analysis of 424 major incidents involving large trucks on freeways in the region during 1983-85. Chapter Five focuses on the impacts of truck-involved mainline collisions on freeway congestion and delay; simulation models are used to estimate total delay attributable to such collisions for the 1987-88 period. Chapter Six focuses on the total economic costs of these accidents. We conclude that over 10 million vehicle hours, and 154.6 million dollars, may be lost each year due to truck-involved freeway accidents in the region.

AN APPROXIMATE ANALYSIS OF THE HYDRODYNAMIC THEORY ON TRAFFIC FLOW AND A FORMULATION OF A TRAFFIC SIMULATION MODEL SASAKI, T; FUKUYAMA, M; NAMIKAWA, Y. VNU SCIENCE PRESS UTRECHT NETHERLANDS. 1984 PP 1-20 ENGLISH

TSUNA SASAKI, MASAHARU FUKUYAMA AND YOSHIHARU NAMIKAWA ILLUSTRATED INCLUDES BIBLIOGRAPHICAL REFERENCES NOTE: SOURCE IS MONOGRAPHIC, NOT A SERIES INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY 9TH: 1984 : DELFT, NETHERLANDS PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY, DELFT, THE NETHERLANDS, 19-13 JULY 1984

AN EVALUATION OF LEFT-TURN ANALYSIS PROCEDURES. Machemehl, RB. Institute of Transportation Engineers. ITE Journal VOL 56 NO. 11 Nov 1986 pp 37-41 Figs. 1 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

A summary is presented of the efforts and conclusions developed in a study which included a review of available left-turn analysis procedures, comparative evaluation of several methods, and field testing of one technique. Existing analysis methods are noted, and guidance provided by the Australian Road Capacity Guide and the 1965 Highway Capacity Manual method are discussed. The Texas Model, a microscopic traffic simulation package used to develop a set of left-turn analysis procedures, is described. An analysis procedure based on this model is compared with the 1985 Highway Capacity Manual. Particular reference is made to single-iane approaches wither turn bays or phases, and to single- and multiple-lane approaches with turn bays.

AN EVALUATION OF SIGNAL TIMING AND COORDINATION PROCEDURES VOLUME I: TECHNICAL REPORT; VOLUME II: FIELD MANUAL. Arnold, ED, Jr. Virginia Highway \& Transportation Research Council P.O. Box 3817, University Station Charlottesville Virginia 22903; Virginia Department of Highways and Transportation 1221 East Broad Street Richmond Virginia 23219 Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1985 Final Rpt. v.p. Figs. Tabs. 13 Ret. 3 App.. REPORT NO: FHWA-VA-86-08-09; VHTRC 86-R8, Vol. I. AVAILABLE FROM: Virginia Highway \& Transportation Research Council P.O. Box 3817. University Station Charlottesville Virginia 22903

Based on a review of available literature, recommended procedures for timing the vanious types of signals are provided. Specifically, procedures are included for both pretimed and vehicle-actuated controllers located at isolated intersections and at intersections in a signal system. Simplicity and ease of use are emphasized as the targeted users are field technicians and those responsible for signals in small cities and towns. A separate Field Manual has been prepared which is intended to provide a concise and easily applied set of procedures. Detailed theory and logic behind the procedures are provided in the Technical Report, as are brief descriptions of current computer programs which provide timing information. The Technical Report also presents the results of a questionnaire survey which had the objective of determining the types of signal equipment used in Virginia. (Author)

AN EXTENDED TRAFFIC MODEL FOR FREEWAY CONTROL. Cremer, M; May, AD. STUDIES. ITS RESEARCH REPORT NUCB- May 1985 78P. REPORT NO: ITS-RR

This repor presents a basic nonlinear invariant model for simulating motorway traffic flow, and extends it to show more realistic behavior at bottlenecks. Section i lists seven different reasons for developing mathematical models of road traffic flow, and briefly discusses some earlier models. Section II formulates the basic model, presenting and interpreting its equations in terms of their physical meaning; the model is given in a discrete form, to adapt it for running on digital computers. The model covers the whole range of traffic conditions from free flow to heavycongestion. Section III analyses the defects of the basic model, and develops an extended model able to cope with traffic bottlenecks caused by changes in the number of lanes in a highway and by merging of on-ramp flows. Section IV shows how to calibrate the parameters of the extended model to achieve optimal agreement with observed traffic flows. It then uses the calibrated model for a quantitative comparison between the model's performance and the real road traffic flow phenomena, and for evaluating its accuracy. Section v presents some conclusions: there was good agreement between theory and observations, and the bottleneck phenomena were modelled fairly realistically. Future work should inciude tests of the extended model with more data sets from different traffic situations and different sections of intercity motonways. Appendix a gives a sample of motorway measurement data, and appendix b gives a FORTRAN program listing of the simulation model.

NTERACTIVE SIMULATION PROGRAM FOR INTERSECTION DESIGN AND OPERATIONAL ANALYSIS. FINAL ORT. Plum, R; Michalopoulos, P; Yuan, B. Minnesota University, Minneapolis Department of Civil and Mineral heering Minneapolis Minnesota 55455-0220; Minnesota Department of Transportation Materials and Research Tratory, 1400 Gervais Avenue Maplewood Minnesota 55109. Jun 1990 114p 20 Fig. 3 Tab. 19 Ref. 1 App. REPORT 3NNRC-91/07; 9RD0004. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield thia 22161

A microscopic, stochastic model for intersection design and traffic flow analysis is presented in this report. A simulation program, INTERSIM, based on this modeling, is developed. The INTERSIM program can be used to evaluate alternative control schemes and geometric configurations. INTERIM can also assist in solving traffic operation and management problems, e.g., determining optimum signal phasing and timing of intersections via an iterative process. The most common situations encountered in practice are examined. These include: four-way and T-intersections with up to three lanes on each approach; stop sign control; signal control (fixed time or vehicle actuated) with various phasing schemes; detector placement and functions, multi-use lanes; protected and permissive left-turn movements; and right turns on red, among others. The proposed modeling applies to both over-saturated and under-saturated traffic conditions. INTERSIM is superior to the other intersection simulation programs due to its ease of operation and fast execution speed.

N OVERVIEW OF THE PHAROS TRAFFIC SIMULATOR. REECE, D; SHAFER, SA. VAN GORCUM. ROAD USER EHAVIOR : THEORY AND PRACTICE 1988 PP 285-293 ENGLISH
\end{abstract}

DOUGLAS REECE AND STEVE SHAFER ILLUSTRATED BIBLIOGRAPHY: P. 293 NOTE: SOURCE IS MONOGRAPHIC, NOT A SERIES

An analysis is made of existing formulas for average delay, average overflow, and average number of stops for undersaturated conditions. The examination of these formulas covers a large variation in flows and cycle lengths, so recommendations are based on a thorough examination. The formulas examined are those developed by Webster, Miller, and Neweli. It is concluded that the Newell formulas give the most accurate results. (Author) This paper appeared in Transportation Research Record No. 905, Traffic Flow, Capacity, and Measurements.

ANALYSIS OF FREEWAY RECONSTRUCTION ALTERNATIVES USING TRAFFIC SIMULATION. COhen, SL; Clark, J. Transportation Research Board. Transportation Research Record N1132 1987 pp 8-13 8 Fig. 2 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Methods for evaluating traffic operations improvements for freeway reconstruction alternatives are discussed. it is asserted that traffic simulation provides a better approach to such analyses than the traditional Highway Capacity Manual (HCM). Several traffic simulation models are described. An application involving a congressionally mandated study of capacity improvements for a bridge in the Washington, D.C., area is described, for which the INTRAS freeway simulation model was chosen as the analysis tool. Required modifications to the INTRAS model and calibration and validation activities are described. In conclusion there is a description of the simulation experiment of the existing eastbound condition and five alternatives and the existing westbound condition and one alternative. The most interesting finding in this study was that an expansion of the eastbound span from three to
five lanes performed no better than did several four-lane aternatives. This paper appeared in Transportation Research Record No. 1132, Freeway Management and Operations.

ANALYSIS OF REDUCED-DELAY OPTIMIZATION AND OTHER ENHANCEMENTS TO PASSER 200 PASS Final Report Research ret Mar Aug 03. Chang E. C. Mosser-C.J Marsden B. Toxas Transpor - PASSER 2-84. Final Report. Research rept. Mar-Aug 83. Chang-E.C.; Messer-C.J.; Marsden-B.G. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI218833751F, FHWATX84503751F. Apr 84. 129p.

The report represents the development and findings of a research project. The brief six-month research effort was directed toward several topic areas which inciuded: development of a practical procedure which could be used to fine-tune the offsets of traffic signals to minimize total delay and maximize progression of traffic in a progrestion system, development of methods that can better estimate delay to travel in a nearly saturated traffic system, and development of methods to estimate fuel consumption associated with arterial travel movements in an urban network. An enhanced version of the popularty used PASSER II program - PASSER II-84, which deals with the design and operation of signalized intersections, was programmed on SDHPT's computer system. Program documentation and revised data coding instructions were also prepared.

ANALYSIS OF THE PROPOSED USE OF DELAY-BASED LEVELS OF SERVICE AT SIGNALIZED INTERSECTIONS. Berry, DS; Pfefer, RC. Transportation Research Board. Transportation Research Record N1091 1986 p 78-86 2 Fig. 16 Tab. 1 Ref. 1 App.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Stopped delay calculations were made for many combinations of cycle length, ratio of effective green time to cycie length (g / C ratio), and quality of signal progression, to aid in the following: identifying the relationships between computed delay and volume-to-capacity (v/c) ratio for lane groups at signalized intersections; determining how to solve for v/ç ratio and service flow rate when the desired level-ot-service (LOS) delay value is known; examining methods for using the delay-based LOSs in intersection design, both geometrics and signal timing. Sensitivity analyses reveal that many combinations of long cycle lengths, low g/C ratios, and adverse progression result in such high delays that LOS levels of A, B, and C are unattainable, even at low v/c ratios. Computer-generated tabulations are proposed to aid in solving for v/c ratios and maximum ilow rates associated with desired delay-based LOSs. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

ANNUAL TRANSPORTATION CONVENTION, 29 JULY-2 AUGUST 1985. SESSHN: OPERATION AND UTILIZATIONOF
ROADS AND STREETS 2. Council ior Scientific \& Industrial Res S Africa P.O. Box 395 Pretoria South Africa 0-7988-3576-1. Aug 1985 163p. REPORT NO: CSIR-S-350-VOL-7-TO. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Contents: International European road traffic signing system trends; Traffic flow and delay warrants for the operation of traffic control signals at isolated intersections; The ORMET signposting demonstration project; Objectives and procedures of metropolitan traffic counting; NETFLO: A new tool for traffic network analysis; The apparent effect of buses on traffic flow rates on 2-Lane approaches to intersections; Ramp control: A case study; The traffic control of the Department of Transport access interchanges; Comtrolling access on arterials. Text in English with one article in Afrikaans. See also Volume 6-MO, PB88-138672, and Volume 9-WR, PB88-138656.

ANTICIPATORY TRAFFIC MODELING AND ROUTE GUIDANCE IN INTELLIGENT VEHICLE-HIGHWAY SYSTEMS. KAUFMAN, DE; SMITH, RL; LEE, J. UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH. IVHS TECHNICAL REPORT ; N90-2 Feb 1990 ENGLISH

DAVID E. KAUFMAN, JAMES LEE, ROBERT L. SMITH OTHER PHYS. DESCRIPTION: 14 LEAVES ILLUSTRATED FEBRUARY 1990 INCLUDES BIBLIOGRAPHICAL REFERENCES LEAF 14 ADDL CORP. AUTHOR INFO: UNIVERSITY OF MICHIGAN. TRANSPORTATION RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE
(UTORY TRAFFIC MODELING AND ROUTE GUIDANCE: A GENERAL MATHEMATICAL FORMMLATION. TGLISH
STEPHANE LAFORTUNE OTHER PHYS. DESCRIPTION: 5 LEAVES ILLUSTRATED SEPTEMBER 1990 ADDL CORP. AUTHOR INFO: UNIVERSITY OF MICHIGAN. TRANSPORTATION RESEARCH INSTTTUTE UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE
CATION OF TRANSYT-7F IN CHINA. Wong, SY. Institute of Transportation Engineers. ITE Journal VOL. 58 NO. 8 $\$ 88 \mathrm{pp}$ 38-42 Figs. Tabs. Reis.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, 410 Washington D.C. 20024
The process and results are described of developing signal timing plans using TRANSYT-7F in Shenzhen, China. The details are described of the signal timing plan development process including the link-mode diagram development, data coilection, input coding, model calibration, cycle selection, optimization, and fine tuning. The results from the before and after TRANSYT runs are tabulated. The floating car method was used to conduct before and after field studies. The results show that total travel time decreased 5%, total number of stops decreased 7%, total delay decreased 12%. TRANSYT -7F was proved a viable tool in developing signal timing.
LICATION GUIDE FOR THE MICROCOMPUTER VERSION OF PASSER III-88. INTERIM REPORT (REVISED). Dro, DB; Bonneson, JA. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State fartment of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal hway Administration 400 7th Street, SW Washington D.C. 20590. Apr 1990 68p 33 Fig. 4 Tab. 17 Ret. 1 App.. REPORT b:FHWATX-90/478-2F; Res Rept 478-2F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Fed Springfield Virginia 22161
This reporttescribes the Applications Guide for the microcomputer version of PASSER III-88, a practical computer program designed to assist transportation engineering professionals in the analysis of pretimed or traffic-responsive, fixed-sequence signalized diamond interchanges. The program can evaluate existing or proposed signalization strategies, determine signalization strategies which minimize the average delay per vehicte, and calculate signal timing plans for interconnecting a series of interchanges along continuous one-way frontage roads. In addition, the program can evaluate the effectiveness of various geometric design alternatives, e.g., lane configurations, U-turn lanes, and channelization. The report describes procedures for applying the program to "real worid" diamond interchange operational problems. Procedures for evaluating existing conditions; optimizing phase sequences, green splits, offsets, and cycle lengths; and converting the program's output to controller settings are prosented. These procedures provide a consistent approach to diamond interchange analysis. Application of these procedures in conjunction with PASSER III-88 will enable users to evaluate a greater number of alternatives and be more confident in the efficiency of the resultant solution. Research study title: Operations and Design Applications Using PASSER III-85.
APPLICATION OF SIMULATION TO EVALUATE THE OPERATION OF MAJOR FREEWAY WEAVING SECTIONS. Skabardonis, A; Cassidy, M; May, AD; Cohen, S. Transportation Research Board. Transportation Research Record N1225 $1989 \mathrm{pp} 91-988$ Fig. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
This paper describes the findings from the application of the INTRAS microscopic simulation model to evaluate the traffic performance at major freeway weaving sections. The work performed is part of an ongoing research project to develop improved weaving analysis procedures that are particularly applicable to Calitornia conditions. The INTRAS model was modified to predict the speeds of weaving and nonweaving vehicles and applied on eight major freeway weaving sections for a range of traffic conditions at each site. Good agreement was obtained between the measured and predicted values. Comparisons with speeds estimated from existing analytical procedures indicated that INTRAS predictions are considerably closer to the field measurements. The potential of the model to predict the capacity and level of service at weaving areas was also investigated. The model produced consistent results on the data sets lested, indicating that it may be used in conjunction with field measurements to develop improved methodologies for the design and analysis of freeway weaving sections. Future steps in this direction are discussed. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

Eight small area tratic management packages or models are selected for appraisal. These models are usotul tor predicting the impact of traffic control measures before implementation. These measures include street closure, tum bans, priority junctions, one-way street systems, traffic signals and roundabouts. Packages for freeway analysis are not included in this study. The criteria adopted in the appraisal are the level of detail, possible applications and validations, assignment algorithms adopted, computational requirements and documentation. Saturn was tound to be an "all rounder" with a theoretically sound assignment method, an accurate simulation of traffic progression and the capacity for modelling a variety of control measures. However, an overseas model such as Saturn has built-in parameters which may not be suitable for local Australian tratfic operations. Traffic models suitable for local conditions should therelore be considered wherever appropriate. (Author/TRRL)

APPRAISAL OF TRAFFIC STREAM FRICTION. Mahadel, D (Technion-lsrael Institute of Technology). Pergamen Press Limited. Transportation Research. Part A: General VOL. 18A NO. 3 May 1984 pp 225-230 6 Fig. 13 Ref.

This paper presents a simulation model to evaluate the quality of traffic fiow. The evaluation is based on counts of the number of potential speed changes on a stretch of road and the estimated number of times a vehicle is limited in changing lanes. In order to describe the behavior of the traffic flow process, two models were developed. One model describes vehicle arrival patterns on a road cross section; the other model, vehicle speeds. The stochastic process of speed is described as an autoregression process, whereas vehicle arrivals are presented as a markovian process. Simulation results indicate an increase in traffic stream friction with an increase in vehicle-speed standard deviation and a reduction in average speed. The dependence of vehicle arrivals in adjacent lanes seems to increase the amount of friction in each lane. The simulation model developed enables a comparison of the quality of traffic flow at different sittes, as well as a before-and-after study of any particular site. (Author/TRRL)

ARCADY2 AND PICADY2: ENHANCED VERSIONS OF TRRL PROGRAMS FOR USE IN JUNCTION DESIGN. Semmens, MC; Tayior, ME (Transport and Road Research Laboratory). Printerhall Limited. Traffic Engineering and Control VOL 26 NO. 5 May 1985 pp 271-272 2 Ref.

This article briefly describes additional traffic engineering facillities which have been incorporated into two tratfic modelling computer programs used to predict capacities and delays at junctions and roundabouts. The programs are ARCADY (assessment of roundabout capacity and delay) and PICADY (priority intersection capacity and delay). These programs are well-established aids in junction design and assessment. They are used primarily for modelling peak periods. See also IRRD nos 251410, 251411 and 273533. (TRRL)

ARCADY2: AN ENHANCED PROGRAM TO MODEL CAPACITIES, QUEUES AND DELAYS AT ROUNDABOUTS. RESEARCH REPORT. Semmens, MC. Transport and Road Research Laboratory Old Wokingham Road Crowthome RG11 6AU Berkshire England 0266-5247. 1985 31p Figs. Tabs. Reis.. REPORT NO: RR 35. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

An enhanced version of ARCADY, a computer program which models capacities, queues and delays at all types of single-island roundabouts, is described. The program uses empirical formulae to calculate entry capacities, and time-dependent queuing equations for queue and delay calculations. The enhancements include facilities to predict geometric delays and accident frequencies and to include the effects of pedestrian (zebra) crossings adjacent to the junction; these are provided using the results of recent empirical and analytical studies. Additionally, the flexibility of the program (now known as ARCADY2) has been increased, with the availability of micro-computer and interactive versions. User inputs consist of various geometric characteristics of the roundabout, and traffic (and pedestrian) demand flow information (which may be specified in a number of ways). Peak periods are normally modelled and capacities, queues and delays are calculated for each entry for each of a succession of short time segments (usually 10 or 15 minutes) within the period. The user is therefore able to assess the performance of both planned and existing roundabout designs, in terms of queuing delay, geometric delay and safety. Details of the required input parameters are given, the ourput is described and a full example is included. (Author/TRRL)

COM: MODELS FOR ESTIMATING LIGHT TO HEAVY VEHICLE FUEL CONSUMPTION. Biggs, DC. AUSTRALIAN 10 RESEARCH BOARD. RESEARCH REPORT NARR Sep 1988 61P. REPORT NO: 152

A model, known as arfcom, is described for estimating the fuel consumption of vehicles ranging from cars to 40 tonne articulated trucks. Arfcom contains three forms of fuel consumption model (instantaneous, four mode elemental and running speed) which use vehicie speed data ranging from second by second to average travel speeds. Arfcom is a detailed power based model which is capable of estimating the fuel consumption due to speed changes induced by curvature, grade or traffic control devices and due to the extra power required to overcome grade and cornering resistance. Expressions and/or tables are given for calculating the power components and default vehicte parameters from a smail number of easily observable parameters. The model and the default parameters are validated using data from a number of sources. The limited input data requirements, accuracy at a tnip and driving mode level and the three forms of fuel model make arfcom suitable for use in the areas of rural and urban traffic and transport management. Use of the model in conjunction with traffic models in rural and urban applications is discussed and examples of the use of arfcom are given. Vehicle parameters for ten vehicte classes and typical proportions of vehicles kilometres of travel in each class are given (a). The isbn of the microfiche version is 0-86910-354-7.
qIERIAL ANALYSIS PACKAGE (AAP) USER'S MANUAL Courage, KG; Wallace, CE; Reaves, DP. Florida University, sinesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Office of Research Fnd Development, 400 7th Street, SW Washington D.C. 20590. Nov 1986 311p. REPORT NO: FHWA-IP-86-001; FCP 209-16. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

The Arterial Analysis Package (AAP) combines three of the most popular traffic signal timing optimization and traffic flow analysis models into a single package. The separate programs that have been integrated into the AAP are: SOAP, an isolated intersection model; PASSER II, an arterial bandwidth model; and TRANSYT, a sophisticated macroscopic simulation and system optimization model. The AAP has the advantage of allowing the traffic engineer or anaiyst difect access to all three of these programs using simple, unified inputs and outputs. Thus designs can be based on either maximizing the bandwidth or minimizing stops, delay and fuel consumption by coding one input data file and simply selecting the appropriate component program. The AAP contains microcomputer based input processors that further simplify the input coding process. The AAP operates in both mainframe and microcomputer environments.

ARTERIAL PRIORITY OPTION FOR THE TRANSYT-7F TRAFFIC-SIGNAL-TIMING PROGRAM. Moskaluk, Mu; Parsonson, PS. Transportation Research Board. Transportation Research Record N1181 1988 pp 57-60 2 Fig. 2 Tab. 2 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The objective of this research was to modify TRANSYT-7F so that arterial priority can be increased and minor-movement performance degradation can be controlled. The product is known as TRANSYT-7F with Arterial Priority Option (APO). TRANSYT-7F "globally" minimizes overall stops and delay to all vehicles. This is satisfactory for a grid network on which good traffic performance is desired equally for every street. However, it is unsatisfactory for arterials on which progression for the through movement typically is considered much more important than minimizing stops and delay for left-turning and side-street motorists. In the United States, TRANSYT-7F is widely perceived as unsatisfactory for arterial signal timing. TRANSYT-7F with APO modifies the iterative-search process to give priority to the arterial. APO changes the optimization process, not the traffic flow model. In general, the user specifies which links are to receive priority and the degree of saturation for the minor movements (nonpriority links). The performance index (PI) equation is formulated to minimize stops and delay for only the priority links. The degree of saturation specified by the user for the minor movements is used to control the performance degradation to acceptable levels. The results of a program run may be used to make changes to the list of priority links and to the required degree of saturation of one or more nonpriority links on the basis of the engineer's judgment. APO is thus user interactive; the engineer retains control over the optimization and can tailor it to local conditions. This paper appears in Transportation Research Record No. 1181, Urban Traffic Systems and Parking. PARSONSON, PS. NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH WASHINGTON DC. 198827 Pp ENGLISH

BY M. JOHN MOSKALUK AND PETER S. PARSONSON ILL., CHART COVER TITLE PAPER PRESENTED AT THE 1988 ANNUAL MEETING OF THE TRANSPORTATHN RESEARCH BOARD, WASHINGTON, D.C ADDL CORP. AUTHOR INFO: NATIONAL RESEARCH COUNCIL U.S.. TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL TRANSPORTATHN RESEARCH BOARD

ARTERIAL PROGRESSION--NEW DESIGN APPROACH. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Board. Transportation Research Record N881 1982 pp 53-59 4 Fig. 2 Tab. 9 Ref.. AVAILABLE FROM: Transporation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

This paper proposes a new approach for the design of tratfic signal timings to coordinate the progression of tratfic on arterial highways. The two most popular signal optimization policies in use today are the maximal bandwitth approach and the minimum delay and stops approach. The new approach is proposed as a measure of the quality of progression perceived by the driver. It deals with progression opportunities (PROS), and the policy is to maximize the number of PROS available on an arterial signal system. It differs from the maximal bandwitth approach by considering progression opportunities that occur outside the traditional through progression band. Arterial progression design based on this approach will usually show decreased stops and delay compared with the maximal bandwidth design without suffering the loss of perceived progression associated with direct minimization of stops and delay. The number of progression opportunities presented to the driver at any point in time is, by definition, the number of successive green signals that will be encountered at the design speed without stopping. (Author) This paper appeared in Transportation Research Record No. 881, Trattic Control Devices and Traffic Signal Systems.
 Transportation Engineers. TTE Journal VOL 58 NO. 11 Nov 1988 pp 27-31 Figs. 3 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

The article describes program features of PASSER II-87, its program implementation, and left-um signal treatments. PASSER II-87 (version 1.0) facilitates anterial signal design and capacity evaluation. Improvements were made to the analysis, interpretation and understanding of it for improving both arterial street and individual intersection analysis. The new system has many advantages over the existing PASSER II-84 program. It provides a user-friendly, menu interface, full-screen cursor movement, and accepts all the existing coded PASSER II-84 data without requiring user modifications. PASSER II-87 provides the graphical traffic input and the assistant function to help users with capacity analysis procedures described in the Highway Capacity Manual. The system can analyze all the commonly available left turn signal treatments with or without protected left turn bays. The new system provides an improved analysis scheme for allowing the input of the existing or user-selected timing plan for arterial capacity evaluation.

ARTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-87. MICROCOMPUTER USER'S GUIDE. FINAL REPORT. Chang, EC-P; Lei, JC-K; Messer, GJ. Texas Transportation Institute Texas A\&M University College Station Texas 78843 ; Texas State Department of Highways \& Pubic Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1988 105p 28 Fig. 1 Tab. 14 Ref. 2 App.. REPORT NO: FHWATX-88/467-1; Res Rept 467-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

PASSER $11-87$ microcomputer program version 1.0 has been developed and is available for public distribution. PASSER II can be used to assist transportation professionals to analyze (1) Isolated intersection timing evaluations, (2) Progression signal timing optimization, and (3) "Existing" timing evaluations. The system contains the updated microcomputer version of the PASSER II program, advanced analyses similar to and beyond those used in the 1985 Highway Capacity Manual, and the latest Artiticial Intelligence technology and Expert Systems designs. PASSER II-87 can analyze "Permitted", "Protected", and complicated permitted/protected or protected/permitted "Combined Phase" lett turn signal treatments. The microcomputer system will be distributed with the intelligent, user-friendly, menu-driven, full-function, input/output processor, main executable program, optional user help information, and microcomputer user's guide. The new program provides the enhanced program output and improved signal timing reports, allows the user to modity all the embedded data, and accepts all the existing coded

Abstract

PASSER II or PASSER II-84 data without requiring any user revisions. The PASSER II-87 microcomputer system can provide alternative left turn analysis and advanced capacity evaluation well beyond the Left Turn Analysis Package and the 1985 Highway Capacity Software packages. Research study title: Enhancement to PASSER II-84. The software can be ordered through: McTrans, The Center for Microcomputers in Transportation, University of Florida, 512 Weil Hall, Gainesville, Fiorida 32611, (904)-392-0378 or Electronic Builetin Board (305)-554-2145.

FTERIAL SIGNAL TIMING OPTIMIZATION USING PASSER II-90: PROGRAM USER'S MANUAL (REVISED). Final mearch rept. Chang-E.C.P.; Messer-C.J. Texas Transportation Inst., College Station. Federal Highway Administration, wstin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transportation Planning Div. TTI21886467, RR4672F, FWATX904672F. Jun 91. 120p.

PASSER $11-90$ microcomputer program version 1.0 has been developed and is now available for public distribution. PASSER II can assist transportation professionals in (1) isolated intersection timing evaluation, (2) progression timing optimization, (3) 'existing' timing evaluation, and (4) visualization of the signal timing results. The system contains the latest PASSER II features, advanced 1985 Highway Capacity Manual (HCM) analysis, Expert Systems design, and microcomputer graphics visual simulation. PASSER II-90 can analyze signal operations with 'Permitted,' 'Protected,' and permitted/protected or protected/permitted left turn signal treatments. The microcomputer system will be distributed with an intelligent, user-friendiy, menu-driven input/output processor with the executable main program, optional help information, dynamic arterial visualization system, and a program user's manual. The new program provides enhanced analysis tools, outputs improved signal timing reports, allows the user to modity all embedded data, accepts all existing coded PASSER II, PASSER II-84, or PASSER II-87 data, and allows data file exchange with TRANSYT-7F through the FHWA's new Arterial Analysis Package (AAP). The PASSER II-90 microcomputer traffic engineering package can significantly improve arterial evaluation, signal design, and progression analysis.

ASSESSING THE TBAFFIC IMPACTS OF FREEWAY INCIDENTS AND DRIVER INFORMATION. Garrison, D; Mannering, F. institute of Transponation Engineers. ITE Journal VOL. 60 NO. 8 Aug 1990 pp 19-23 Figs. 14 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024-2729

Traffic simulation modeling atternatives are briefly discussed, and the chosen traffic model and the study areas to which it was applied are described. The effects of driver information and incident duration, severity, and location are quantified and discussed, and recommendations are made for future work. The ability of a user equilibrium-based traffic simulation model to simulate the traftic-related impacts of urban freeway incidents is demonstrated. The paper also shows important relationships between driver information, incident duration, incident location, and overall system periormance, as measured in terms of vehicle hours and average commute time. The study findings show that incident-impacted roadways need to be rapidly restored to full capacity because the cost of urban incidents can easily exceed $\$ 2,000$ per minute of incident duration.

ASSESSING THE TRAFFIC IMPACTS OF TRANSPORTATION AND LAND DEVELOPMENT SCENARIOS. Deakin, EA; Skabardonis, A. Eno Foundation for Transportation, Incorporated. Transportation Quarterty VOL. 39 NO. 4 Oct 1985 pp 605-626. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

This article describes the application of a network-oriented signal timing model, TRANSYT, to evaluate development, parking, and traffic management options for an urban network. Maintenance of optimal signal timing, studies of new developments and altemative traffic and parking options appear to offer major opportunities for TRANSYT application. First, brief descriptions are given of the TRANSYT model and the study area used as a case example. Alternative policy options tested with TRANSYT are then discussed, along with results of the model application. An assessment of the study and conclusions about needed model development and refinement are presented in the last sections.

ASSESSING TRAFFIC AND EMERGENCY BENEFITS OF RAILROAD GRADE SEPARATIONS. Easa, SM; McColl, DR. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 113 NO. 6 Nov 1987 pp $593-608$ Figs. Tabs. Refs.. REPORT NO: ASCE Paper 21939. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

The benefits of constructing grade separations at four railroad crossings in Thunder Bay, Canada, are evaluated. The purpose of the study is to determine the two crossings whose grade separations provide the most efficient traffic operations and maximum accessibility of emergency services (fire stations and hospitals). Efficiency is
evaluated by several measures of performance including travel time, delay, and fuel consumption. Accessibility is evaluated by the travel time between the emergency services locations and various areas in the city. Traffic volume data were collected in May 1985 during the aftemoon peak period (4:30-5:30 P.M.) for 15-minute intervals. The data, along with other data related to land uses, are used to establish the origin-destination (O-D) demands thro. the use of a recently developed model, LINKOD. These O-D demand and the characteristics of the network represent the basic input to a traffic management model, CORCONF. The CORCONF model is used to evaluate the impacts of various grade-separation athernatives on both efficiency and accessibility. In addition to analyzing a real-world problem, this paper also discusses some aspects related to the application of the models described herein, which shouid prove usefu! for potential users of the models.

AT LAST - A TRANSYT MODEL DESIGNED FOR AMERICAN TRAFFIC ENGINEERS. Wallace, CE (Florida University, Gainesville). Institute of Transporation Engineers. ITE Journal VOL 53 NO. 8 Aug 1983 pp $28-3111$ Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

The TRANSYT (TRAffic Network StudY Tool) model was developed by Dennis I. Robertson in the late 1960s. Since that time, numerous improvements and enhancements have been made by Mr. Robertson and his colleagues at the Transport and Road Research Laboratory (TRRL). An increasing number of engineers in numerous countries use TRANSYT Version 5 and recent versions. TRANSYT-7F is a major new tool available to traffic engineers for analysis of traffic signal systems, evaluation of alternative control strategies and design of optimad signal settings.

AUTOMATIC DETECTION OF TRAFFIC INCIDENTS ON A SIGNAL-CONTROLLED ROAD NETWORK. Thancanamootoo, S; Bell, MGH. NEWCASTLE-UPON-TYNE. RESEARCH REPORT N76 Jun 1988 34P

This report investigated the feasibility of automatic incident detection in a signal controlled urban road network. Part 1 contained the results of a literature review on incident detection as applied to motorways and high speed roads. The development of an automated incident detection algorithm for a signal controlled urban road network was described iftpart 2. The aigorithm, based on detector occupancy, was tested using both simulated and real data. The real data was taken from the London and middlesbrough SCOOT systems. The simulated data was obtained by using MULTSIM, a microscopic tratfic simulation program which reproduced output from vehicle detectors on a multi-lane signal controlled road, and which also allowed for the specification of capacity reducing incidents during the simulation. The results, although not conclusive, suggested that incident detection in an urban road network was feasibie. However, the algorithm needed to be adapted to suit the different road geometric and trafif conditions encountered in an urban network.

AUTOMATIC UPDATING OF TRAFFIC VOLUME DATA FOR SIGNAL TIMING PLAN DEVELOPMENT. FINAL REPORT. VOLUME 1. Kell, JH; Fullerton, W. JHK and Associates P.O. Box 3727 San Francisco Calitornia 94119; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Jul 1987 45p. REPORT NO: FHWARD-87/081; Rept No 4725. AVAILABLE FROM: National Technical information Service 5285 Port Royal Road Springfield Virginia 22161

The purpose of this research was to test the validity of using automatically-collected traffic volumes from selected system detector sites to generate a full TRANSYT-7F data file for calculating signal network timing plans. Termed the 1.5 GC control concept, this approach assumes that volume shits on selected links will accurately represent shitts throughout the network. Tests were run at two significantly different test sites and included several detector placement scenarios. The essential tasks inciuded determining from a pre-existing data set the factors to be used to designate which volume data (locations) would serve as a surrogate to represent data collected by "system detectors." Site-specific algorithms were devised to synthesize TRANSYT data from the system detector data. New turning movement volume data were then collected at all signalized intersections at the same time link volume counts were manually collected at system detector sites. Applying the algorithms, TRANSYT-7F input tiles were created and signal settings were then generated using the estimated link volumes and link-to-link movement data. This TRANSYT run was then compared to the optimum settings generated using the new full TRANSYT data set. Results from multiple TRANSYT runs for both test sites strongly suggest that the 1.5 GC approach as simulated in this research is a viable alternative to the labor-intensive conventional field data collection currently used to develop TRANSYT-7F volume data files. This allows more frequent updates of timing plans to meet changing traffic conditions.

benefit-cost evaluation of left-turn lanes on uncontrolled approaches of rural INTERSECTIONS (ABRIDGMENT). McCoy, PT; Hoppe, WJ; Dvorak, DV. Transportation Research Board. Transportation Research Record N1026 1985 pp 40-43 2 Tab. 26 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Left-turn lanes are provided on uncontrolled approaches of rural intersections to improve the safety and efficiency of traffic operations on these approaches. Although the safety and operational effects of left-turn lanes are well recognized, there are no generally accepted guidelines that define the circumstances under which the costs of these lanes are justified by the benefits they provide. The objectives of this were (a) to evaluate the benefits and costs of lett-turn lanes on the uncontrolied approaches of intersections of rural two-lane highways and (b) to determine the traffic volumes that warrant these lanes in Nebraska. The road-user cost savings associated with the reductions in accidents, stops, delay, and fuel consumption provided by left-turn lanes were evaluated over a range of traffic volumes and compared with the costs of left-turn lanes over the same range. The safety effectiveness of the lanes was based on accident experience on rural two-lane highways in Nebraska. The NETSIM traffic simulation model was used to determine their operational effectiveness. Volumes for which the road-user cost savings exceeded the lane costs were determined to warrant lett-turn lanes. The warrants developed in this research are limited to prevailing conditions typical of those on rural two-lane highways in Nebraska. However, the procedure used to develop these warrarts is applicable to other locations. This paper appeared in Transportation Research Record N1026, Evaluation Methods and Design and Operational Effects of Geometrics.

BTS (VERSION 1.0): BOTTLENECK TRAFFIC SIMULATOR USER'S MANUAL. LIN, WH; HALL, RW. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF. PATH WORKING PAPER, NUCB- 199124 PP ENGLISH. REPORT NO: ITS-PWP-91-1

DESCRIBES THE COMPUTER PROGRAM BTS WHICH IS A MACROSCOPIC TOOL FOR SIMULATING THE PERFORMANNCE OF FREEWAY BOTTLENECKS WEI HUA LIN, RANDOLPH W. HALL OTHER PHYS. DESCRIPTION: I CHARTS PROGRAM ON ADVANCED TECHNOLOGY FOR THE HIGHWAY ADDL CORP. AUTHOR INFO: PROGRAM ON ADVANCED TECHNOLOGY FOR THE HIGHWAY CALIF ADDL CORP. AUTHOR INFO: UNIVERSITY OF CALIFORNIA, BERKELEY. INSTITUTE OF TRANSPORTATION STUDIES INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA AT BERKELEY

BUS-STOPS, CONGESTION AND CONGESTED BUS-STOPS. Gibson, J; Baeza, I; Willumsen, L. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 6 Jun 1989 7p Figs. Tabs. Refs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

This paper discusses some issues involved in estimating the effects of bus-stops on delay to buses, their passengers and to other traffic. It starts by reviewing the current understanding of bus traticic behavior, mostly oriented to the situation prevailing in industrialized countries where bus flows are low, congestion is generated by other traffic (particularly cars) and bus-stops do not create major problems. It then moves on to analyze the problems usually encountered in developing countries where the number of buses is much higher and they contribute to congestion at least as much as cars. In this case, the problem is a good deal more complex as there is increased interaction between buses, passengers and bus-stop layout and operation. A conceptual framework for these interactions and precise definitions of bus-stop capacity and delays are then developed. The generation of analytical expressions for these variables is limited because the underlying process is a complex stochastic one. Therefore, a computer simulation program has been written to model this behavior and its structure and main features are described. The paper concludes with some results from this program and a few general conclusions.

CALIBRATING SIDRA. RESEARCH REPORT. Akcelik, R. Australian Road Research Board 500 Burwood Highway Vermont South Victoria 3133 Australia 0518-0758 0-86910-433-0. Mar 1990 115p. REPORT NO: ARR180

This report presents detailed documentation on the fundamental aspects of SIDRA (version 3.2) capacity and performance estimation models and signal timing computation method. The use of the Default Values File for calibrating SIDRA models is explained. A collection of the reprints of papers by the author, which give detailed discussions on SIDRA models, is included. Although originally based on ARRB Research Report ARR No 123, SIDRA traffic models and timing computation methods are now substantially more advanced. By documenting the SIDRA models in detail, this report will help to explain the differences between the ARR No 123 and SIDRA traffic models (A).

PATION OF TRANSYT PLATOON DISPERSION MODEL FOR PASSENGER CARS UNDER LOW-FRICTION FLOW iTIONS (ABRIDGMENT). McCoy, PT; Balderson, EA; Hsueh, RT; Mohaddes, AK (Nebraska University, Lincoln). cortation Research Board. Transportation Research Record N905 1983 pp 48-52 1 Fig. 5 Tab. 8 Ref.. AVAlLABLE f: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
The calculation of delay and stops by the TRANSYT program and in turn the effectiveness of the signal timings resulting from its optimization procedure depend on the ability of its platoon dispersion model to accurately predict traffic flow patterns from one signal to another. Therefore, calibration of the dispersion factor alpha and travel-time factor beta in the model is important to the successful implementation of the TRANSYT program. However, because of limited research, a definitive description of the relationship between the appropriate values of alpha and beta and roadway conditions does not exist. The objective of this research was to contribute to the ultimate development of a definitive description of this relationship by calibrating this model for passenger cars under low-friction tratfic flow conditions. Platoon dispersion studies were conducted on six arterial street segments (2 two-way two-lane segments and 4 four-lane divided segments). Traffic flow patterns of nearly 1700 platoons were analyzed. The results indicated that less platoon dispersion was observed in this study than has been found in other studies of low-friction traffic flow conditions. It was conciuded that appropriate values of alpha and beta for passenger cars under these conditions are alpha equal to 0.21 and beta equal to 0.97 on two-way two-lane streets and alpha equal to 0.15 and beta equal to 0.97 on four-lane divided streets. (Author) This paper appeared in Transportation Research Record No. 905, Traffic Flow, Capacity, and Measurements.

IN YOU AFFORD NOT TO USE TRAFFIC MODELS?. Liu, C; Kanaan, A; AEPCO Inc., Rockville, Md. and Santiago, ; and Lieu, H.; Federal Highway Administration, McLean, Va. Paper presented at the Engineering Foundation Conference Traffic Management: Issues and Techniques, April, 1991

Urban traffic congestion has had a significant ipact on transportation systems nationwide. Travel time, travel safety, environmental quality, and, ultimately, the quality of life are all adversely affected. In an effort to relieve the congestioaproblems, traffic engineers are constantly developing, improving, and evaluating transportation system design, traffic control, and traffic management strategies. Computerized simulation and optimization tools offer an effective, efficient, and low-risk mean to achieve that objective. This paper debates several issues related to the use of computerized traffic models and tries to resolve the issue of why the practicing traffic engineering community resists these powerful tools. The paper concludes not by addressing the issue of "why aren't you using traffic models?," but rather by presenting the arguments for, "how can you afford not to use them?" It is written for the practicing engineer who does not necessarily need to be a computer expert.

CAPACITY AND LEVEL OF SERVICE BY SIMULATION-A CASE STUDY OF TRAF-NETSIM. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY GAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Wong, S.Y. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7.1991 pp 467-483 12 Fig. 7 Tab. 10 Ref.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

We explore the prospect of using TRAF-NETSIM, a microscopic simulation model, to estimate capacity and level of service through a case study. In the case study, we collected stopped delay, saturation fiow, bus dwell time, double parking duration, vehicle and pedestrian volumes, etc. These data served as the bases to run and to calibrate the model, and to check the model results. Although TRAF-NETSIM does not provide capacity and level of service directly, we showed how to make use of its detail simulation capabilities and graphics to obtain capacity and level of service. We also showed how to calibrate the model to represent local traffic conditions. The simulated capacity, stopped delay and level of service were very close to the field results. Since TRAF-NETSIM is a stochastic model, there is concern that its results may vary. We examined its variability by inputting different random number seeds with different simulation times. We find that the variation of capacity was insignificant while that of stopped delay was mixed. We also examined the required number of runs and length of simulation times to obtain 95% levei of confidence. TRAF-NETSIM has many advantages. Its animated and static graphics can show what is going on or how the result is derived. Its numerous calibrating parameters enabie it to be applicable to many traffic conditions. It produces many statistics which are useful for other analyses. It considers individual factors as well as the interaction of different factors which may affect capacity and level of service. One can analyze the impacts of these factors on one intersection or on the network as a whole. The prospect of using a simulation model such as TRAF-NETSIM for capacity and level of service appears to be promising.

CAPACITY FACTOR OR CYCLE TIME OPTIMIZATION FOR SIGNALIZED JUNCTIONS: A GRAPH THEORY APPROACH. Cantarella, GE; Improta, G. Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 22B NO. 1 Feb 1988 pp 1-23 25 Ref.. AVAlLABLE FROM: Pergamon Press Limited Headington Hill Hall Oxford OX3 OBW England

In this paper a method for setting tratfic signals of individual signalized junctions is presented. Capacity f maximization and cycle time minimization are considered as objective functions. The correspondence betwern cycle time and capacity factor is discussed. The influence of minimum green and maximum red constraints is analyzed. Once this correspondence is known, an efficient problem-oriented algorithm, based on a pert-like technique, is proposed for the solution of the problem. (Author/TRRL)

CAR TRAFFIC FORECASTING - BACKSIGHTS, INSIGHTS AND FORESIGHTS. Duffell, JR (Hatfield Polytechnic). Kinslea Press Limited. Municipal Engineer VOL. 109 NO. 6 Jun 1982 pp 132-139 13 Fig. 12 Ref.

The paper seeks to develop a robust model as a basis for predicting year on year changes in car traffic flow, inputting those variables which, on examination, have appeared most susceptible to modelling cause and effect - namely real personal disposable income and fuel prices (not deflated for retail price index changes). The paper has also attempted to review the evolution of car traffic forecasting, a complex subject in which most of the research effort has gone into modelling and hence predicting car ownership. The author has endeavored to extend this to the use of a car and hence total changes in car traffic levels nationally. Amongst the conclusions listed are the following: car-traffic forecasting can be undertaken from a sounder conceptual base using a causal as distinct from extrapolatory model; petrol deliveries and sales can give early indication of motorists' response to changing economic circumstances well ahead of published car traffic census data; a possible trend to smaller vehicles may now be evident following the second oil crisis of 1979. (TRRL)

CARSIM: CAR-FOLLOWING MODEL FOR SIMULATION OF TRAFFIC IN NORMAL AND STOP-AND-GO CONDITIONS. Benekohal, RF; Treiterer, J. Transportation Research Board. Transportation Research Record N1194 1988 pp 99-111 7 Fig. 4 Tab. 26 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A CAR-following SIMulation model, CARSIM, with more realistic features to simulate not only normal traffic flow but also stop-and-go conditions on freeways, has been developed. The features of CARSIM are: (1) marginally sate spacings are provided for all vehicles, (2) start-up delays of vehicles are taken into account, (3) reaction times of drivers are randomly generated, (4) shorter reaction times are assigned at higher densities, and (5) dual behavior of traffic in congested and non-congested conditions is taken into consideration in developing the car-following log of this model. The validation of CARSIM has been performed at microscopic and macroscopic levels. At the microscopic level, the speed change patterns and trajectories from CARSIM were compared with those from field data; whereas at the macroscopic level, average speed, density, and volume computed in CARSIM were compared with the values from real world traffic conditions. The regression analysis of simulation results versus field data yielded R-squared values of 0.98 and higher, indicating that the results from CARSIM are very close to the values obtained from field data. One example of the application of CARSIM to study traffic-wave propagation is presented. This paper appears in Transportation Research Record No. 1194, Traffic Flow Theory and Highway Capacity.

CASE STUDY EVALUATION OF ALTERNATIVE SIGNAL THMNG PLANS FOR AN OVERSATURATED STREET NETWORK. Berg, WD; Lau, KY; Dettmann, DC; Rylander, G. F. (Wisconsin University, Madison). Institute of Transportation Engineers. ITE Journal VOL. 52 NO. 4 Apr 1982 pp 23-27 5 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

The purpose of this article is to discuss the analytical methodology which was used, and the relative effectiveness of the alternative signal tirning plans in relieving the oversaturated flow conditions.

CASE STUDY EVALUATION OF THE SAFETY AND OPERATIONAL BENEFITS OF TRAFFIC SIGNAL COORDINATION. Berg, WD; Kaub, AR; Beiscamper, BW. Transportation Research Board. Transportation Research Record N1057 1986 pp 58-64 9 Fig. 4 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A high-volume urban arterial was analyzed to determine if rear-end accident frequency might be decreased by reducing the frequency of vehicular stops at five signalized intersections. The potentially most cost-effective tectnique for reducing the frequency of stops was to coordinate the signal controllers and permit the progressive flow of platoons of vehicles. The TRANSYT model was used to develop optimized timing plans for a hypothetical

The characterization of the quality of traffic service in urban street networks has been made according to the Two-Fluid Model of Town Traffic. A companson of traffic related characteristics in various cities around the world using the Two-Fluid methodology has given insight into the physical network features which most strongly affect the quality of traftic service and the model parameters. Through ground experiments and simultaneous aerial observations, it has been shown that the model assumptions are reasonable. The Two-Fluid model has also been used in before/atter studies in Dallas, Lubbock and San Antonio, where changes in trafic control strategies and mix of vehicles had taken place. The sensitivity of the model parameters to the vehicle type used in the data collection has also been investigated. Finally, time-lapse aerial photographs of traffic in Austin and Dallas have been reduced and analyzed to establish relations among network-wide averages of fraction of vehicles stopped, speed, coocentration and flow, hence improving the Two-Fluid methodology by allowing the comparison of the quality of traffic service in various networks to be made under similar vehicular concentrations. (Author) Study conducted in cooperation with the Federal Highway Administration. Research Study Title, Quality of Traffic Service.

COMMENTS ON THE APPLICATION OF QUEUING THEORY TO DELAYS AT SIGNALS. Akcelik, R. Australian Road Research Board. Australian Road Research VOL. 20 NO. 3 Sep 1990 pp 53-61 19 Ref.. AVAILABLE FROM: Australian Road Research Board Executive Director, P.O. Box 156 Nunawading Victoria 3131 Australia

This technical note presents comments on the results of the application of queuing theory to delays at signalized intersections given in a paper by Blunden and Vandebona (see IRRD 822829). The relationship between the Australian and other delay models used around the world is explained. The importance of a continuous delay model that applies to both undersaturated and oversaturated conditions is emphasized. The simulation results given by Blunden and Vandebona are analyzed. It is concluded that the simulation model used in deriving the delay results needs to be specitied in detail to facilitate comparison with analytical models. (Author/TRRL)

COMPARATIVE ANALYSIS OF LEFT-TURN PHASE SEQUENCING (ABRIDGMENT). Machemehl, RB; Mechler, AM (Texas University, Austin). Transportation Research Board. Transportation Research Record N956 1984 pp 37-40 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Otfice 2101 Constitution Avenue, NW Washington D.C. 20418

Guidelines for left-turn phase use do not generally include recommendations for left-turn signal phase sequence patterns. In this research, the TEXAS simulation model is employed to study the effects of various lett-turn sequence patterns on traftic operations in order to establish guidelines for using most typical sequence patterns. Recent literature on the effects of left-turn sequence patterns on intersection delay and accidents is reviewed. Using vehicular delay as a basis for comparison, protected only and protected/permissive left-turn phasing with pretimed control are studied. Dual leading and dual lagging left-turn phase sequences, supplemented by permissive turning and pretimed control, are also studied. Furthermore, split, dual, and composite sequences are compared for the pretimed case. The examination of basic phase sequencing schemes under actuated signal control essentially duplicates that for pretimed control. Finally, guidelines for the implementation of phase sequence patterns are presented. (Author) This paper appeared in Transportation Research Record Number 956, Traffic Control Devices and Grade Crossings. FIXED-TIME TRAFFIC SIGNALS. Cronje, WB. Transportation Research Board. Transportation Research Record N1091 1986 p 48-59 9 Fig. 8 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

To optimize a fixed-time traffic signal, a model is required to estimate with sufficient accuracy the measure of effectiveness necessary for the optimization process. Suitable models have been developed for the degree of saturation (x) in the range O is less than x is less than 0.9 . Reliable models have also been developed for the zone of the degree of saturation x is greater than 1.1. In this zone, traffic can be treated deterministically. However in the range 0.9 is less than or equal to $\times 1.10$, the deterministic approach falls and a model should be based on the probabilistic approach to traffic flow. The ideal model should be applicable over the entire range of the degree of saturation. Only two such models have been encountered in the literature. Because of shortcomings of these models and the lack of a reliable model in the transition zone from undersaturation to oversaturation, an alternative model was developed by Cronje (Transportation Research Record 905, 1983). This model is based on a Markov process and the geometric probability distribution, and is referred to in this paper as the M Geom Model. In this paper, the M Geom Model is compared with the models developed by Mayne and Catling on a cost basis. Monetary rates are assigned to the measures of effectiveness, namely, total delay and number of stops, for a wide range of cycle lengths, flows, and degree of saturation. The results indicate that the M Geom Model estimates cost more accurately and is consequently recommended for optimizing fixed-time traffic signals. This paper appeared in Transportation Research Record N1091. Traffic Flow Theory, Characteristies, and Highway Capacity.

COMPARATIVE ANALYSIS OF TWO LOGIC FOR ADAPTIVE CONTROL OF ISOLATED INTERSECTIONS. Lin, F-B. Transportation Research Board. Transportation Research Record N1194 1988 pp 6-14 7 Fig. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Adaptive signal control has the potential to provide improved control at isolated intersections. Adaptive control, however, hâ's limitations due to its need to rely on estimated flow conditions for making signal timing decisions. Such estimated flow conditions always differ from the actual conditions, and the discrepancies can offiset the benefit of having an elaborate decision making process in a control logic. Therefore, an issue can be raised as to whether it is necessary to rely on strenuous decision-making processes for adaptive control. This study compares the relative merits of a simple queue based logic and a logic that relies on a much more complicated procedure for making timing decisions. His found that the queue-based logic is nearly as effective as the more complicated logic. This finding points to a direction for the development of new control logic that can be widely used to replace existing traffic-actuated control logic. This paper appears in Transportation Research Record No. 1194, TrafficFlow Theory and Highway Capacity.

COMPARATIVE ASSESSMENT OF 1985 HCM DELAY MODEL. Sadegh, A; Radwan, AE. American Society of Civil Engineers. Journal of Transportation Engineering VOL 114 NO. 2 Mar 1988 pp 194-208 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22278. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

Delay is an important measure of effectiveness in traffic studies; it represents the direct cost of fuel consumption and indirect cost of time loss to motorists. The 1985 Highway Capacity Manual (HCM) used delay as the principal measure of level-of-service at signalized intersections. The manual introduced a delay model that is based parially on the traditional Webster model. The goals of this study were: (1) to review the delay models currently being used in the SOAP84 computer model for an isolated intersection and by the TRANSYT-7F computer model for an arterial; (2) compare them with the original model developed by Webster and the new model proposed by the HCM; and (3) assess the HCM model in both isolated intersection and urban arterial environments. The results show that the new HCM delay model is sensitive to arrival type; thus it is important to know which arrival type to use. The delay values calculated by the new HCM model, SOAP84, and TRANSYT are close to the values resulting from NETSIM.

COMPARING CAPACITIES AND DELAY ESTIMATES BY HIGHWAY CAPACITY SOFTWARE AND TRAF-NETSIM TO FIELD STUDIES. Wong, S. (Federal Highway Administration, Washington, D.C.). Institute of Transportation Engineers, ITE 1990 Compendium of Technical Papers, pp. 224-227.

Abstract

SIPARISON OF FIXED TIME AND FLEXIBLE PROGRESSIVE TRAFFIC CONTROL IN SLOUGH. Lines, C; Lucas, CF iL Supplementary Report 1984 Monograph 8p 2 Fig. 2 Tab. 7 Rei.. REPORT NO: SR 837

Since 1977 Slough Borouch Council have operated a compact utban traffic control (utc) system in which a central computer coordinates the timings of traffic signals in slough. The signals are controlied by a flexible progressive system in which the central computer allows the timings to vary by a few seconds from the present" fixed time plans" which maintain coordination. The variations in timings are determined by the presence or absence of vehicles over stop-line detector loops; similar systems have been used for many years at other sites. In spring 1983, the TRRL conducted a survey to compare the flexible progressive system with a fixed time system that used the same coordination plans. A "floating car" survey method was used to measure journey times along the A4 Bath road and A355 Farnham road during four periods of the day for five weeks in spring 1983. The results show no significant differences in journey times measured with the two control systems, although there is some indication that the flexible progressive system gives slightly shorter journey times in the morning peak. It is possible that the flexible progressive control system can adapt to small changes in flow, and so reduce the need for updating the fixed time plans. (Author/TRRL)

YOMPARISON OF MACROSCOPIC MODELS FOR SIGNALIZED INTERSECTION ANALYSIS. Hagen, LT; Courage, KG. Iransportation Research Board. Transportation Research Record N1225 1989 pp 33-44 14 Fig. 10 Ref.. AVAILABLE FROM: Iransportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The signalized intersection methodology presented in the 1985 Highway Capacity Manual (HCM) introduced a new delay model, which naturally invites companson with the delay models contained in existing tratfic signal timing design and analysis techniques. This paper compares the HCM delay computations with those performed by the Signal Operations Analysis Package (SOAP) and by TRANSYT-7F Reiease 5. The paper focuses on the effect of the degree of saturation, the peak-hour factor, and the period length on delay computations and on the treatment of left turns opposed by oncoming traffic. All of the models agreed closely at volume levels below the saturation point. Wheti conditions became oversaturated, the models diverged; however, they could be made to agree by the proper choice of parameters. The computed saturation flow rates for left turns opposed by oncoming traffic also agreed closely. However, the treatment of protected plus permitted left turns produced substantial differences. It was concluded that neither SOAP nor the HCM treats this case adequately. Therefore, an alternative model based on a deterministic queuing process was proposed and evaluated. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

COMPARISON OF SOAP AND NETSIM: PRETIMED AND ACTUATED SIGNAL CONTROLS. Nemeth, ZA Ohio State University). Transportation Research Board. Transportation Research Record N905 1983 pp 84-89 13 Fig. 2 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Delay and fuel-consumption rates estimated by the relatively easy-to-use, deterministic Signal Operations Analysis Package (SOAP) were compared with results generated by the microscopic and stochastic Network Simulation Model (NETSIM). The study involved three cases of isolated signalized intersections: two-phase pretimed controller, two-phase fully actuated controller, and multiphase pretimed controller. More than 80 combinations of left-turning and through traffic volumes were investigated in each case. Whereas SOAP estimates excess fuel consumption at intersections, NETSIM generates total fuel consumption. The difference between the two was found to be fairly uniform and corresponded to a realistic $18-\mathrm{mile} / \mathrm{gal}$ fuel efficiency under uninterrupted $30-\mathrm{mph}$ flow conditions. In terms of delay predictions, SOAP and NETSIM are found to be entirely compatible after the differences in delay definitions, SOAP's more conservative left-turn saturation-flow-rate relationship, and NETSIM's delay sensitivity to unit extensions for actuated signal controllers were taken into account. In addition, the volume/capacity ratio at which SOAP begins to overestimate delay due to the use of Webster's delay equation may be lower than now assumed. Last, the difference between SOAP and NETSIM average delays can probably be reduced by a more studied coordination between SOAP and NETSIM input parameters. Evidence is offered to the operating engineer that the easy-to-use SOAP produced results supported by the sophisticated NETSIM. (Author) This paper appeared in Transportation Research Record No. 905, Traffic Flow, Capacity, and Measurements.

COMPUTER APPLICATIONS IN TRAFFIC SIGNAL MANAGEMENT. SESSION 4. Skabardonis, A; May, AD (Califomia University, Berkeley). Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 1-5 4 Fig. 8 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

This paper describes the activities in developing and applying improved computer techniques in traffic signal management, performed in the technical center established at the Institute of Transportation Studies (ITS), as part of the Fuel Efficient Traffic Signal Management (FETSIM) project. The center provides technical support to local agencies, develops software and conducts research for most efficient use of the state of the att computer programs. A description of the available programs is given and how these tools can be used in the various phases of a signal retiming study. Selected applications are presented. The implications of using these techniques and future developments are also discussed. (Author) This paper was presented during the Institute of Transportation Engineers 54th Annual Meeting, San Francisco, California, September 23-27, 1984.

COMPUTER USER MANUAL FOR PROGRAM "LATM"--A PROGRAM PACKAGE FOR LOCAL AREA TRAFFIC MODELLING. Taylor, MAP. Commonwealth Scientitic \& Indus Res Org, Australia Division of Building Research, P.O. Box 56 Highett Victoria Australia 064302818 8. 1982 Monograph 45p 5 Fig.

The package produces short duration traffic assignments for small area networks representing part of an urban area. It can be used for the evaluation of alternative traffic systems management schemes, studies of traffic generators such as shopping centers, or studies of congestion and network performance. The package uses externally supplied, dynamic travel demands over a specified time interval (eg a peak hour) which is itself divided into a number of computation sub-intervals. Demand is assumed to be constant in each sub-interval, but may vary between sub-intervals. Network travel conditions are also varied between sub-intervals. It is possible to distinguish between different turning manoeuvres at intersections, between intersection types, and between road and street types. Queues may exist on all intersection approaches. The model uses a probabilistic path choice procedure based on perceived travel times to account for the possible multiplicity of available network paths of comparable travel time and the assumed imperfect knowledge of the network by travellers. (TRRL)

CONCURRENT USE OF MAXBAND AND TRANSYT SIGNAL TIMING PROGRAMS FOR ARTERIAL SIGNAL OPTIMIZATION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N906 1983 po $81-842$ Tab. 7 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Number of computer programs have been developed for the purpose of optimizing signal timing. All of the current programs, however, have some deficiencies. The TRANSYT program, which is the most widely used, has a good traffic model and optimize green phase time. However, it does not get a globally optimal solution, optimize phase sequence, or really optimize cycle length. The MAXBAND program, which optimize arterial bandwidth, does all of the above but is deficient in that green time is not optimized and the tratfic model used is oversimplified. It is shown that a feasible way to overcome these deficiencies is to use the MAXBAND program to develop an initial timing plan for TRANSYT. This initial timing plan includes both cycle length and phase sequence optimization. The timing plans produced by the TRANSYT and MAXBAND programs separately were compared with the combined timing plans by using the NETSIM model. The results indicate that a substantial improvement in measures of effectiveness is obtained with the combined timing plans. This paper appeared in Transportation Research Record No. 906, Uiban Traffic Systems.

CONGESTION-BASED CONTROL SCHEME FOR CLOSELY SPACED, HIGH TRAFFIC DENSITY NETWORKS. Lieberman, EB; Rathi, AK; King, GF; Schwartz, SI. Transportation Research Board. Transportation Research Record N1057 1986 pp 49-57 2 Fig. 5 Tab. 10 Ret.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The development and field testing of a traffic control policy designed for congested conditions in the high-density sectors of the Manhattan central business district (CBD) are described. Rather than providing progressive movement in the conventional sense, the primary objective of this control policy is to minimize the frequency and extent of intersection spiliback. In the Manhattan CBD, queues develop along the cross streets; these queues often spili back into the upstream intersections, physically blocking the movement of traffic along the north-south arterials. The traffic control policy described yields signal timing for the one-way cross streets that exhibit a backward progression and flared green times that increase in the direction of traffic flow. The arterial traffic is serviced by a signal-timing pattern that exhibits zero relative offsets. The NETSIM traffic simulation model was used to test

Abstract

different concepts during the development phase of the effort. The new policy was then compared with the existing timing plan, by using NETSIM, and the results indicated that the number and duration of spillback blockage were markedly decreased, with a concomitant reduction in vehicle travel time and number of stops, coupled with an increase in vehicie trips serviced. A before-and-after field study yielded similar results, with the new policy providing a 20 percent reduction in overall travel time. This paper appeared in Transportation Research Record N1057, Traffic Signal Systems.

WGESTION, FLOW AND CAPACITY. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE ERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Liu, G-Q. kema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 245-251 10 Fig. Rets.. AVAILABLE DM: Balkema (AA) Publishers Old Post Road Brooktield Vermont 05036

A new model reflecting the relationships between congestion, flow and capacity is presented. The two concepts of capacity are deatt with in this model: one is the output capacity of a length-limited link or road in traffic systems, which is the same meaning as the capacity usually adopted in the Highway Capacity Manual; another is the carrying capacity of the link. Both of the two capacities influence traffic congestion: the finiteness of the output capacity is a critical factor for causing congestion; the carrying capacity affects the time evolution of traftic congestion on such a link. Through analyzing the new model, one may find that the time evolution of traffic congestion on a link can exhibit an extraordinarily rich spectrum of dynamic behavior, from stable states, to regular oscillations, to apparently random fluctuations-chaotic behavior. This implies that there can be complicated patterns in traffic flow under congested conditions.

CONSEQUENCES FOR TRAFFIC FLOW DURING A TEMPORARY ROAD-BLOCK (II). Botma, H; Stembord, HL (Delft University Of Technology). Royal Dutch Touring Club ANWB. Verkeerskunde VOL. 36 NO. 7 Jul 1985 pp 314-316 2 Fig. 2 Tab. Dutch

In Part I of the article the theoretical aspects of the mathematical model to study the consequences of a temporary road-block on traffic flow are mentioned and the location and data acquisition are described. In the second part a further analysis is given of the consequences of errors in the input data such as for instance the 24 hour traffic density, the distribution over the day, the traffic composition and the capacity on the values which should be calculated as the total time of delay, the length of queue, the total number of vehicles involved, etc. In addition, possibilities for practical use of the method are presented. (TRRL)

CONSIDERATIONS IN THE LENGTH OF THE YELLOW INTERVAL Shanteau, RM. Purdue University. Engineering Bulletin of Purdue University N154 Mar 1983 pp 115-120 2 Fig. 1 Tab. 8 Ref.. AVAILABLE FROM: Purdue University West Lafayette Indiana 47907

Most modern methods for setting the yellow interval at traffic signals start with the presumption that the yeliow should be long enough so that a reasonable driver is never placed in a position of neither being able to enter on yellow nor stop before entering the intersection. If the yeliow is too short, a dilemma zone is created wherein a reasonable driver occasionally must either enter on red or stop beyond the stop line. The methods then go on to use a definition for a reasonable driver that is similar to the one in the ITE Handbook, which uses reasonable limiting values of one second for the reaction time and 10 (or 15) ft/sec/sec for the deceleration rate. These values are assumed to be constant over all speeds. A kinematic model of vehicle behavior is then used to predict the minimum yellow time necessary to avoid a dilemma zone. Difference between procedures then center around the exact values that are appropriate for a reasonable driver. The concept that a dilemma zone exists and that the avoidance of one should be used as a basis for setting the minimum length of the yellow interval is probably valid. It couid be that a longer clearance interval is needed for safety, but then the usual procedure is to provide the excess time as an all-red interval. This paper concentrates on the manner in which a reasonable driver is defined and the dilemma zone determined. Its main departure is with the assumption that driver reaction time and declaration rate are constant over all speeds. It appears that existing data do not necessarily support the idea that reaction times and deceleration rates are constant over all speeds for a consistently defined reasonable driver. (Author) This paper was presented during the proceedings of the 69th Annual Road School, March 8-10, 1983.

CONTROL OF FREEWAY TRAFFIC FLOW. Smulders, SA. S.Smulders Kerveigaarde 7 Nieuwegein Netherlands. 1990162 104 Ref. Dutch. AVAILABLE FROM: S. Smuiders Kervelgaarde 7 Nieuwegein Netherlands

In this thesis a freeway traffic control problem is addressed and solved. The control problem consists of designing an optimal policy for the variable speed signs of the Dutch motorway control and signalling system. The aim is to reduce the instabilities of traffic flow that occur if demand is high, and thereby to reduce the probability of congestion and increase safety. At a first step towards solving the problem a mathematical model for freeway tratic is presented. The model behavior is investigated by means of stochastic simulation. To obtain an estimate of the passing speed probability density function incorporated in the traffic model, an analysis of freeway traffic data is carried out. Based on the model developed a filter is presented. This algorithm estimates the state of traffic, consisting of trattic densities and mean speeds of all freeway sections, from available count and speed measurement data. Thereafter the actual control problem is addressed. Several suggestions for further study are presented. (TRRL)

CONTROL STRATEGIES AND DETECTOR PLACEMENT GUIDELINES FOR A 1.5 GENERATION TRAFFIC CONTROL SYSTEM. Kessmann, RW; Ku, CS; Cooper, DL. Kessmann and Associates, Incorporated 18333 Egret Bay Boulevard Houston Texas 77058. Feb 1985 116p. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

The objectives of this study were twofold. The first objective was to evaluate and analyze altemative trafic signal timing optimization strategies for purposes of selecting the best strategy for inclusion in a 1.5 Generation traffic control system. The second objective of this study was to establish guidelines to be used by practicing traffic engineers in determining locations of detectors required to effectively accomplish the following functions using the selected strategy: a) computation of optimal signal timing plans in a 1.5 Generation mode of system operation; b) automatic selection of prestored timing plans in a First Generation traffic responsive mode of system operation; c) identification of "poor" timing plan performance.
+
CONTROL SYSTEM DESIGN FOR AN INDIVIDUAL SIGNALIZED JUNCTION. Improta, G; Cantarella, GE (Naples University, Italy). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. 2 Apr 1984 pp 147-167 17 Fig. 5 Tab. Refs.

The traffic signal settings for a single road junction have been often evaluated by mathematical programming techniques. This paper proposes a new approach to the problem which allows all the regulation variables to be incorporated into a binary-mixed-integer-linear-programming model. This general model permits some of the limitative assumptions involved in other formulations of the problem based on the stage matrix to be removed. The model can be easily solved obtaining a fast computation of the globally optimal control system design. A detailed treatment is given for the particular structure of the mathematical programming schemes obtained by considering delay minimization, capacity reserve maximization, or cycle time minimization as the objective. (Author/TRRL)

COORDINATION OF ACTUATED ARTERIAL TRAFFIC SIGNAL SYSTEMS. Jovanis, PP; Gregor, JA. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 112 NO. 4 Jul 1986 pp 416-432 6 Fig. 6 Tab. 24 Ref.. REPORT NO: ASCE Paper 20775. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

Coordinated timing plans may be developed for actuated signal systems but all existing optimization methods require that each actuated signal be converted to its nearest equivalent pretimed unit. Using bandwidth maximization as a starting point, a new procedure is developed that specifically accounts for actuated timing flexibility. Yield points and force offs at non-critical signals are adjusted so they just touch the edges of the through-band while critical signals are unmodified. This method is applied to a data set describing midday traffic conditions on an urban arterial system of six signals in central Illinois. Simulation is used to evaluate these timing plans and compare them with corresponding pretimed alternatives.

CURRENT KNOWLEDGE OF RURAL TRAFFIC BEHAVIOR. McLean, JR. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 13-36 8 Fig. 6 Tab. 33 Ref.

The results of empirical research relevant to two-lane flow are summarized. These are considered as component characteristics, such as desired speed distributions, speed- geometry relations and overtaking gap-acceptance, and the aggregate characteristics as given by speed-flow and capacity. It is shown that there has been a time trend of decreasing coefficient of variation for car desired speed distributions and a general increase in truck speeds.

Typical truck power/mass ratios have increased signiticantly beyond the values assumed in the 1965 highway capacity manual, but there is a lack of recent data relevant to Australian conditions. There is marked variation in overtaking gap-acceptance results reported from different studies, which reflects both the complexity of driver behavior in overtaking and practical difficulties in the collection and interpretation of overtaking data. Speed- flow relations are found to be very site dependent and can provide only a coarse description of the flow process. Recent estimates of two-lane road capacity suggest total capacities in excess of the $2000 \mathrm{veh} / \mathrm{h}$ assumed in the 1965 capacity manual. (TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermount South, Victoria, June 2-3, 1983. This paper was presented in Session 1: Rural Traffic Simulation.

Lay ALLEVIATED BY LEFT-TURN BYPASS LANES. Bruce, EL; Hummer, JE. Transportation Research Board. resportation Research Record N1299 1991 pp 1-8 3 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The effectiveness of a left-turn bypass lane on a two-lane rural T-intersection shown by delay data was examined in this research. The bypass lane was a $12-\mathrm{ft}$-wide marked lane that through traffic may use to move around a vehicle that has stopped to make a left turn onto the minor road of the T. Delay data were generated by the TRAF-NETSIM traftic simulation program sponsored by the FHWA. Delay can be converted into driver cost, which can be compared with the cost of constructing the lane, to provide a good indication of the point at which the extra lane would be warranted. Seven factors that may affect the need for the extra lane were tested: the opposing through volume, the opposing right-tum volume, the through volume, the lett-turn volume, vehicle speed, and the distance to the nearest upstream and downstream signai. The presence of a bypass lane was also tested to allow comparison between situations with and without left-tum bypass lanes. Sixty-four simulations were run to test the factors and the interaction among factors. The results indicated that the presence of a bypass lane was a significant factor in deiay, especially when higher levels of opposing and left-turn volumes were present. Significant delay and percent stops savings can be realized by inciuding a left-tum bypass lane in certain situations. This paper appears in Transportation Research Record No. 1299, HOV Facilities and Transportation Systems Management 1991.

DELAY ANALYSIS FOR FREEWAY CORRIDOR SURVEILLANCE, COMMUNICATION, AND CONTROL SYSTEMS. DerT, BR. Transportation Research Board. Transportation Research Record N1132 1987 pp 77-81 4 Fig. 1 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Otfice 2101 Constitution Avenue, NW Washington D.C. 20418

A method of estimating the delay savings due to installation of a freeway corridor surveillance, communication, and control (SC\&C) system is discussed. Using reasonable assumptions, the model estimates recurrent delay by speed-flow relationships and includes the effects of diversion to the frontage road. The nonrecurrent delay savings is found by using a graphical technique on a plat of time versus cumulative vehicles. The model parameters are easily adjusted for local conditions. The model provides a valuable tool for ranking SC\&C projects and obtaining an estimate of their benefits. This paper appeared in Transportation Research Record No. 1132, Freeway Management and Operations.

DELAY AT LIGHT RAIL TRANSIT GRADE CROSSINGS. Research rept. Sep 83-Sep 87. ClineJ.C.; Urbanik-T.; Rymer-B. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI2108433910, FHWATX8733910. Mar 86. 67p.

The report represents the results of computer simulation work using Federal Highway Administration's NETSIM model to evaluate the delays incurred by automobile traffic when light rail transit (LRT) vehicles cross arterial streets at-grade. The operation simulated indicates the upperbounds of delay that would occur when light rail transit vehicles operating in street medians, and special signal phasing are not considered.

DELAY MODELS FOR MIXED PLATOON AND SECONDARY FLOWS. Rouphail, NM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 114 NO. 3 Mar 1988 pp 131-152 Figs. Tabs. Refs. Apps.. REPORT NO: ASCE Paper 22254. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

A mathematical model is described for estimating approach delays at pretimed, signalized, coordinated intersections. The delay models incorporate the size of and flow rate within the progression bandwidth. Platcon dispersion and secondary flows are considered via a simplified platoon-dispersion aigorithm calibrated from the TRANSYT-7F model. The basic premise in this study is that traffic is assumed to arrive at the progressed approach
in two average flow rates, one within the progression bandwidth, and another outside of it. This modeling concept represents a middle ground between bandwidth models that assume a constant low rate in the dispersed platoon and TRANSYT-like techniques where arrival fiow rates vary in each time sice of the cycle length. The delay models are evaluated with Webster's delay formula for random arrivals and with simulated data in NETSIM; in both cases the results compare very favorably. Pending field validation of the delay estimates, an immediate application of the models is the development of progression adjustment factors, which can be readity estimated from system signal-timing parameters and flow rates derived herein.

DELAY MODELS OF TRAFFIC-ACTUATED SIGNAL CONTROLS. Lin, FB; Mazdeyasna, F (Clarkson College of Technology, New York). Transportation Research Board. Transportation Research Record N905 1983 pp 33-38 7 Fig. 8 Ref.. AVAILABLE FROM: Transpontation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Traffic-actuated signal controls have more control vanables for engineers to deal with than a pretimed control. The increased sophistication in their control logic provides greater flexibilities in signal control but also makes the evaluation of their performance more difficult. At the heart of the problem is that traffic delays cannot be readily related to the control variables of a traffic-actuated control. This prompts practicing engineers to rely mostly on short-term, subjective field observations for evaluation purposes. To provide an improved capability for evaluating altemative timing setting, delay models are developed in this study for semiactuated and full-actuated controls that employ motion detectors and sequential phasing. These models are based on a modified version of Webster's formula. The modifications include the use of average cycle length, average green-duration, and two coefficients of sensitivity that reflect the degree of sensitivity of delay to a given combination of traffic and control conditions. Average cycle length and average green duration are dependent on the settings of the control variables and the flow pattern at an intersection. They can be estimated by existing methods. (Author) This paper appeared in Transportation Research Record No. 905, Traflic Flow, Capacity, and Measurements.

DEMAND-RESPONSE゚ DECENTRALIZED URBAN TRAFFIC CONTROL. PART 2. NETWORK EXTENSIONS. Gartner, NH; Kaltenbach, MH; Miyamoto, MM. Lowell University, Massachusetts Lowell Massachusetts 01854. Jul 1983 159p. REPORT NO: ULRF-05-2998-2; DOT/OST/P34-85/009. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

Part 1 of this study described the development of models and a strategy for optimal real-time control of traffic at a signalized intersection. The work has been extended in a number of ways which are described in this report. First, a NETSIM based simulation study was conducted to test the effectiveness of the strategy using field collected traffic flow data. Second, the basis demand-responsive optimization module was modified to consider impacts on adjacent nodes and thus allow its integration into a decentralized network control system. Various flow estimation procedures were developed and tested for this purpose. Finally, an open-loop feedback model is described which combines simulation add optimization within an integrated network structure. The results reported in this study indicate the feasibility and advantages of applying demand-responsive strategies for traffic signal control at individual intersections as well as at flexibly coordinated network configurations. See Also PB82-220088.

DEMONSTRATION OF THE EFFECTS OF HARMONIZED SPEED ON EFFICIENCY AND TRAFFIC SAFETY - A TRAFFIC SIMULATION STUDY OF TRAFFIC INTERACTION EFFECTS. REPORT SUMMARY. Carisson, A; Nilsson, G. National Swedish Road \& Trattic Research Institute. Nordic Road and Transport Research VOL. 1 NO. 11989 pp 20-21 1 Fig. 3 Tab.. AVAILABLE FROM: National Swedish Road \& Tratic Research Institute Editor-in-chief S-581 01 Linkoeping Sweden

Different drivers choose their speeds along a road with regard to a number of factors. Among these, speed limits and the speed as indicated by the speedometer are naturally of great importance. In the PRO-NET project (which is part of the main Prometheus project) the VTI has performed computer simulations aimed at studying the possibilities of achieving both higher traffic efficiency (trafficability) and better traffic safety.

SisTRATION OF TRAF-NETSIM FOR TRAFFIC OPERATIONS MANAGEMENT. FINAL REPORT. Sulzberg, JD; theky, MJ. Virginia Transportation Research Council P.O. Box 3817, University Station Charlottesville Virginia 22903; in Department of Transportation 1221 East Broad Street Richmond Virginia 23219; Federal Highway Administration Th Street, SW Washington D.C. 20590. Aug 1991 73p 6 Fig. 11 Tab. 34 Ref. 6 App.. REPORT NO: FHWANA-92-R3; 292-R3. AVAILABLE FROM: National Technical Intarmation Service 5285 Port Royal Road Springtield Virginia 22161

The utility of the simulation package TRAF-NETSIM to the traffic engineer is assessed and demonstrated by means of a case study. The methodology employed in performing the analysis is presented in a way that will aid future users of TRAF-NETSIM. The advantages and disadvantages of TRAF-NETSIM are documented along with the human resource requirements for a first-time application of the program. TRAF-NETSIM permits the engineer to compare alternative control and design strategies for a traffic intersection, cornidor or network and allows the user to design and test within the office environment the simulation of many traffic options. TRAF-NETSIM attempts to be as realistic as possible. Lanes can be channelized for turns only or designated for carpool or bus activity. Pedestrian activity, long- and short-term events, and bus routes can be simulated as well. Creativity permits the engineer to evaluate unusual networks when required. The output of TRAF-NETSIM provides the user with a host of measures of effectiveness to compare traffic options. Delay time/vehicle, number of phase failures, speed, vehicie miles, stops/vehicle trip are some of the measures of effectiveness that can be used to evaluate networks.

Fivation of equations for queue lengith, stops, And delay for fixed-time traffic signals. jnije, WB (Steilenbosch University, South Africa). Transportation Research Board. Transportation Research Record N905 20 pp 93-95 5 Fig.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, WWashington D.C. 20418

The existing methods for the calculation of queve length, number of stops, and delay for isolated traffic intersections are applicable either to undersaturated stationary conditions or to oversaturated conditions. As far as is known, po model exists that is applicable to all conditions. Equations are derived for the calculation of queue length, number of stops, and delay for isolated fixed-time signalized intersections that are applicable to undersaturated as well as to oversaturated conditions. In the derivation the macroscopic approach to traffic flow is used. This approach has been shown to be sufficiently accurate for practical purposes. Traffic flow at a signalized intersection is considered a Markov process. Equations are derived for expected queue lengths, expected number of stops, and expected total delay. These equations can also be used for the optimization of isoiated fixed-time signalized intersections. (Author) This paper appeared in Transportation Research Record No. 905, Traffic Flow, Capacity, and Measurements.

PESIGN LENGTHS OF LEFT- OR RIGHT-TURN LANES WITH SEPARATE SIGNAL PHASES. Oppenlander, JC; Oppenlander, JE. Institute of Transportation Engineers. ITE Journal VOL. 59 NO. 7 Jul 1989 pp 23-26 Figs. 3 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024-2729

A study is described which applied a rational procedure to determine the design length for lett-turn or right-turn lanes with separate signal control. For this type of intersection regulation, the arrival and service rate equations are reasonably accurate predictors for traffic operations of both left and right-turning lanes. The design criteria are applicable for those signalized intersections where special turning lanes are deemed to be warranted on one or more approaches. In any situation for turn lanes with separate-phase control, design tradeoffs between length of turning lane and ratio of green time to cycle length are readily achieved with the tabulated values. Any intersection design should be guided by geometric and/or control warrants in terms of the necessities for special turning lanes and for separate signal phases that are applicable for these turning-lane lengths.

DESIGN, PERFORMANCE AND PLANNING OF SIGNALIZED ARTERIAL TRAFFIC NETWORKS. Final rept. Rao-T.S.C.S. California Univ., Berkeley. Dept. of Civil Engineering. RAOTRAFFIC871, Dec 87. 398p.

The report presents the study of an arterial (signalized) traffic net-work analysis using TRANSYT-7F computer software program. The performance of the system is evaiuated in terms of periormance index, average delay per vehicle, percent stops, rate of fuel spent and speed of the system on the whole. Several alternative schemes for the improvement of the system have been studied and the results are presented. Extensive study has been conducted on the influences of various parameters on the system performance. Field data has been collected since 1963 using the FORECAST PLUS computer software package forecasts for the year 2010 have been derived.

DETERMINING PARAMETERS OF THE CONGESTED PART OF THE FUNDAMENTAL DIAGRAM. Botma, H; Detma, H_{1} DJ (Delft University Of Technology; Studiecentrum Verkeerstechniek). Werkdagcommissie. Bijdragen Verkeerskundige Werkdagen 1983 Apr 1983 pp 799-814 6 Fig. 3 Tab. 5 Ref. Dutch. AVAILABLE FROM: Werkdagcommissie P.O. Box 163 Driebergen-rijsenbur Netherlands

In many traffic stream models the role of the fundamental diagram is of great importance. Using measurements on queues at roadblocks it is possible to determine parameters of the level of service F region of the diagram: viz saturation flow, mean speed at saturation flow, jam concentration and the speed of the starting wave. A description of the method and some results of data from one-lane traffic are presented. Special attention is given to the problem of the influence of lorries. (Author/TRRL) Conference papers of the Working Days on Tratfic Engineer 1983.

DEVELOPMENT AND APPLICATION OF A MODEL TO INVESTIGATE THE TECHNICAL REQUIREMENTS FOR SIGNALS TO DESIGN INTERSECTIONS. Myrrhe, R; Schnuell, R. Bundesminister fuer Verkehr, Abteilung Strassenbau Lennestrasse 30 D-5300 Bonn West Germany. Mar 1986 56p German. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

The traffic flow in signalized intersections is determined by various structural measures such as the arrangement of separating strips and the location of crossings as well as controls via cycle time and number of phases. To quantity these measured individually and in combination with one and another within the reported work a model has been developed which calculates the parameters of traffic flow quality and combined evaluation criteria from the entered elements of design and the calculated signal timing plan, taking obstructed streams of traffic into consideration. The application of the model shows that because of the widening of the intersection area a definite increase of the decisive intergreen times has to be accepted when shitting the crossings as well as when arranging separating strips. However, when allowing obstructed streams of traffic this disadvantage is more than compensated for and shorter cycle times are achieved. One can deduce from the results the recommendation to use the shiff of the crossings as a relatively unproblematic means to improve the quality of the traffic flow. This takes on more importance as the traffic at the intersection increases.

DEVELOPMENT AND APPLICATION OF THE SSTOP TRAFFIC SIGNAL OPTIMIZATION PROGRAM. Lam, JK; Ugge, AJ; Allen, BL (Delcan Limited; Ontario Ministry of Transportation \& Communic, Can; McMaster University, Canada). Wyllie and Utnal Limited 1 Greensboro Drive, Suite 300 Rexdale Ontario Canada. 1982 pp 495-513 2 Fig. 3 Tab. 5 Ref.

An efficient otfline traffic signal system optimization program called sstop has been developed. The development and underlying theory of the sstop program is described. The program has been extensively tested and evaluated in several Canadian cities. As part of testing and evaluation, sstop has been compared with the transyt program. The results indicate that the signal timings generated by sstop compare favorably with those generated by transyt. Input preparation for sstop is easier and faster than for transyt. Computer requirements and running costs are much lower for sstop. Subsequently, the sstop program has been successfully applied and the results implemented in several Canadian cities. Suggestions for further improvements of the program are presented. For the covering abstract of the conference see TRIS 378581. (Author/TRRL) Proceedings of the 7th Annual Conference on Cost Effective Measures for Transport Improvements, Chelsea Inn, Toronto, Canada, May 30 to June 2, 1982.

DEVELOPMENT AND APPLICATIONS OF TRAFFIC SIMULATION MODELS AT THE KARLSRUHE INSTITUT FUR VERKEHRWESEN. LEUTZBACH, W; WIEDEMANN, R. TRAFFIC ENGINEERING \& CONTROL VOL. 27 NO. 5 May 1986 PP 270-278 ENGLISH

BY WILHELM LEUTZBACH AND RAINER WIEDEMANN ILLUSTRATED BIBLIOGRAPHY: P. 278
DEVELOPMENT OF A FREEWAY CORRIDOR EVALUATION SYSTEM - PASSER IV. FINAL REPORT. Cunagin, WD; Borchardt, D; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration Office of Research and Development, 400 7th Street, SW Washington D.C. 20590. Aug 1986 85p. REPORT NO: FHWATX-86/63+281-2F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This report describes and presents the results of a study to develop a system of freeway corridor evaluation and improvement tools to be known by the acronym PASSER IV. This effort resulted in the production of several computer programs implementing its findings. The first stage of this research involved a detailed appraisal of the
existing technology for: the evaluation of the effects of changes in the characteristics of facilities in a freeway corridor upon the traftic flow in the corridor; and improving the timing of tratfic signals in a freeway corridor such that the total throughout the corridor is enhanced. The study also included close contact with transportation professionals in Dallas/Fort Worth, Houston, and San Antonio to ensure that the research was directed toward solving problems of importance to practitioners. Procedures and computer programs were developed to quickly analyze urban freeway corridor alternatives. A simple, easy-to-use, progression-based, signal optimization algorithm was developed and implemented as a computer program.

EIOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 3: INDOOR VALIDATION TEST ULTS. Lawther, JM. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College haylvania 16804; Federal Highway Administration Tumer Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean thia 22101. Mar 1985 141p. REPORT NO: FHWA-TS-85-203; FCP 3322-418. AVAILABLE FROM: National Technical ration Service 5285 Port Royal Road Springtield Virginia 22161

This volume discusses an experimental investigation of noise propagation and compares experimental results to predictions. The experiment entailed a simulation of highway noise radiation from sources on a roadway, to microphones mounted above selected ground covers. In some instances the roadway was screened by a vertical noise barrier. The experimental setup was assembled in a large gymnasium so as to minimize changes in environmental parameters and to assure wind-free sound propagation. Source frequencies were scaled up five-to-one over real highway emissions, so that received levels could be converted properly to those that would prevail at distances five times the actual gymnasium distances. Predictions were made of screened and unscreened L sub eq values at 16 microphone locations for each four types of floor covering and for two source line heights, representing car and truck source lines. The Penn State University Highway Transportation Noise prediction model (PSUHTRAN) was used to generate the predictions. PSUHTRAN predictions were in good-to-fair agreement with measurements. Measurement repeatability was excellent. The measured data pointed the way for improvements in the predietion model. See also Volume 1 - Executive Summary (TRIS 461878), Volume 2 - Final Report (TRIS 461879), Volume 4 - Highway Traffic Testing of PSUHTRAN Validity (TRIS 461881), Volume 5 - Basis for PSUHTRAN Highway Traffic Noise Prediction Model (TRIS 461882), and Volume 6 - PSUHTRAN/NDATA User's Manual (TRIS 461883).

EVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 4: HIGHWAY TRAFFIC ESTING OF PSUHTRAN VALIDITY. Lawther, JM. Pennsyivania State University Applied Research Laboratory, P.O. Box \pm State College Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 188p. REPORT NO: FHWA-TS-85-204; FCP 3322-418. AVAILABLE FROM: National fechnical Information Service 5285 Port Royal Road Springtield Virginia 22161

This volume describes the full-scaie experiments that have been done to facilitate the development of the new highway traffic noise prediction model, PSUHTRAN, and to establish the validity of that model. Full-scaie experiments have been conducted at three general locations. The first was a research site along a rural highway near Penn State University. The second was a set of freeway sites in the vicinity of Washington, DC, and the third was another set of sites in New Jersey. PSUHTRAN predictions are compared with available measurements and also, in some cases, with the predictions of the Federal Highway Administration (FHWA) Level 1 and 2 program, STAMINA. Attempts were made in the rural highway testing to establish procedures for defining the distribution of vehicle source intensity with vertical position on the vehicle. These were unsuccessful. The comparisons of predictions and measurements, though insufficient in scope to fully validate PSUHTRAN, were good enough to suggest that FHWA begin a second evaluation phase on the model. See also Volume 1 - Executive Summary (TRIS 461878), Volume 2 - Final Report (TRIS 461879), Volume 3 - Indoor Validation Test Results (TRIS 461880), Volume 5 - Basis for PSUHTRAN Highway Traffic Noise Prediction Model (TRIS 461882), and Volume 6. PSUHTRAN/INDATA User's Manual (TRIS 461883).

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 5: BASIS FOR PSUHTRAN highway Traffic NOISE PREDICTION MODEL. Lawther, JM. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 140p. REPORT NO: FHWA-TS-85-205; FCP 3322-418. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This volume provides the analytical basis for the PSUHTRAN highway tratfic noise prediction model. The predicted value of L sub eq at a roadside bocation is written in terms of adjustments to a source-dependent reference level
just as analyses of previous Federal Highway Administration model developments have done. Thy model, however, computes some of the adjustments by accumulating the effects on a frequency bend band basis. The reference level for PSUHTRAN in each frequency band is a free field level, dedures,
than directly taken from, the measured data. The effect of the ground is regarded as an intervention the effect of a noise barrier, and its computation is incorporated in a computation of an overall shieldis., whether a noise barrier is present or not. The report defines the computations involved at a givent, reflection factors, barrier diffraction factors, and distance correction factors. Complex vector notifie? facilitate coherent summation of sound propagation over the multiple paths between a source point int. See also Volume 1 - Executive Summary (TRIS 461878), Volume 2 - Final Report (TRIS 461879), Indoor Validation Test Results (TRIS 461880), Volume 4 - Highway Traffic Testing of PSUHTRAN Vi" 461881), and Volume 6 - PSUHTRAN/NDATA User's Manual (TRIS 461883).

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL VOLUME 1: EXECUTIVE 8 (Lawther, JM. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College Pennsylverit. Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 221012 5p. REPORT NO: FHWA-TS-85-201; FCP 3322-418. AVAILABLE FROM: National Technical Information Servicé Royal Road Springfield Virginia 22161

This executive summary provides a quick look at the work done by the Pennsyivania State Univerity development and testing of a new digital computer oriented highway traffic noise prediction modef PSUHTRAN. This volume is the first of six telling the story of the development. The new model permits ot, to account for a larger number of site parameters to which the values of received traffic noise levels aro The source of the development work included indoor research experiments and outdoor field evaluation as the model design work itself. The model has now been delivered to the Federal Highway Administration, tura a second extensive phase of model test and evaluation is anticipated. See also Volume 2 - Final Report IIRiss 461879), Vplume 3 - Indoor Validation Test Results (TRIS 461880), Volume 4 - Highway Traffic Tenthitat PSUHTRAN Validity (TRIS 461881), Volume 5 - Basis for PSUHTRAN Highway Traffic Noise Prediction Ta0ion (TRIS 461882), and Volume 6 - PSUHTRANINDAT User's Manual (TRIS 461883).

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC JM Pennsylvania State University Apolied Research Laboratory, P O. Box 30 State College Pennsylvania 16804; Federt Highway Administration Turner Fairbank Hwy Res Critr, 6300 Georgetown Pike McLean Virginia 22101. Mar 1985 106p. REPORT NO: FHWA-TS-85-202; FCP 3322-418. AVAILABLE FROM: National Technical Intormation Service 5285 Port Royal Road Springfield Virginia 22161

This report, Volume 2 of a 6 volume series, is the final report on the development and partial validation of a new highway traffic noise prediction model called PSUHTRAN (for the Penn State University Highway Transportation Noise Model). The new model accounts for the effects of coherence and wavefront curvature in noise reflection from the ground. It also incorporates a more complete barnier attenuation algorithm than do previous models developed for the Federal Highway Administration (FHWA), and it provides for approximately defining the ground surface in terms of plane polygons. The surface covering of the ground, as characterized by its complex specific impedance and the dependence of that impedance on frequency, is used by PSUHTRAN in modeling the ground reflections. The report summarizes the model features and outlines both the scaie model and the full scale freeway experiments that have been conducted to test the model. Other volumes of the report cover these topics in detail. See also Volume 1 - Executive Summary (TRIS 461878), Volume 3 - Indoor Validation Test Results (TRIS 461880), Volume 4 - Highway Traffic Testing of PSUHTRAN Validity (TRIS 461881), Volume 5 - Basis for PSUHTRAN Highway Traffic Noise Prediction Model (TRIS 461882), and Volume 6 - PSUHTRAN/NDATA User's Manual (TRIS 461883).

DEVELOPMENT OF A NEW HIGHWAY TRAFFIC NOISE PREDICTION MODEL. VOLUME 6: PSUHTRANINDATA USER'S MANUAL. Welz, JP. Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State College Pennsylvania 16804; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike Mclean Virginia 22101. Mar 1985 188p. REPORT NO: FHWA-TS-85-206; FCP 3322-418. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This volume explains how to use a new computer highway noise model. The input data for the new model is described in detail. The manual also describes an interactive data entry program used in conjunction with the model. An example problem is included complete with a listing of a terminal session and program output. See also

Abstract

Volume 1 - Executive Summary (TRIS 461878), Volume 2 - Final Report (TRIS 461879), Volume 3 - Indoor Validation Test Results (TRIS 461880), Volume 4-Highway Traffic Testing of PSUHTRAN Validity (TRIS 461881), and Volume 5 - Basis tor PSUHTRAN Highway Traftic Noise Prediction Model (TRIS 461883).

YVLOPMENT OF COMPACT MICROSIMULATION FOR ANALYZING FREEWAY OPERATIONS AND DESIGN. Bullen, P) (Pittsburgh University, Pittsburgh). Transportation Research Board. Transportation Research Record N841 1982 pp 184 Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW \%hhington D.C. 20418

The development of the treeway microsimulation FOMIS is described and an example of the kind of analysis possible with it is given. The model uses the vehicle-behavior algorithms of the freeway component of the simulation INTRAS, which is the corridor microsimulation developed for the Federal Highway Administration. The integration of these algorithms into a revised model structure overcomes some traffic operations difficulties experienced with INTRAS, greatly improves model speed, and provides a simulation model that can run on computers of very limited capacity. As an example of its application, a weaving section on I-95 in Dade County, Florida, is analyzed. The resulting analyses indicate operating patterns not generally derivable with existing methods. Varied and unusual design solutions emerge from the analyses. A model of this kind, which uses the particular traffic algorithms of INTRAS, has a potential as a supplemental tool to established procedures for applied freeway design problems. It could also assist in research into weaving and merging behavior in complex situations. (Authors) This paper appeared in Transportation Research Board Record No. 841, Freeway Operations, Railroad-Highway Grade Crossings, and Evaluating Highway Improvements, 1982.

DEVELOPMENT OF GRAPHICS DISPLAYS FOR THE INTEGRATED TRAFFIC DATA SYSTEM. Santiago, AJ; Chin, S-M. Iransportation Research Board. Transporation Research Record N1112 1987 pp 140-143 1 Fig.. AVAILABLE FROM: Iransportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The developthent of interactive graphics displays for the Integrated Traffic Data System (ITDS) is described, and technical details on the hardware and software considerations, which, to a large extent, influenced the end product are provided. ITDS is a user-friendly, data base-driven interface to various traffic simulation and signal timing optimization programs. Although very useful and effective, ITDS relies extensively on the user's capability to load and maintain traffic data from queuing menus. By adding the graphics display interface, users are now able to efficiently load and maintain the data base, draw schematic displays of the data stored, efficiently determine their integrity, and significantly improve the quality of the data used as input to traffic models. This paper is oriented towards individuals who are, or will be, users of ITDS and traffic modeis, and individuals who are involved in the development of graphics software for transportation applications. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

DEVELOPMENTALSTUDY OF IMPLEMENTATION GUIDELINES FOR LEFT-TURN TREATMENTS. Lin, H-J; Machemehl, RB (Texas University, Austin). Transportation Research Board. Transportation Research Record N905 1983 pp 96-105 13 Fig. 8 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

At signalized intersections, the common treatment for improving left-turn bay or a separate left-turn phase. However, under given traffic conditions and geometric configurations, there have been no universally accepted guidelines for ascertaining the need for a left-turn treatment. In this research, the TEXAS traffic simulation model is employed to study the capacity and performance of lett-turn movements at signalized intersections in order to devise warrants for left-turn treatments. Since left-turn performance is germane to left-turn capacity, existing methods for estimating left-turn capacity are thoroughly reviewed and a new method that can yield reasonable estimates for left-turn capacity under general conditions of left-turn movements is proposed. Furthermore, different measures of effectiveness are used to evaluate the performance of left-turn movements under various traffic conditions. With a set of delay criteria, critical conditions of left-turn movements are identified. Finally, a new capacity-based warrant is derived from the relationship between the critical lett-turn volume and left-turn capacity. (Author) This paper appeared in Transportation Research Record No. 905, Traffic Flow, Capacity, and Measurements.

DIRECTIONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. VOLUME 1. TECHNICAL REPORT. FINAL REPORT. Chang, ECP; Messer, CI. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pik McLean Virginia 22101. Jul 1985 86p. REPORT NO: FHWARD-86/20. AVAILABLE FROM: National Technical Informat Service 5285 Port Royal Road Springtield Virginia 22161

The maximizing progression bandwidth concept has been used to calculate optimal offsets in arterial signal systems for approximately 60 years. This study developed an algorithm for determining the best directional weighting for arterial bandwidth optimization programs, such as MAXBAND or PASSER II, to improve design and operation decisions especially with heavily directional arterial street movements during peak-hour conditions.

DIRECTONAL WEIGHTING FOR MAXIMAL BANDWIDTH ARTERIAL SIGNAL OPTIMIZATION PROGRAMS. Chang, EC-P; Messer, CJ; Cohen, SL. Transportation Research Board. Transportation Research Record N1057 1986 pp 10-19 8 Fig. 6 Tab. 20 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The concept of maximizing two-way progression to compute signal-timing plans for signalized arterials has been used for 60 years. One of the unknown questions that exists is how the available two-way band should be apportioned between the two directions of traffic flow. Until now, the two directions have been weighted in proportion to the ratio of the average volume in each direction. However, preliminary studies have indicated that it would be better to apportion the two-way progression bandwidths than to use the volume-ratio criterion alone. Described is a bandwidth weighting algorithm that is based on delay. A simple delay model developed for the PASSER II program was used to estimate delay. Through extensive testing, using the NETSIM model on nine real-worid arterial data sets, it was found that three different expressions for the bandwidth ratio should be used; which expression was to be used depended on whether the directional volume ratio was less than 0.45 , between 0.45 and 0.55 , or more than 0.55 . All three expressions invelve the ratio of delay in the two directions. A blind test was performed by using six scenarios based on two real-world arterials that were not inciuded in the nine test arterials used for preliminary testing. Based on comparisons using the NETSIM model, the result of this blind test indicated that the weighting algorithm developed in this research generally performed better than both the arbitrary equal-weighting and the MAXBAND average volume-ratio criteria, which have been used up to now. This paper appeared in Transportation Research Record N1057, Traftic Signal Sysiems.

DYNAMIC ANALYSIS OF LANE CLOSURE STRATEGIES. Mahmassani, HS; Jayakrishnan, R. American Society of Civ Engineers. Journal of Transportation Engineering VOL. 114 NO. 4 Jul 1988 pp 476-496 Figs. Tabs. Rets. Apps.. REPORT NO: ASCE Paper 22622. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

A dynamic simulation model is extended to represent tratic system disruptions in the form of lane closures. The model has two components: a macroparticle traffic simulator, and a user decisions component which comprises behavioral mechanisms governing the daily departure time decisions of commuters. The model is applied to the anatysis of six alternative lane closure strategies associated with planned repair activities. Examples of model results are described, highlighting the tradeoffs between the performance of the system during the perturbation period and the final equilibrium state, as well as the trade-off between the schedule delay and the travel time experienced by system users during those periods.

DYNAMIC MODEL OF PEAK PERIOD CONGESTION. Ben-Akiva, M; Cyna, M; De Palma, A (Massachusetts Institute of Technolog Ministry of Transport, France; McMaster University, Canada). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. $4 / 51984$ pp 339-355 17 Fig. 14 Ref.

This paper examines the problem of peak period traffic congestion and the analysis of alternative congestion relief methods. It presents a dynamic model of the queues and delays at a single point of traffic congestion because there is ample evidence to suggest that the major delays to users occur at bottlenecks. The model consists of a deterministic queuing model and a model of arrival rate as a function of travel time and schedule delay. A dynamic simulation model also describes the evolution of queues from day to day. The model is used to study the impacts of changes in capacity, total demands, flexibility of work start time and traffic control. Among the numerical results is a demonstration that additional capacity always significantiy reduces the duration of the congestion period, but may result in a less significant improvement in maximum delays. (Author/TRRL)

Abstract

 HLYSIS OF PLANNED TRAFFIC DISRUPTIONS. MAHMASSANI, HS (UNIVERSTY OF TEXAS AT AUSTIN). aNSPORTATION RESEARCH PART A NV199N6 Nov 1990 PP 465-484 ENGLISH choice of route and departure time based on traffic simulation incorporating CONGESTION AND DELAY HANIS. MAHMASSANI (UNIVERSITY OF TEXAS AT AUSTIN)

WAMIC TRAFFIC CONTROL SYSTEM SCOOT - FURTHER DEVELOPMENTS. Bretherton, RD. ENGINEERING OUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 337-9

The SCOOT (Split Cycie and Offset Optimization Technique) urban traffic control system is now operational at over 30 sites in the UK and in overseas cities, including Beijing (Peoples Republic of China), Hong Kong and Red Deer (Canada). SCOOT has been shown to reduce the delay to vehicles by an average of 12 percent compared to up-to-date TRANSYT fixed time plans and by 20 percent compared to fixed time plans which are about 3 years old. SCOOT is a fully adaptive system which collects data from vehicle detectors and then calculates and impiements the settings which reduce delay and stops. The SCOOT computer program contains a traffic model of each section of road in the network and knows at any time the flow, queue, congestion and spare capacity throughout the network. This 'knowledge' of SCOOT can be used for purposes other than traffic control and research has been continuing to exploit its potential in two main areas: traffic management and traffic information.(A) For the covering abstract of the conference see IRRD 832076.

IOYNEMO: A MODEL FOR THE SIMULATION OF TRAFFIC FLOW IN MOTORWAY NETWORKS. Schwerdtfeger, T (fechnical University of Karlsruhe, West Germany). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 80-6764-008-5. 1984 pp 65-87 12 Fig. 18 Ref.

The paper presents the simulation model dynemo which has been designed for the development, evaluation and optimizationtof traffic control systems for motorway networks. A new traffic flow model included with the simulation package combines the advantages of a macroscopic model (computational simplicity) with the advantages of a microscopic model (output statistics relating to individual vehicles). For each stretch in the network, the model needs as input a relationship between traffic density and mean speed and the distribution of free flow speeds. The new traffic flow model is validated by use of an example. The simulation package is implemented on a 16-bit microcomputer. A real network with a traffic control system has been simulated with the model. (Author/TRRL) Papers presented during the Ninth International Symposium on Transportation and Traffic Theory heid in Delft the Netheriands, 11-13 July 1984.

EFFECT OF BUS TURNOUTS ON TRAFFIC CONGESTION AND FUEL CONSUMPTION. Cohen, SL (Federal Highway Administration). Transportation Research Board. Transportation Research Record N901 1983 pp 33-38 4 Fig. 3 Tab. 13 Ref..

The NETSIM simulation model was employed to determine the energy impacts of using bus turnouts. Two sets of computer runs were made. The first one consisted of 80 runs of a single intersection with different values of independent variables. The second consisted of six runs of three different networks. The result was that bus turnouts were found to have some potential for improving the fuel efficiency of the general traftic stream but only at high values of volume-to-capacity ratios, high bus volumes, and long bus-loading times. (Author) This paper appeared in Transportation Research Record No. 901, Energy Impacts of Geometrics--A Symposium.

EFFECT OF CLEARANCE INTERVAL TIMING ON TRAFFIC FLOW AND CRASHES AT SIGNALIZED INTERSECTIONS. Zador, P; Stein, H; Shapiro, S; Tarnoff, P. Institute of Transportation Engineers. ITE Journal VOL 55 NO. 11 Nov 1985 pp 36-39 9 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

The timing of traffic signal clearance intervals (yellow and all-red phases) can affect accident rates at signalized intersections. When clearance intervals are not properly timed some drivers may be forced to choose between abruptly stopping or losing the cross-street red-light protection while crossing the intersection. Abrupt stopping can cause rear-end crashes, and the loss of cross-street red-light protection can cause right-angle crashes. Although driver response to yellow onset has been extensively researched, the effect on the rate of intersection crashes caused by departures from the recommended signal timing practice has not been systematically assessed. This article presents the highlights of a more extensive examination of this relationship.

EFFECT OF LEFT-TURN BAYS ON FUEL CONSUMPTION ON UNCONTROLLED APPROACHES TO STOP-SIGN-CONTROLLED INTERSECTIONS. Dvorak, DV; McCoy, PT (Nebraska University, Lincoln). Transportation Research Board. Transportation Research Record N901 1983 pp 50-53 4 Fig. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Associated with the reductions in delay and stops that result from the provision of left-turn bays is a reduction in fuel consumption. Less delay and fewer stops mean less fuel consumed by vehicle idling and speed-change cycles. The objective of this research was to estimate the effect of the provision of left-turn bays on fuel consumption on uncontrolled approaches to stop-sign-controlled intersections over a range of volumes, approach speeds, and truck percentages on two-way, two-lane roadways. A series of paired computer simulation runs was conducted by using the NETSIM traffic simulation model to evaluate the fuel consumption of the traffic on the uncontrolled approaches with and without left-turn bays. A pairwise comparison of the NETSIM fuel-consumption output from these runs provided the measure of fuel savings due to left-turn bays. Over the range of conditions studied, the fuel savings varied from zero to more than $20 \mathrm{gal} / \mathrm{h}$ for traffic on the approach. The amount of the fuel savings was a complex function of approach volume, opposing volume, left-turn percentage, free-flow approach speed, and truck percentage. Graphs and adjustment factors were developed to describe this relation and provide a means of estimating the fuel savings associated with lett-turn bays. (Author) This paper appeared in Transportation Research Record No. 901, Energy Impacts of Geometrics--A Symposium.

EFFECTIVENESS OF RELEASE TIME MODIFICATION IN ROAD NETWORKS WITH LIGHT SIGNAL SYSTEMS. PT. C. APPENDICES. Schlabbach, K. Technische Hochschule Darmstadt Germany. Jan 1990 202p German. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The objects of the research project are control processes for road networks, which consist of a combination of coordinated fixed time controls ('green wave') with release time modification depending on the tratfic, as this combination makes a promising synthesis of the two control principles 'guiding the traffic' and 'matching to the traffic' possifible. The method of investigation includes an extensive evaluation of the literature by which the process of designing 'green waves' and the many possibilities of modification of the release time were checked. In the second part of the investigations, the control processes of green wave with/ without release time modification were thoroughly tested in a suitable road network. In motorized individual traffic, distinct improvements in waiting times were obtained; speeds of travel and the number of stops were also favorably influenced by the use of release time modification. There were slight effects for the aspects of energy and harmful emitted substances. The OPNV also profited from the reduction in travel times. Pedestrians and cyclists also benefit from release time modification due to reduced waiting times. This part C of the final report contains the Appendices. There is also part B, with pictures and a volume of the text. In German.

EFFECTS OF ARTERIAL PLATOON PROGRESSION ON CAPACITY. Todd, K. Printemall Limited. Traffic Engineering and Control VOL. 29 NO. 9 Sep 1988 pp 468-470 Figs. Refs.

Platoon progression aims at reducing stops and delays in undersaturated conditions. Numerous factors militate against its effectiveness. Unfavorable intersection spacing, turning vehicles and platoon dispersion - the latter abetted by midblock friction, lane changes, unbalanced lane use and differences in vehicie and driver characteristics - all restrict the successful operation of progression to comparatively moderate traffic volumes, and they all tend to lower system capacity. Transferring green signal time to the arterial in order to maintain uninterrupted progression reduces cross flow capacity, while a split adjustment to increase cross flow capacity interferes with satisfactory progression on the arterial. Designed to minimize stops and delays, progression does not maximize system capacity as well; the two goals of minimum delay and maximum capacity are in conflict. The problems of traffic in free-flowing and in congested conditions, it has been said, are so different that different methods have to be employed in their solution: more efforts should be directed at capacity improvements and towards staving off the onset of congestion. Geometric improvements rather than signal timing strategies are the proper answer to capacity limitations.

EFFECTS OF DESIGN ELEMENTS ON MERGING CAPACITY. Skabardonis, A; McDonald, M. Institution of Highways and Transportation. Highways and Transportation VOL. 32 NO. 11 Nov 1985 pp 14-18 11 Fig. 4 Tab. 11 Ref.. AVAILABLE FROM: Institution of Highways and Transportation 3 Lygon Place, Ebury Street London SW1 England

A microscope model was developed to simulate traffic behavior at grade separated interchanges. The model was calibrated and validated from a large UK data base and applied to assess the validity of current ramp entry designs.
The significance of design elements such as acceleration lane length, slip road length and gradient was estimated, and it was found that current design practice for ramp entries is generally inadequate. However, some designs would seem to be "more adequate" than others and the results explore the effects of changes in key parameters. (TRRL)
FFECTS OF PROGRESSION QUALITY AND TRAFFIC FLOW NON-STATIONARITY IN DELAYS MODELS AT KGNALIZED INTERSECTONS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE NIERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, $24-27$ JULY 1991. Chodur, J; Tracz, M. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 91-97 3 Fig. 5 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brooktield Vermont 05036
To allow for the eftect of platooned vehicle arrivals on delays at signalized intersections, the 1985 Highway Capacity Manual (HCM-85) uses progression factors. Results of empirical validation studies of the HCM-85 delay model have shown that the modified model is more accurate and its calibration gave an expression similar to one presented in the NCHRP report. Based on results of simulation studies of the effects of non-stationary flow demands on traffic conditions, a modified form of Akcelik's delay expression is suggested.
EFFECTS OF PROHIBITING LEFT-TURNS AT SIGNALIZED INTERSECTIONS. FINAL REPORT. Habib, P; Thornhill, W; Kaplan, W. Polytechnic Institute of New York 333 Jay Street Brooklyn New York 11201 Federal Highway Administration Tumer Fairbank Hwy Res Cntr, 6300 Georgetown Pike Mclean Virginia 22101. Jul 1984 54p. REPORT NO: FHWARD-84/083; FCP 31A2-022. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

> This report presents the results of analyses conducted to determine the effects of prohibiting of left-turns at intersections on two-way streets without turning bays. The principal focus of the project was the development of a delay-pretiction tool to describe the effect of left turns on through and right turn traffic. This required fied measurements to calibrate NETSIM, the traffic simulation model, which was then used to generate results for a variety of tratfic volumes, approach widths and other traffic variables. The report contains an assessment of the safety value of turn prohibitions as well as the best methods to control the prohibited turn under a variety of physical conditions.

> EMERGING TECHNOLOGICAL TOOLS FOR DETAILED FREEWAY DESIGN AND OPERATIONAL ANALYSIS: TRAFFRESIM, FSMTUTOR, AND FEDIT. Mekemson, J. and Kanaan, A. (VICOR Associates, Manassas, Va.). Proceedings of the 1991 Annual Meeting of the Institute of Transportation Engineers, Washington, D.C.
This paper introduces the Federal Highway Administrations microscopic freeway simulation program (TRAFFRESIM). FRESIM Tutorial program (FSMTUTOR), and input editor (FEDIT).
EMPIRICAL STUDY OF ON-THE-STREET OPERATION OF LRT AND BUSES IN CALGARY. Bababola, A; Morrall, JF (Calgary University, Canada). Institute of Transportation Engineers 9803 102A Avenue, 12th Floor Edmonton Alberta Canada. 1983 20p 7 Fig. 4 Tab. 6 Ref.
Without careful engineering design, the operation of surface LRT may be characterized by delays due to other traffic and signal lights, and a high accident potential. In order to have a better understanding of the mixed-traffic behavior, an empirical study was conducted on the transit operation on Seventh Avenue, Calgary, Alberta. The objectives of this study were to highlight and measure some dominant factors that influence the behavior of buses and LRT; and to collect and analyze some relevant data pertaining to the system. This paper presents the approach used to accomplish these objectives. Although this comprehensive study only shows the present operating characteristics, the potential behavior due to changes in operating policies is still unknown. In view of this, a simulation model is currently being developed to use the result of this study to replicate the existing traffic condition and to ultimately forecast the potential behavior of surface LRT under various operating strategies, such as train length policy, various mix of bus and train, traffic signal plans and dwell times. (TRRL)

ENERGY AND EMISSION CONSEQUENCES OF IMPROVED TRAFFIC SIGNAL SYSTEMS. Kahng, SJ; May, AD (California University, Berkeley). Transportation Research Board. Transportation Research Record N881 1982 pp 34-41 11 Fig. 3 Tab. 23 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The primary objective of this study was to evaluate the impacts of selected strategies for improvement of traff signal systems and to develop policy guidelines for the strategies in light of current realities such as increasing passenger delay on surface streets, high costs and scarcity of fuels, and concern about the environment. The existing simulation and optimization model, TRANSYT6C, was applied to a selected study arterial, San Pablo Avenue in Berkeley, Califomia. Two basic categories of traffic signal timing improvement strategies were evaluated: (a) splits and offsets optimization and (b) optimal cycle length selection. A series of sensitivity analyses was conducted to determine variations in the impact effects of the strategies under different operational environments in terms of changed levels of traffic flow. The effects of different objective tunctions were also investigated and included. The major findings of this investigation include the following. For a given cycle length, optimization of splits and offsets based on either the minimization of passenger delay or fuel consumption also led to near-minimum value for all other measures of effectiveness. Passenger delay and vehicle emission were further reduced by shorter cycle lengths; however, total stops were further reduced by longer cycie lengths. Fuel consumption was relatively less sensitive to changes in cycle length. As the level of traffic flow increased, a moderate cycle length rather than a short cycle length was preferred in order to minimize fuel consumption. Trade-offs between passenger hours saved per gallon of fuel consumed were identified for different cycie lengths and flow levels. (Author) This paper appeared in Transportation Research Record No. 881, Traffic Control Devices and Traffic Signal Systems.
ENERGY SAVINGS THROUGH SIGNAL TIMING OPTIMIZATION AND COORDINATION. McGill, JA; Degroot, P; Ugge, A (Ontario Ministry of Transportation \& Communic, Can; Delcan Canada Limited). Wyllie and Ufnal Limited 1 Greensboro Drive, Suite 300 Rexdale Ontario Canada. 1982 pp 236-256 4 Fig. 4 Tab. 8 Ref.

The primary purpose of the research study described in this paper was to examine the potential impacts of properly timed and coordinated traftic signals on the energy efficiency of road and street networks and to provide a very simple practical method for evaluating fuel savings. Since traffic signal timing does not directly reduce the distance travelled, it has been assumed that excess fuel consumption is a product of unnecessary stops and delays. A number of off-line traffic signal optimization procedures have been developed which attempt to optimize traffic signal operations by minimizing network stops and delays. As one such program stop has proven to be both efficient and effective and was selected for use in this study. For the covering abstract of the conterence see TRIS 378581. (Author/TRRL) Proceedings of the 7th Annual Conference on Cost Effective Measures for Transport Improvements, Cheisea Inn, Toronto, Canada, May 30 to June 2, 1982.

ENGINEERING STRATEGIES FOR MAJOR RECONSTRUCTON OF URBAN HIGHWAYS. VOLUME 2. APPLICATION TO THE I-5 RECONSTRUCTION PROJECT. FINAL REPORT. Recker, WW; Waters, CD; Leonard, JD. California University, Irvine Institute of Transportation Studies irvine California 92717; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590; California Department of Transportation 1120 N Street Sacramento Califomia 95814. Dec 1985 291p. REPORT NO: FHWACAUCUITS/RR-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The research is directed toward developing a consistent methodology to assess the impacts of traffic disruption due to major transportation reconstruction/rehabilitation projects during the period of implementation. The approach taken in the research uses state-0i-the-at traffic simulation models to: (1) estimate the performance of the transportation system during the construction phases, and (2) evaluate atternate construction and traffic redirection strategies to minimize both the direct and indirect losses associated with the construction/rehabilitation. The research results in the development of a convenient tool to assist both the traffic engineer and the transportation planner in selection of reasonable reconstruction/rehabilitation schedules. See also Volume 1, PB88-230883.

ENHANCED FREFLO: MODELING OF CONGESTED ENVIRONMENTS. Rathi, AK; Lieberman, EB; Yedlin, M. Transportation Research Board. Transportation Research Record N1112 1987 pp 61-715 Fig. 9 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Preliminary work with the FREFLO macroscopic freeway trafic simulation model has revealed some limitations in the model's ability to realistically simulate some congested flow conditions. The formulation and implementation of an approach that modifies FREFLO so as to address these limitations is described. This approach yields realistic
simulation results for moderate, as well as severe, congested flow conditions. The basic formulation of FREFLO and the modifications under this approach are presented. The problems observed under congested flow conditions are described and simulation results from test networks are shown. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

ANTERING HEADWAY AT SIGNALIZED INTERSECTIONS IN A SMALL METROPOLITAN AREA. Lee, J; Chen, RL. Irransportation Research Board. Transportation Research Record N1091 1986p 117-126 1 Fig. 13 Tab. 7 Ref.. AVAILABLE IfOM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The entering headway is a parameter of fundamental importance to traffic engineers. It has major applications in intersection capacity and signal timing. However, the attention given to this matter appears to be inadequate. It was indicated by a literature review that past efforts tended to be infrequent, fragmented, and limited in scope. No studies were found using data from small cities or investigating factors that affect entering headways. This study, aimed at measuring entering headways in a small city and examining six factors, was conducted on sites in Lawrence, Kansas. Entering headway values from a total of 1,899 traffic queues were recorded by using video camera equipment. From the data, mean entry headways of vehicles 1 through 12 were found to be $3.80,2.56$, $2.35,2.22,2.16,2.03,1.97,1.94,1.94,1.78,1.64$ and 1.76 . Of the six factors studied, the following were also found: the signal type and the time of day have little influence on vehicular entering headways; vehicles in the inside lane of an intersection approach have lower entering headways than vehicles in the outside lane; vehicles in an intersection approach with lower speed limits have higher entering headways; vehicles in intersection approaches of streets with lower functional classifications have higher entering headways; and langer queue lengths appear to produce shorter entering headways for vehicles. However, because of data limitations, findings on the factors studied shall be viewed as onty preliminary. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

ESTIMATING TIME-DEPENDENT TRIP MATRICES FROM TRAFFIC COUNTS. Willumsen, LG (University College, London). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 397-411 1 Tab. 15 Ref.

The analysis of dynamic congestion problems in uban areas often requires the use of trip matrices estimated for different consecutive time periods, typically $15-20$ minutes. The paper describes an extension of an entropy maximizing model to estimate trip matrices from tratfic counts to cover this requirement. The new model was implemented and tested in combination with Contram, a traffic management simulation model developed at the Transport and Road Research Laboratory. The results from these tests were very encouraging as the matrices obtained were more accurate than those resulting from using simpler approaches. A further extension to the basic model to incorporate variable accuracy of traffic counts is also discussed. (Author/TRRL) Papers presented during the Ninth International Symposium on Transportation and Traffic Theory held in Delft the Netherlands, 11-13 July 1984.

ESTIMATION OF LEFT-TURN TRAFFIC PARAMETERS. Lin, FB; Nadratowski, TT (Clarkson College of Technology). American Society of Civil Engineers. ASCE Journal of Transportation Engineering VOL. 109 NO. 3 May 1983 pp 347-362 11 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

This study examines whether signal setting effects are significant enough to warrant modifications of existing models. It analyzes relationship of the left-turn movement to signal settings and the presence of one and two opposing lanes on the basis of existing understanding and computer simulation.

ESTIMATION OF ROAD USER COST FACTORS BY ROAD TRAFFIC SIMULATION. GYNNERSTEDT, G. PRESSES DE L'ECOLE NATIONALE DES PONTS ET. COLLOQUE INTERNATIONAL SUR LES ROUTES ET LE VOL. 11984 PP 349-353 ENGLISH
G. GYNNERSTEDT ILLUSTRATED NOTE: SOURCE IS MONOGRAPHIC, NOT A SERIES PRESSES DE L'ECOLE NATIONALE DES PONTS ET CHAUSSEES COLOQUE INTERNATIONAL SUR LES ROUTES ET LE DEVELOPPEMENT 1984 : PARIS, FRANCE ROUTES ET DEVELOPPEMENT

EVALUATING TRAFFIC CAPACITY AND IMPROVEMENTS TO ROAD GEOMETRY. Hoban, CJ. International Bank for Reconstruction \& Development 1818 H Street, NW Washington D.C. 20433 0-8213-0965-X. 1987 157p. REPORT NO: TP-74. AVAILABLE FROM: International Bank for Reconstruction \& Development 1818 H Street, NW Washington D.C. 20433

The geometric standards of a road, such as width, minimum curve radius, and maximum grades, can have a major effect on the costs of road construction and maintenance and on the speed, safety, and vehicle operating costs experienced by those who travel on the road. The report investigates methods for evaluating traftic capacity and improvements to road geometry in order to determine economically justified levels of investment in road geometry. A number of models are available for predicting speeds and operating costs for isolated vehicles as a function of road geometry. Of these the World Bank's Highway Design and Maintenance Standards Model (HDM-III) was found to have some advantages. The report concentrates on the development of simple models for incorporating the effects of increasing traffic flow into the road evaluation process. Also available in microfiche only from NTIS as PB88-140629MTS.

EVALUATION OF 1984 LOS ANGELES SUMMER OLYMPICS TRAFFIC MANAGEMENT. FINAL REPORT. Giuliana, G; Haboian, K; Rutherford, K; Prashker, J; Recker, W. California University, Irvine Institute of Transportation Studies Irvine California 92717. Apr 1987 156p Figs. Tabs. Refs. 1 App.. AVALLABLE FROM: California University, Irvine Institute of Transportation Studies Irvine California 92717

The analysis of the Transportation System Management plan employed during the 1984 Los Angeles Summer Olympics shows that the program was a success and that satisfactory conditions were maintained during the event. The study reported here consisted of 3 parts. First a descriptive analysis of highway system performance was made in which traffic volumes, congestion, truck traffic, vehicle occupancy, and traffic accidents were investigated. Truck traffic was evaluated on the basis of visual counts at selected freeway screenlines. The second part of the research analyzed the commuter travel behavior during the Olympics. The analysis was based on a survey of employees' at four downtown Los Angeles work sites. The third part of the research was a simulation study of traffic conditions during the Olympics. Highway system periormance during the Olympics is discussed, and the results are presented of the downtown employee travel survey conducted in order to document work trip travel behavior during the olympics. Detaits of the simulation study are described, as well as that of the calibration procediures and case study. The study results are summarized and policy implications are discussed. Prepared under research contract RTA 13945-55B579

EVALUATION OF BUS LANES. Hounsell, NB; McDonald, M. TRANSPORT AND ROAD RESEARCH LABORATORY. TRRL CONTRACTOR REPORT NCR 81988 216P. REPORT NO: 7

This study relates to the evaluation of bus lanes. It has concentrated on deriving methods for predicting the principal effect of bus lanes, which is on the journey times of priority and non-priority vehicles, although all impacts are considered. This was undertaken by initially collecting data at 22 with-flow and 3 contra-flow bus lanes throughout the UK, covering parameters such as traffic flows and journey times for priority and non-priority vehicles. Such measurements allowed estimates to be made of the maximum journey time (and associated cost) savings for priority vehicles due to the bus lane. However, the prediction of the effects of the bus lanes on non-priority traffic required an assessment to be made of the suitability of three computer-based traffic models, trafficq, contram and blamp, and their application to all or a sample of the study sites. This application involved initial 'calibration' of the models to reflect existing traffic conditions at each site followed by further modelling with the bus lane(s) removed to obtain predictions of 'without' bus lane journey times. These results have enabled predicted economic benefits/disbenefits of each bus lane to be determined. A step-by-step procedure for evaluating bus lanes, using either modelling or non-modeiling techniques as appropriate, has also been developed and is described in the report. This procedure is illustrated using data from two bus lanes recently introduced in London, where 'before-and-after' surveys were carried out which have aiso allowed elements of the evaluation procedure to be validated. For other studies undertaken as part of the review of bus priority measures see contractor reports nos 88 and 89 (IRRD 816384 and 816385 respectively).

EVALUATION OF COMPUTER PROGRAMS FOR PREDICTING THE PERFORMANCE OF SIGNALIZED NTERSECTIONS. Rao, TSCS. California University, Berkeley Department of Civil Engineering Berkeley California 94720. Jan 1988 193p. REPORT NO: RAO/TRAFFIC-88/02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The study evaluated several computer software packages for capacity and traftic-performance analysis of signalized intersections. For this purpose an extensive inventory has been set-up consisting of several computer sottware packages and four important programs have been selected. The evaluation is based on applying the four computer programs to four intersection data sets for which extensive input data are available. Cost related and effectiveness-related criteria have been established in order to evaluate the four programs. The cost related criteria included time needed to learn the method, input requirements, clarity and completeness of methodology and time needed to apply the method. The effectiveness-related criteria included degree of disaggregation, capacity performance outputs, flexibility of use and user friendiiness.

EVALUATION OF CONTROL STRATEGIES FOR BUS PREEMPTION OF TRAFFIC SIGNALS. Smith, MJ. New Jersey
Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1985 Final Rpt. 53p 5 Fig. 2 Tab. 3 App.. REPORT NO: FHWA-NJ-RD-85-003. AVAILABLE FROM: New Jersey Department of Transportation Bureau of Transportation Systems Research, 1035 Parkway Ave Trenton New Jersey 08625

An algonthm which aliows signal preemption by buses was developed for the NETSIM model. It was programmed into this model by FHWA. Subsequently, this algorithm was tested by comparing the results generated by the NETSIM model with results obtained from a manual implementation of bus preemption at one intersection in the field. (Author)

EVALUATION OF DYNAMIC FREEWAY FLOW MODEL BY USING FIELD DATA (DISCUSSION). Derzko, NA; Ugge, Ad; Case, ER; Payne, \%J (Ontario Ministry of Transportation \& Communic, Can). Transportation Research Board. Transportation Research Record N905 1983 pp 52-60 12 Fig. 1 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

> An attempt to calibrate and validate a dynamic freeway model by using real data from Queen Elizaboth Way in Ontario, Canada, is described. The model used in this research is the one developed by H. Payne; one of the Phillips kinetic models was also applied for comparison purposes. The overall conclusion is that the models exhibit instabilities in their behavior and do not track real road data correctly. (Author) This paper appeared in Transportation Research Record No. 905 , Traffic Flow, Capacity, and Measurements.
evaluation of freeway improvement alternatives using corflo. Liu, C. (aEPCO, Rockville, Md.) and Kanaan, A. (VIGgEN Corporation, Reston, Va.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

This paper describes the application of the CORFLO simuiation model on a section of the $1-70$ freeway in Columbus, Ohio. CORFLO is an integrated tratic simulation system for coridors and is a part of the TRAF system developed by the Federal Highway Administration.

EVALUATION OF ROADWAY SITES FOR QUEUE MANAGEMENT. Final rept. Miller-H.J.; Demetsky-M.J. Virginia Transportation Research Council, Charlottesville. Federal Highway Administration, Richmond, VA. Virginia Div. Virginia Dept. of Transportation, Richmond. VTRC92R5, FHWAVA92R5. Dec 91. 126p.

The study addresses the problem of queueing on highway facilities, wherein a large number of computerized methods for the analysis of different queueing situations are available. A three-tier classification system of the methodologies was used with the following categories: dedicated techniques, classical queueing theory, and simulation. A knowiedge base for selecting an appropriate technique for a specitic facility and problem is provided. The utilization of the video camera to capture queueing data in the field is described and applied to evaluate atternative methods to analyze queueing at signalized intersections. The evaluation revealed three distinct approaches from the respective categories for the evaluation of queusing at signalized intersections: the HCM method, the vacation-server queueing model, and TRAF-NETSIM. It was found that the queueing model and simulation methods offer flexibility over the more structured, dedicated HCM method and should be considered in the analysis of other situations as well as of signalized intersections.

EVALUATION OF SIGNAL TIMING AND COORDINATION PROCEDURES: VOLUME II: FIELD MANUAL. Arnold, Virginia Highway \& Transportation Research Council P.O. Box 3817, University Station Charlottesville Virginia Virginia Department of Highways and Transportation 1221 East Broad Street Richmond Virginia 23219 Federal Hiohneip Administration 400 7th Street, SW Washington D.C. 20590. Sep 1985 62p 19 Fig. 6 Tab. 13 Ref.. REPORT, $4 \boldsymbol{4}$, FHWA-VA-86-08-09; VHTRC 86-R9. AVAILABLE FROM: Virginia Highway \& Transportation Research Council P.O. Eox 3817. University Station Charlottesvilie Virginia 22903

Based on a review of available literature, recommended procedures for timing the various types of signals ins provided. Specificaily, procedures are inciuded for both pretimed and vehicle-actuated control-system. Simplicity and ease of use are emphasized as the targeted users are field technicians and those responsibie for signala h smail cities and towns. This Field Manual has been prepared to provide a concise and easily applied set of procedures. Detailed theory and logic behind the procedures are provided in a companion document entitiod Technical Report, as are brief descriptions of current computer programs which provide timing information. The Technical Report also presents the results of a questionnaire survey which had the objective of determining the types of signal equipment used in Virginia. (Author)

EVALUATION OF SIGNAL TIMING VARIABLES BY USING A SIGNAL TIMING OPTIMIZATION PROGRAM. Mao, ACM; Messer, G_{J}; Rogness, RO (Texas State Department of Highways \& Public Transp; Texas Transportation Institute; Noth Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp 48-52 12 Fig. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

This paper presents the results of a limited study to evaluate the effects of signal timing variabies on the selection of the signal timing plan and the resulting measures of effectiveness from a signal timing optimization program. The TRANSYT computer program was used for the evaluation. Several series of sensitivity tests were performed to study the interrelations among number of signalized intersections, signal spacing, cycle length, and traffic flow conditions. The evaluation showed varying effects of the signal timing variables on the results. There appeared to be consistency in results for different signal system configurations (number of signais). With fixed signal spacing and number of signals, the measure of effectiveness (performance index) increased with volume level and cycle length. The effiect of signal spacing illustrated differences in the behavior of the performance index. These results show the trade-offs between signal spacing and cycle length for a fixed number of signals and traffic volume level. As the cycle length was increased, the performance index also increased (athough sometimes only slighty). This may suggest the use of the shortest practical cycle length for a progressive operation. (Author) This paper appeared in Transportation Research Record No. 881, Traffic Control Devices and Traffic Signal Systems.

EVALUATION OF THE DYNAMIC ARTERIAL-RESPONSIVE TRAFFIC SYSTEM (DARTS). Lee, CE. Texas University, Austin Center for Transportation Research Austin Texas 78712 243-1F; Texas State Depantment of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78701. Aug 1982 Final Rpt. 67p. REPORT NO: FHWATX-82/25+243-1F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

DARTS is an auxiliary solid-state electronic timing and switching device which can be connected directry to any modern (NEMA Standards) full-actuated traffic signal controller for the purpose of coordinating the timing of pairs of such controllers at adjacent intersections in such a way that progressive movement is provided for platoons of traffic traveling along an artery. No modification of the basic controller installation nor timing is required, and only one pair of conductors is needed to transmit the necessary platoon identification information from the upstream intersection. Functioning of the platoon identitication and progression timing sequence provided by DARTS is described in the report along with functions which monitor traffic on conflicting phases in order to preclude excessive delays and queue buildups from occurring on these approaches. The results of field observations made in San Antonio while two early versions of DARTS were being evaluated are presented. Measurements of traffic volume, delay, number of stops, and speed on the arterial were recorded at four intersections during the Bandera Road study, and volume and delay observations of tratfic on conflicting signal phases were also noted. Compared to normal individual intersection actuated control, there was no pronounced effect on any of these parameters either when DARTS was operated for the outbound direction only or when both outbound and inbound platoon progression was attempted simultaneously. Delay to traffic on signal phases which conflicted with artery progression was slightly higher when DARTS was operated, but not excessive. Additional features have been incorporated into later models of DARTS, and further application of the system in appropriate situations is recommended. Proper setting of the several timers is critical; therefore, more experience is needed in order to
realize the full potential of this new concept. A postscript refers to two recent installations in Texas where improved traffic performance is reported.

EVALUATION OF THE OPTIMIZED POLICIES FOR ADAPTIVE CONTROL STRATEGY. FINAL REPORT. Farradyne systems, Incorporated 3206 Tower Oaks Boulevard Rockville Maryland 20852; Federal Highway Administration Turner Faibrink Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. May 1989 130p. REPORT NO: FHWA-RD-89-135; NCP 3B1e 1022. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The OPAC strategy is an on-line traffic signal control algorithm designed to optimize the performance of traffic signals at isolated intersections using delay as the pertormance criterion. OPAC-RT is a traffic signal control system which implements the OPAC strategy in real time. The system uses trafic data collected from detectors located well upstream (400 to 600 ft) of the stop bar on all approaches to an intersection. Optimum signal timing is determined using minimum and maximum green constraints and does not require a fixed cycle length. This report describes three field tests of the on-line OPAC strategy. The results indicate that OPAC performs better than well timed actuated signals, particuiarly at greater demand levels.

EVALUATION OF VEHICLE ACTUATED SIGNAL CONTROL IN URBAN STREET NETWORK. Jouben, HS; Lockwood, DN. National Institute for Transport \& Rd Res, S Af P.O. Box 395 Pretoria 0001 Transvaal South Africa. Aug 1986 18p. REPORT NO: CSIR-RR-468. AVAILABLE FROM: National Technical Intormation Service 5285 Port Royal Road Springfield Virginia 22161

Vehicte actuated signal control is generally accapted as the optimum signal control strategy at isolated intersections. The paper describes recent research on defining isolated intersections and recommends minimum distances from upstream signals for independent signal control in various operating environments. The timing of vehicle actuated signals is discussed, based on the results of a simulation analysis. The results for a fieid validation study on the NETFLO traffic network simulation program are described. Based on the results it is concluded that the program can be used with confidence in the evaluation of vehicie actuated signal networks. Pub. in Proceedings of the Annual Transportation Convention (ATC 1986), Pretoria, South Africa, Paper 3C/2, v3C 15p Aug 86.

EVALUATION TOOLS OF URBAN INTERCHANGE DESIGN AND OPERATION. Radwan, AE; Hatton, RL. Transpontation Research Board. Transportation Research Record N1280 1990 pp 148-155 6 Fig. 5 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418
Urban interchanges are a means of facilitating traffic movements between arerial streets and freeway ramps. The
single point diamond interchange (SPDI) and the conventional diamond interchange are two specific interchange
designs. Essentially, both designs can be treated as signalized intersections. Deviation from the standard signalized
intersection operation can be attributed to factors such as longer clearance interval, larger turning radii, different
phasing schemes, and different signal offsets between adjacent intersections. Available computer software was
reviewed to determine its ability to simulate the operation of the urban diamond interchanges. Data collected at two
sites in the Phoenix metropolitan area were used. Five programs were chosen: PASSER II-87, PASSER III-88,
TRANSYT-7F, TRAF-NETSIM, and TEXAS. An assessment of each program was conducted to determine its ability
to simulate both the SPDI and the conventional diamond imerchange. It was concluded that the PASSER IIF-88
and the TEXAS models simulated the SPDI fairly well. All modeis except the TEXAS model were able to simulate
the conventional diamond design. This paper appears in Transportation Research Record No. 1280, Transportation
Management, HOV Systems, and Geometric Design and Effects 1990.

EVIPAS: A COMPUTER MODEL FOR THE OPTIMAL DESIGN OF A VEHICLE-ACTUATED TRAFFIC SIGNAL. Bullen, AGR; Hummon, N; Bryer, T; Nekmat, R. Transportation Research Board. Transportation Research Record N1114 1987 pp 103-110 8 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Ottice 2101 Constitution Avenue, NW Washington D.C. 20418

The EVIPAS model described is a computer program designed to analyze and optimize a wide range of intersections, phasing, and controller characteristics of an isolated fully actuated traftic signal. It will evaluate almost any phasing combination available in a 2 - to 8 -phase NEMA type controller and similar phasing structures for a Type 170 controller. The model will provide optimum timing settings for pretimed, semi-actuated, fully actuated, or volume-density control using a variety of measures of effectiveness chosen by the user. A wide range of geometric features, phasing alternatives, and detector layouts can be evaluated. EVIPAS combines a userfriendly
input module with a multivariate gradient search optimization module and an ovent microsimulation. It has been field-tested and validated and replicates well-observed vehicho and The model is programmed in Fortran 77 and currently can run on VAX 8600 and IBM 3080 mainfer: appeared in Transporlation Research Record No. 1114, Traffic Control Devices and Rail-Highwisys, EXPERT SYSTEM FOR TRAFFIC SIGNAL SETTING ASSISTANCE. Zozaya-Gorostiza, C; Hendricik. Society of Civil Engineers. Journal of Transportation Engineening VOL 113 NO. 2 Mar 1987 pp 100-127t APp.. REPORT NO: ASCE Paper 20590. AVAILABLE FROM: American Society of Civil Engineers 345 Emint,
York New York 10017 York Now York 10017

An experimental knowledge-based expert system to assist in tratic signal setting for ieolatict presented. In contrast to existing computer aids, the system can be applied to intersections if geometries. Algorithmic processes to evaluate signal settings and decision tables to idently mant are invoked by the expert system; phase distribution of flows is periormed by applying hourbetic ima was written in the OPS5 expert system environment. Advantages and disadvantages of this programming approach relative to conventional algorithmic processes in the traffic engineert. described.

FEDIT USER INTERFACE FOR FHWA'S TRAF-FRESIM MODEL. Makemson, J. (VICOR Associates, maxivr. Proceedings of the 1992 American Society of Civil Engineers Microcomputers in Transportation Conferiater

This paper presents the FEDIT Data Input Preprocessor for FHWA's soon-to-be-released mierion. simulation program - FRESIM. An efficient method of preparing the input data, while minimizing des and the typical "code-execute-debug" cycle, is through the use of the FRESIM Freeway EDITor petes
FHWA-SPONSORED PROIECT PROVES COST EFFECTIVENESS OF SIGNAL TIMING OPTMIZATIOMY Schoene, GW (Federal Highway Administration). Transportation Research Board. Transportation Researcitity $1982 \mathrm{pp} 2-42$ Tab. 1 Phot.. AVAILABLE FROM: Transportation Research Board Publications Office $210{ }^{*}$. Avenue, NW Washington D.C. 20418

The recently completed National Signal Timing Optimization Project, initiated by the Federal Highway A, (FHWA) in 1979 as a fuel conservation effort, is part of an overall effort to encourage states and mif undertake tratic signal timing optimization projects to improve the quality of ubban driving and thereby consumption. In order to accomplish these objectives, two primary activities were undertaken: (a) deta, the TRANSYT-7F signal timing optimization program and User's Manual, and provision of training in tif program; and (b) application of the program in 11 cities nationwide to evaluate the effectiveness of the signal timing plans and to collect data on the needed resources. The FHWA estimates that just by optater signal timing (without considering signal system hardware improvements) at the 130,000 intersections fity it of coordinated signal systems nationwide and at most of the other 110,000 noncoordinated signalized intio. A. 2 million gallons of gasoline per day could be conserved. Assuming an average gasoline cost of $\$ 1.35$ p this represents a daily saving of $\$ 2.7$ million in direct fuel costs to consumers. When needed signel hardware improvements at all of the nation's 240,000 intersections are also considered, these estimated it to daily savings of 5 million gallons of gasoline and $\$ 6.75$ million in direct fuel costs. Ray A. Barnhaththwh Administrator, noted that this project proved that signal timing optimization is a very costeffective, and pernem way of conserving fuel." (Author)

FIRST-GENERATION UTCS SIMULATION. Eiger, A; Chin, S-M (Rensselaer Polytechnic Institute). Transportation R Board. Transportation Research Record N906 1983 pp $57-605$ Fig. 5 Ref. AVAILABLE FROM: Transportation Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The development of an urban traffic control system (UTCS) simulation program that comprises the first-gener UTCS software (extended version) and a network traffic simulation model (NETSIMACG) is described. Th simulator provides pseudo-real-time graphic displays of surveillance data and system pertormance measires in addition to the printed outputs of both the UTCS software and the NETSIM model. It can simulate both autometed and manual modes of control. The development of the simulator supports current and future research in uben tratfic control systems, provides a tool for evaluation before implementation of these systems, and is potentilly". useful as a training aid for UTCS operators. This paper appeared in Transportation Research Record No. ©08, 2 Urban Tratic Systems.

Abstract

FLASHING SIGNALS IN PEAK PERIODS. DEMETSKY, MJ; MORENO, LE (VIRGINIA HIGHWAY AND TRANSPORTATION RESEARCH; COUNCIL). TRANSPORTATION OUARTERLY VOL. 39 JAN19 1985 ENGLISH. REPORT NO: 85

CONTENTS: NETSIM TRAFFIC SIMULATION COMPARING MEASURES OF EFFECTIVENESS UNDER REGULAR AND FLASHING SIGNAL OPERATIONS DURING PEAK TRAFFIC MICHAEL J. DEMETSKY AND LUIS E. MORENO (VIRGINIA HIGHWAY AND TRANSPORTATION RESEARCH COUNCIL)

FLOW AT ROUNDABOUT ENTRIES. Chin, HC; McDonald, M (Universities Of Singapore And Southampton; Southampton University, England). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mitg, Proc 1984 pp1-11 3 Fig. 2 Tab. 10 Ref.

Hitherto the entry/circulating flow relationship at roundabout entries has been studied by either a semi-empirical or an empirical approach. A new approach which involves simulating traffic at roundabouts on a computer is now considered. The simulation has been applied to study the interaction between the entry and circulating flows at five entry sites. Comparison of results from the simuiation model with observed data shows that the simulation represents reality fairly well. The simulation also predicts as well as, if not better than, wo of the generalized relationship established by the former approaches. For the covering abstract of the seminar see TRIS 450556. (Author/TRRL) Proceedings of Seminar L. Traffic Operation and Management; Held at the 12th PTRC Summer Annual Meeting, University of Warwick, England, From 10-13 July 1984, Volume P, 254.

FLOW PROFILE COMPARISON OF A MICROSCOPIC CAR-FOLLOWING MODEL AND A MACROSCOPIC PLATOON DISPERSION MODEL FOR TRAFFIC SIMULATON. Mekemson, J., VICOR Associates, Manassas, Va. and Gantz, D. George Mason University, Fairfax, Va. 1990 Winter Simulation Conference Proceedings.

A comparison of the undertying models of trattic flow in a Federal Highway Administration microscopic traffic simulation program and macroscopic traffic signal optimization/simulation program was conducted. The original objective was the parameter calibration of a macroscopic platoon dispersion flow model of a simulated "group" of vehicles discharging from a traffic signal controlied intersection approach. The basis of the calibration was to be the observed platoon dispersion flow resulting from the microscopic simulation of "individual" vehicles departing from a similarly modelled traffic signal controlled intersection approach. In generating the data needed for such a calibration and subsequent comparison, a deficiency in the microscopic traffic simulation program was found that needs to be eliminated before such a calibration can be deemed beneficial.

FREESIM: A MICROSCOPIC SIMULATION MODEL OF FREEWAY LANE CLOSURES (ABRIDGMENT). Rathi, AK; Nemeth, ZA. Transportation Research Board. Transportation Research Record N1091 1986 p 21-24 1 Tab. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Development of a model to simulate traffic operations at freeway lane closures is described. The model logic is based on a rational description of the behavior of the drivers in a freeway lane-closure situation. The simulation program is written in SIMSCRIPT 11.5 programming language. An application of the model is given with evaluation of potential safety impacts of reduced speed zones in freeway lane closures at different levels of assumed driver compliance. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

FREEWAY GAPACITY AND FLOW RELATIONSHIPS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Wemple, EA; Morris, AM; May, AD. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 439-455 14 Fig. 3 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

^[Currently the Institute of Transportation Studies (ITS) at the University of California is in the process of developing a freeway lane model which will predict flows by lane in the vicinity of ramp junctions and major weaves. To provide information for this model, ITS has studied certain characteristics of straight pipe sections of freeway (away from the influence of ramps) for two, three and four lane sites as described in this paper. These characteristics include lane distribution vs. flow, lane changing vs. flow, and speed vs. flow data for three different sites. One site has a wealth of data points near capacity and the occupancy, mean flow and standard deviation for these data have been determined. Additionally, this research further demonstrates the difference between the value of capacity of a freeway lane cited in the Highway Capacity Manual (HCM) and actual values at these sites, and compares the speed flow curves developed at these sites to the 1985 HCM curve and the JHK curve.]

FREEWAY SIMULATION AND CONTROL. Babcock, PS, IV; May, AD; Auslander, DM; Tomizuka, M. California University, Berkeley Institute of Transportation Studies Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Dec 1982 Final Rpt. 469p. REPORT NO: UCB-ITS-RR-82-13. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

A macroscopic freeway simulation model is developed to evaluate and compare various freeway control strategios. The resulting model, FRECON, is a properly discrete extension of the dynamic FREFLO model. The discretization enables the model to realistically simulate all traffic conditions, including bottlenecks and congestion. h is performed internally in the model and adapts to minimize simulation costs while maintaining accuracy. True point detectors and performance measures are available. The model is calibrated and validated on five days of data from the Santa Monica Freeway. Control Strategies are divided into three configurational groups: pretimed, tocal traffic responsive, and segment-wide traffic responsive. Simulation evaluations, without vehicle diversion or priority treatment, are performed for one pretimed strategy (Linear Programming) and two local strategies (Percent Occupancy and Demand-Capacity). By not responding to daily variations in the traffic demands, the quality of the pretimed strategy's performance is limited. The local view of freeway conditions used by the local traffic responsive strategies limits their ability to control the freeway. A preliminary analysis of segment-wide traffic responsive strategies is aiso made. (FHWA)

FREEWAY SIMULATION MODELS REVISITED. May, AD. Transportation Research Board. Transportation Research Record N1132 1987 pp 94-99 89 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The purpose of this paper is to update and assess the continued development and application of freeway simulation models in the 1980s. Several activities were undertaken to meet this objective. First, literature searches were undertaken utilizing the University of California Institute for Transportation Studies library and the author's personal library. Second, the identified references were classified by freeway simulation model family and placed in an historical perspective. The references were then carefully studied to identify and assess new developments and applications. Finally, identified authors were contacted to determine omissions and to confirm the current status of their freeway-modeling efforts. This paper appeared in Transportation Research Record No. 1132, Freeway Management and Operations.

FREEWAY SPEED-FLOW-CONCENTRATION RELATIONSHIPS: MORE EVIDENCE AND INTERPRETATIONS (WITH dISCUSSㅇN AND CLOSURE). Banks, JH; Furth, PG. Transportation Research Board. Transportation Research Record N1225 1989 pp 53-60 5 Fig. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

In this paper, recent Canadian work challenging long-held theories about speed-flow-concentration relationships in freeway traffic is verified and extended using data from San Diego. Major conclusions of these studies regarding near-constant free-flow speeds and flow-concentration relationships resembling an inverted V are confirmed; other past findings related to the effect of queuing on downstream free-flow speeds and the effect of secondary bottlenecks on flow-concentration relationships are not confirmed. When data are averaged across all lares (both upstream and downstream of a bottleneck), speed-flow and flow-concentration relationships are found to be consistent with those predicted by queuing and shock wave theory. The functioning of the bottieneck studied is more complicated than had been assumed, however, and this creates further problems in the interpretation of the data. Finally, the inverted-V model of the flow-concentration relationship is shown to imply a simple and plausible model of driver behavior in which speeds and spacings are adjusted to keep the average front-to-back time gaps approximately constant until some desired maximum speed is reached. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

FREEWAY SURVEILLANCE AND CONTROL SYSTEM USING SIMULATION MODEL. Ju, R-S; Maze, TH. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 4 Jul 1989 pp 425-437 Figs. Tabs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

The development is described of the FREQ8PE, a macroscopic traffic flow simulation model, primarily used to aid in making decisions regarding priority entry and normal entry control on a directional freeway. The model can be used to evaluate design improvements with or without freeway entry control. It has been shown that FREQ8PE can be used to evaluate the design of freeway surveillance systems. To illustrate its use, FREQ8PE is applied to
the Taiwan Freeway. It is shown that the model may be used to evaluate either an existing or hypothetical freeway surveillance and control system (FSCS). Also, it is reliable and requires short CPU times for its execution.
ESIM - A FREEWAY SIMULATION MODEL FOR ANALYZING OPERATIONAL AND GEOMETRIC ALTERNATIVES.
"ti, A; Torres, J; JFT \& Associates, Pacific Palisades, Ca. and Cohen, S; Federal Highway Administration, McLean, Va. for submitted to Transportation Research Board for 1991 Annual Meeting.
A microscopic, interval scanning, freeway traffic simulation model, termed FRESIM, is able to simulate realistically most prevailing freeway geometrics including multiple freeways with one to three lane ramps, freeway-freeway connectors, lane adds and drops, auxiliary lanes, and changes in grade, radius of curvature, and supereievation. It also features representation of freeway incident blockages, ramp metering, and the representation of freeway surveilance systems. The model generates comprehensive tables of measures of effectiveness, such as travel time, speed, and traffic flow, which enable a meaningful evaluation of operational test situations.
fiel and time implications of merging traffic at freeway entrances. lyons, Tj; Rainford, h; fmorthy, JR; Newman, PWG. Murdoch University South Street Murdoch Western Australia Australia. N8/84 1984 boograph 52p 19 Fig. 4 Tab. 14 Ref.

A microscopic traffic model is used to simulate the fuel and time penalties associated with merging traffic on a

 freeway system. Merging traffic forces a merge with the inside lane freeway traffic through a series of individual vehicle interactions. The model is validated both statistically and at an individual vehicle level by comparison of model results with speed time traces recorded in a research vehicle undergoing merging in Perth freeway traftic. Statistics of model parameters are calculated to estimate the overall penalties associated with merging on both a lane and system basis. These illustrate the dependence of the merging penalty on traffic volumes in both the merging lane and the freeway. The simulation results are compared with a simple Main Roads Department model based on observed delays at traffic signals and illustrate similar functional form but differing magnitudes. (Author/TRRL)UEL CONSUMPTION ANALYSES FOR URBAN TRAFFIC MANAGEMENT. Bowyer, DP; Akcelik, R; Biggs, DC. Institute 3 Transportation Engineers. ITE Journal VOL. 56 NO. 12 Dec 1986 pp 31-34 Figs. Tabs. 9 Ret.. AVAILABLE FROM: hnstiute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024
This article describes the background and major features of the Australian Road Research Board's "Guide To Fuel Consumption Analyses." The article also considers its relevance to urban traffic management decision, and summarizes the technical audit of studies relating to energy consumption in tratfic and transport systems on which the guide is based. The forms of four interreated fuel consumption models of the guide are described and their likely transferability to various situations is indicated. Each traffic and fuel consumption model is appropriate to a particular scale of traffic system. This link is shown for several selected traffic models. The importance of accurate fuel consumption estimates for the case of priority control at a particular intersection is discussed.
FUEL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. FINAL REPORT. McGill, R. Oak Ridge National Laboratory Post Office Box X Oak Ridge Tennessee 37830. May 1985 93p. AVAILABLE FROM: National Technical Information Servica 5285 Port Royal Road Springfield Virginia 22161
The report documents the methodologies used in the development of fuel consumption and emission maps for 15 passenger vehicles representative of 64% of the 1980-1982 population. From the results of the study, the Federal Highway Administration is currently updating the fuel consumption and emission estimation algorithms in traffic models such as NETSIM and TRANSYT-7F. These results include tables and graphs that relate fuel consumption and emissions to vehicle speed and acceleration. The major achievement of this study was the capability of combining laboratory (dynamometer) testing with on-road testing to assess the energy and environmental characteristics of passenger vehicles as they operate in real-world conditions.

FUEL CONSUMPTION AND EMISSION VALUES FOR TRAFFIC MODELS. McGill, R. Oak Ridge National Laboratory Post Office Box X Oak Ridge Tennessee 37830 ; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike McLean Virginia 22101. May 1985 Final Rpt. 90p 20 Fig. 18 Tab. 7 Ref. 5 App.. REPORT NO: FHWARD-85/053. AVAILABLE FROM: Federal Highway Administration Turner Faibank Hwy Res Cntr, 6300 Georgetown Pike Washington D.C. 20590

Abstract

This report documents the methodologies used in the development of fuel consumption and emission maps for 15 passenger vehicles representative of 64 percent of the 1980-1992 population. From the results of this study, the Federal Highway Administration is currently updating the fuel consumption and emission estimation algorithms in traffic models such as NETSIM and TRANSYT-7F. These results include tables and graphs which relate fuel consumption and emissions to vehicle speed acceleration. The major achievement of this study was the capability of combining laboratory (dynamometer) testing with on-road testing to assess the energy and environmental characteristics of passenger vehicles as they operate in "real-world" conditions.

FUEL CONSUMPTHON MODELS: AN EVALUATION BASED ON A STUDY OF PERTH'S TRAFFIC PATTERNS. Pitt, DR; Lyons, TJ; Newman, PWG; Kenworthy, JR. Murdoch University South Street Murdoch Western Australia. $198440 p 9$ Fig. 12 Tab. 26 Ref.. REPORT NO: 3/84

A range of mathematical models currently used to predict urban traffic fuel consumption have been evaluated utilizing data from an instrumented four speed manual vehicle. All of the models were caliorated and tested over a data set especially collected to eliminate such factors as vehicle tune, gradient, gear changing inconsistencies and uncontroliable environmental factors as well as a larger, more general data set typical of Perth urban driving conditions but without these controls. The evaluation highlights the predictive capacity of each of the models and illustrates that the best models involve the use of pke and pip terms which are difficult to measure by normal traffic engineering techniques. Hence traffic modellers must choose between greater predictive accuracy in their fuel models by more expensive data collection or sacrifice accuracy through the limitations of models based on normal traffic data collection methods. (Author/TRRL)

FUEL EFFICIENT TRAFFIC SIGNAL OPERATION AND EVALUATION: GARDEN GROVE DEMONSTRATION PROJECT. Wagner-McGee Associates 4660 Kenmore Avenue, Suite 825 Alexandria Virginia 22304; Califomia Energy Commission 1516-19th Street Sacramento Califomia 95814. Feb 1983 76p. REPORT NO: P-400-83-004

The procedures and results of a case study of fuel efficient traffic signal operation and evaluation in the City of Garden Grove, California are documented. Improved tratfic signal timing was developed for a 70 -intersection test network in Garden Grove using an optimization tool called the TRANSYT Version 8 computer program. Full-scale field testing of five alternative timing plans was conducted using two instrumented vehicles equipped to measure traffic performance characteristics and fuel consumption. The field tests indicated that significant improvements in traffic flow and fuel consumption result from the use of timing plans generated by the TRANSYT optimization model. Changing from pre-existing to an optimized timing plan yields a network-wide 5 percent reduction in total travel time, more than 10 percent reduction in both the number of stops and stopped delay time, and 6 percent reduction in fuel consumption. Projections are made of the benefits and costs of implementing such a program at the $\mathbf{2 0 , 0 0 0}$ traffic signals in networks throughout the State of California.

FUEL EFFICIENT TRAFFIC SIGNAL TIMING PROGRAM. CITY OF LOS ANGELES DEPT OF TRANSPORTATION LOS ANGELES. Feb 1984 ENGLISH

CITY OF LOS ANGELES, DEPARTMENT OF TRANSPORTATION OTHER PHYS. DESCRIPTION: 41 MAPS COVER TITLE FUNDED BY THE CALIFORNIA ENERGY COMMISSION UNDER GRANT NO.: 326-82-014 FEBRUARY, 1984 ADDL CORP. AUTHOR INFO: LOS ANGELES CALIF.. DEPT. OF TRANSPORTATION ADDL CORP. AUTHOR INFO: CALIFORNIA ENERGY COMMISSION

FUEL SAVING POTENTIALS OF ISOLATED TRAFFIC SIGNAL INSTALLATIONS. Edholm, S; Buren, H. Royal Institute of Technology, Sweden. Rapport 1982 Monograph 40p 16 Fig. 14 Tab. 18 Ref. Swedish. REPORT NO: TRITA-TRL-82-05-17

In this project an investigation was conducted to determine whether vehicle fuel could be saved by changing the time setting of isolated traffic signal installations. Fuel consumption was defined as the total extra consumption of fuel by vehicles at the intersection, caused by stopping and waiting. Data for a number of intersections were calculated in a computer using a simulation model. A large number of time settings were tested with the objective
 settings. At most of the intersections one or more of the following measures were applied: (1) measures which increase the traffic signal changing frequency, e.g. shorter maximum green times, (2) measures which give the main road extra priority, e.g. extended gap time, (3) removal of the automatic green signal for pedestrians. At the intersection where this was applied, pedestrian waiting time was reduced owing to smoother adaptation of the traffic signal system to actual conditions. The estimated fuel saving comprises only $0,2 \%$ of the country's total road traffic consumption. All the same, the introduction of measures of this kind should be a matter of immediate interest for several reasons, e.g. the total delay of the road user is reduced, the exhaust emissions would be reduced and as distinct from many other measures, these measures produce immediate results. (Author/TRRL)
gap Acceptance and traffic Conflict simulation as a measure of risk. McDowell, mrc; Wennell, J; Storr, PA; Darzentas, J (Royal Holloway College). Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England 0305-1315. N776 1983 Monograph 19p 4 Fig. 16 Tab. 17 Ref. Apps.

A new method of measuring gap acceptance behavior of drivers is described. It has been used to study the behavior of turning drivers at a selection of priority controlied t-junctions outside urban areas. The data thus obtained are used in a simulation model to predict conflict rates in turning maneuvers. It is found that the ranking by frequency of conflict of such junctions given by this model agrees well with that obtained from five-year recorded injury accident data. The effect of various parameters, including age and sex of driver on gap-acceptance behavior is discussed. A new model of headway distributions on major roads is given. (Author/TRRL)

GENERAL APPROACH TO RELATIVE OFFSET SETTINGS OF TRAFFIC SIGNALS. Al-Khalili, AJ. Institute of Electrical \& Electronics Engrs, Inc. IEEE Transactions on Systems, Man and Cybernetics 1985 pp 587-594 15 Ref.. REPORT NO: VSMC-N4. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

A generalized approach for simulating relative offset of traftic signals in an urban traffic network is presented. It is shown that it is possible to optimize relative offset settings of signals for various criteria. A general criterion is proposed by which either delays, stops, fuel consumption, or carbon monoxide can be selected by a proper choice of constants. When these criteria are minimized, it was found that the best criterion to be selected for offset setting is the minimization of fuel consumption, since this in turn nearly minimizes the delays, stops, and carbon monoxide emission, and it has the effect of minimizing stops at low saturation and minimizing delays as the degree of saturation increases. Further analysis of the criterion function has shown that the functions minimized are uneven around their optimum offset value and in each case an early switching is favored. The expression to determine optimum offset is updated to calculate optimum offsets that minimize fuel consumption or carbon monoxide emission.

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. SUMMARY REPORT. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seatle 4507 University Way, NE, Cobbet Bldg, Suite 204 Seattie Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201 ; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 25p 1 Fig.. REPORT NO: WA-RD 204.1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

This summary report describes a study of freeway incidents and incident management strategies in the Seattie area. The study statistically analyzed the frequency and duration of freeway incidents on sections of l-5 and SR 520 in Seattle. In addition, a traffic simulation model was operationalized to assess the traffic related impacts of incidents. The findings show that Seattle-area incident management currently responds well to inciement weather and special events (e.g., major sporting games) but has problems with severe accidents. The ongoing operationalization of accident investigation sites and incident equipment storage sites can be expected to improve severe accident management, but response personnel training and the addition of more dedicated tow truck service are also needed. Finally, the study shows that, from a tratic impact perspective, the section of $1-5$ in downtown Seattle is in need of the most incident management attention. See also WA-RD 204.2, Volume I: Management, Surveillance, Control, and Evaluation of Freeway Incidents-A Review of Existing Literature; WA-RD 204.3, Volume II: Analysis of Freeway Incidents in the Seattle Area; WA-RD 204.4, Volume III: Seattle-Area Incident Impact Analysis-Microcomputer Traffic Simulation Results; and WA-RD 204.5, Volume IV: Seattie-Area incident Management--Assessment and Recommendations.

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME I: MANAGEMENT, SURVEILLANCE, CONTROL, AND EVALUATION OF FREEWAY INCIDENTS-A REVIEW OF EXISTING LTTERATURE Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bidg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201 ; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 45p 4 Tab. Refs.. REPORT NO: WA-RD 204.2. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Abstract

This four-volume technical report describes a study of freeway incidents and incident management strategies in the Seattle area. The study statistically analyzed the frequency and duration of freeway incidents an sections of 1-5 and SR 520 in Seattle. In addition, a tratfic simulation model was operationalized to assess the traffic related impacts of incidents. The findings show that Seattle-area incident management currently responds well to inclement weather and special events (e.g., major sporting games) but has problems with severe accidents. The ongoing operationalization of accident investigation sites and incident equipment storage sites can be expected to improve severe accident managemENT, but response personnel training and the addition of more dedicated tow truck service are also needed. Finally, the study shows that, from a traffic impact perspective, the section of l-5 in downtown Seattle is in need of the most incident management attention. See also WA-RD 204.1, Summary Report; WA-RD 204.3, Volume II: Analysis of Freeway Incidents in the Seattle Area; WA-RD 204.4, Volume III: Seattle-Area Incident Impact Analysis-Microcomputer Traffic Simulation Results; and WA-RD 204.5, Volume IV: Seattle-Area Incident Management-Assessment and Recommendations.

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME II: ANALYSIS OF FREEWAY INCIDENTS IN THE SEATTLE AREA. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building. KF-10 Olympia Washington 98504-5201 ; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 85p 1 Fig.. REPORT NO: WA-RD 204.3. AVAILABLE FROM: National Technical Informationt'Service 5285 Port Royal Road Springfietd Virginia 22161

This four-volume technical report describes a study of freeway incidents and incident management strategies in the Seattie area. The study statistically analyzed the frequency and duration of freeway incidents on sections of I-5 and SR 520 in Seattle. In addition, a traffic simulation model was operationalized to assess the traffic related impacts of incidents. The findings show that Seattle-area incident management currently responds well to inclement weather and special events (e.g., major sporting games) but has problems with severe accidents. The ongoing operationalization of accident investigation sites and incident equipment storage sites can be expected to improve severe accident management, but response personnel training and the addition of more dedicated tow truck service are also needed. Finally, the study shows that, from a traffic impact perspective, the section of l-5 in downtown Seattle is in need of the most incident management attention. See also WA-RD 204.1, Summary Report; WA-RD 204.2, Volume I: Management, Surveillance, Control, and Evaluation of Freeway Incidents--A Review of Existing Literature; WA-RD 204.4, Volume III: Seattle-Area Incident Impact Analysis--Microcomputer Traffic Simulation Results; and WA-RD 204.5, Volume IV: Seattle-Area Incident Management-Assessment and Recommendations.

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME III: SEATTLE-AREA INCIDENT IMPACT ANALYSIS--MICROCOMPUTER TRAFFIC SIMULATION RESULTS. Mannering, F; Jones, B; Garrison, DH; Sebranke, B; Janssen, L. Washington University, Seattle 4507 University Way, NE, Corbet Bldg, Suite 204 Seattle Washington 98105; Washington State Department of Transportation Building, KF-10 Olympia Washington 98504-5201; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 145p 28 Fig. 13 Tab. Refs. 4 App.. REPORT NO: WA-RD 204.4. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springrield Virginia 22161

This four-volume technical report describes a study of freeway incidents and incident management strategies in the Seattle area. The study statistically analyzed the frequency and duration of freeway incidents on sections of J-5 and SR 520 in Seattle. In addition, a tratfic simulation model was operationalized to assess the traffic related impacts of incidents. The findings show that Seattle-area incident management currently responds well to inclement weather and special events (e.g., major sporting games) but has problems with severe accidents. The ongoing operationalization of accident investigation sites and incident equipment storage sites can be expected to improve severe accident management, but response personneltraining and the addition of more dedicated tow truck service are also needed. Finally, the study shows that, from a traffic impact perspective, the section of l-5 in downtown Seattle is in need of the most incident management attention. See also WA-RD 204.1, Summary Report; WA-RD
204.2, Volume I: Management, Surveillance, Control, and Evaluation of Freeway Incidents--A Review of Existing Literature; WA-RD 204.3, Volume II: Analysis of Freeway Incidents in the Seattle Area; and WA-RD 204.5, Volume IV: Seattle-Area Incident Management-Assessment and Recommendations.

ENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME IV: SEATTLE-AREA CIDENT MANAGEMENT-ASSESSMENT AND RECOMMENDATIONS. Mannering, F; Jones, B; Garrison, DH; Sebranke, Janssen, L. Washington University, Seattle 4507 University Way, NE, Carbet Bldg, Suite 204 Seattle Washington 98105; 4ashington State Department of Transportation Transportation Building, KF-10 Olympia Washington 98504-5201; Federal fighway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1990 25p 4 Fig. 2 Tab. REPORT NO: WA-RD 204.5. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

> This four-volume technical report describes a study of freeway incidents and incident management strategies in the Seattle area. The study statistically analyzed the frequency and duration of freeway incidents on sections of I-5 and SR 520 in Seattle. In addition, a traffic simulation model was operationalized to assess the traffic related impacts of incidents. The findings show that Seattle-area incident management currently responds well to inclement weather and special events (e.g., major sporting games) but has problems with severe accidents. The ongoing operationalization of accident investigation sites and incident equipment storage sites can be expected to improve severe accident management, but response personnel training and the addition of more dedicated tow truck service are also needed. Finally, the study shows that, from a traffic impact perspective, the section of $1-5$ in downtown Seattle is in need of the most incident management attention. See also WA-RD 204.1, Summary Report; WA-RD 204.2, Volume I: Management, Surveillance, Control, and Evaluation of Freeway Incidents--A Review of Existing Literature; WA-RD 204.3, Volume II: Analysis of Freeway Incidents in the Seattle Area; and WA-RD 204.4, Volume III: Seattle-Area Incident Impact Analysis-Microcomputer Traffic Simulation Results.

GENERATION AND ASSESSMENT OF INCIDENT MANAGEMENT STRATEGIES. VOLUME 4: SEATTLE-AREA INCIDENT IMPACT ANAL YSIS: MICROCOMPUTER TRAFFIC SIMULATION RESULTS. Mannering, FL; Garrison, DH; Sebrenke. B. TransNow, Transportation Northwest Washington Univ, Civil Engineering Dept, 135 More Hall FX-10 Seattle Washington 98195. Feb 1990 v.p. Figs. Tabs. Refs. Apps.. REPORT NO: TNW90-13.4. AVAlLABLE FROM: TransNow, Transportation Northwest Washington Univ, Civil Engineering Dept, 135 More Hall FX-10 Seattle Washington 98195

This volume discusses the application and evaluation of a traffic simulation model, XXEXQ. This model was applied to a network of freeways and arterials, the primary commuting routes, in the central Puget Sound region of Washington State. The evaluation of XXEXQ was based on the reasonableness of the model's results and the extent to which these results described actual traffic behavior. The authors' conclusions and recommendations for use and further development of the model are also presented.

GEITING TRAFFIC SYSTEM SOLUTIONS WITH TRAF-FAMILY MODELS. Byun, J., Wong, S., and Stephens, B., (Federal Highway Administration). Institute of Transportation Engineers, ITE 1991 Compendium of Technical Papers, pp 485-491.

This paper presents an assessment of the models' features, required computer environment, and appropriate applications of these models. This paper reports on the progress made on each TRAF family software model and the prospect for their wide-scale implementation in the near future.

GETTING STARTED: SELECTING AND USING COMPUTERIZED TRAFFIC MODELS. MORALES, JM. PUBLIC ROADS VOL. 53 NO. 1 Jun 1989 PP 6-11 ENGLISH

BY JUAN M. MORALES ILL. SOME COL BY JUAN M. MORALES ILL. SOME COL
GRAPHICAL REPRESENTATION OF THE EFFECT OF SIGNAL TIMINGS ON DELAY AT 2-STAGE JUNCTIONS USING COMPUTER GRAPHICS. Saavedra, A (Comision De Transporte Ubano). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc 1984 pp217-237 7 Fig. 9 Ref.

Allsop (1971) has shown that if delay at a road junction controlied by fixed-time traffic signals is estimated by the simpler form of Webster's expression (1958), the calculations of delay-minimizing signal settings can be expressed as a mathematical optimization problem having a unique solution (Allsop, 1972). In calculating the signal settings, a maximum can be specified for the lengths of time for which particular sets of traffic streams have right of way. These are the constraints which often have to be imposed on signal settings. In simple cases the constraints imposed can be represented diagrammatically, and the way in which the estimated delay per unit time to all the tratfic passing through the junction varies with the signal timings can be shown in the same diagram. The
minimum-delay and maximum-capacity points can also be included. Within this framework the paper describes the process of working out the above mentioned diagrams orientated to develop a computer program with graphics capabilities which enable the user, in an interactive way, to draw the diagrams. A review and summary of the mathematics, the basis for the algorithms, an example and finally an indication of scope for future work are presented in the paper. For the covering abstract of the seminar see TRIS 450556. (Author/TRRL) Proceedings of Seminar L, Tratfic Operation and Management; Held at the 12th PTRC Summer Annual Meeting, University of Warwick, England, From 10-13 July 1984, Volume P, 254.

GUIDE TO FUEL CONSUMPTION ANALYSES FOR URBAN TRAFFIC MANAGEMENT. Bowyer, DP; Akcelik, R; Biggs, DC. Australian Road Research Board. Australian Road Research Report N32 Oct $198598 p 33$ Fig. 25 Tab. 29 Ref.. AVAILABLE FROM: Australian Road Research Board P.O. Box 156, Bag 4 Nunawading Victoria 3131 Australia

A substantial set of analysis techniques exist for the consideration of fuel consumption in urban traffic management. This report provides a guide to assist the traffic manager in selecting techniques which are appropriate to the various traffic management contexts. It is structured into two parts. Part a presents easy to use functions and graphs for estimating fuel consumption tor a typical car. Part b provides a comprehensive guide to the use of techniques ior fuel consumption analysis in uban traffic systems. The information requirements for the different phases of the traffic management process (ie, diagnosis, design, implementation and evaluation) are briefly discussed. The primary interest in this guide is in the design phase, and traffic models which incorporate a fuel consumption model are the only practical means of considering fuel consumption in this phase. Fuel consumption models of four levels of detail are described and numerical examples are given to illustrate their use. The traffic models and associated fuel consumption models are presented as an hierarchy and the scale of traffic system to which each is appropriate is shown. These fuel consumption models are inter-related, forming part of the same modelling framework and the vehicle parameters are explicit at all model levels. Case studies are presented to demonstrate the choice, use and cost-effectiveness of selected traffic models in the design of particular management schemes. The ISBN of the microfiche version is 0-86910-221-4. (Author/TRRL)

GUIDEBOOK FOR IMPROVING TRAFFIC SIGNAL TIMING. SKABARDONIS, A. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF. RESEARCH REPORT INSTITUTE OF TRANSPORTATION N-8 Nov 1986 ENGLISH. REPORT NO: 6-10

SERIES ALEXANDER SKABARDONIS OTHER PHYS. DESCRIPTION: CA. 150 LEAVES IN VARIOUS FOLI CHARTS RESEARCH REPORT INSTITUTE OF TRANSPORTATION STUDIES, UNIVERSTTY OF CALIFORNIA, UCB-ITS-RR-86-10 , ISSN:0192-4095-UNTRACED SERIES NOVEMBER 1986 INCLUDES BIBLIOGRAPHICAL REFERENCES ADDL CORP. AUTHOR INFO: UNIVERSITY OF CALIFORNIA, BERKELEY. INSTITUTE OF TRANSPORTATION STUDIES INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA

GUIDELINES FOR LEFT-TURN TREATMENTS AT SIGNAL CONTROLLED INTERSECTIONS. Nemeth, ZA; Mekemson. Ohio State University Engineering Experiment Station, 2070 Neil Avenue Columbus Ohio 43210; Ohio Department of Transportation P.O. Box 899 Columbus Ohio 43216-0899; Federal Highway Administration Washington D.C. 20590. Jun 1983 Final Rpt. 284p Figs. Tabs. Refs. 4 App.. REPORT NO: FHWA-OH-83-003

The main objective of this research was to identify a procedure by which the impact of left turns and left turn control method on performance of the whole intersection can be quantitied. A step by step procedure was developed for: 1) Field data collection at intersections; 2) Evaluation of the need for left turn bays; 3) Evaluation of the need for left turn phasing. The same procedure, of course, will help the traffic engineer to recognize the capacity problem that requires the consideration of left turn control prohibition. This research involved both computer simulation studies and field studies. The field studies produced results which clearly established that very significant site to site vanations exist in the operational performance of seemingty similar signalized intersections. It is, therefore, suggested that a comprehensive field study is needed in order for the tratfic engineer to fully understand the complex interaction of geometrics and signal timing with the traffic streams. It is recommended that the guidelines, which include instructions for field data collection, and assume the application of a signal operation analysis program, such as SOAP, be followed in the evaluation of left turn control needs at fully actuated signalized intersections. (Author)

A review and analysis was made of the lane obstruction logic in the TRAFNETSIM simulation model. The performance of the model was evaluated against the corresponding vehicular performance observed in field situations. As a result of this study, logic corrections were found to be necessary. The changes that were required to be made in the model logic are described in this volume. See also Volume 1 - User's Guide for Controlling Lane Obstructions (TRIS 461925) and Volume 2 - Research Report (TRIS 462119).

IMPACT OF PASSING-CLIMBING LANES ON TRAFFIC FLOW ON UPGRADES. Polus, A; Reshetnik, I. Pergamon Press Limited. Transportation Research. Part A: General VOL. 21A NO. 6 Nov 198714 Ref.. AVAILABLE FROM: Pergamon Press Limited Headington Hill Hall Oxford OX3 OBW England

This study evaluates a new approach for reducing delay, and consequently improving level of service and safoty on long upgrades on two-lane rural roads. This is the systematic provision of overtaking lanes, temmed passing-climbing lanes (pcl), to improve traffic flow, safety, and capacity. The traffic impact of such lanes is analyzed for various grades, tratfic volumes, and lane configurations by means of a simulation model developed for this study. Results show that this concept could provide substantial flow benefits - reduction in delay and in passenger-car platooning - with implications for better safety. Athough the reduction in delay is found to be more pronounced as volume increases, these results may be obtained even with a small percentage of passing-climbing lanes. A model predicting average relative delay, formulated and calibrated on the basis of the simutation output, explains 95% of the observed variability. The economic advantages of the concept in optimizing the distribution of a limited budget among several sites, in staging construction over several years, and in adapting highway investment to traffic-demand variations are also discussed. (Author/TRRL)
IMPLEMENTATION OF THE AUSTRALIAN ROUNDABOUT ANALYSIS METHOD IN SIDPA. HIGHWAY CAPACTTY AND LEVEL OF SERVICE PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Akcelik, R; Troutbeck, R. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 17-34 9 Fig. 3 Tab. Refs.. AVAlLABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

Progress towards the development of a comprehensive Australian method for the analysis of capacity and performance of roundabouts is reported. The new Australian roundabout design guide to be produced during 1991 will include a significant revision of the current capacity analysis method by the incorporation of the results of Australian research. This method allows tor the effects of circulating flows, entry flows and roundabout geometry on gap acceptance parameters. The new Australian roundabout analysis method will be implemented in the SIDRA package which was originally developed for signalized intersection analysis. As a computerized method, SIDRA will provide some significant advantages in the implememtation of the capacity and performance analysis method for roundabouts. These include an iterative method to calculate circulating flows with capacity limitation for oversaturated approaches, and techniques for estimating entry lane flows, shared lane capacities and time-dependent delays.

IMPLEMENTATION OF TRAFFIC SIGNAL TIMING PLANS IN COORDINATED ARTERIAL SYSTEMS. COurage, KG. Florida University, Gainesvile Transportation Research Center Gainesville Fiorida 32611. Jan 1990 25p. REPORT NO: UTC-UF-268-3. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

A procedure was developed for implementing traffic signal timing plans directly from the design and optimization programs which produced them. The report describes the procedure and presents operating instructions for a simple computer program which carried out the procedure automatically. The program called 'AAP2NEMA' converts the signal timing plans produced by two commonly used sigrial timing design programs, PASSER II and TRANSYT-7F, into the format of a standard NEMA controller.

IMPLEMENTING TRANSYT TRAFFIC SIGNAL TIMING. Dock, FC. Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada. Sep 1984 pp B3-B29 8 Fig. 5 Tab. 12 Ref.. AVAILABLE FROM: Roads and Transpontation Association of Canada 1765 St Laurent Boulevard Ottawa Ontanio K1G 3V4 Canada

This paper presents a description of the TRANSYT traffic flow simulation model and a case study of an implementation where TRANSYT is used to generate signal system timing in four Calfornia cities. The report covers operational considerations necessary to adapt the TRANSYT model to use in timing networks of actuated multi-phase traftic signals under computer master control. Techniques are discussed for obtaining optimum use of the simulation model for different types of networks and various flow conditions. Calculations and data manipulations used to translate timing produced by TRANSYT into useable controller and master settings are presented and discussed. For the covening abstract of the conference see IRRD 286189. (TRRL) Proceedings of the International Transport Congress, Montreal, September 23-27, 1984, Volume 3: Vehicles and Tr.

MPORTANCE OF SIMULATION IN TRAFFIC FLOW BEHAVIOR ANALYSIS, SURVEILLANCE AND TRAFFIC CONTROL. granojevic, M. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik III Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 173-188 14 Fig. 1 Tab. 23 Ref. Serbian

The paper discusses methods of traffic flow modelling. The use of stochastic simulation for traffic flow modelling, based on microscopic modelling, is described. The importance of simulation in the investigation of tratic flow, surveillance and traffic control is stressed. The paper presents an algorithm for the prediction of traffic space, speed and traffic flow density. It also presents a stochastic freeway merging simulation model of traffic flow based on digital simulation of event scanning. The results are illustrated. (TRRL)

MPROVED CONTINUUM MODELS OF FREEWAY FLOW. Michalopoulos, PG; Beskos, DE (Minnesota University, Minneapolis). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 89-111 6 Fig. 1 Tab. 15 Ref.

The problem of macroscopic modelling of freeway flow dynamics is addressed in this paper. Existing simple and high order continuum models are examined, modified and treated numerically. Subsequently they are implemented to a number of situations representing uninterrupted and interrupted flow conditions in order to assess their effectiveness. This is accomplished by comparing model results with a data base generated through a detailed microscopic simulation program recently developed by the FHWA. The problem of multilane dynamics is also addressed. A simple continuum formulation is presented in detail while two additional alternatives, a two dimensional one and a high order continuum, are brielly discussed. Test results of all alternatives are also presented. (Author/TRRL) Papres presented during the Ninth International Symposium on Transportation and Traffic Theory held in Delft the Netherlands, 11-13 July 1984.

IMPROVED GRAPHIC TECHNIQUES IN SIGNAL PROGRESSION. Wallace, CE; Courage, KG (Florida University, Gainesville). Transportation Research Bcard. Transportation Research Record N957 1984 pp 47-55 11 Fig. 12 Ref.. AVAILABLE FROM: 'Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The results of several research studies into graphic representations of tratfic signal system settings and traffic flow are presented. The research began with the fundamental time-space diagram, which is universally understood by traffic engineers, and also with flow diagrams from the TRANSYT model. Three specific departures from these basic techniques are presented, which include time-location diagrams, forward progression opportunities, and platoon progression diagrams. All of these tectniques apply to linear arterial systems or subsystems. Another graphic technique that applies to a network of coordinated signals is then discussed: signalized network animated graphics. Interpretation of signal timing-optimization strategies, namely maximal bandwidth optimization, is discussed using the platoon progression diagram technique. This analysis demonstrates the pitfalls of the maximal bandwidth approach, thus demonstrating the power of the analysis technique. This paper was published in Transportation Research Record Number 957, Urban Traffic, Parking and System Management.

IMPROVED SIGNAL TIMING PLAN SELECTION. Kessmann, RW; Ku, CS. Kessmann and Associates, Incorporated Houston Texas. Aug 1985 22p. REPORT NO: REPT-1502.02. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

The effect of the occupancy weighting factor upon the performance of UTCS First Generation traffic responsive operation was investigated. Six values of the occupancy weighting factor were tested in an empirical computer simulation approach. Version four of the TRANSYT-7F program was used to develop optimal timing plans for five unique sets of traffic flow conditions in a forty intersection, downtown Washington, DC, grid network. These timing plans, along with the associated reference volumes and occupancies, were input to the data base of a modified version of the NETSIM Q5 simulation program. These modifications allowed UTCS First Generation surveillance and control operations to be simulated. Input traffic flow conditions to the network were varied seven times over a simulation interval of 105 minutes for each candidate value of the occupancy weighting factor.

IMPROVING SIGNAL TIMING, VOLUME 1. ISOLATED INTERSECTIONS. Imada, T; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. May 1984 103p. REPORT NO: UCB-ITS-RR-84-3; FHWA-CA-TO-84-3-1. AVAILABLE FROM: National Tectnical Information Service 5285 Port Royal Road Springfield Virginia 22161

The objective of this research was to test three different strategies for timing isolated, fully actuated intersections: with type III detectors, without type III detectors and with the optimized parameters from the Penn-DOT computer program. Three field experiments were designed and carried out on an intersection in Modesto, CA. The total system delay was used as the primary periormance measure. See Also PB85-178945.

IMPROVING SIGNAL TIMING. VOLUME 2. PRETIMED ARTERLAL ROADWAYS. Vermeulen, MJ; Lermat, NP; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. May 1984 204p. REPORT NO: UCB-ITS-RR-84-4; FHWA-CA-TO-83-3-2. AVAILABLE FROM: National Technical Infarmation Service 5285 Port Royal Road Springtield Virginia 22161

The objective of this part of the research was to develop manual guidelines for pretimed arterial streets. Manual guidelines were first developed and tested in the laboratory. The TRANSYT simulation model was used for this purpose. Modifications were made to the model to facilitate the use of different cycte lengths within the same system. Next, the performance of the guidelines was evaluated in a detailed before-and-atter field experiment involving 11 signals along State Highway 123 (a section of San Pablo Avenue in Berkeley and Oakland). The total system delay was used as the primary performance measure.

INCORPORATING FUEL CONSUMPTION MODELS INTO URBAN TRAFFIC ANALYSIS TECHNIQUES. NATIONAL ENERGY RESEARCH, DEVELOPMENT AND DEMONSTRATION PROGRAM; END OF GRANT REPORT. Bowyer, DP. Australian Dept of Primary Industries and Energy GPO Box 858 Canberra A.C.T. 2601 Australia 0811-9570 0-642-12708-5. Oct 1988 9p. REPORT NO: NERDDP Report 814

The NERDDP Project 1036, 'Incorporating Fuel Consumption Models Into Urban Traffic Analysis Techniques', has been conducted at ARRB over the period July, 1987 to November, 1988. The primary objectives of the project were to: (a) advance the knowiedge of driver vehicle acceleration behavior; (b) incorporate truck fuel consumption models into several existing tratfic analysis techniques; and (c) improve the fuel estimation procedures in the SATURN traffic analysis package. The major tectnical tasks and the associated findings are detailed in previous reports and in forthcoming documentation updates of the SATURN system. This is the final report to the NERDD Committee. It summarizes the primary findings from the technical tasks and demonstrates the value of the enhanced fuel consumption models. A more flexible acceleration time model has been developed, which should find use in micro simulation, traffic models. The previous hierarchy of car fuel consumption models has been generalized and now provides reliable estimates for a wide range of vehicle types. These models can be incorporated into a number of existing traffic models, and have been for the INSECT and SATURN models. A particularly important use of the new fuel consumption models is in estimating the effect of traffic control changes when there are heavy vehicles in the traffic stream. Stops are seen to have much more significant impacts on fuel consumption than was indicated by the previous car based fuel consumption models. The practical implication is that careful consideration should be given to all traffic performance variables (fuel consumption, safety, delay), when traffic system changes are being investigated.

INDO-SWEDISH TRAFFIC SIMULATION MODEL: A PROGRAM FOR THE MONTE CARLO SIMULATION OF HETEROGENEOUS VEHICLE TRAFFIC ALONG SINGLE LANE, INTERMEDIATE LANE AND NARROW TWO LANE ROADS. Brodin, A; Palaniswamy, SP. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1985 124p. REPORT NO: VTIMEDDELANDE-439A. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The report deals with a simulation program which describes the dynamic sequence of heterogeneous vehicle traffic over defined stretches of road for given traffic volumes and compositions. Crossing sequence of vehicles moving in opposing directions is the unique feature of the program system. Also unique is the ability of the model to deal with road stretches with width varying from single lane (3.5 meters wide) with different types shoulders and auxiliary lanes to two lane roads (7.0 meters wide). Jacksorn Structured Programming technique (JSP) has been used in programming and the programming language is SIMULA 67.

NSECT WITH TRAFFIC SIGNALS: VALIDATION REPORT. RJ NAIRN AND PARTNERS PTY LTD 7 CENTENNIAL AVENUE Randwick New South Wales Australia. Jun 1986 61p

The development of the intersection simulation model INSECT has included the addition of the control software of a real time tratic signal controller interfaced to the tratic simulator. In its earier form, INSECT modelled unsignalised intersections and roundabouts. This report presents the results of the comparison of the simulation of a signalized intersection with survey data. The comparison has been very pleasing. While it is expected that the results of the simulation could be made to appear closer to the survey by further adjusting the model parameters, the comparisons indicated that the model could be used with confidence for the range of conditions covered by the survey data. The results of the comparison show that, while there are many minor variations, the model provides a realistic and reasonable representation of the operation of a signaized intersection, and produces results which are, for most parameters, not significantly different from those of actual surveys. In addition, the trends exhibited by the model as key parameters (eg joumey time, red per cent, signal timing, etc) were changed are in accordance with those experienced on street. It is concluded that INSECT provides a good test bed for examining the effects on traffic of changes made to a traffic signal controller.

INTEGRATED MODELING OF FREEWAY FLOW AND APPLICATION TO MICROCOMPUTERS (ABRIDGMENT). Michalopoulos, PG; Lin, J. Transportation Research Board. Transportation Research Record N1091 1986 p $25-281$ Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

An interactive, menu-driven macroscopic freeway simulation program with graphic capabilities is summarized in this paper. In addition to the employment of personal computers, the program has some attractive features that allow simulation at various levels of complexity. Improved macroscopic modeling specifically developed for the program is used to describe complex phenomena, such as lane changing, merging, diverging, and weaving. The freeway is simulated in an integrated fashion; this implies that the coupling effects of ramps are considered in determining actual entering and existing flows as well as in following the simultaneous development of queues and propagation of congestion on both the freeway and its ramps. Input to the program is entered interactively and includes conventional traffic parameters, freeway and ramp characteristics (e.g., capacity, free flow speed, jam density), demands (including percentage of existing voiumes at off ramps), and geometric information. Output includes estimation of delays, stops, energy consumption, pollution levels, and other important measures of effectiveness. In addition, two- and three-dimensional plots of speed flow and density are produced for dynamic description of these basic variables in time and space; additional graphics include visual review of the freeway operation during the simulation as weil as description of the geometrics, demand patterns, and other input information. This paper appeared in Transporiation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

INTERSECTION, DIAMOND, AND THREE-LEVEL DIAMOND GRADE SEPARATION BENEFIT-COST ANALYSIS BASED ON DELAY SAVINGS. Rymer, B; Urbanik, T, II. Transportation Research Board. Transportation Research Record N1239 1989 pp 23-29 8 Fig. 2 Tab. 4 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A method for determining when tratic flow should be grade separated would be an invaluable tool for the tratfic engineer/planner. The results of this study facilitate choosing proposed grade separation improvements on the basis of an evaluation of the reduced delay benefits to the cost of a grade separation. This methodology can assist decision-makers in determining when grade separations are appropriate. The analysis is centered on the Federal Highway Administration's TRANSYT 7F model. An economic analysis that presents the benefitcost methodology for ranking a grade separation project is included. This paper appears in Transportation Research Record No. 1239, Geometric Design and Operational Effects.

INTERSECTION SIMULATION MODEL: INSECT. Cotterill, PJ; Mcore, SE; Tudge, R (Rj Nairn and Partners Proprietary Limited; New South Wales Department of Main Roads,Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 171-182 9 Fig. 18 Ref.

INSECT is a computer suite for modelling unsignalised intersections. From a simple intersection description it produces estimates of delay, stops, fuel consumption, queue lengths and other measures of tratfic operation. The model is based on a velicle-by-vehicle simulation technique with vehicle movements governed by car-following principies. Conflict resolution is based on gap acceptance criteria. Lane changing is also modelled using a gap
acceptance method with both strategic and tactical lane selection included. An innovative feature in INSECT ability to construct intersection geometry from a minimum amount of data. However, if required, detailed specification of intersection geometry may also be specified by the user. This paper describes the principles and operation of INSECT. The number of covering abstract for the conference is TRIS No. 393385. (Author/TRRL) This paper was presented during the 12th Australian Road Research Board Conference, Hobart, Tasmania, 27-31 August 1984.

INTERSECTIONS. PROCEEDINGS: INSTTTUTE OF TRANSPORTATION ENGINEERS DISTRICT 7 - CANADA TWELFTH ANNUAL MEETING. Gillett, R; Toply, S; Babey, GM; Hunt, JD; Stephenson, B; Solomon, HL; Mah, M. Institute of Transportation Engineers RTAC, 1765 St Laurent Bouievard Ottawa Ontario K1G 3V4 Canada. 1987 pp 8.1-102 31 Fig. 16 Tab. 22 Ref.. AVAILABLE FROM: Institute of Transportation Engineers RTAC, 1765 St Laurem Boulevard Ottawa Ontario K1G 3V4 Canada

Papers presented at this session include: network traffic control systems (gillett,r); micro-record : a practical traffic signal coordination program (teply, s, babey,gm, hunt,jd and stephenson,b); evaluation of signal timings on Hamitton mountain using transyt $7-f$ (solomon,hi); side street capacity at unsignalized intersections (mah, m). For the covering abstract of the conference see IRRD 291074. (TRRL)

INTRODUCTION TO RURAL TRAFFIC SIMULATION. Hoban, G. Australian Road Rosearch Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910 127 7. 1983 pp 37-48 4 Fig. 11 Ref.

Some of the basic concepts of rural traffic simulation, with particular reference to the Australian Road Research Board model, TRARR are introduced. Simulation provides a method for generating random selections from known traffic distributions, and observing the progress of each vehicle along the road. Vehicle progress is governed by a set of decision rules which determine the response of the vehide to various road and traffic situations. The reliability of a model depends on its complexity and the extent of calibration and testing. The main constraints on simulation ntiodel accuracy are the limits of our knowledge of the traffic flow process. (TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermont South, Victoria, June 2-3, 1983. This paper was presented in Session 1: Rural Traffic Simulation.

INVESTIGATION OF OPTIMAL TIME TO CHANGE ARTERIAL TRAFFIC SIGNAL-TIMING PLAN. Jrew, BK; Parsonson, PS; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 20-29 6 Fig. 10 Tab. 6 Ref. AVALLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The objective of this study was to use several off-line computer programs to provide a technique for determining the optimal aftemoon time during which to change the off-peak timing plan to the peak-period timing plan for a particular Atlanta anterial. The study made use of PASSER II-80 (an arteriai-optimization model), TRANSYT-7F (a model for optimizing arterials or grids), and SOAPM (an intersection-optimization model). An attempt to establish different optimal timing plans for the off-peak hour (1:00 to 2:00 p.m.) and the peak hour (5:00 to 6:00 p.m.) using PASSER was unsuccessful because it was found that both hours required the same cycle length. The TRANSYT optimization program produced different cycle lengths for the two hours. The authors adjusted these cycle lengths to 85 sec for the off-peak hour and 115 sec for the peak hour so that there would be a clear superiority of one over the other at each of the two times of day. Twenty TRANSYT simulation runs were then performed forward in time, from 1:00 to 6:00 p.m., by using the off-peak optimal timing plan and the volumes for each $15-\mathrm{min}$ period. Another 20 TRANSYT simulation runs were performed backward in time, from 6:00 to 1:00 p.m., by using the peak-hour optimal timing plan and the volumes for each $15-\mathrm{min}$ period. The two plots of periormance index versus time of day intersecled at $4: 15$ p.m., the optimal time to change plans. The TRANSYT-oriented procedure involved considerable effort and computer time. It was theorized that the TRANSYT procedure might be replaced by a relatively simple SOAP/M analysis of only the critical intersection. However, it was found that at all times during the aftemoon the off-peak cycle length had a lower traffic performance index; therefore, the SOAPM analysis failed to produce an optimal time to change the plan. This paper appeared in Transportation Research Record N1057, Traffic Signal Systems.

IIDS: A DATA BASE DRIVEN INTERFACE TO TRAFFIC MODELS USING A MICROCOMPUTER. Santiago, AJ. Federal Highway Administration, Office of R\&D. Public Roads VOL. 49 NO. 4 Mar 1986 pp 122-126. AVAlLABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

The Federal Highway Administration (FHWA) and others have developed over the past 20 years a number of computer programs that can evaluate and/or optimize different traffic control strategies before committing the financial resources necessary to design the strategies and implement them in the field. This article describes the Integrated Traffic Data System (ITDS), a set of microcomputer programs that solves many of these problems by providing an easy-to-use interface to a wide range of existing traffic models. ITDS allows the user to maintain a local tratfic data base and easily generate input data sets for various traffic models in a user-friendly manner.

ITDS: PAST, PRESENT, AND FUTURE. Rathi, AJ; Santiago, AJ; Vaientine, DE; Chin, SM. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 116 NO. 6 Nov 1990 pp 799-808 Figs. Refs. 1 App. AVAlLABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

The paper describes the integrated traffic data system (ITDS), a microcomputer-based system designed to allow traffic engineers to store, maintain, and update traffic network information in a centralized data base. The information may be used to create input data files for widely used traffic simulation and network signal-timing optimization models. ITDS provides a friendly preprocessor to models such as TRAF-NETSIM and TRANSYT-7F. Interactive and static displays have also been added.

KNOWLEDGE BASE ON SEMI-ACTUATED TRAFFIC-SIGNAL CONTROL. Lin, F-B. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 117 NO. 4 Jul 1991 pp 398-417 Figs. Tabs. Refs. 2 App.. AVAlLABLE FROM: American Society of Civil Engineers 345 East 47th Street Now York New York 10017-2398

A microscopic simulation model is used to develop a knowledge base for the use of semi-actuated signal control at individual intersections. This base addresses semi-actuated operations that rely on presence detection of vehicles and that do not accommodate pedestrian timing. The paper focuses on the following aspects of semi-actuated operations: phasing plan; timing design; setting of call delay; choice of detector length; and choice between semi-actuated control and full-actuated control.

LABOR SAVING METHODS FOR IMPROVED OPERATION OF COMPUTER-CONTROLLED TRAFFIC SIGNAL SYSTEMS: 1.5 GENERATION SYSTEM FUNCTIONAL DESCRIPTION AND SOFTWARE DEVELOPMENT GUIDELINES. Kessmann, RW; Ku, CS; Cooper, DL. Kessmann and Associates, Incorporated 18333 Egret Bay Boulevard Houston Texas 77058. Mar 1985 106p. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

This report provides a functional description of the 1.5 Generation control system concept. The system described is the one which was found to be the most effective of several alternatives studied in the analyses of References 1 and 2. The material of this report serves as a basis for developing design specifications for the 1.5 Generation system applications software. The primary objective of the 1.5 Generation control system is to reduce the labor intensiveness of the task of developing pre-stored traffic signal timing plans used in the First Generation central computer controlled signal system. A secondary objective of the concept is to detect long term trends in the degradation of performance of the pre-stored timing plans used in a First Generation system. See also PB86-124500.

LABOR SAVING METHODS FOR IMPROVED OPERATION OF COMPUTER-CONTROLLED TRAFFIC SIGNAL SYSTEMS: EXECUTIVE SUMMARY. Kessmann, RW; Ku, CS; Cooper, DL. Kessmann and Associates, Incorporated 18333 Egret Bay Boulevard Houston Texas 77058. Mar 1985 38p. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

A key objective of the study summarized in this document is to investigate the feasibility of retrofiting existing and/or planned computerized traffic signal control systems with the capability to automatically compute optimal traffic signal timing plans for review and analysis by traffic engineering staff. The term 1.5 Generation has been applied to systems having this capability. The objective of such 1.5 Generation systems is to provide tratfic engineering staffs with a labor-saving tool to be used to maintain optimal traffic signal timing. See also PB86-124492.

LEVEL OF SERVICE CONSIDERATIONS AT SIGNALIZED INTERCHANGES. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Urbanik, T, il; Fambro, DB. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 407-411 1 Fig. 1 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

Capacity analysis of signalized interchanges is not adequately addressed by current Highway Capacity Manual (1985) procedures. Issues such as computer models, level of service, queue spill back, and phasing and timing that must be addressed in conducting an analysis of signalized interchanges are identified. Guidance is given on how to conduct an appropriate capacity and level of service analysis using available tools. Finally, limitations of the current procedures and recommendations for future research are presented.

LIMITATIONS ON THE OBJECTIVE OF ENERGY EFFICIENCY IN URBAN TRAFFIC MANAGEMENT. Akcelk, R. Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. Nov 1982 p 81.1 3 Fig. 3 Tab. 6 Ret.. REPORT NO: SAEA 82081

The objective of reducing fuel consumption in urban traftic must be considered in the context of an overall tratfic system management approach. This paper emphasizes the existence of conticts among various traffic management objectives (safety, Iraffic performance, energy, air pollution, property access, intrusion into residential areas, etc) and among the needs of different road user groups (pedestrians, buses, cars, heavy vehicles, major and minor road traffic, etc). An elemental model of fuel consumption is described briefly, and its relevance to existing traffic modelling techniques is emphasized. The elemental model is then used as a basis for discussing the expected impacts of various short-term traffic management measures on traffic performance, fuel consumption, safety and other objectives. Theoretically, fuel consumption savings of about 5 to 10 per cent could be achieved from traffic control (at a local level) given the limitations imposed by other traffic system management objectives. However, considering time-dependent and location-specific characteristics of road traffic systems, it is concluded that, in order to achieve and maintain such levels of energy savings, continuous implementation of sophisticated traffic engineering techniques is required. Furthermore, the problem should be considered in the context of a wider transport system management approach which analyses relatively long term impacts on route choice, mode choice and travel demand levels. (Author/TRRL) Proceedings of the 19th International Fisita Congress, Melboume, Australia, November 8-12, 1982.

LINSIG: A COMPUTER PROGRAM TO AID TRAFFIC SIGNAL DESIGN AND ASSESSMENT. Simmonite, BF. Printerhall Limited. Traffic Engineering and Control VOL. 26 NO. 6 Jun 1985 pp 310-315 9 Fig. 3 Ret.

The development of the microprocessor-based tratfic signal controller for use at urban traffic control instaltations has enabled the engineer to design traffic-signalled intersections with a far greater degree of flexibility. There are a number of computer programs which will calculate the capacity of traffic-signalled intersections and these are usually adequate for dealing with stage-based controllers. However, in order to model a microprocessor controller, a more accurate computer model is required to enable any minor atterations in the controller design to be reflected in the capacity of the junction. In order to achieve this the junction has to be modelled in two different ways, using a controller model and a tratfic model. This article describes a computer program (LINSIG) which allows the engineer an opportunity to design the controller to the MCE 0141 specification, test the design and then compute the junction capacity. By altering the controller model or the geometric parameters, various aptions can be tested. The two models and the way in which they interact are explained. (TRRL)

MACRO VS MICRO FREEWAY SIMULATION: A CASE STUDY. Liu, C. and Kanaan, A. (AEPCO, inc., Rockville, Md.), Santiago, A. (Federal Highway Administration, Mclean, Va.), and Hoht, G. (City of Columbus, Columbus, Oh.). Proceedings of the American Society of Civil Engineers Microcomputers in Transportation Conference, 1992.

This paper documents a case study on freeway improvements evaluations through the use of FREFLO, a macroscopic simulation model, and FRESIM, a microscopic simulation model. Both models are part of the Federal Highway Administration's TRAF simulation system. The case study involved a section of the I-70 treeway in Columbus, Ohio. Geometric and access control improvements were proposed to alleviate congestion on the freeway. The existing conditions, and the proposed improvements were modelled under current, as well as future, traffic scenarios.

MACROSCOPIC FREEWAY MODEL FOR DENSE TRAFFIC - STOP-START WAVES AND INCIDENT DETECTION. Kuehne, RD (Aeg-Telefunken Forschungsinstitut, W Germany). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 21-42 13 Fig. 1 Phot. 19 Ref.

A continuum model for freeway traffic flow is described which includes relaxation of the equilibrium speed of the static speed-density relation ("fundamental diagram") and anticipation of traffic conditions downstream. Stability analysis shows that in light traffic the equilibrium solution given by the fundamental diagram is stable, while in dense traffic, jams with stop-start waves occur. The formation of stop-start waves is in full analogy to the creation of roll waves in inclined open channeis with a suitable water height. The methods to derive such roll wave solutions from the basic hydrodynamic equations of shallow water theory are used to describe the stop-start waves in the freeway model. As in fluid dynamics, where the change from laminar flow to turbulent flow is announced by critical fluctuations, the change from steady traffic to traffic with jams and stop-start waves is indicated by large fluctuations. From theory and measurement of the broadening of the speed distribution due to the critical fluctuations an algorithm of traffic classitication and incident detection is derved. On the basis of a simplified version of this algorithm using only local measurements of the speed distribution an automatic traffic jam warning system is developed. (Author/TRRL) Papers presented during the Ninth International Symposium on Transportation and Traffic Theory held in Delft the Netherlands, 11-13 July 1984.

MACROSCOPIC MODELS FOR OVERTAKING AND ONCOMING BICYCLE TRAFFIC. Van Laarhoven, AJM. Royal Dutch Touring Club ANWB. Verkeerskunde VOL. 33 NO. 7 Jul 1982 pp 388-392 2 Fig. 3 Phot. 10 Ref. Dutch

When designing bicycle facilities such as cycle paths the dimensions of the cross-section are very important. The author states that comfort and safety of cycle traffic are dependent on aspects like overtaking and meeting oncoming cyclists and moped riders. Computer simulations have been carried out and show that the models are useful in forecasting the process of overtaking and oncoming cycle traffic. (TRRL)

MACROSCOPIC SIM̛ULATION FOR URBAN TRAFFIC MANAGEMENT. VOLUME 1: EXECUTIVE SUMMARY. Lieberman, E. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746 TR-94; Federal Highway Administration 400 7h Street, SW Washington D.C. 20590. Jan 1982 Final Rpt. 25p. REPORT NO: FHWA-RD-80-113. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This volume is an Executive Summary describing the TRAFLO macroscopic traffic simulation model which is a system of integrated component traffic simulation submodels and an equilibrium traffic assignment model. Each component model is described. The input requirements for TRAFLO are indicated as are the statistical measures of effectiveness produced as output by the model. These measures describe, in detail, the traffic operation, emissions and energy consumed on a large system of roadways of general configuration. Selected validation results are presented and estimates of computer costs are described. Other valumes of this report are the following: Vol. 2 TRAFLO User's Guide. Vol. 3 Anahytical Developments for TRAFLO. Vol. 4 Data Base and Structure Charts of TRAFLO Software. Vol. 5 Data Reduction, Calibration and Validation Study for TRAFLO. (FHWA)

MACROSCOPIC SIMULATION FOR URBAN TRAFFIC MANAGEMENT: VOLUME 2: TRAFLO USER'S GUIDE Lieberman, E; Andrews, B; Davila, M; Yedlin, M. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746 TR-92; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jan 1982 Final Rpt. 214p. REPORT NO: FHWA-RD-80-114. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This volume presents a guide for the user of the TRAFLO model. It details the following: general model characteristics; input formats; sample output reports; error message identification; computer operations; and computer resources. The other volumes of this report are as follows: Volume 1-Executive Summary, Volume 2-Analytical Developments for TRAFLO, Volume 3-Data Base and Structure Charts of TRAFLO Software, and Volume 4-Data Reduction. (FHWA)

MACROSCOPIC SIMULATION MODEL FOR FASTROAD NETWORKS TAKING INDIVIDUAL VEHICLES INTO ACCOUNT (DYNEMO). Schwerdteger, T. Technical University of Karlsruhe, West Germany Fakuttaet fuer Bauingenieur- und Vermessungswesen D-7500 Karlsruhe West Germany. Jul 1986 199p German. AVAlLABLE FROM: National Tectnical Information Service 5285 Port Royal Road Springfield Virginia 22161

A simulation model is developed, which is to act as a support for the design and evaluation of traffic control systems in fast road networks. The flow of traffic is shown in such models by macroscopic or microscopic methods. The DYNEMO model takes into account static and dynamic parameters (e.g., network structure, peripheral tratfic conditions, density of traffic, the proportion of lorries, journey matrix, selection of alternative routes) and consists of a combination of microscopic and macroscopic procedures, which makes it possible to take into account individual vehicles. The simulation model worked out is validated and is used to assess the NIKOS tratfic comtrol system, which is already in use in the motorway network of the Rhine-Main area.

MACROSCOPIC TRAFFIC DELAY MODEL OF BUS SIGNAL PREEMPTION. Radwan, AE; Hurley, JW, Jr (Virginia Polytechnic Institute \& State University; Memphis State University). Transportation Research Board. Transportation Research Record N881 1982 pp 59-65 4 Fig. 2 Tab. 17 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Productivity enhancement of public transportation is an essential goal, and bus signal preemption at intersections is one of the transportation system management strategies that strives for this goal. Improvements in bus speed and reductions in delay are the anticipated benefits accrued from such strategy. A macroscopic traffic delay model, which applies stochastic procedure, is presented to evaluate different bus preemption signal strategies at an isolated intersection. The model permits the user to evaluate a certain operational strategy provided for bus traffic on both main and cross streets. The signal controller modeled in this paper has a green extension and red truncation capabilities. A comparison between preemption on both main and cross street and preemption on main street only is provided to validate the model's logic. Sensitivity analyses were implemented and it was found that the delay stavings due to signal preemption are sensitive to saturation flow rate and to bus passenger load. Potential applications and further enhancement are suggested. (Author) This paper appeared in Transportation Research Record No. 881, Traffic Control Devices and Traffic Signal Systems.

MAKING TRANSYT USAGE EASY WITH MICROS: A CASE STUDY. SESSION 4. Strong, DW; Eckols, RH (Barton-Aschman Associates, Incorporated). Institute of Transportation Engineers. Compendium of Technical Papers, 1984 pp 9-13 4 Fig. 8 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

Microcomputers are now accepted as a basic tool for use in the traffic engineering profession. Currently, the profession is in the process of developing and refining the methodologies and techniques necessary to apply the power of the microcomputer to traffic engineering. One area where the microcomputer has already been used successfully is in the development of coordinated signal timing plans using the TRANSYT optimization model. This paper discusses specitic experience with microcomputers in this field as applied to the Califomia Energy Commission's (CEC) Fuel Efficient Traffic Signal Management Program. (3) As a part of this program, nearty 200 signals were timed using these techniques in four cities, San Francisco with 77 signals, San Jose with 51 signals, Richmond with 30 signals, and Redwood City with 34 signals. The techniques used and the results obtained are discussed in this paper. (Author) This paper was presented during the Institute of Transportation Engineers 54th Annual Meeting, San Francisco, Calitornia, September 23-27, 1984.

MAXBAND-86: PROGRAM FOR OPTIMIZING LEFT-TURN PHASE SEQUENCE IN MULTIARTERIAL CLOSED NETWORKS. Chang, EC-P; Cohen, SL; Liu, C; Chaudhary, NA; Messer, C. Transportation Research Board. Transportation Research Record N1181 1988 pp 61-67 1 Fig. 3 Tab. 16 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Four variables are availabie to the traffic engineer that can be used to optimize the flow of traffic in signalized urban networks. Three of these-green phase time, offset, and cycle length-are weil know, and a number of computer programs are available to determine them. A fourth variable, left-lurn phase sequence, is less well known and can be computed only for arterial networks by existing software. Recognizing that the left-turn parse sequence might be an important variable in multiarterial closed networks, the Federal Highway Administration (FHWA) contracted with Texas Transportation Institute (TTI) to extend the MAXBAND program, which was restricted to singie arterials and triangular networks, to such general networks. The extensions made to the MAXBAND program resulted in

MAXBAND 86; these extensions are described in this paper. The application of MAXBAND 86 to a study of the effect of the left-turn phase sequence in 10 multiarterial closed networks is described also. The study included comparison of MAXBAND-produced timing plans with and without phase sequence optimization and an analysis of the effects of using phase sequence patterns given by MAXBAND in the TRANSYT program. The results indicate that optimization of the phase sequence can often provide a substantial benefit in terms of reduced delay and stops. This paper appears in Transportation Research Record No. 1181, Urban Traffic Systems and Parking.

MAXBAND PROGRAM FOR ARTERIAL SIGNAL TMMING PLANS. Cohen, SL; Little, JDC. Federal Highway Administration, office of R\&D. Public Roads VOL. 46 NO. 2 Sep 1982 pp 61-65 9 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street Now York New York 10017

This articie discusses the MAXBAND model, a portable bandwidth optimization computer program written in FORTRAN IV that can be used to develop signal timing plans for signalized anterials and simple networks of three intersecting arterials. The program can optimize signal offset, cycie length, and left tum phase sequence.

MEASURES OF QUEUEING PERFORMANCE FOR A TRAFFIC NETWORK. Bell-M.C.. Nowcastie upon Tyne Univ. (England). Transport Operations Research Group. TORGRR33. Oct 80. 29p. UNITED-KINGDOM.

A comprehensive study of vehicies queueing at trattic signalled junctions was carried out. The results showed that the variation in the length of the queue of a given number of vehicles was greater during the green compared with the red stage, although the variation was found to be randomly distributed about the mean queue in both cases. The traffic simulation model MULTSIM was used to generate over 40 thousand queues to assess the cycle by cycte variation in the number of vehicies queueing at a signalled junction based on 30 simulated cycles. Results of an on-site survey and the simulation modelling are used to derive measures of the cyclic variation in the spare capacity for vehicles queueing on a link in a traffic network during the effective green and red stages. The latter are then traņslated imo a queueing performance indicator designed to be included as part of the delay pertormance index used by TRANSYT 7 to optimize traffic signal settings.

MEASURING AND ANALYZING CYCLIC FLOW PROFILES WITH A PORTABLE MICROCOMPUTER. RObertson, DI; Wood, K (Transport and Road Research Laboratory). Printerhall Limited. Traffic Engineering and Control VOL. 25 NO. 1 Jan 1984 pp 27-28 2 Fig. 4 Ref.

Traftic congestion in urban areas can often be reduced by coordinating the operation of the signals that control adjacent road junctions. Signal co-ordination timing "plans" can be calculated by had or by a computer-based method such as TRANSYT. The efficiency of a timing plan can be checked, and the plan improved, by measuring 'cyclic fibw profiles'; the use of a portable microcomputer makes such measurements easy and helps unity theory and practice. (Author/TRRL)

MEASURING LEVEL OF SERVICE OF TWO-LANE HIGHWAYS BY OVERTAKINGS. Morrall, JF; Wemer, A. Transportation Research Board. Transportation Research Record N1287 1990 pp 62-69 7 Fig. 3 Tab. 9 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A level-ot-service concept that is based on the supply of passing opportunities and demand for overtaking is presented. A driver is hypothesized to perceive level of service on a two-lane highway on the basis of his or her ability to overrake slower vehicles. The demand for overtaking is a function of volume and the speed distribution characteristics of the traffic stream. The supply of opportunities for vehicles to overtake is a function of the number of gaps adequate for safe overtaking maneuvers in the opposing traffic stream and the percentage of passing zones of the highway section under consideration. The relationship between supply and demand for overtaking forms the basis of a level-of-service measure defined by the overtaking ratio. The overtaking ratio is detined as the ratio of the achieved number of overtakings on a two-lane highway to the desired number (or to the total number of overtakings possible on a two-lane highway with continuous passing lanes and with vertical and horizontal geometry similar to the two-lane highway). Various level-of-service measures and procedures including the method of the 1965 and 1985 Highway Capacity Manuals, the percent-following count generated by simulation modeling, and the overraking ratio, are compared. The overtaking ratio decreased much faster than the percentage of time delayed increased for those ranges of level of service to which motorists are most sensitive on two-lane highways. The overtaking ratio is suggested as another dimension of ievel of service to be considered for two-lane highways in addition to existing measures such as percentage of time delayed, capacity use, and speed. This paper
appears in Transportation Research Record No. 1287, Traffic Flow, Capacity, Roadway Lighting, and Urban Traffic Systems 1990.

MEASURING SATURATION FLOW AT TRAFFIC SIGNALS USING A HANDHELD MICROCOMPUTER. WOOd, Printerhall Limited. Traffic Engineering and Control VOL. 27 NO. 4 Apr 1986 pp 174-175 2 Fig. 6 Ref.. AVAlLABLE FRON, Printerhall Limited 29 Newman Street London England

Traffic signal timings cannot be optimized unless the traffic engineer knows the saturation flows at the junction. This is true whether the signals are operating independently, or coordinated with other signals in the area. While methods of estimating saturation flows are available, it is usually better to measure the values directly. However, measuring saturation flow demands considerable concentration. In the standard method, the engineer must not only observe the traffic, but also continuously check the time on a stopwatch and record data every six seconds. To simplify this process, TRRL has written a program for a handheid microcomputer. With the program the engineer simply presses a key as each vehicle crosses the stop-line; there is no need to look at a watch or to write down data. Vehicles with different pcu values may be classified by using a different key for each class. At the end of the observations the computer calculates and prints out the saturation flow ready for immediate use. (Author/TRRL)

MEASURING SIGNAL PLATOON FLOW. VIRKLER, MR; MADSEN, RW; SUTTON, JH. JOURNAL OF URBAN PLANNING AND DEVELOPMENT VOL. 117 NO. 5 Oct 1991 PP 513-528 ENGLISH

BY MARK R. VIRKLER, RICHARD W. MADSEN, AND JOANNE H. SUTTON CHARTS INCLUDES BIBLIOGRAPHICAL REFERENCES

MELBOURNE ON-ROAD, HALF SECOND SPEED AND FUEL CONSUMPTION, PEAK DATA (1978), COLD-START DATA (1982) AND FUELS DATA (1982). Lansell, SR; Chittleborough, CC; Watson, HC. Melbourne University, Australia Department of Mecitanical Engineering, Grattan Street Parkville Victoria 3053 Australia. 1984 Monograph 29p 1 Fig. 7 Tab. 5 Ref.. REPORT NO: TG1/84

As part of the NERDDP motor vehicle fuel conservation program, data collection exercise, fuel consumption and vehicle velocity data collected in 3 separate experiments have been compiled as files on magnetic tape for use by others. The 3 experiments were carried out using the Melbourne University instrumented car during the period 1978 to 1982. The main objective of the first two experiments was to produce drive cycles for vehicle testing, the data from which the Melboume peak cycle and the Melboume cold start cycle were developed. The last set is the fuels study data performed in co-operation with the Country Roads Board and contains additional information believed to be valuable in the validation of car following algorithms used to optimize traffic signal setting, and for other similar purposes. 3 modes of signal operation were employed in this experiment. This report is with "NERDDP Motor Vehicle Fuel Conservation Program-Driving Pattern add Fuel Consumption Data Collation: Final Report" (Author/TRRL)

METHODS OF EVALUATION USED IN ARRB SIMULATION STUDIES. Hoban, CJ. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 133-154 5 Fig. 7 Tab. 25 Ref.

Rural tratfic simulation models have been used in a number of studies at the Australian Road Research Board to investigate alternative road improvement options. The simulation models give an indication of the expected changes in traffic performance, and this may be supplemented with data on costs and accident effects. Four approaches to the evaluation of alternative options using this information are described. The four approaches are (a) relative traffic performance; (b) cost-effectiveness; (c) benefit-cost analysis; and (d) level of service. Examples are given from previous simulation studies, and some advantages and limitations of each approach are noted. The appendices provide further information which may be useful in benefit-cost analysis. The paper was presented in Session 4: Practical Application of Rural Traffic Simulation. (TRRL) Program and papers from Workshop on Rural Traftic Simulation, Vermount South, Victoria, June 2-3, 1983. This paper was presented in Session 4: Practical Application of Rural Trattic Simulation.

MICROSCOPIC SIMULATION OF TRAFFIC IN NETWORKS: SUPERCOMPUTER EXPERIENCE. Mahmassani, HS; Jayakrishnan, R; Herman, R. American Society of Civil Engineers. Journal of Computing in Civil Engineering VOL. 4 NO. 1 Jan 1990 pp 1-19 Figs. Tabs. Reis. 2 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

The results are given of recent computational experience with the NETSIM simulation model on a CRAY X-MP/24 supercomputer. The application of NETSIM to a large urban network is demonstrated, its computational performance on the supercomputer relative to conventional mainframes is compared, and the types of modifications to the NETSIM program that would be necessary to take better advantage of the parallelism present in the supercomputer architecture are identified. The paper reviews relevant background on supercomputing and CRAY, and the simulation experiments are described. Future modifications to NETSIM to enhance its performance in vector-processing environments are discussed, and comments are made on substantive questions in traffic theory and practical traffic problems that can benefit from enhanced computational capabilities.

MICROPROCESSOR AIDS TO OPTIMIZING UTC SIGNAL PERFORMANCE. Robertson, GD (West Yorkshire Metropolitan County Council). Printerhall Limited. Traffic Engineering and Control VOL. 26 NO. 1 Jan 1985 pp 4-8 6 Fig. 4 Ret.

In the urban traftic control (UTC) development offices of the West Yorkshire Metropolitan County Council a number of computer programs have been developed for use in UTC implementation and signal design. This article briefly describes the programs and indicates some of the ways in which these can improve signal performance. Time/distance diagrams can now be drawn using a microprocessor computer with a graphics VDU display. The computer program (called TD) allows 6 to 8 junctions to be displayed, has edit facilities on the input data and allows intermediate and final edited data to be stored. Co-ordination of tratfic signals at complex networks can be achieved using the TD program to complement the delay calculations obtained from TRANSYT. The TD program is also useful for optimizing staging, finding the natural cycle time, deciding between alternative strategies and for evaluating new junctions. The TD screen display can be used to demonstrate many of the complex reasons for the co-ordination finally implemented. It is possible to point out advantages of existing signal timings and to show what would happen if alternative timings were implemented. Four other programs developed are briefly described, they are:-(1) drawing out phase timings within intergreens (INTGRN); (2) controller logic (LOGSIM); (3) pedestrian delays (PEDEL); (4) one in twenty queue length (1IN20Q). Programs (1) and (2) are used in connection with the MCE 0141 controller a microprocessor-based traffic signal controller for isolated linked and urban tratfic control installation. (TRRL)

MICROSCOPIC SIMULATION OF ENERGY CONSUMPTION AND EXHAUST AS EMISSION IN ROAD TRAFFIC. Benz, T. Karlsruhe University, West Germany Kaiserstrasse 127500 Karlsruhe West Germany. Dec 1984 127p German. REPORT NO: NP-7770068. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springlield Virginia 22161

A simulation model was set up in order to fully account for chain of effects of: road tratfic measures, driver behavior, vehicle, energy consumption, exhaust gas emission and traftic flow. Detailed description is given of the microscope simulation of the traffic flow, the determination of energy consumption and exhaust gas emission (basics of driving dynamics, engine parameters), and details of the model (program structure, various vehicle types,
gearshift behavior, computing and print-outs). The model was then applied to a simple case of difierent coordination systems for traffic signals to road sections in residential quarters with a speed limit of $30 \mathrm{~km} / \mathrm{h}$ resp. $50 \mathrm{~km} / \mathrm{h}$ and to motorway conditions. The influence of traffic signal coordination on energy consumption and exhaust gar emission was determined. The model is then compared to other methods (drive cycies, driving process recording). It can be applied wherever traffic simulation has been successfully applied.

MICROSCOPIC SIMULATION OF FUEL CONSUMPTION AND EXHAUST EMISSIONS OF ROAD TRAFFIC (MISEVA). Benz, T. Karlsruhe University, West Germany Institut tuer Verkehrswesen Karlsruhe West Germany. 1985 128p German. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

A simulation model is introduced which, starting from simulation of traffic flow, permits information to be obtained on fuel consumption and exhaust emissions, from vehicles. In a survey of the literature, previously used processes are introduced and critically assessed. After a short introduction to simulation of traffic flow, the build-u of the model and procedure on a computer are described. For example, the model was applied to four actual situations. Three of them deal with inner city traffic and one with motorway traffic. Finally, by using this model, the problems of the previously described and used methods are shown.

MICROSCOPIC SIMULATION OF VEHICLES IN AN URBAN NETWORK. ADVANTAGES AND DISADVANTAGES OF THE EVENT-SCANNING METHOD. Aron, M (Institute for Rapid Transit). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp. Sum Ann Mtg, Proc 1984 pp13-24 6 Fig. 4 Ref.

The author describes the different aspects of an event-scanning method of simulating vehicie movements in a network: (1) general principles of the method, content of events and their interaction; (2) specific problems connected with the representation of traffic laws in an event-scanning context: the follow-up laws must be integrated, the propagation of disturbances must take a simple form, and the time of arrival of a vehicle at one point must be călculated in advance; (3) an attempt is made to show the advantages and disadvantages of the method, the aspects of the latter which remain to be solved, traffic laws or hypotheses, programming, comprehension and ease of use, and validation. For the covering abstract of the seminar see TRIS 450556. (TRRL) Proceedings of Seminar L. Tratfic Operation and Management; Held at the 12th PTRC Summer Annual Meeting, University of Warwick, England, From 10-13 July 1984, Volume P, 254.

MODELING AND FILTERING OF FREEWAY TRAFFIC FLOW. Smulders, SA. Mathematisch Centrum Amsterdam Netheriands. 1987 22p. REPORT NO: CWI-OS-R8706. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

In the Netherlands a freeway control and signaling system has been installed on several freeways. One purpose of the system is to improve traffic flow and avoid the development of congestion. In the paper the first steps towards the aim are set in the development of a traffic model and of a fitier that estimates the state of traffic at every time instant. The proposed model is simulated tor various traffic situations and modified to achieve realistic performance. The filter is presented and its performance when applied to simulated traffic data shown.

MODELING OF QUEUE DISSIPATION FOR SIGNAL CONTROL. Lin, F-B; Cooke, D. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 112 NO. 6 Nov 1986 pp 593-608 11 Fig. 3 Tab. 6 Ref. 2 App.. REPORT NO: ASCE Paper 21040. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

Simulation analysis of alternative signal control strategies requires a realistic queue dissipation model. Past efforts in modeling queue dissipation focus on queue discharge headways and neglect other aspects of queue dissipation. This results in models that produce misleading information for certain applications. To address this problem, this paper presents a simulation model that can realistically reproduce queue dissipation characteristics. The building block of this simulation model is a derived car-following model. Field data are used to illustrate the calibration and the application of the simulation model.

MODELING OF SHARED LANE USE IN TRANSYT-7F. Wallace; CE; White, FJ. Transportation Research Board. Transportation Research Record N1194 1988 pp 160-166 2 Fig. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The TRANSYT family of programs continues to be one of, if not the most, widely used computer programs in the world for traffic signal timing and traffic flow analysis. In the past this program was excellent for modeling protected or unopposed traffic movements from separate lanes; however, it did not have the capability to model several different movements, for example, unprotected left turns and through movements from a shared lane. A project to incorporate a model to explicitly deal with this condition in TRANSYT-7F is described. The model is based on the 1985 Highway Capacity Manual. Its implementation in TRANSYT-7F and the user interface are reviewed. This paper appears in Transportation Research Record No. 1194, Traftic Flow Theory and Highway Capacity.

MODELING THE BURLINGTON SKYWAY FTMS DURING RECURRING AND NON-RECURRING TRAFFIC CONGESTION. Van Aerde, M; Voss, J; Blum, Y. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 5 May 1989 pp 228-241 Figs. Tabs. Refs.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London England

A model, called INTEGRATION, was deveioped to evaluate the operation of integrated freeway/traffic signal networks during periods of recurring and non-recurring congestion. This paper describes the application of the Burlington Skyway FTMS system near Hamilton, Ontario. The objective of the FTMS system is to monitor traffic conditions on the Skyway in order to determine when incidents and/or congestion due to other conditions warrant any diversion of traffic. At this time, appropriate changeable-message sign (CMS) legends must be selected, signal timings on the diversion arterial must be adjusted and the operation of the lift bridge must be closely monitored.

MODELLING THE DRIVING BEHAVIOR INFLUENCED BY INFORMATION TECHNOLOGIES. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Reiter, U. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117. 1991 pp 309-320 12^{+}Fig. Reis.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brooksield Vermont 05036
it turned out to be useful to estimate possible effects of onboard information technologies on traffic flow before the start of introduction. One possibility for doing this is the simulation of traffic flow. Hence, a theoretical model has been developed, describing the influence of information technologies on driving behavior. This model has been integrated into a microscopic traffic simulation system. Described in this paper are human driving behavior with the driver supported by additional information, as well as automatic driving behavior, with special equipment controlling vehicle movement. Differences in traffic flow between not supported, partially supported and completely supported driving are shown, being a result of preliminary investigations.

MODELLING THE MOVEMENT OF VEHICLES IN PARKING FACILITIES. Young, W (Karisruhe University, West Germany). Monash University, Australia Department of Civil Engineering, Wellington Road Clayton Victoria 3168 Australia 0156-2126. Apr 1985 Monograph 4p 1 Fig. 11 Ref.. REPORT NO: 85/9

This paper describes a model that simulates the movements of vehicies through a parking facility. The model's main application is to compare parking lot layouts to determine the most appropriate for a site. The model is still in the early state of development and requires a number of further developments before the model can reach its full potential. The first is the development of a computer graphics capability. This will aid in the verification of the model as well as enabling the designer to gain an idea of the workings of the facility. The second is the validation of the model using data from existing facilities. (Author/TRRL) The paper was prepared for presentation at the 11th IMACS World Congress, Osio, Norway, 5-9 August, 1985.

MODELLING THE TRAFFIC BEHAVIOR AT GRADE-SEPARATED INTERCHANGES. Skabardonis, A. Printerhall Limited. Traftic Engineering and Control VOL. 26 NO. 9 Sep 1985 pp 410-415 7 Fig. 16 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

Grade separation is an essential feature of intersections between motorways and other high-capacity roads. This paper describes the development of a microscopic simulation model to investigate the interactions between traffic and geometric variables at such situations. The model has been integrated within a modular computer program and it has been calibrated and validated with a large data-base. Comparisons with measured data and information from other sources have shown that the model adequately describes the traffic behavior. (Author/TRRL)

MODELLING URBAN FUEL CONSUMPTION: SOME EMPIRICAL EVIDENCE. Ferreira, L (Australian National Raihway, Keswick). Pergamon Press Limited. Transportation Research. Part A: General VOL. 19A NO. 3 May 1985 pp 253-268 17 Tab. 12 Ret.

This paper deals with the fuel consumed by cars for each element of an urban trip by drawing on the results 0 a survey conducted in Leeds with two instrumented vehicles. Those charactenstics of urban car trips which are most likely to influence fuel consumption are identified, and the data obtained from the survey is used to quantity the importance of each element of an urban trip. The fuel consumed during a stop/start manoeuvre is analyzed, and this is followed by a comparison of the fuel consumption rate estimated when the Leeds results are applied on the standard European driving cycle and the corresponding manufacturer's published data. Finally, the results obtained are used to calibrate two fuel consumption expressions to be used with the output of traffic simulation and assignment models. (Author/TRRL)

MULTAM AND THE SEMARL PROJECT. 1. MODEL ESTIMATION AND VALIDATION. Tayior, MAP. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 2 Feb 1988 pp 64-71 Figs. Tabs. 21 Rets.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

The article describes the use of the MULATM model to examine the likely impacts of the arterial road link (South-Eastern/Mulgrave Arterial Road Link, SEMARL) on traffic volumes and travel conditions in the study area in Melbourne, and to appraise the proposed traffic management measures for the protection of the local street network. MULTAM is an interactive traffic database package which offers powertul and accessible means for traffic analysis in dense street networks, in a microcomputer environment. It includes an equilibrium model based on an equilibrium assignment strategy, that offers the means to stimulate traffic flows in a study area and to study the impacts of different traffic management plans at the local level. Use of an assignment model requires the estimation of values of two route choice parameters, that may be specific to the study area. The model was found to reproduce the observed pattern of link flows to an acceptable degree of accuracy, and could thus be used for evaluatingthalternative traffic management plans in the area.

MULTIBAND--A VARIABLE-BANDWIDTH ARTERIAL PROGRESSION SCHEME. Gartner, NH; Assmann, SF; Lasaga, F; Hou, DL. Transportation Research Board. Transportation Research Record N1287 1990 pp 212-222 16 Fig. 3 Tab. 23 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A new approach to arterial progression optimization was developed that incorporates a systematic traffic-dependent criterion. The method generates variable bandwidth progression schemes in which each directional road section is assigned an individually weighted band. The computer program for this method is named "MULTIBAND." Similar to MAXBAND, MULTIBAND uses mixed-integer linear programming for the optimization. The approach offers the traffic engineer a much wider range of design options than do existing arterial progression methods. In particular, the program provides a capability to adapt the progression scheme to the specific traffic flow pattem on each link of the arterial. Simulation results indicate that this method can produce considerable gains in performance when compared with traditional progression methods. This paper appears in Transportation Research Record No. 1287. Traffic Fiow, Capacity, Roadway Lighting, and Uiban Traffic Systems 1990.

MULTILANE TRAFFIC FLOW DYNAMICS. SOME MACROSCOPIC CONSIDERATIONS. Michalopoulos, PG; Beskos, DE; Yamauchi, Y (Minnesota University, Minneapolis; Patras University, Greece). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. $4 / 51984$ pp 377-395 8 Fig. 1 Tab. 15 Ref.

The subject of macroscopic modelling and analysis of multilane homodirectional freeway flow is discussed in this paper. Two existing models are extended and treated numerically so that their simplifying assumptions are relaxed. Further, two new formulations are developed; the first is two dimensional with respect to space (ie in addition to the street length it includes the street width explicitly) while the second is one dimensional high order dynamic (ie it incorporates a momentum equation in order to take into account acceleration and inertia effects). All modelling alternatives are implemented into a few exemplary situations representing uninterrupted and interrupted flow conditions. Finally, comparisons with aggregate results obtained from microscopic simulation are presented. (Author/TRRL)

MULTPLAN: A COMPUTER SIMULATION MODEL OF A MULTI-LANE SIGNAL CONTROLLED ROAD DURING THE TRANSITION BETWEEN TWO FIXED-TIME SIGNAL-PLANS. Gault, HE; Taylor, IG. Newcastle upon Tyne University, England Transport Operations Research Group, Claremont Road Newcastie NE1 7RU Tyne and Wear England 0306-3402. Jan 1982 Monograph 37p 9 Fig. 4 Tab. 16 Ref.. REPORT NO: No. 41

Multplan is a computer program for the microscopic simulation of traffic in one direction on a multi-lane road which contains a linked system of up to six signalized intersections. The signalized intersections must be controlled by fixed-time signal plans; but up to five changes of plan, using any one of four plan-change strategies, may be simulated. The program has been developed from multsim, and this report is intended to serve as a users' manual. Detailed descriptions of the input and output of multplan are therefore provided. (TRRL)

NATIONAL SIGNAL TIMING OPTIMZATION PROJECT. Institute of Transportation Engineers. ITE Journal VOL. 52 NO. 10 Oct 1982 pp 12-14. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

The article is the executive summary of a report by the Federal Highway Administration, Office of Traffic Operations and the University of Fiorida, Transportation Research Center.

NETSIM FOR MICROCOMPUTERS. Sibley, SW. Federal Highway Administration, Office of R\&D. Public Roads VOL. 49 NO. 2 Sep 1985 pp 54-59 3 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

Netsim, a computer model that simulates microscopic traffic flow on urban streets, is one of the most powerful traffic engineering and research tools available today. Netsim was developed in 1971 as UTCS-1 to evaluate the Uban Traffic Control System, a computer-based signal control system. Today, there are about 130 Netsim users in the United States and abroad. Over the years, the model has been enhanced to include fuel consumption and vehicle emissions data and other features requested by its users. The mainframe program was written in ANSI Fortran 66 and is portable to most mainframe computers.

NETWORK OPTIMIZATION WITH CONTINUOUS CONTROL PARAMETERS. Marcotte, P (Montreal University, Canada). Operations Research Society of America. Transportation Science VOL. 17 NO. 2 May 1983 pp 181-197 17 Ref. 2 App.. AVAILABLE FROM: Operations Research Society of America 428 East Preston Street Baltimore Maryland 21202

In this paper are considered two network optimization problems which have the following characteristics: control parameters vary continuously and network users behave according to Wardrop's first principle of traffic equilibrium ("user-optimization"). For each problem, we study an exact algorithm based on constraint accumulation and a heuristic algorithm previously proposed in the literature is studied. (Author) This paper was presented at the International Symposium, Frontiers in Transportation Equilibrium and Supply Models, Montreal University, November 11-13, 1981.

NEW ALGORITHM FOR SOLVING THE MAXIMUM PROGRESSION BANDWIDTH (WITH DISCUSSION AND CLOSURE). Tsay, H-S; Lin, L-T; Chang, EC-P. Transportation Research Board. Transportation Research Record N1194 1988 pp 15-30 9 Fig. 3 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Two popular computer programs, MAXBAND and PASSER II, are widely used in obtaining the maximal bandwidth. However, these bandwidths may not be realized or only be partly realized it the resultant signal timings are actually applied on the arterial. This phenomenon can be observed from field tests or from a time-space diagram. In this paper two examples demonstrate the problem. A new algorithm is proposed for solving the bandwidth problem and provides the user with a more realistic maximum progression bandwidth. The algorithm uses a general mixed-integer programming formulation, and a program BANDTOP based on this formulation has been developed to obtain the real progression bandwidth. It has been tested on street networks in Taiwan, where it has proved very effective. The major variation from traditional methods is that the bandwidth has a saw-toothed pattern in both directions instead of parallel and uniform. Any vehicle in the segment is allowed to travel through the entire section of an arterial with at most one stop. This paper appears in Transportation Research Record No. 1194, Traffic Flow Theory and Highway Capacity. TRANSPORTATION ENGINEERING CONFERENCE 1988 PP 106-112 ENGLISH

BY ROBERT L. MARTIN OHIO TRANSPORTATION ENGINEERING CONFERENCE PROCEEDINGS

NORTH CAROLNA'S TRAFFIC SIGNAL MANAGEMENT PROGRAM FOR ENERGY CONSERVATION. 1987 TRANSPORTATION ENERGY CONSERVATION AWARD IN MEMORY OF FREDRICK A. WAGNER. Institute of Transportation Engineers. TTE Journal VOL 57 NO. 12 Dec 1987 pp 35-38. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

Abstract

A unique traffic signal timing optimization program is described which consists of a 2-year effort to retime (optimize the timing of) a minimum of 750 traffic signal installations within all 14 highway divisions throughout the State of North Carolina. The program is designed to reduce energy consumption, reduce vehicle emissions, reduce traffic delays, reduce traffic congestion, increase annual energy savings, and increase annual total operating cost savings. The program will (1) provide additional personnel and their financial support to optimize the timing of the targeted 750 tratfic signal installations, and (2) provide sufficient evidence of the program's benefits so that continuation of the work might be considered as another training program and/or as a permanently staffed function of the NCDOT Traffic Engineering Branch. Details are given of the program activities (personnel hiring, office space and equipment, personnel training and utilization, and tratfic signal optimization). The current status of the program is also described. It is noted that the results of the first 20 months of this program are impressive. Comments are made on the future impact of the program. Article by the North Carolina Department of Transportation and the Institute for Transportation Research and Education.

OBJECT-ORIENTED PROGRAMMING IN TRAFFIC SIMULATION. Rodriguez-moscoso, JJ; Shin-miao CHIN; Santiago, A; Roland, R. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 177-90

Object-oriented programming has been referred to as a new style of computer programming that differs from conventional structured programming in that solutions to problems are obtained as a more "natural" activity. Current implementations of traftic simulation models lack explicit representations of the assumptions made about the real world. Thus, they have become increasingly more difficult to understand as new changes are added or new modifications are made. An object-riented approach to tratfic simulation modeling will overcome some of these problems, and promises to offer a new alternative solution. This paper introduces the concepts of object-oriented programming and provides some starting considerations necessary, by means of examples, to develop a general framework for building a traffic simulation tool based on the object-oriented paradigm of computer problem solving.(A) For the covering abstract of the conference see IRRD 832076.

OIL OVERCHARGE PROGRAM PROVIDES FUNDING FOR SIGNAL TIMING IMPROVEMENTS. Euler, GW; Wibur, A. Institute of Transportation Engineers. ITE Joumal VOL 56 NO. 10 Oct 1986 pp 19-22 15 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

This article describes programs that are a sampling of the signal timing improvement projects that are possible using oil overcharge funds. The diversity and size and thrust of these programs show that every state can benefit from programs to develop and maintain optimal signal timing plans on major arterial routes and in urban areas. Resolutions adopted by the American Association of State Highway and Transportation Officials recommends members to apply for oil company overcharge rebates for the purpose of creating or expanding programs to develop maximum efficiency operation of traffic signals or systems through maintenance and signal timing improvement. Transportation agencies are encouraged to apply to appropriate Federal and State agencies for PVEA (Petroleum Violation Escrow Account) funds for the purpose of implementing energy conserving transportation projects and programs.

ON-LINE CALCULATION OF SIGNAL INTERSECTION PERFORMANCE. FINAL REPORT. Pandya, SM; May, AD; Auslander, DM. California University, Berkeley Institute of Transportation Studies Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jul 1987 68p Figs. Tabs. 17 Ref.. REPORT NO: FHWA-CA-UCB-ITS-WP-8. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The objective is to develop a seff-optimizing traffic controiler capable of changing signal control parameters in response to changing traffic conditions. The controlier uses pulses from detectors to estimate traffic performance on-line and then continuously search for optimum control parameters. This project attempts to demonstrate the feasibility of on-line performance estimation for the type III detector scheme used by Caltrans for the 170 controiler.

ON-LINE OPTIMIZATION OF SIGNAL COORDINATION - THE SCOOT METHOD. Robertson, DI; Hunt, PB; Bretherton, RD; Bowen, GT. Council tor Scientific \& Industrial Res S Africa P.O. Box 395 Pretoria South Africa 0-7988-2505-7. 1982 12p 2 Fig. 2 Tab. 3 Ref.

Traffic signals in urban areas are often coordinated (linked) together on "fixed time" plans that are pre-set to suit average conditions. "SCOOT" (spit, cycle and offset optimization technique) is a new method of coordination that adjusts the signal timings in frequent, small increments to match the latest traffic situation. Data from vehicle detectors are analyzed by an on-line computer which contains programs that calculate and implement those timings that are predicted to minimize congestion. SCOOT is designed for general application within computerized urban traffic control systems. The research and development of SCOOT has been carned out in the UK by the TRRL and the Department of Transport and industry in collaboration with the Ferranti, GEC and Plessey Traffic Systems Companies. As part of this work, scoot systems have been implemented in Glasgow and Coventry and traffic surveys have been conducted by TRRL on a total of 62 signals. It is concluded that SCOOT reduces vehicie delay by an average of about 12 per cant compared with up-to-date optimized fixed time plans; further substantial benefits are likely where, as is often the case, the fixed time plans are based on oid traffic data. See also TRIS 385877. This' paper was first presented at the International Conference on Road Traffic Signalling in London during April 1982. (Author/TRRL) This paper was presented during the Annual transportation convention held at CSIR Conference Centre, Pretoria, August 9-13, 1982, Volume 4.

ON THE KINEMATICS AND QUANTUM DYNAMICS OF TRAFFIC FLOW. Baker, RGV (New South Wales University, Australia). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 17B NO. 1 Feb 1983 pp 55-66 13 Ref.

The hydrodynamic model of traffic flow is presented and interpreted. Traffic dimensions are defined for the dynamic entities of flow and the behavior of congestive and dispersive flow is discussed dependent on the value of the local traffic transfer number, r. The wave equation is one example of dispersive flow, where quantum numbers define the condition of free flow at the endpoints of the link. The schroedinger equation is defined and applied to the study of the cyclic work journey and the problem of traffic lights as an harmonic oscillator. (Author/TRRL)

ON THE MODELLING OF FLOWS IN TRANSPORT SYSTEMS. Tayior, MAP; Gipps, PG (Commonwealth Scientific \& Indus Res Org, Australia). Society of Automotive Engineers (Austraiasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-23 15 Fig. 4 Tab. Refs.. REPORT NO: Paper 23

Despite considerable research on the fuel consumption and emissions of individual vehicles in a traffic stream, little is known about the overall consumption and emissions of the traffic stream as an entity. Urban traffic is an example of a large-scale system with complex interactions between its components, and which is itself a sub-system within higher level systems. Thus models of urban traffic systems must be designed to operate within limits on data requirements and computational effort. This paper considers a hierarchy of model type, and illustrates the changing data needs and constraints for different models in the hierarchy. Some examples of particular models are given ranging from the micro-level simulation of individual vehicles on a road, through local area network models, to large-scale network models. The systems analysis of traffic flows shows that the benefits availabie from improved operations at a micro- level in one part of the system may only be taken as upper bounds or improvements for the whole system due to interaction effects. The integration of models from the various levels of the modelling hierarchy offers potential for improved environmental impact models, by providing a useful mechanism for linking micro-level models to general system-wide effects (a). The paper was presented as Paper 23-Session 7-Traffic Modelling (SAE 82153). The number of the covering abstract of the conference is TRIS no. 367871. (TRRL) Second Conference on Traffic, Energy and Emissions, Melbourne, May 1982. Program and Papers.
"ONE AND ONE-HALF GENERATION" TRAFFIC CONTROL SYSTEMS. Kessmann, RW; Ross, P (Kessmann \& Associates, Houston). Institute of Transportation Engineers. ITE Journal VOL. 54 NO. 6 Jun 1984 pp 35-37 1 Ref.. AVAILABLE FROM: Engineening Societies Library 345 East 47th Street New York New York 10017

The National Signal Timing Optimization Project has shown that maintaining optimal timing of traffic signals can result in an average savings of 4,500 gallons of gasoline per signal per year. Extrapolating these results to the estimated 130,000 interconnected signals nationwide yields an estimated annual fuel savings of 585 million galions of gasoline. The labor intensiveness of the signal retiming activity arises as a result of the need to collect and reduce data for input to computer programs which calculate optimal signal timing.

OPAC: A DEMAND-RESPONSIVE STRATEGY FOR TRAFFIC SIGNAL CONTROL. Gartner, NH (Lowell University). Transportation Research Board. Transportation Research Record N906 $1983 \mathrm{pp} 75-817$ Fig. 1 Tab. 25 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Optimization Policies for Adaptive Control (OPAC) is a computational strategy for real-time demand-responsive traffic signal control. It has the following features: (a) It provides performance results that approach the theoretical optimum, (b) it requires on-line data that can be readily obtained from upstream link detectors, (c) it is suitable for implementation on existing microprocessors, and (d) it forms a building block for demand-responsive decentralized control in a network. Studies undertaken in the development of this strategy and the testing of its periormance via the NETSIM simulation model are described. This paper appeared in Transportation Research Record No. 906, Urban Trafic Systems.

OPERATIONAL EFFECTIVENESS OF PASSING LANES ON TWO-LANE HIGHWAYS. PHASE II- TECHNICAL REPORT. Harwood, DW; St. John, AD. Midwest Research Institute 425 Volker Boulevard Kansas City Missouri 64110; Federal Highway Administration Turner Fairbank Hwy Res Cntr, 6300 Georgetown Pike Mclean Virginia 22101. Jun 1986 42p. REPORT NO: FHWARD-86/195. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia $2 \rho 161$

This report presents an evaluation of the operational effectiveness of passing lanes on two-lane highways in level and rolling terrain. Passing lanes are defined as added lanes in one or both directions of travel on a two-lane highway to provide additional passing opportunities. Passing lanes at intervals on a two-lane highway are a lower-cost atternative to construction of extended sections of four-lane highway. The operational evaluation of passing lanes was performed with a computer simulation model of traffic operations on two-lane highways with and without passing lanes. This model, known as TWOPAS, was validated against tratfic operational field data for passing lanes. The TWOPAS model was used to evaluate the effectiveness of passing lanes in improving traffic operations on two-lane highways. The evaluation found that the operational effectiveness of passing lanes is a function of traffic flow rate and passing lane length. Quantitative estimates in the reduction of traffic platooning due to provision of passing lanes are presented in the report. Passing lanes were found to impact traffic operations for effective iengths of 3 to $8 \mathrm{mi}(5$ to 13 km) of highway, including both the passing lane and the conventional two-lane highway downstream of the passing lane. A case study evaluation of atternative passing improvements was performed using the TWOPAS simulation model; this case study and a benefit-cost evaluation of the results are presented in the report.

OPTIMAL SIGNAL SETTINGS OVER TRANSPORTATION NETWORKS. Sheffi, Y; Powell, WB. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 109 NO. 6 Nov 1983 pp 824-839 16 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York Now York 10017

The paper deals with the procedure which iteratively sets signal timings at each intersection to minimize delay, holding flows constant. This paper reviews the shortcomings of this procedure and describes an algorithm for small networks, which overcomes these shortcomings. This new algorithm is used to quantity the errors in the simpler approach. Also, conditions under which both procedures would produce the same solution are discussed.

OPTIMAL TIMING SETTINGS AND DETECTOR LENGTHS OF PRESENCE MODE FULL-ACTUATED CONTROL. Lin, F (Clarkson University, New York). Transportation Research Board. Transportation Research Record N1010 1985 pp 37-45 12 Fig. 9 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The operation of presence mode full-actuated signal control at individual intersections is governed primarily by the choice of detector length and the timing settings of vehicle interval and maximum green. The relationships between

7sive

these control variables and the control efficiency vary with the flow pattern at an intersection. Based on the resufts of computer simulations, the optimal combinations of detector length, vehicle interval, and maximum green are identified for a wide range of flow conditions. The analyses periormed in this study concern only intersections where vehicle approach speeds are less than 35 mph . This paper appeared in Transportation Research Record N1010, Traffic Control Devices and Rail-Highway Crossings.

OPTIMIZATION MODEL FOR ISOLATED SIGNALIZED TRAFFIC INTERSECTIONS. Cronje, WB (Stellenbosch University, South Africa). Transportation Research Board. Transportation Research Record N905 1983 pp 80-83 6 Fig. 5 Tab. 1 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The existing methods for the optimization of isolated fixed-time signalized traffic intersections are applicable either to undersaturated stationary conditions or to oversaturated conditions. As far as is known, no model exists that is applicable to all conditions. A model is developed for the optimization of fixed-time signalized intersections that is applicable to undersaturated as well as to oversaturated conditions. In the model, the macroscopic approach to traffic flow is used. Athough it is not so accurate as the microscopic approach, values are obtained for delay and number of stops that are accurate enough for practical purposes and that use much less computer time. Macroscopic simulation is then approximated by the geometric probability distribution. In this case also, values for delay and number of stops are obtained that are accurate enough for practical purposes and that use much less computer time. Consequently, the geometric probability distribution model is recommended for the optimization of fixed-time signalized traffic intersections. (Author) This paper appeared in Transportation Research Record No. 905, Traftic Flow, Capacity and Measurements.

OPtimization of left turn phase sequence in signalized networks using maxband 86. final REPORT. VOLUME 1: SUMMARY REPORT. Messer, ©; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 102p. REPORT NO: FHWARD-87/109. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

> MAXBAND has been enhanced to provide optimal traffic signal timing plans for general grid networks, using bandwidth as the criterion. The program is user friendly and has several new features. Grid networks as large as 20 arterials with up to 20 signalized intersections per arterial could be solved, but present specifications limit the number of signals in the network to 50 until more operational experience with the system is obtained. Phase sequence optimization is provided together with NEMA, eight-phase numbering. MAXBANDD 86 is written in FORTRAN 77. Viume 1 provides the basic model theory for calculating progression bandwidths in arterials. Additional material describes how the arterial model formulation is integrated into closed network analysis using closed loop equations. An overview of MAXBAND input, operational and output features is provided.

OPTIMIZATION OF LEFT TURN PHASE SEQUENCE IN SIGNALIZED NETWORKS USING MAXBAND 86. FINAL REPORT. VOLUME 3: MAXBAND PROGRAMMER'S MANUAL. Messer, ©; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 297p. REPORT NO: FHWARD-87/111. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

MAXBAND has been enhanced to provide optimal traffic signal timing plans for general grid networks, using bandwidth as the criterion. The program is user friendly and has several new features. Grid networks as large as 20 arterials with up to 20 signalized intersections per arterial could be solved, but present specitications limit the number of signals in the network to 50 until more operational experience with the system is obtained. Phase sequence optimization is provided together with NEMA, eight-phase numbering. MAXBAND 86 is writen in FORTRAN 77. Volume 3 gives detailed descriptions of the subroutines composing the MAXBAND program as developed using structured programming technology. Each description includes the purpose and function of the subroutine, how it is related to other subroutines, and the variables which it uses. Other than features which have been altered, no attempt is made to document the MPCODE Mathematical Programming System, portions of which are included in the MAXBAND program.

OPTIMIZATION OF LEFT-TURN PHASE SEQUENCE IN SIGNALIZED CLOSED NETWORKS. Final rept. Cohen-S.L. Federal Highway Administration, McLean, VA. Traffic Systems Div. FHWARD88157, May 88. 38p.

The report is in two parts. Part 1 describes the effects of constraining the optimization of the TRANSYT-7F program so as to preserve the progression bands on one or more arterials within a network. Pan 2 describes the effect optimizing left turn phase sequence in signalized networks.

OPTIMIZATION OF LEFT TURN PHASE SEQUENCE IN SIGNALIZED NETWORKS USING MAXBAND 86. FINAL REPORT. VOLUME 2: MAXBAND USER'S MANUAL. Messer, CJ; Hogg, GL; Chaudhary, NA; Chang, ECP. Texas Transportation Institute Texas A\&M University College Station Texas 77843; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1987 304p. REPORT NO: FHWARRD-87/110. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

MAXBAND has been enhanced to provide optimal traffic signal timing plans for general grid networks, using bandwidth as the criterion. The program is user friendly and has several new features. Grid networks as large as 20 arterials with up to 20 signalized intersections per arterial could be solved, but present specifications limit the number of signals in the network to 50 until more operational experience with the system is obtained. Phase sequence optimization is provided together with NEMA, eight-phase numbering. MAXBAND 86 is written in FORTRAN 77. Volume 2 gives a detailed description of the features of the program and their use, including data entry, program control and optimal solution outputs. Four sample problems are included with examples of their input and output. Details of system enhancements and coding forms are provided in appendices.

OPTIMIZATION OF THE OFFSET PATTERNS OF ROAD NETWORKS THROUGH THE DECOMPOSITION PRINCIPLE. Hisai, M. Japan Society of Civil Engineers. Japan Society of Civil Engineers, Proceedings N347 Jul 1984 pp 69-76 12 Ref. Japanese. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

In this study, applying the Varaiya's decomposition principle to a road network made up of many closed loops, the offset patterns of traffic signals are optimized. The total delays of the networks are minimized subject to the closure constraints. It is supposed that the delays of the links are the functions of only the relative offsets, and that the delays are approximated by iwo parabolic curves. The networks are decomposed into the many subareas of single loops. At the lower level, these single loops are optimized independently of each other, and the coordination between the subareas is performed at the upper level. The offset patterns are obtained by repeating the two level computations. From some examples, it is found that the convergences to the solutions are achieved within reasonabie CPU time.

OPTIMIZATION OF TRAFFIC SIGNAL CHANGE INTERVALS. FINAL REPORT. Wortman, RH; Fox, TC. Arizona University Transportation and Traffic Institute Tucson Arizona 85721; Arizona Department of Transportation 206 South 17th Avenue Phoenix Arizona 85007; Federal Highway Administration Office of Research and Development, 400 7th Street, SW Washington D.C. 20590. Jun 1986 69p. REPORT NO: FHWAAZ-86/191. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Utilizing data from field studies of intersections in Arizona and information from the literature, an in-depth examination of the traffic signal change interval was undertaken. This examination included a review of the traditional concept and theory on which the determination of the change interval has been based and an evaluation of the applicability of this theory. Because the majority of the first vehicles to stop atter the onset of the yellow interval did not conform to a constant and uniform deceleration model, the last vehicies through the intersection were found to be more critical in the design of the change interval. Factors such as approach speeds, approach grades, and the duration of the yellow interval had little or no influence on driver behavior relative to decisions to stop or continue through the intersection. Based on analyses of the time distance of vehicles from the intersection at the onset of the yellow interval, the research suggests that a uniform yellow interval could be utilized.

OPTIMIZING TRAFFIC DIVERSION AROUND BOTTLENECKS. Hu, Y; Schonfeld, P (Taiwan National University, Taipei; Maryland University, College Park). Transportation Research Board. Transportation Research Record N957 1984 pp 22-27 10 Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A traffic simulation and optimization model has been developed to analyze traffic flow in large networks with severe queuing. The model can be used to evaluate the impacts (e.g., travel time, operating costs, accidents, fuel consumption, and pollutant emissions) of any assignment over time and to minimize combinations of such impacts.

The influences on optimal assignment of traffic inflow rates and durations, relative route lengths and capacities, queve storage capacities, and other factors are shown for a simple network. A comparative analysis of route-diversion and capacity-expansion atternatives is given for the more complex network on Maryiand's Eastern Shore. This paper was published in Transportation Research Record Number 957, Urban Traffic, Parking and System Management.

OSCADY: A COMPUTER PROGRAM TO MODEL CAPACITIES, QUEUES AND DELAYS AT ISOLATED TRAFFIC SIGNAL JUNCTIONS. Burrow, W. Transport and Road Research Laboratory. TRRL Research Report 1987 23p 15 Ref.. REPORT NO: RR 105. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

A computer program, OSCADY, has been developed to model capacities, queues and delays at isolated traffic signal junctions. The program includes recently derived empirical formulae for saturation flow calculations, routines to optimize signal settings and time-dependent equations for queue and delay prediction. The user inputs include geometric characteristics of the junction, signal timing arrangements, and demand flow information. OSCADY is intended to model peak period operation, although longer periods can be considered. The program can model most staging arrangements at three- or four-arm junctions. OSCADY can either implement supplied timings or be used to calculate suitable ones. Queues and delays are calculated for each of a succession of short time segments (usually 10 or 15 minutes) within the modelled period. Both existing or proposed layouts can be assessed, and the effects of possible modifications examined. The program can be used on most types of computers (including micro-computers), and both batch and interactive versions are available. (TRRL)

OVERFLOW DELAY IN SIGNALIZED NETWORKS. Van As, SC. Pergamon Press pic. Transportation Pesearch. Part A: General VOL 25A NO. 1 Jan 1991 pp 1-7 Figs. Refs.. AVAILABLE FROM: Pergamon Press, Incorporated Maxwell House, Fairview Park Elmsiord New York 10523

Traftic arrivals tend to be random at signals near to the perimeter of a network (or near to traffic generators in a network). Within the signal network, however, surges in traffic demand are reduced due to limitations on the amount of traffic passing through intersections imposed by signals, resulting in more uniform arrivals from cycle to cycle. Such uniformity is a desirable property at signals as underutilization of green periods may be reduced and levels of service improved. This may have serious implications within networks where it may be possible to improve the capacity of critical intersections by the strategic placing and timing of signals at less critical locations. The analysis of such options is, however, restricted by most, if not all, of the currently available evaluation methods. Relatively simple modifications of delay formulae are proposed to overcome these restrictions.

OVERSATURATION DELAY ESTIMATES WITH CONSIDERATION OF PEAKING. Rouphail, N., University of lllinois at Chicago and Akcelik, R., Australian Road Research Board, Victoria, Australia. Transportation Research Board Preprint for 74st Annual Meeting, Washington, D.C.

This paper describes a deterministic oversaturation queueing model which uses a generalization of the Peak Hour Factor concept of the U.S. Highway Capacity Manual as a simple variable demand model. The model is used to explore several issues related to oversaturation models. In particular, the relationship between the delay measurements methods (queue sampling and path trace) and the delay definitions used in the corresponding analytical delay models is investigated with a view to Level of Service assessments and performance prediction. Consideration is given to the average flow rates in the peak and non-peak flow periods and the choice of the duration of peak flow period.

PARAMETER ESTIMATION FOR THE PEAK TRAFFIC MODEL. Affa, AS (Ahmadu Bello University, Nigeria). Gordon and Breach Science Publishers Limited. Transportation Planning and Technology VOL. 7 NO. 41982 pp 281-287 2 Fig. 5 Ref.

In a previous article a model was developed for predicting the temporal distribution of peak traffic demand, and the model is sensitive to the determining cost parameters whose values were not known. These costs are the cost to late and early arrivals at work and the cost to delays in the system while travelling. In this paper, using the method of least squares, representative values for these cost parameters are estimated for both the southbound and northbound traftic using the Sydney Harbour Bridge during the morning peak period. The resulting estimates show that a travelier tends to attach much higher cost to delays than to earliness or lateness to work; although the relative cost he attaches to lateness is higher than he attaches to earliness. (Author/TRRL)

PASSER II-84 MICROCOMPUTER ENVIRONMENT SYSTEM--PRACTICAL SIGNAL-TIMING TOOL. Chang, EC-P; Marsden, BG; Derr, BR. American Society of Civil Engineers. Joumal of Transportation Engineering VOL. 113 NO. 6 Nov 1987 pp 625-641 Figs. Tabs. Refs.. REPORT NO: ASCE Paper 21941. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

The development of the PASSER $11-84$ microcomputer environment system is summarized. It was designed in research conducted jointly by the Texas Transportation Institute (TII) and the Texas Department of Highways and Public Transportation (SDHPT) in cooperation with FHWA. Significant enhancements were made so traffic engineers at virtually any bcation could analyze traffic operation problems efficiently. The study combined microcomputer technology and newest PASSER II-84 for tratfic engineering applications. This maximizes progression and reduces delay, stops, and fuel consumption in optimizing arterial operations. PASSER Il-84 microcomputer environment system was developed for MS DOS- and PC DOS-based microcomputers. Program documentation and revised input and output management programs were also implemented in this system.

PASSER IV QUICK RESPONSE PROCEDURES. Research rept. Cunagin-W.D.; LeeJ.Y. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI218802811, FHWATX85192811. May 85. 81p.

The report describes and presents a user's guide for the PASSER IV quick response procedures tor analyzing urban freeway corridor alternatives. Estimates of traffic flow levels on individual parailel facilities in an urban freeway corridor are obtained, based on equilibrium traftic assignments. System travel time also is computed. The algorithm includes special features to handle route changing and nonhomogeneous routes. A FORTRAN computer program based on the procedures is provided.

PICADY2: AN ENHANCED PROGRAM TO MODEL CAPACITIES, QUEUES AND DELAYS AT MAJORMINOR PRIORITY JUNCTIONS. RESEARCH REPORT. Semmens, MC. Transport and Road Research Laboratory Old Wokingham Road Crowthome RG11 6AU Berkshire England 0266-5247. 1985 32p Figs. Tabs. Refs.. REPORT NO: RR 36. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

An enhanced version of PICADY, a computer program which models capacities, queues and delays at major/minor junctions, is described. The program uses empirical formulae as a basis for the calculation of capacities and time-dependent queuing equations for queue and delay predictions. The enhancements include the facility (I) to model four-arm junctions, i.e. Crossroads, left-right and right-left staggers, (II) to predict geometric delays and (III) to include the effects of pedestrian (zebra) crossings adjacent to the junction. Flared minor roads and the effects of major road right-turning traffic blocking through tratic are also dealt with. The enhancements result from recent empirical and analytical studies. Additionally, the flexibility of the program (now known as PICADY2) has been increased, with the availability of micro-computer and interactive versions. User inputs consist of various geometric characteristics of the junction, and traffic (and pedestrian) demand flow information (which may be specified in a number of ways). Peak periods are usually modelled and capacities, queues and delays are calculated for each non-priority traffic stream for each of a succession of short time segments (usually 10 or 15 minutes) within the period. The user is able to assess the performance of both planned and existing layouts in terms of queuing delay and geometric delay. Details of the required input parameters are given, the output is described and a full example is included. (Author/TRRL)

PLAN-CHANGE ALGORITHMS FOR AREA TRAFFIC CONTROL SYSTEMS. Bell-M.C.; Gault-H.E.; Taylor-I.G. Newcastle upon Tyne Univ. (England). Transport Operations Research Group. RR51, Apr 83. 49p. UNITED-KINGDOM.

Several algorithms exist to implement a change between fixed-time signal plans. These are reviewed and the constraints influencing the process of change are examined. A comparison of actual networks reveals the daily and cyclical variations in flow which prevail in practice and within which the plan-changing process must be seen. Studies using TRANSYT are reported and finally 5 plan-change algorithms are assessed against an 'ideal' plan-change, using Monte Carlo simulation techniques. The results suggest that significantly less delay (at the 5% level) and fewer stops are incurred when plan-changes are impiemented at off-peak rather than at peak flows. The MODIFIED ABRUPT algorithm (commonly called CRASH), which is in common use, is found to generate no statistically significant (at the 5% level) additional stops or vehicular delay on main roads, irrespective of the level of flow at which the plan-change is made and whether the change is from off-peak to peak or vice versa. The variation in delay caused by implementing a plan-change with the MODIFIED ABRUPT method is found to be less

PASSER II-84 MICROCOMPUTER ENVIRONMENT SYSTEM-PRACTICAL SIGNAL-TIMING TOOL. Chang, EC-P; Marsden, BG; Derr, BR. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 113 NO. 6 Nov 1987 pp 625-641 Figs. Tabs. Refs.. REPORT NO: ASCE Paper 21941. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

The development of the PASSER II-84 microcomputer environment system is summarized. H was designed in research conducted jointly by the Texas Transportation Institute (TTI) and the Texas Department of Highways and Public Transportation (SDHPT) in cooperation with FHWA. Significant enhancements were made so traffic engineers at virtually any location could analyze traffic operation problems efficiently. The study combined microcomputer technology and newest PASSER II-84 for traffic engineering applications. This maximizes progression and reduces delay, stops, and fuel consumption in optimizing arterial operations. PASSER II-84 microcomputer environment system was developed for MS DOS- and PC DOS-based microcomputers. Program documentation and revised input and output management programs were also implemented in this system.

PASSER IV QUICK RESPONSE PROCEDURES. Research rept. Cunagin-W.D.; LeeJ.Y. Texas Transportation Inst., College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas State Dept. of Highways and Public Transportation, Austin. TTI218802811, FHWATX85192811. May 85. 81p.

The report describes and presents a user's guide for the PASSER IV quick response procedures for analyzing urban freeway corndor alternatives. Estimates of traffic flow levels on individual parallel facilities in an urban freeway corridor are obtained, based on equilibrium traffic assignments. System travel time also is computed. The algorithm includes special features to handle route changing and nonhomogeneous routes. A FORTRAN computer program based on the procedures is provided.

PICADY2: AN ENHANCED PROGRAM TO MODEL CAPACITIES, QUEUES AND DELAYS AT MAJORMINOR PRIORITY JUNCTIONS. RESEARCH REPORT. Semmens, MC. Transport and Road Research Laboratory Old Wokingham Road Crowthome RG11 6AU Berkshire England 0266-5247. 1985 32p Figs. Tabs. Reis.. REPORT NO: RR 36. AVAILABLE FROM: Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England

An enhanced version of PICADY, a computer program which models capacities, queues and delays at major/minor junctions, is described. The program uses empirical formulae as a basis for the calculation of capacities and time-dependent queuing equations for queue and delay predictions. The enhancements inctude the facility (I) to model four-arm junctions, i.e. Crossroads, left-right and right-left staggers, (II) to predict geometric delays and (III) to include the effects of pedestrian (zebra) crossings adjacent to the junction. Flared minor roads and the effects of major road right-turning traffic blocking through traffic are also dealt with. The enhancements result from recent empirical and analytical studies. Additionally, the fiexibility of the program (now known as PICADY2) has been increased, with the availability of micro-computer and interactive versions. User inputs consist of various geometric characteristics of the junction, and traffic (and pedestrian) demand flow information (which may be specified in a number of ways). Peak periods are usually modelled and capacities, queues and delays are calculated for each non-priority traffic stream for each of a succession of short time segments (usually 10 or 15 minutes) within the period. The user is able to assess the periormance of both planned and existing layouts in terms of queuing delay and geometric delay. Details of the required input parameters are given, the output is described and a full example is included. (Author/TRRL)

PLAN-CHANGE ALGORITHMS FOR AREA TRAFFIC CONTROL SYSTEMS. Bell-M.C.; Gault-H.E.; Taylor-I.G. Newcastle upon Tyne Univ. (England). Transport Operations Research Group. RR51, Apr 83. 49p. UNITED-KINGDOM.

Several algorithms exist to implement a change between fixed-time signal plans. These are reviewed and the constraints influencing the process of change are examined. A comparison of actual networks reveals the daily and cyclical variations in flow which prevail in practice and within which the plan-changing process must be seen. Studies using TRANSYT are reported and finally 5 plan-change algorithms are assessed against an 'ideal' plan-change, using Monte Carlo simulation techniques. The results suggest that significantly less delay (at the 5% level) and fewer stops are incurred when plan-changes are implemented at off-peak rather than at peak flows. The MODIFIED ABRUPT algorithm (commonly called CRASH), which is in common use, is found to generate no statistically significant (at the 5% level) additional stops or vehicular delay on main roads, irrespective of the level of flow at which the plan-change is made and whether the change is from off-peak to peak or vice versa. The variation in delay caused by implementing a plan-change with the MODIFIED ABRUPT method is found to be less
than 2%. It is concluded that plan-changes should always be implemented during off-peak flow conditions and that the commonly used MODIFIED ABRUPT algorithm is the most satisfactory method under prevailing constraints.

PLATOON DISPERSION FACTOR IN TRANSYT FOR SWEDISH TRAFFIC CONDITIONS. Hammarstroem, U. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1988 26p. REPORT NO: VTIMEDDELANDE-569A. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Platoon dispersion is a function of driving behavior, which may vary geographically and time-wise, although other conditions are similar. A correct description of platoon dispersion is of great significance for coordinating traffic signals. The report describes a routine in the TRANSYT computer program for calculating platoon dispersion.

POSSIBLE PASSER II ENHANCEMENTS. Rogness, RO (North Dakota State University). Transportation Research Board. Transportation Research Record N881 1982 pp 42-48 5 Fig. 6 Tab. 8 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The PASSER II computer program for optimization of arterial signal timing has been accepted by usage. It has been used extensively during the last few years. The program's ability to select multiphase sequences for a maximum bandwidth progression solution has led to its increasing use and application. The PASSER II maximum bandwidth solution has been well accepted and implemented throughout this country. The theory, model structure, methodology, and logic in the PASSER II computer program has been evaluated and documented. An evaluation was undertaken to determine if several enhancements to the PASSER II program as related to a revised green split procedure, a minimum delay cycle length, and number of alternate optimal solutions could improve the utility of the solution and would be useful measures. The comparison was to the existing PASSER II computer program and comparison TRANSYT program runs. This evaluation showed, for the three scenarios considered, that a revision for the green split routine provided equal saturation splits. An advisory minimum delay cycle length calculation Would provide useful guidance in the selection of the cycle length range to consider. Other measures, like a minimum delay performance measure, atternate optimal solutions, and improved delay measure, could provide useful results. (Author) This paper appeared in Transportation Research Record No. 881, Traffic Control Devices and Traffic Signal Systems.

POTENTIAL IMPACT OF SPEED REDUCTION AT FREEWAY LANE CLOSURES: A SIMULATION STUDY (ABRIDGMENT). Nemeth, ZA; Rathi, AK. Transportation Research Board. Transportation Research Record N1035 1985 pp 82-84 3 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The objective of this study was to evaluate the potential impact of reduced speed limits at temporary freeway lane closures at work zones at arbitrarily assumed levels of compliance. Although some transportation engineers prefer to reduce speeds at work zones to protect the working crew, others are hesitant to introduce such a disturbance to the traffic flow. The study approach involved simulation experimentation, using FREESIM, a microscopic, stochastic model. A fractional factorial design was developed for the analysis of three independent variables: two-lane volumes (800, 1,200, 1,500 and 1,800 vehicles per hour); speed limits (55,50, and 45 mph); and assumed compliance with speed limit (33,66 , and 100 percent). The number of uncomfortable decelerations and the variance of the speed distribution were selected as the dependent variables. These two variables were offered as a measure of the internal friction created by the merging of two-lane traffic into a single lane. It was hypothesized that this internal friction is increased by the introduction of lower speed limits. The results of this simulation study indicate that compliance with reduced speed limits will have no significant impact on the number of uncomfortabie decelerations but will reduce variance in speed distribution. These results, therefore, do not support the assumption that effective speed reduction at work zones would create a potentially hazardous disturbance in the flow of traffic. This paper appeared in Transportation Research Record N1035, Traffic Management in Highway Work Zones and Setting Optimal Maintenance Levels and Rehabilitation Frequencies.

PREDICTING AREA TRAFFIC CONTROL PERFORMANCE WITH TRANSYT/8 AND AN ELEMENTAL MODEL OF FUEL CONSUMPTION. Luk, JYK; Akcelik, R. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 87-101 2 Fig. 7 Tab. 10 Ref.

The traffic model of TRANSYT/8 is used to predict the journey time and number of stops in an area traffic control network. It is used to simulate the operation of the fixed-time (t) and isolated (i) control modes. The traffic flow and
timing plans are identical to those employed in the Parramatta floating-car survey. The shared stop-line facility of TRANSYT is utilized to model traffic movements in more detail. The results previously obtained in the survey are used for comparison with the model predictions. It is found that TRANSTY/8 overestimates the joumey time and stops in absolute values for both modes. However, the measured and predicted $t \sqrt{1}$ comparison results differ by only 1 per cent in both journey time and number of stops when averaged over three time periods. An elemental model of fuel consumption is used to combine the total journey time and total stops to produce estimates of fuel consumption for two sub-areas of the Parramatta network, namely, the central business district and the Great Western Highway. A description of the expenimental procedure to calibrate the parameters of the fuel consumption model is given. Based on measured joumey time and stops, the elemental model is found to underestimate absolute levels of fuel consumption but to be accurate in predicting changes in fuel consumption. The underestimation in absoiute levels of fuel consumption is 1 to 16 per cent, but the predicted differences are within 1 to 8 per cent of the measured differences. The absence of modelling detailed driving behavior affects the model accuracy. The predictions are found to be sensitive to the cruise speed adopted. The number of the covering abstract for the conference is TRIS No. 393385. (Author/TRRL) This paper was presented during the 12 th Australian Road Research Board Conference, Hobart, Tasmania, 27-31 August 1984.

PREDICTION OF TRAFFIC FLOW BY AN ADAPTIVE PREDICTION SYSTEM. LU, J. Transportation Research Board. Transportation Research Record N1287 1990 pp 54-61 10 Fig. 17 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Abstract

In a dynamic (real-time) traffic control system, the accuracy of the prediction of traffic characteristics such as flow, speed, and headway is one of the key factors affecting the performance of the system. Because the traffic characteristics can be described by stochastic processes, nonlinear and time-variate types of prediction models could be more adequate than linear or time-invariate prediction models. A traffic control system model for traffic flow is described, and the importance of the accuracy of the prediction model is emphasized. Then, the concept of adaptiverprediction of traffic flow is introduced, and its mathematical derivation and the least-mean-square algorithm are described. As an experiment to validate the adaptive prediction system, a sine function is used to simulate traffic flow as input to the adaptive prediction system. Finally, the adaptive prediction system is applied to actual traffic flow data coliected from a highway network. The predicted traffic flow is then compared with the real traffic flow. The performance of the model as to its dynamic response to a step function, convergence of the adaptive prediction system, and related matters are also discussed. This paper appears in Transportation Research Record No. 1287, Traffic Fiow, Capacity, Roadway Lighting, and Urban Traffic Systems 1990.

PREFERENTIAL CONTROL WARRANTS OF LIGHT RAIL TRANSIT MOVEMENTS. Radwan, AE; Hwang, K (Arizona State University, Tempe; Virginia Polytechnic Institute \& State University). Transportation Research Board. Transportation Research Record N1010 1985 pp 69-75 9 Fig. 1 Tab. 1 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The goal of this paper is to demonstrate a method for evaluating a preferential treatment technique for light rail transit (LRT) in urban areas. A mathematical delay model, which uses probability expressions, is presented to evaluate two LRT preemption signal strategies in existing arterial medians. The model permits the user to evaluate three operational options: a two-phase signal plan, a three-phase signal plan with a separate LRT phase, and a three-phase signal plan with an exclusive left-turn phase for main arterial vehicles. The signal controller modeled in this paper has green extension and red truncation capabilities. Model testing and validation proved that the model parameters consistently produced reasonable results. Control warrant guidelines were developed for two operational options. This paper appeared in Transportation Research Record N1010, Traffic Control Devices and Rail-Highway Crossings.

PRELIMINARY TESTING AND EVALUATION OF NEW COMPUTER PROGRAMS FOR TRAFFIC ANALYSIS, TASK: EVALUATION OF SUPERCOMPUTER POTENTIAL. Parker-L.E.G. Ontario. Ministry of Transportation. Research and Development Branch, Regina. c1990. 135p. CANADA.

To evaluate the potential of supercomputers in traftic simulation/modelling, two representative traffic modelling packages were converted and run on two representative supercomputers. The models tested were TRANSYT-7F, a system developed for mainframe computers but now supported and available on PC systems, and INTEGRATION, a system developed to run on an 80386 -based workstation at Queen's University in Kingston, Ontario. The computers used were a CRAY X-MP vector supercomputer and a MYRIAS SPS-2 massively parallel supercomputer. The project determined the relative degree of difficulty of converting existing models to run on
representative supercomputers; the immediate and potential performance improvements realizable; overall design considerations for revisions to existing models or new models to fully exploit existing architectures; and operational considerations in using existing supercomputer facilities for ongoing research or proposed production use.

PROGRESS WITH RURAL TRAFFIC SIMULATION. Hoban, CJ; McLean, JR (Arrb). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 23-33 1 Fig. 4 Tab. 29 Ref.

This paper reviews progress in rural traffic simulation, with particular reference to the Australian Road Research Board Model, TRARR. A number of major simulation packages are identified which have been applied to practical studies of rural traffic performance in at least eight countries around the world. These models have many common features, as well as common areas requiring further research and validation. In this context, the current status of TRARR is discussed. Recent studies have applied the model to investigations of specific road improvement proposals and general concepts such as level of service. The model provides detailed comparisons of the changes in traffic performance which result from changes in road or traffic conditions. While further calibration and validation are required, tests have shown that errors in simulation results are quite small, especially when compared with uncertainties in other estimates required for road evaluation. In applying TRARR to specific studies, the procedures for data input have been refined ta enable easier use of the model by unfamiliar users. The simulation package is now in a form which may be used by road authorities to compare alternative strategies (a). The number of the covering abstract of the conference is TRIS No. 368448. (TRRL) Proceedings of the Eleventh Australian Road Research Board Conference, held at the University of Melbourne, August 23-27, 1982.

PROGRESSION ADJUSTMENT FACTORS AT SIGNALIZED INTERSECTIONS. Rouphail, NM. Transportation Research Board. Transportation Research Record N1225 1989 pp 8-17 12 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

This paper presents a set of analytical models for estimating progression adjustment factors (PAFs) to delays at signalized,+coordinated intersection approaches. The derived models are sensitive to the size and flow rate of platoons, which in turn are affected by the travel time between intersections. The procedure requires data that are readily available from time-space diagrams and flow counts. A comparison of the factors estimated in this study and their Highway Capacity Manual (HCM) counterparts reveals the limitations of the HCM method in predicting levels of service for coordinated approaches, especially under excellent or very poor progression scenarios. Finally, an interactive, computerized procedure is presented that carries out the necessary PAF calculations with minimal input requirements. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 1: TECHNICAL REPORT. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 141p 22 Fig. 29 Tab. 31 Ref. 1 App.. REPORT NO: FHWA-RD-89-132. AVAILABLE FROM: National Technical Information Service 5285 Port Royai Road Springtield Virginia 22161

Many traffic control systems on urban arterials and grid networks include signals with actuated controllers. However, commonly used computer programs for signal timing cannot directly optimize the timing of coordinated signals. Users have to apply techniques designed for pretimed signals, and then "translate" the optimized pretimed settings into settings for the actuated controllers. In addition, other signal control choices, such as whether to operate a particular signal as pretimed, semi-actuated, or fully actuated, are left entirely to the user. This report describes the development of procedures for applying the MAXBAND, PASSER and TRANSYT-7F timing programs to systems with actuated controllers. The results from the testing of the procedures on 14 representative grid systems and arterials with the NETSIM simulation model are presented. The report aiso describes the development and testing of criteria for seiecting the type of signal control at specific intersections for commonly occurring field conditions. The report is the first volume produced in this study. Volume 2 is the User's Guide for implementation of the research findings.

PROGRESSION THROUGH A SERIES OF INTERSECTIONS WITH TRAFFIC ACTUATED CONTROLLERS. VOLUME 2: USER'S GUIDE. FINAL REPORT. Skabardonis, A. Deakin, Harvey, Skabardonis, Incorporated P.O. Box 9156 Berkeley California 94709; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1988 30p 7 Fig. 2 Tab. 8 Ref.. REPORT NO: FHWA-RD-89-133. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

Many traffic control systems on urban arterials and grid networks include signals with actuated controllers. However, commonly used computer programs for signal timing cannot directly optimize the timing of coordinated signals. Users have to apply techniques designed for pretimed signals, and then "translate" the optimized pretimed settings into settings for the actuated controllers. In addition, other signal control choices, such as whether to operate a particular signal as pretimed, semi-actuated, or fully actuated, are left entirely to the user. This report is a user's guide for applying the MAXBAND, PASSER and TRANSYT-7F timing programs to systems with actuated controllers. Guidelines on how to select the type of signal control at specitic intersections for commonly occurning field conditions also are presented. The guidelines are based on operating strategies developed for 14 representative grid systems and arterials and tested through simulation, with the NETSIM program. Chapter 1 of this report describes procedures for translating pretimed timings to actuated controllers' settings for arterial systems. Chapter 2 describes such procedures for grid networks. Criteria for choosing the type of control at selected intersections in coordinated systems are presented in Chapter 3. The report is the second volume produced in this study. Volume 1, the technical report, presents the study methodology, the development of operating strategies, and the results from their application.

PROPOSALS FOR A SINGLE-LANE TRAFFIC SIMULATION MODEL. Gynnerstedt, G; Palaniswamy, SP. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden 0347-6049. N398A 1984 Monograph 8p 1 Ref.

The report presents the preliminary outlines for the necessary modifications and extensions to a simulation model of motor traffic on two-lane rural roads for adaptation to narrow roads -single-lane and intermediate-lane roads and for the heterogeneous traffic conditions prevailing in India. The report also focuses upon the types of field studies proposed for the model development and for the validation of the model. The two-lane simulation model has been developed in Sweden at VTI (Swedish Road and Traffic Research Institute) and the required modifications and extensions will be performed at the IIT (Indian Institute of Technology) in cooperation with VTI. (Author/TRRL)

QUALITY OF TRAFFIC SERVICE. Ardekani, S; Herman, R. Texas University, Austin Center for Transportation Research Austin Texas 78712 Res Rpt. 304-1; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Jun 1982 Intrm Rpt. 110p. REPORT NO: FHWATX-82/17+304-1. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The Two-Fluid Model has been used to model the quality of service in Austin and Dallas traffic networks. In addition, the physical interpretation of the model parameters is closely examined. Furthermore, the Two-Fluid Model is slightly modified to better predict the average minimum trip time and stop time per unit distance. Finally, the results of two ergodic experiments as well as data in very light traffic conditions have been used to investigate the consistency of the underlying assumptions of the Two-Fluid Model. The interrelation between the Two-Fluid Mdel and other macroscopic traffic models such as a simple fuel consumption model is also discussed. The report is conctuded with a discussion of the use of time-lapse aenial photography in the investigation of the Two-Fluid Model assumptions and in the derivation of relations that may exist among the means of the speed, density, and flow in a traftic network. (FHWA)

QUEUEING MODEL FOR TRANSYT 7. Bell-M.C.. Newcastle upon Tyne Univ. (England). Transport Operations Research Group. Science Research Council, Swindon (England). TORGRR34. Oct 80. 30p. UNITED-KINGDOM.

A simple spatial queueing model for the program TRANSYT 7 is described. In the model, vehicles queue one behind the other; at the commencement of the green phase the start wave travels along the queue discharging vehicles from the front at the saturation flow rate; vehicles arriving before the start wave reaches the back of the queue extend the queue. The results of on-street surveys of tratfic queueing were used to calibrate the model. The model gave a more realistic estimate of the actual length of the queue at each step in the cycie than does TRANSYT. In order to assess the degree of queueing in a network, measures of spare road storage capacity, developed previously, were incorporated into the modified version of TRANSYT 7 as part of the performance indicator used for signal plan optimization.

The traffic congestion in Herald Square (intersection of Broadway, Avenue of the Americas, and 33rd and 34th Streets in New York City) is described, and efforts of the New York City Department of Transportation to alieviate congestion are noted. The various approaches that were explored for improving traffic operations are briefly described. Computer simulation and field evaluation of an approach to a solution which involved signal timing changes is also presented. The three possible solutions that were considered are as follows: grade separation of traffic; diversion to altemative routes; a control policy involving signal timing changes. Computer simulation and field studies of the signal timing changes indicated substantial improvements. This solution is noted as an example of a low-cost, transportation system management (TSM) technique.

REPRESENTING TRAFFIC FLOW PROFILES FROM SAMPLE DATA. Mathews, DH; Phillips, JG (Transport and Road Research Laboratory; Advisa Research \& Consultancy Services). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mtg, Proc 1984 pp 121-133 6 Fig. 3 Tab. 9 Ref.

The practical application of traffic models requires the use of such basic information as the total annual flow and the degree of seasonal and daily variation in that flow. The information needs to be based on sample data which may be limited to a single classified count of twelve hour duration. On behalf of the Department of Transport, TRRL has carried out research into how such limited data may be used in estimating annual flows and in modelling the distribution of hourly flows within the day and throughout the year. One effective approach uses discrete distributions based on statistical stratification of hourly flows. Each hour of the year is allocated to a particular flow group according to the season, day of week and type of road considered. An example application is in quadro where default hourly flow profiles are available. If sampie data are extensive, site-specific hourly flow profiles can be generated. The paper describes how discrete distributions are used to represent traffic flow profiles. Current research has focussed on the modelling of traffic flows using continuous distributions; an up-to-date summary of this approach is presented. For the covering abstract of the proceedings see TRIS 450538. (Author/TRRL) Proceedings of Seminar M, Highway Appraisal and Design, Held at the 12th PTRC Summer Annual Meeting, University of Sussex, England, from 10-13 July 1984, Volume P255.

RESEARCH INITIATIVES FOR TRAFFIC SIGNAL CONTROL SYSTEMS. Transportation Research Board. Transportation Research Circular N380 Oct 1991 15p. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

To take advantage of improved traffic control systems and communication technology, there is a need now to research algorithms and approaches for improved traffic signal system operation, to make these systems more responsive to traffic demands, and to provide improved equipment diagnostics and fail-safe operation. Also, the output from new computer models for analyzing traffic movement need to be correlated, and the models need to be made more user friendly. In addition, there is a need to look to the future-to determine through research how to make the best use of existing street and freeway networks. This can be accomplished through development of advanced traffic control systems and improved motorist information systems, and through research on driver behavior as it relates to motorist acceptance and use of new traffic control and motorist information and guidance systems. The Traffic Signal Systems Committee of the Transportation Research Board has developed this Circular of research probiem statements which list and discuss specific research needs for the present and the future. Chapter I discusses the areas that need research in advanced technology, while Chapter II describes the research needed now.

REVIEW OF FREEWAY CORRIDOA TRAFFIC MODELS. FINAL REPORT. Van Aerde, M; Yagar, S. Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ontario M3M 1J8 Canada. Jun 1985 62p Tabs. Refs.. AVAILABLE FROM: Ontario Ministry of Transportation \& Communic, Can 1201 Wilson Avenue Downsview Ortano M3M 1J8 Canada

The following types of models were reviewed for potential application to freeway-dominated cortidors in Ontario: MACK, FREFLO, FREGON, INTRAS, TRAFFICQ, FREQ, CORQ, CORCON, SCOT, TRAFLO, DYNEV, CONTRAM, SATURN, and MICRO-assignment. Based on a literature review and a preliminary evaluation in view of some basic requirements, a short list of models was developed for detailed evaluation, consisting of: FREQ, CORQ-CORCON, TRAFLO, DYNEV, CONTRAM AND SATURN. This detailed examination indicated that while
none of the current models fully satisfy all major criteria, some models can be upgraded while others cannot. Consequently, CONTRAM and CORQ were recommenced for further consideration, as they were found most suitable for incorporating the required enhancements. Finally, specific improvements were outlined for purposes of both immediate application and longer term development. (Author/TRRL),

REVIEW OF TRAFFIC MODELLING TECHNIQUES. Pretty, RL (Queensiand University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-9 21 Ref.. REPORT NO: Paper 22

A traffic model is virtually essential for any study of the interaction between road users and roadways. A model can be devised to represent the existing situation and then predict behavior in a future situation without any actual construction taking place. Traffic modelling techniques may be physical or mathematical and, if the latter, they may be analytical or stochastic and studies by means of simulation. In this review, mathematical traffic models concerned with fuel consumption and emissions are considered in order of increasing complexity. For general traffic situations, the elemental model seems to have advantages of calibration, reliability and convenience over other models. The elemental model must be used with a second model which will predict the average stopped time and stop rate for traffic streams subject to delay. For networks of traffic signals, the TRANSYT method of co-ordination is an example of a single simulation model which will predict tuel consumption and optimize signal settings at the same time. In the future, a dynamic co-ordination program such as scat may be able to optimize settings, adapt to changing traffic demands and calculate fuel consumption (a). The paper was presented as Paper 22-Session 7--Traffic Modelling (SAE 82152). The number of the covering abstract of the conference is TRIS no. 367871. (TRRL) Second Conference on Traffic, Energy and Emissions, Melbourne, May 1982 Program and Papers.

REVIEW OF TRAFFIC SIMULATIONS FOR INTELLIGENT VEHICLE-HIGHWAY SYSTEM EVALUATION. UNDERWOOD, SE. UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH. IVHS TECHNICAL REPORT ; N90-1 Jan 1990 ENGLISH. REPORT NO: 0

STEVEN E. UNDERWOOD OTHER PHYS. DESCRIPTION: 5 JANUARY 31, 1990 INCLUDES BIBLIOGRAPHICAL REFERENCES LEAVES ADDL CORP. AUTHOR INFO: UNIVERSITY OF MICHIGAN. TRANSPORTATION RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE

ROUNDABOUT CONTROL IS SIGNAL SUCCESS. Belcher, M (West Midiand County Council). Specialist and Professional Press. Surveyor VOL. 163 NO. 4780 Feb 1984 pp 13-14 1 Fig. 1 Phot.

The first signal controlled roundabout in the West Midlands is now operational on a four-armed layout on the Wolverhampton ring road carrying between 4000 and 5000 vehicies per hour at peak periods. A computer simulation of the network, treating the roundabout as four t junctions linked together showed that a modified TRANSYT system could reduce delays at peak periods. Because delays could increase outside the peaks, the signals were operated on a part-time basis. An additional lane was provided on one of the approaches and the radii on the roundabout inside was increased slightly to provide greater width at the stop lines. A microprocessor controller uses parallel-stage streaming allowing the junction to operate as a four independent two-stage installation. Green times and offsets calculated using TRANSYT have proved very effective but improvements could be gained by having different control plans for different days of the week. Eventually the junction will be linked with others within the utc area as part of the country SCOOT system. (TRRL)

SATURN - A BRIGHT STAR. Carlisle, JS; Tudge, RT. Institution of Engineers, Australia 11 National Circuit Barton A.C.T. 2600 Australia. 1985 pp 42-46 2 Fig. 11 Ref.. REPORT NO: No. 85/11. AVAILABLE FROM: Institution of Engineers, Australia 11 National Circuit Barton A.C.T. 2600 Australia

SATURN (simulation and assignment of traffic to urban road networks) is a computer model suite developed for the analysis and evaluation of traffic management schemes. It is most suitable for the analysis of "movement-based" control systems such as one-way streets, changes to intersection controis, bus-only streets, pedestrian matis, etc. This paper explains the SATURN model and presents an overview of the basic theory, some recent enhancements, examples of application and conclusions on suitability. For the covering abstract of the conference see IRRD 277786. (Author/TRRL) Transport '85, Sydney, 17-19 Juiy 1985. National Conference Publication Preprints of Papers.
none of the current models fully satisfy all major criteria, some models can be upgraded while others cannot. Consequently, CONTRAM and CORQ were recommenced for iuther consideration, as they were found most suitable for incorporating the required enhancements. Finally, specific improvements were outlined for purposes of both immediate application and longer term development. (Author/TRRL)

REVIEW OF TRAFFIC MODELLING TECHNIQUES. Pretty, RL (Queensland University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-9 21 Ref.. REPORT NO: Paper 22

A tratic model is virtualiy essential for any study of the interaction between road users and roadways. A model can be devised to represent the existing situation and then predict behavior in a future situation without any actual construction taking place. Traftic modelling techniques may be physical or mathematical and, if the latter, they may be analytical or stochastic and studies by means of simulation. In this review, mathematical traffic models concerned with fuel consumption and emissions are considered in order of increasing complexity. For general traffic situations, the elemental model seems to have advantages of calibration, reliability and convenience over other modeis. The elemental model must be used with a second model which will predict the average stopped time and stop rate for traffic streams subject to delay. For networks of traffic signals, the TRANSYT method of co-ordination is an example of a single simulation model which will predict fuel consumption and optimize signal settings at the same time. In the future, a dynamic co-ordination program such as scat may be able to optimize settings, adapt to changing tratfic demands and calculate fuel consumption (a). The paper was presented as Paper 22-Session 7-Traffic Modelling (SAE 82152). The number of the covering abstract of the conference is IRIS no. 367871. (TRRL) Second Conference on Traflic, Energy and Emissions, Melbourne, May 1982 Program and Papers.

REVIEW OF TRAFFIC SIMULATIONS FOR INTELLIGENT VEHICLE-HIGHWAY SYSTEM EVALUATION. UNDERWOOD, SE. UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH. IVHS TECHNICAL REPORT ; N90-1 Jan 1990 ENGLISH. REPORT NO: 0

STEVEN E. UNDERWOOD OTHER PHYS. DESCRIPTION: 5 JANUARY 31, 1990 INCLUDES BIBLIOGRAPHICAL. REFERENCES LEAVES ADDL CORP. AUTHOR INFO: UNIVERSITY OF MICHIGAN. TRANSPORTATION RESEARCH INSTITUTE UNIVERSITY OF MICHIGAN TRANSPORTATION RESEARCH INSTITUTE

ROUNDABOUT CONTROL IS SIGNAL SUCCESS. Belcher, M (West Midiand County Council). Specialist and Professional Press. Surveyor VOL. 163 NO. 4780 Feb 1984 pp 13-14 1 Fig. 1 Phot.

The first signal controlled roundabout in the West Midlands is now operational on a four-armed layout on the Woiverhampton ring road carrying between 4000 and 5000 vehicles per hour at peak periods. A computer simulation of the network, treating the roundabout as four t junctions linked together showed that a modified TRANSYT system could reduce delays at peak periods. Because delays could increase outside the peaks, the signals were operated on a part-time basis. An additional lane was provided on one of the approaches and the radii on the roundabout inside was increased slightly to provide greater width at the stop lines. A microprocessor controller uses parallel-stage streaming allowing the junction to operate as a four independent two-stage installation. Green times and offsets calculated using TRANSYT have proved very effective but improvements could be gained by having difierent control plans for different days of the week. Eventually the junction will be linked with others within the utc area as part of the country SCOOT system. (TRRL)

SATURN - A BRIGHT STAR. Carlisle, JS; Tudge, RT. Institution of Engineers, Australia 11 National Circuit Barton A.C.T. 2600 Australia. 1985 pp 42-46 2 Fig. 11 Ref.. REPORT NO: No. 85/11. AVAILABLE FROM: Institution of Engineers, Australia 11 National Circuit Barton A.C.T. 2600 Australia

SATURN (simulation and assignment of traffic to urban road networks) is a computer model suite developed for the analysis and evaluation of traffic management schemes. It is most suitable for the analysis of "movement-based" control systems such as one-way streets, changes to intersection controls, bus-only streets, pedestrian malls, etc. This paper explains the SATURN model and presents an overview of the basic theory, some recent enhancements, examples of application and conclusions on suitability. For the covering abstract of the conference see IRRD 277786. (Author/TRRL) Transport '85, Sydney, 17-19 July 1985. National Conference Publication Preprints of Papers.

SCENE 1: A MODEL OF PARKING-LOT ENTRANCE AND EXTT CONDITIONS. Poon, WF; Young, W. Printerhall Limited. Traffic Engineering and Control VOL. 30 NO. 6 Jun 1989 pp 304-310 Figs. Tabs. Refs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

The interaction between car parks and the transport system is a function of the traffic flows and the design of the interfaces (entrances and exits). Existing analytical models can only be used to estimate the delay at unsignalised car park entrances and exits under certain restricted and sometimes unrealistic conditions. This paper outlines a model (SCENE) which can be used to investigate car park intersection layouts. Three types of unsignalised car park entrances and exits are considered in SCENE. The first type contains only one lane for both exit and entry vehicles. The second allows vehicles to enter and exit in separate lanes, while the third has one entrance lane and two exit lanes for the lett-turn and night-turn vehicles. SCENE has two forms of output: the first, a detail report, lists the arrival time, movement, head-of-queue arrival time, departure time, queue length experienced and head-of-queue delay as well as the total delay of every vehicle simulated after the warm-up period. The second, a summary report, contains the statistical measures for the queue length, head-of-queue delay and total delay of vehicles using each approach. The average head-of-queue delay and total delay of all vehicles are also calculated.

SCOOT DATA AND ROUTE GUIDANCE. SECOND INTERNATIONAL CONFERENCE ON ROAD TRAFFIC MONITORING. Hounsell, NB; McDonald, M. Institution of Electrical Engineers Savoy Place London WC2R OBL England 0-85296373-4. 1989 pp 191-194 9 Ref.. AVAILABLE FROM: Institution of Electrical Engineers Savoy Place London WC2R OBL England

A key feature of SCOOT is its traffic model which predicts the main elements of traffic performance -such as flow, delay stops and congestion -from information received every second from detectors on each link in the network. In addition to its use for network control, this up-to-the-minute information is available for any other purpose and can be obtained via standard SCOOT messages at a variety of levels of detail. One of the many potential uses for the data is in tratfic responsive route guidance systems such as autoguide, which is likely to be in operation in London in the early 1990s. The following sections describe the characteristics and accuracy of the data available from SCOÖT which could be useful for route guidance and discusses possible ways in which the data may be used for this purpose. (Author/TRRL)

SECOND CONFERENCE ON TRAFFIC, ENERGY AND EMISSIONS, MELBOURNE, MAY 1982. PROGRAM AND PAPERS. Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 Monograph n.p. Figs. Tabs. Refs.

The conference was jointly organized by the Society of Automotive Engineers, Australasia and the Australian Road Research Board. Papers were presented in the following sessions: Session 1--A. Vehicle design for fuel consumption, B. Measurement of vehicle fuel consumption; Session 2-Fuel consumption modelling (1); Session 3--Fuel consumption modelling (2); Session 4-Research in progress; Session 5--Emissions modelling; Session 6--Driving patterns; Session 7-Traffic modelling; Session 8-Research into practice. For abstracts of individual papers presented at the conference see TRIS nos 367872-901. (TRRL)

SEGMENTWIDE TRAFFIC RESPONSIVE FREEWAY ENTRY CONTROL: FREEWAY CORRIDOR MODELING, CONTROL STRATEGY, AND IMPLEMENTATION PLAN. Kahng, SJ; Jeng, C-Y; Campbell, JF; May, AD. California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720; California Department of Transportation 1120 N Street Sacramento California 95814; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1984 Final Rpt. 171p Figs. Tabs. 24 Ref. 6 App.. REPORT NO: FHWA-CA-TO-84-5. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720

Major outcomes of this research are threefold: development of a macroscopic freeway corridor simulation model (FRECON2); development and evaluation, by simulation, of a segmentwide traffic responsive freeway entry control strategy (ELT controi); and development of field implementation guidelines. The macroscopic freeway corridor model, FRECON2, was developed by extending an existing macroscopic dynamic freeway model, FRECON, in the following three areas: priority entry treatment, drivers' spatial diversion, and alternative surface streets with flow-dependent travel costs. Then, FRECON2 was calibrated using two days' data from the Santa Monica Freeway Corridor in Los Angeles, California. As a new segmentwide control strategy, extended local traffic responsive (ELT) control was developed. ELT control has been applied, by simulation, to freeway corridors with different operating environments. When its performance was evaluated, ELT control achieved a three to eleven percent net savings in total corridor travel time. Based on the above results, guidelines for field implementation have been prepared,
including development of software for the central computer and 170 type controllers, and a before and after study plan. (Author)

SEGMENTWIDE TRAFFIC RESPONSIVE FREEWAY ENTRY CONTROL: FREEWAY CORRIDOR MODELING, CONTROL

 STRATEGY, AND IMPLEMENTATION PLAN. Kahng, SJ; Jeng, CY; Campbell, JF; May, AD. Califomia University, Berkeley Institute of Transportation Studies, 109 McLaughlin Hall Berkeley California 94720. Aug 1984 186p. REPORT NO: UCB-ITS-RR-84-5; FHWACATO-84/5. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161Major outcomes of this research are threetold: development of a macroscopic freeway corridor simulation model (FRECON2); development and evaluation, by simulation, of a segmentwide traffic responsive freeway entry control strategy (ELT control); and development of field implementation guidelines.

SETTING CHANGE INTERVALS AT SIGNALIZED INTERSECTIONS. Chan, Y; Liao, T. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 2 Feb 1987 pp 45-50 Figs. 22 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

Abstract

This aricle discusses simulation and analysis of driver response to a yellow light, and describes a procedure that can be used to scientifically set change intervals at signalized intersections. The associated computer program is also described. The procedure was employed to analyze 18 yellow lights in a city in Washington State. The results show that most change intervals in the field are shorter than desired as indicated by the existence of dilemma zones. Case studies show that there are a number of ways to eliminate the dilemma zone in the field. Apart from the obvious option of attering the change interval, it was found that adjustment of speed, repaving roads, and cutting down cross-street width through improved markings are equally viable. An interesting adjustment is the revision of the speed limit upward to minimize the dilemma zone.

SIDRA-2 DOES IT LANE BY LANE. Akcelik, R. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 41984 pp 137-149 3 Fig. 1 Tab. 19 Ret.

SIDRA-2 has been developed as a computer program to aid traffic engineers and researchers in the design and analysis of signalized intersections. SIDRA-2 implements the techniques described in the ARRB Research Report ARR No. 123 (Traflic Signals: Capacity and Timing Analysis). Although the fundamental principles and methods are the same, there are some important differences between ARR No. 123 and SIDRA-2. The most important is the lane-by-lane calculation of capacities and operating characteristics such as delay, number of stops and queue length. This paper outlines the main features of SIDRA-2 and discusses various aspects of the new method of lane-by-lane calculations. The "lane interaction" and "opposed turn" models are described briefly. Lane-by-lane calculations allow for predictions. The use of the "opposed turn equivalents" operating characteristics. This also improves the capacity predictions. The use of the 'opposed turn equivalents' e(sub o) and other movement saturation flow adjustments, eg, for lane under-utilization, are no longer necessary. The paper discusses a problem in the theory of signal design which is related to the application of the formulae for delays, etc, on a lane-by-lane against movement-by- movement basis. A full intersection example is given to illustrate the use of SIDRA-2. The number of the covering abstract for the conference is TRIS No. 393385. (Author/TRRL) This paper was presented during the 12th Austraian Road Research Board Conference, Hobart, Tasmania, 27-31 August 1984.

SIDRA-2 FOR TRAFFIC SIGNAL DESIGN. Akcelik, R (Australian Road Research Board). Printerhall Limited. Traffic Engineering and Control VOL. 26 NO. 5 May 1985 pp 256-261 6 Fig. 8 Ref.

SIDRA (Signalized Intersection Design and Research Aid) has been developed as a computer program to aid traffic engineers and researchers in their design and analysis of signalized intersections. This paper describes the facilities and use of SIDRA-2 which basically implements the techniques given int he Australian Road Research Board Report ARR no 123 together with additional advanced features. SIDRA-2 output is very extensive and includes: (1) listing of basic movement and intersection variables (flow ratios, lost times, degrees of saturation, etc); (2) estimates of movement saturation flows, capacities and spare capacities; (3) lane information (lane flows and saturation flows, effective green and red times, lane utilization and operating characteristics); (4) computed signal timings and a signal timing diagram; (5) performance measures for computed or specified signal timings (delay, number of stops, queue length, fuel consumption, etc); and (6) separate summations for user-specified movement groupings such as pedestrians, buses, cars, major-and minor-road vehices, etc. An example of both input data listing and output is given to illustrate the SIDRA method of estimating lane flows, capacities and operating
characteristics. SIDRA-2 is now in use in traffic engineering practice and teaching in Australia and New Zealand. (TRRL)

SIGNAL-CONTROLLED ROUNDABOUTS. Flanagan, TB; Satter, RJ (Bradford University, England). PTRC Education and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mig, Proc 1983 pp 181-192 5 Fig. 4 Tab. 9 Ret.. AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

The last decade has seen an increasing realization that in the future large-scale grade-separated highway construction in urban areas will be severely limited. Instead, the emphasis has changed to traffic management and the optimal use of existing facilities by the geometric re-design of roundabouts and the use of computer control to improve flow through signal-controlled networks. This trend has led to increasing interest being paid to the signal-controlled roundabout which combines the separation of traffic conflicts with accurate computer control. This paper reviews the theoretical concepts which have so far been expounded on the signal-controlled roundabout. A detailed explanation is given of 'confilict separation' and 'natural cycle time', and a comprehensive example is included to illustrate how these concepts can be applied to a specific scheme. Details are given of the performance of signal-controlled roundabouts in Bradford and in Huddersfield, West Yorkshire. The paper goes on to describe a computer model which has been deveioped to simulate traffic flow in and around a signal-controlled roundabout. A before and after study is conducted utilizing the simulation model and the Department of Transport's model for rouridabouts, ARCADY. A comparison of queue lengths and delays before and atter the installation of signal control is made and conclusions drawn. In addition, the improvement in the level of service after the installation of signals is discussed using the distribution of individual vehicle delays as a basis. (Author/TRRL) This paper was presented at Seminar K, Traffic Operation and Management, held at the PTRC 11 th Annual Summer Meeting, University of Sussex, England, 4-7 July, 1983.

SIGNAL IMPROVEMENTS SAVE TIME AND FUEL. Brohard, T. Public Works Journal Corporation. Public Works VOL. 117 NO. 2 Feb 1986 pp 52-53. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street Now York New York 10017

Improvements made under California's Fuel Efficient Traffic Signal Management (FETSIM) program at over 3,000 traffic signals throughout the state are saving Califomia motorists some $\$ 20$ milion in fuel costs and 11.3 million hours in travel annually by minimizing stops and reducing delays. Cities receiving grants have ranged from those with sophisticated computer controlled systems to those with traffic actuated and older electromechanical dial units. Grant applications were accepted for intersection networks containing ten or more traffic signals with the capacity for at least three different daily timing plans. Funds were used for all aspects of traffic signal timing optimization including data collection and processing, computer access and time, and timing plan development, implementation, and evaluation.

SIGNAL SYSTEMS: METHODOLOGY FOR PROJECT SELECTION. VOLUME 2. FINAL REPORT. Canter-E.C. Maryland Univ., College Park. Dept. of Civil Engineering. Federal Highway Administration, Baltimore, MD. Maryland Div. Maryland State Highway Administration, Baltimore. AW085285046 VOL2, FHWAMD8820. Feb 88. 155p.

A study of three recently instalied signal systems in Maryland included travel time, fuel consumption and traffic volumes for all movements at all signalized intersections. A field atter study, a field before study (system modified to represent before - uncoordinated - conditions), and computer simulation runs were compared, using travel time, delay and fuel consumption MOE's. Both NETSIM and TRANSYT 7F models were used. It was shown that computer simulation models can be used to predict changes in these parameters which can then be used to make decisions on which of several candidate new signal systems will likely be the most cost effective to meet budget constraints.

SIGNAL SYSTEMS: METHODOLOGY FOR PRONECT SELECTION. VOLUME 1. SUMMARY REPORT. Carter-E.C. Maryland Univ., College Park. Dept. of Civil Engineening. Federal Highway Administration, Battimore, MD. Maryland Div. Maryland State Highway Administration, Battimore. AW085285046 VOL1, FHWAMD8819. Feb 88. 33p.

This is a Summary of a study to determine if computer simulation programs could be used to evaluate the operation of new signal systems. The study showed that both NETSIM and TRANSYT 7F models accurately estimate travel time, delay and fuel consumption, and can be used in establishing priorities among candidate signal systems. A more complete description of the project is contained in, 'Final Report: Signal Systems: Methodology for Project Selection, Volume II.

SIGNAL TMMING BASED ON TRANSYT-7F. Davis, SW (City of Fort Wayne, Indiana). Purdue University. Engineering Bulletin of Purdue University N153 1982 pp 131-133. AVAlLABLE FROM: Purdue University West Lafayette Indiana 47907

This presentation summarizes Fort Wayne, Indiana's participation in the National Signal Timing Optimization Project using the computerized optimization model ior TRANSYT-7F. Five separate timing plans involving 45 signals within our CBD computerized network were optimized. Approximately 20 separate optimization computer runs were required to come up with the final results. The total cost of the project was $\$ 13,272.76$. The total estimated cost savings as a direct result of this project amounted to $\$ 554,798$ annually. It can be seen from this that computer optimization programs are very cost effective. The TRANSYT program, in particular, provides a very powerful tool for the traffic engineer in analyzing his signal network and timing it to its maximum efficiency. This paper was presented at the 68th Annual Road School, Purdue University, March 9-11, 1982.

SIGOP-III. USER'S MANUAL. Lieberman; Lai, J; Ellington, RE. Federal Highway Administration Research, Development \& Technology, 6300 Georgetown Pike McLean Virginia 22101. Jul 1983 Final Rpt. 135p 36 Fig. 2 App.. REPORT NO: FHWA-IP-82-19. AVAILABLE FROM: Federal Highway Administration Office of Implementation McLean Virginia 22101

This manual explains how to use the SIGOP-III signal optimization computer program. The program, which is written in FORTRAN, is designed to generate traffic signal timing plans for both grid networks and arterials. The program not only optimize splits and offsets, and selects the optimum cycle length, it also outputs time-space diagrams. In addition to the normal measures of effectiveness associated with traffic flow, estimates of fuel consumption and vehicle emissions are provided.

SIGSIGN: A PHASE-BASED OPTIMIZATION PROGRAM FOR INDIVIDUAL SIGNAL-CONTROLLED JUNCTIONS. Silcock, JP; Sang, A. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 5 May 1990 pp 291-98 8 Fig. 2 Tab. 15 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

SIGSIGN is a microcomputer program which, given a pattern of traffic, will provide three sets of signal timings which are optimal according to each of the following criteria: (a) critical cycie time; (b) maximum practical capacity; and (c) minimum total junction delay. This article discusses the computer program and the advantages of the phase-based method and looks at some example applications.

SIMAUT AND META, TWO MOTORWAY TRAFFIC SIMULATION MODELS : CONCEPTUALIZATION, CALIBRATION AND VALIDATION. COHEN, S. INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS. RAPPORT INRETS, NN108 Mar 198970 PP FRENCH

ISBN: 2857822901 SIMON COHEN ... DECEMBRE 1989 INCLUDES ENGLISH SUMMARY INCLUDES BIBLIOGRAPHICAL REFERENCES ADDL CORP. AUTHOR INFO: INRETS INSTITUTE : FRANCE INSTITUT NATIONAL DE RECHERCHE SUR LES TRANSPORTS ET LEUR SECURITE

SIMLA2 - A MICROSCOPIC SIMULATION MODEL OF TRAFFIC FLOW ON TWO-LANE RURAL ROADS. Brannotte, U (Karisruhe Universitaet, West Germany). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. VOL. 12 NO. 51984 pp 88-92 4 Fig. 5 Ref.

The model simulates at a microscopic level the flow of traffic, including passing, on a two-lane road section with varying possibilities for the horizontal and vertical alignment. Different compositions of curvature elements, including asymmetrical configurations, are permissible. Simulated driving speeds in curves depend both on vehicle characteristics and on the direction of flow, as well as on potential restrictions in visibility. Climbing and descent sections can be simulated. From the results of micro simulation, macroscopic traffic flow characteristics for specified types of road may be worked out. A special feature of the model consists of the detailed recording of each path driven. Such data facilitate the representation of traffic flow on film in the form of an aerial view. The film yields further information about the speeds driven in relation to alignment. Such a film (16 mm projection) is a part of the presentation. Also from the data, values for fuel consumption, which are directiy related to the actual engine performance may be determined. (Author/TRRL) This paper was presented during the 12th Australian Road Research Board Conference, Hobart, Tasmania, 27-31 August 1984.

MULATION AND OPTIMIZATION OF TRAFFIC FLOW ON INTERCITY NETWORKS. Hu, YC; Schonfeld, P. Maryland fiversity, College Park Transportation Studies Center College Park Maryland 20742. Jul 1983 288p. REPORT NO: fIWAMD-83/05. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 2161

A macroscopic Traffic Simulation and Optimization (TSAO) model has been developed for regional highway networks. In its latest version, this model uses a macroscopic research approach to simulate vehicle platoons through the network, Lighthill's shockwave function to simulate queue propagation, event-scan time management, and a quasi-Newton optimization algorithm. It was applied to the Maryland Eastern Shore network, where heavy recreational traffic creates severe congestion and long queues at bottlenecks on summer weekends. Fourteen alternatives for improvement, including capacity expansion projects and route diversion, were analyzed. Results show the cost-effectiveness of route diversion as a substitute for new construction on intercity networks where high demand peaks are infrequent. The applicability of the TSAO model to large networks with complex demand patterns and insutficient capacity is also demonstrated. Portions of this document are not fully legible.

SIMULATION MODEL APPLIED TO JAPANESE EXPRESSWAY. Makigami, Y; Nakanishi, T; Seill, K (Ritsumeikan University). American Society of Civil Engineers. Journal of Transportation Engineering VOL. 110 NO. 1 Jan 1984 pp 94-111 8 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

A traffic simulation model is developed which computes traffic flow characteristics and traces the behavior of congestions under given traffic demands. A 24 km study section was selected from Meishin expressway is Osaka where congestion occurs from two tunnels almost every moming during peak period. An extensive traffic survey was conducted making use of aerial photography, video camera recording, and floating tests. A simulation model for traffic flow through bottlenecks was developed on the basis of the resuits of the traffic survey. The expressway bottleneck simulation model was a macroscopic model based upon the theory of compressible fluid. The results of the simulation model are satisfactory.

SIMULATION MODEL FOR THE ANALYSIS OF COMPLEX TRAFFIC WEAVING PROBLEMS. O'Leary, TJ (Arizona State University). Transportation Planning and Tectnology VOL. 8 NO. 21983 pp 101-115 7 Fig. 4 Tab. 11 Ref.

A simulation modeling approach has been developed to analyze a complex traffic weaving problem. It is presented, discussed, and demonstrated on an actual dual purpose weaving area that is closely followed by an entrance-exit junction. Specifically, the model identifies problem areas in the system, assists the traffic engineer in the formulation of feasble solution strategies, and analyzes the effectiveness of alternative strategies. The simulation model is not presented as a panacea to weaving analysis rather as an interesting and unique approach that has the potential to analyze a wide variety of weaving patterns. The primary conclusion of the paper is that the model can be a valuable tool for analysis of certain types of traffic congestion problems. (Author/TRRL)

SIMULATION OF DELAYS AND QUEUE LENGTHS AT OVER-SATURATED PRIORITY HIGHWAY JUNCTIONS. Salter, RJ (Bradford University, England). Australian Road Research Board. Australian Road Research VOL. 12 NO. 4 Dec 1982 pp 239-246 8 Fig. 7 Ref.

Delays and queue lengths at over-saturated priority highway junctions are examined by means of computer simulation of the traffic flow. A simple over-saturated rectangular surge of non-priority route flow is initially considered; theoretical expressions for the capacity and average delay per vehicle in terms of priority route headway and driver gap acceptance are given. The less restrictive case when drivers have a range of gap acceptance is also considered. Secondly, a more realistic form of non-prionty route flow surge of the trapezoidal form is considered. A theoretical expression is given for the average delay per vehicle in terms of demand and capacity and it is verified by computer simulation. Thirdly, a simulation model is discussed in which it is possible to input both prierity and non-prionty route flows which have a flow variation typical of peak hour traffic. One model is programmed for use on a main frame computer and the other model, written in basic, was programmed for use on a micro-computer. The output from the main frame model in terms of average delay per vehicle and queue length on the non-priority route is illustrated. Using the micro-computer model a comparison of simulated and observed traffic delays is made for an intersection in the City of Bradford, U.K. (Author/TRRL)

SIMULATION OF TRAFFIC FLOW AT SIGNAL-CONTROLLED ROUNDABOUTS. Sater, RJ; Okezue, OG. Printerhall Limited. Traftic Engineering and Control VOL. 29 NO. 3 Mar 1988 pp 142-147 Figs. Tabs. 1 Ref.. AVAlLABLE FROM: Printerhall Limited 29 Newman Street London England

A computer simulation model, SIGART, has been developed to study the operation of signal controlled traffic circles (roundabouts). The SIGART can be divided into 2 parts: the first part accepts input data and performs necessary calculation - its output consists mainly of signal-settings and processed traffic flow details; second part performs a simulation study using the traffic signal information supplied. The validation of the model is described. The relationships between queuing delay cycie time, demand flow and inscribed circle diameter were obtained for a three-arm traffic circle operating under idealized conditions of equal demand flows on each approach, balanced turning movements and equal vehicle speeds. For specific conditions for 3 - or 4-arm signalized tratfic circle with up to three lanes on an approach and desired turning movements the program SIGART could determine for the required inscribed diameter, expected queue lengths and associated delays at both internal and external stoplines.

SIMULATION OF TRAFFIC FLOW PARAMETERS ON A SERIES OF SIGNALIZED INTERSECTIONS. Savic, D. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik III Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 189-199 4 Fig. 5 Tab. Serbian

This paper investigates the control of a series of signalized intersections. The simulation model uses the GPSS programming language. The results obtained can be correlated with empirical data. The model is flexible and can be adjusted for any traffic network. (TRRL)

SIMULATION OF VEHICLE EMISSIONS AT INTERSECTIONS. Lee, F-P; Lee, CE; Machemehi, RB; Copeland, CR, Jr. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1983 Intrm Rpt. n.p.. REPORT NO: FHWATX-84/17+250-1

High concentrations of vehicular emissions at road intersections are a health-related issue of concern, and the associated fuel consumption is a matter of continuing economic interest. For this study, a computer simulation model called TEXAS-Il was developed at the Center for Transportation Research to estimate with respect to time and location the source of carbon monoxide, hydrocarbon, and oxides of nitrogen emissions and the amount of fuel consumed by vehicles as they pass through an intersection. The model was run approximately 300 times in a series of experiments designed to obtain quantitative estimates of the effects of various traffic and intersection factors on emissions, fuel consumption, traffic delays, and queve lengths. The resulting data were utilized to build predictive models for emissions and fuel consumption at intersections. The factors which were used for simulating the intersection environment were (1) intersection size, (2) presence or absence of a special left-turn lane, (3) pretimed signal control, (4) fully-actuated signal control, (5) all-way stop-sign control, (6) traffic volume, (7) number of left turns, and (B) number of heavy-duty vehicles. Trafic engineers and transportation planners can utilize the results of this study in three ways: the predictive models can be applied to calculate the expected source of emissions, fuel consumption, and traffic performance parameters for any intersection situation that was included in the range of simulated conditions; these values can be looked up in a series of tables; and the TEXAS-II computer simulation program can be run to obtain detailed data conceming any specific intersection environment of practical interest. (FHWA)

SIMULTANEOUS ANALYSIS OF A SIGNALIZED INTERSECTION. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Ozaki, H. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410011 7. 1991 pp 271-282 9 Fig. 3 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookield Vermont 05036

This paper discusses a method of analysis for a signalized intersection which considers prevailing geometric, tratfic, and signal operating conditions simultaneously. The present Highway Capacity Manual recommends the analysis procedure on a module-by-module basis. Traffic engineers should prepare intersection design atternatives with estimated or assumed parameters of geometric, traffic, and signalization conditions. Since these parameters of the prepared design alternatives influence the analyzed results, trial and error procedure is required in order to obtain appropriate plans. In this paper, a signalized intersection is viewed as a time and space sharing system and is formulated as one of the scheduling problems. The continuous and discrete nature of design parameters are examined and a set of constraints and objective functions is described. Performance of the proposed method is illustrated by a numerical example.
retes isary ums The 'or a

read

with

- the
nes.
VBZ
$=i g$.
SINGLE-ARTERIAL VERSUS NETWORKWIDE OPTIMIZATION IN SIGNAL NETWORK OPTIMIZATION PROGRAMS (DISCUSSION AND CLOSURE). Johnson, V; Cohen, SL; Chang, ECP. Transportation Research Board. Transportation Research Record N1142 1937 pp 6-15 7 Fig. 11 Tab. 3 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The optimization of signal timing in a traffic network involves finding the timing plan that optimize the overall performance in the network. In theory, the network closure constraints limit the performance on individual arteries of the network. Thus networkwide optimization has the potential of imposing some cost or penalty, or both, to individual arteriais in the network. The objective of this study was to determine how or if the network closure constraint affects or limits arterial performance in the program for maximum-bandwidth, MAXBAND, and in the program for minimum stops, delay, and fuel consumption, TRANSYT-7F. The results of this study show that for small and medium-sized closed networks, optimization of an entire network using MAXBAND or TRANSYT-7F costs very little in terms of stops, delay, and green bandwidth on the arteries within the network. The added cost associated with the additional stops and delays resulting from networkwide optimization can be expected to impose approximately a 5 percent penalty on individual arteries within the network. This paper appeared in Transportation Research Record No. 1142, Uiban Signal Systems and Transportation System Management.

SOME EXPERIENCE WITH THREE URBAN NETWORK MODELS: SATURN, TRANSYT/B AND NETSIM. Luk, JYK; Stewart. RW (Waterloo University). Australian Road Research Board. Australian Road Research VOL. 14 NO. 2 Jun 1984 pp 82-87 2 Fig. 4 Tab. 18 Ref.

The experience of using three ubban network models for predicting the performance of signal co-ordination in an arterial road is reported. The three models, or packages, selected are SATURN, TRANSYT/8 and NETSIM. They represent different levels of modelling details. Both SATURN and TRANSYT/8 belong to the category of macroscopic models, whereas NETSIM is a microscopic model. SATURN has tratfic assignment capability but this aspect is not investigated in this paper. The three models were tested using a real-world network in Parramatta, New South Wales. The task of preparing three sets of consistent input data was found to be non-trivial. Several problems were encountered and could be attributed to incompatible structures in these models. For example, the simulation module of SATURN does not directly accept link traffic flows as input data. SATURN was found to underestimate total delay by 29 per cent and fuel consumption by seven per cent when compared with TRANSYT/8. There was, however, no difference between the two models in the prediction of the number of stops. Netsim was found to have a bias in the lane distribution of treffic flows. This problem frequently created spill-back and the model was difficult to use in near-saturated conditions. TRANSYT/8 was found to be the simplest of the three models in preparing the input data and the most consistent in performance prediction. (Author/TRRL)

SOME MEASUREMENTS OF ROBERTSON'S PLATOON DISPERSION FACTOR. Axhausen, KW; Korling, H-G. Transportation Research Board. Transportation Research Record N1112 1987 pp 71-775 Fig. 9 Tab. 17 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

At the core of TRANSYT, the platoon dispersion model of Robertson is probably the most widely used traffic model in the world. In spite of its wide use, only a relatively small number of studies have tried to calibrate the model for a range of traffic conditions. The default values of the TRANSYT handbooks provide the only information on the value of the dispersion factor available to most users. In the first section of the paper, the sensitivity of the TRANSYT results to the dispersion value is shown. Next, available information on the model is summarized and
the results are classified. In the last section of the paper, the results of measurements taken in Karisruhe anlil lit Pforzheim, West Germany, are reported. The expenimental design of the sites was selected to determinm lim influence of the gradient and the number of lanes on the platoon dispersion. This paper appeared in Transportalkl' Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

SOME MICROCOMPUTER APPLICATIONS IN TRAFFIC ENGINEERING IN CHILE. Ortuzar, J, de D. PTRC Educalkul' and Research Services Limited. Planning \& Transport Res \& Comp, Sum Ann Mig, Proc VOL. P249 1984 pp $73-75$ \& llal AVAILABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

The advent of the low cost microcomputer has offered Chile the opportunity of significantly improving several laliks, engineering operations. This short paper briefly describes applications in the following areas: data collection aind analysis; optimum signal settings; evaluation of low investment traffic management schemes in urban corridue It was found that in all these tasks the microcomputer allowed jobs to be performed better, more quickly and fann expensively. (TRRL) Microcomputer Applications in Developing Countries. Proceedings of Seminar F held at the 12th PTRC Summer Annual Meeting, University of Sussex, England, July 10-13, 1984. For the covering abminul of the seminar see IRRD 283731 (TRIS 458582).

SOME PROPERTIES OF MACROSCOPIC TRAFFIC MODELS. Ross, P. Transportation Research Board. Transportallu'I Research Record N1194 1988 pp 129-134 2 Fig. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publleatkillo Office 2101 Constitution Avenue, NW Washington D.C. 20418

Three "equations of state" are required to describe the traffic fluid. The first is volume equals speed times dermily. and the second is the continuity of vehicies. There are at least four options for the third equation: (1) life deterministic speed-density model, (2) the equilibrium speed-density model, (3) the Payne model, and (4) the Hume model. Two restrictions on the space step $D X$ and time step DT apply to numerical integrations of all four modele There is an additional restriction on DT that applies to the last three models and a special restriction on lime "anticipations: term in the Payne model. The time required to perform numerical integrations of all four modelm in shown to be inversely proportional to the square of the length of the smallest feature represented. A general full" for the "relaxation time" in the three non-deterministic models is derived. It is argued, on the basis of experienre with the Ross model, that although a dependence upon speed is "correct," setting the relaxation time constanl in adequate for most tratfic purposes. The relationship between relaxation time and lost time at signals in the lituns model is shown to be linear. This paper appears in Transportation Research Record No. 1194, Trattic Flow Therily and Highway Capacity.

SSTOP - A SIGNAL SYSTEM OPTIMIZATION PROGRAM. McGill, J (Ontario Ministry of Transportation \& Communic, Call) institute of Transportation Engineers. ITE Journal VOL. 54 NO. 3 Mar 1984 pp 38-40. AVAILABLE FROM: Enginanrind Societies Library 345 East 47th Street New York New York 10017

Optimum signal timings and offsets which properly match green time to vehicular demand provide for the simuxilh and progressive flow of traffic through a network and significantly reduce fuel consumption. Therefore, updalinu signal systems every year or two, or when traffic conditions change, can be very cost effective. In recent yuale several computerized algorithms have been developed to provide engineers with an easy to use tool to anaial l1 the development of efficient timing plans. As one such program, the Signal System Optimization Program (SS|()|') is fast becoming the adopted standard tool for signal system analysis and optimization in Ontario.

STATE OF THE ART REPORT. TRAFFIC MANAGEMENT. TRAFFIC CONTROL Kinslea Press Limited. Municipal Engincal VOL. 1 NO. 3 Oct 1984 pp 255-274 11 Fig. 11 Phot. 120 Ref.. AVAlLABLE FROM: Kinslea Press Limited Central Bulklilum. 24 Southwark Street, London Bridge London England

Any method or device limiting or segregating conflicts between either vehicles or pedestrians or both call lie considered as a form of traffic control. The article considers in detail traffic signals at road junctions, pelicall anlll zebra crossings, linked signals and urban traftic control and special signal applications ranging from peak linll control of roundabouts to those assisting emergency service vehicles. Appendices list the appropriate stankinite for the design and layout, equipment installation and maintenance. Current specifications relating to specialisi shulini control are also quoted. Methods of estimating capacities, green times and vehicle delays at signal-coninullal junctions are discussed. Current designs make use of the greater flexibility provided by microprocmanl! phased-based controllers. The operation of the TRANSYT and SCOOT programs, available for urban traffic cunllil. are outlined. Typical installation costs and recommended procedures for carrying out roadworks are discusmad

Reference is made to documents comtaining details of the legal requirements and an extensive bibliography is included. For abstract of the first part of this paper (pp 253-255), on traffic signs and carriageway markings, see IRRD 288463. (TRRL)

STATE SIGNAL TIMING OPTIMIZATION PROGRAMS. Arnold, ED. Institute of Transportation Engineers. TTE Journal VOL. 59 NO. 2 Feb 1989 pp 33-35 1 Tab. 1 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

The findings are documented of a survey of signal timing optimization activities in 9 states: California; Fiorida; illinois; Maryland; Michigan; Missouri; New York; North Carolina; and Wisconsin. The timing programs were of 4 types: lead agency promotes the benefits of optimal signal timing, providing training and technical assistance; the program is established to which local agencies submit a formal application to undertake a timing project; lead agency contracts with a consultant; state transportation agency undertakes the timing program. The source of funds and program costs are discussed. Targeted intersections in the programs are also discussed. The fuel savings, operational improvements, and costs of programs in the several states are discussed. The status of Virginia's program is described.

STATISTICAL ANALYSIS OF OUTPUT RATIOS IN TRAFFIC SIMULATION. Gaianian, AV; Halati, A. Transportation Research Board. Transportation Research Record N1091 1986 p 29-36 2 Fig. 4 Tab. 5 Ret.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Simulation models are increasingly becoming the most convenient tool for traffic studies. Users of such models need valid statistical methods to draw correct inferences. Presented in this paper is one such method applicable to several important traffic parameters. The motivation for this research arose from a study sponsored by the FHWA, U.S. Department of Transportation, to develop statistical guidelines for simulation experiments with traffic models. NETSIM, widely used for simulating vehicular tratic flow on urban streets, was used in the study. The output of the NETSIM model includes estimates of average speed, average delay per vehicle, and average travel time per vehicle mile. Because NETSIM uses the ratio of sample means to estimate these parameters, a situation exists that involves the ratios of observations that are in fact autocorrelated and cross correlated. In this paper, the efficacy of the ratio of sample means (used in NETSIM) as an estimator of the ratio of steady state means is discussed. Monte Carb experiments have demonstrated that the user of the NETSIM model, in estimating these parameters from the model output, must apply statistical techniques based on ratio estimators. A technique that provides a measure of the accuracy of the estimate with a confidence interval is developed and demonstrated. The efficacy of the method is assessed through Monte Carto expeniments. The method is easy to use and can be applied just as readily to field data. ht can be extended to the comparison of model outputs to field observations for simulation validation studies. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

STOP PROBABILITY AND DELAY ESTIMATIONS AT LOW VOLUMES FOR SEMI-ACTUATED TRAFFIC SIGNALS. Luh, JZ; Lee, CY. Operations Research Sociely of America. Transportation Science VOL. 25 NO. 1 Feb 1991 pp 65-82 Figs. Tabs. Refs.. AVAILABLE FROM: Operations Research Society of America Mount Royal and Guilford Avenue Battimore Maryland 21202

Semi-actuated signals have been widely used on arterials, since they provide flexible controls for minor street tratfic to reduce delays and stops. It is very important to estimate average delays and stops under such signal control in designing timing plans or evaluating operational periormance. A common approach is to estimate average green times, then to apply a model for pretimed signais to calculate delays and stops. This method produces reasonable approximations when traffic volumes are moderate to high. When traffic volumes are low, however, this method produces biased approximations since it does not consider phase skipping due to lack of tratfic demand. This paper presents an analytical method to directly estimate stop probability and average delay for semi-actuated signals at low volumes, under both isolated and coordinated controls. This method uses probability theory and stochastic processes to consider the various cycle lengths and green times under such signal control with simplified assumptions. A comparison with the results of a simulation demonstrates the validity of the method.

STREET-WISE SCOOT MOVES TRAFFIC THAT OTHER SYSTEMS CAN'T REACH. Bowen, GT; Vincent, RA. Business Press Intemational Limited. Surveyor Public Authority Technology VOL. 165 NO. 4875 Dec 1985 pp 8-9 2 Fig. 1 Phot. AVAILABLE FROM: Business Press International Limited Throwley Way Sutton Surrey United Kingdom

SCOOT is an on-line, fully adaptive system, developed by TRRL, for coordinating traffic lights in urban areas by adjusting the timing of traffic lights in response to varying traffic conditions. Eight SCOOT systems are in operation and eight more are planned. Details are given of improvements made to the system which include the selection of which arms of junction queues should be alowed to form, e.g., on side roads while main roads are kept clear and the possibilities of applying weighting factors to specific routes so that they are favored (e.g., routes with buses). Other research being undertaken includes the study of severely congested areas where SCOOTs second-by-second adjustments can make full use of the available capacity. Also being developed is the automatic measurement of SCOOT parameters for more rapid installation of the system. (TRRL)

STUDY AND NUMERICAL MODELLING OF NON-STATIONARY TRAFFIC FLOW DEMANDS AT SIGNALIZED INTERSECTIONS. Chodur, J; Tracz, M (Cracow Technical University). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 134-154 13 Fig. 1 Tab. 12 Ref.

Empirical studies of traffic flow variations and theoretical anatyses have been conducted in order to derive characteristics of traffic flow variability, particularly in relation to peak periods. The length of flow counting interval, t-r, as well as profiles of flow rate variations for peak peniods have been determined. The flow profiles are based on a time scale divided into units $t-r$, within which demand flow is assumed as stationary. A computer simulation program has been developed for modelling of traffic flow with varying flow rates accordingly to an assumed curve. This program simulates the vehicle arrival process at an approach to fixed time tratfic signals and calculates delays, stops, queue lengths, saturation ratios and their probabilistic statistics, which characterize level of service in the considered period of time. The primary application of this program lies in a simulation study of the effect of flow rate variability on the effectiveness of signal settings and estimation of traffic conditions during peak periods. (Author/TRRL) Papers presented during the Ninth Intemational Symposium on Transportation and Traffic Theory heid in Delft the Netherlands, 11-13 July 1984.

TESTING DELAY MODELS WITH FIELD DATA FOR FOUR-WAY, STOP SIGN-CONTROLLED INTERSECTIONS. Zion, M; List, GF; Manning, C. Transportation Research Board. Transportation Research Record N1225 1989 pp 83-90 10 Fig. 6 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Four-way, stop sign-controlled intersections are a relatively common phenomenon, especially in uban networks, yet little analysis has been devoted to determining their capacity and delay characteristics. This paper presents the results of new field studies and compares data collected from two recent delay models. Generally, findings are that delay increases as the intersecting volumes increase; intersections with balanced volumes have lower delays than those without; and the percentage of left turns has a noticeable effect on delay. Statistical analyses suggest that one of the two models considered in this research may provide satisfactory delay estimates. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

TESTING OF DYNAMIC MODELS FOR SIGNAL CONTROLLED INTERSECTIONS. Beskos, DE; Okutani, i; Michalopoulos, P (Minnesota University, Minneapolis; Shinshu University Japan). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. 4/5 1984 pp 397-408 3 Fig. 3 Tab. 10 Rei.

[^11]Reference is made to documents containing details of the legal requirements and an extensive bibliography is included. For abstract of the first part of this paper (pp 253-255), on traffic signs and carnageway markings, see IRRD 288463. (TRRL)

STATE SIGNAL TIMING OPTIMIZATION PROGRAMS. Arnold, ED. Institute of Transportation Engineers. ITE Journal VOL. 59 NO. 2 Feb 1989 pp 33-35 1 Tab. 1 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

The findings are documented of a survey of signal timing optimization activities in 9 states: California; Florida; Illinois; Maryland; Michigan; Missouri; New York; North Carolina; and Wisconsin. The timing programs were of 4 types: lead agency promotes the benefits of optimal signal timing, providing training and technical assistance; the program is established to which bocal agencies submit a formal application to undertake a timing project; lead agency contracts with a consultant; state transportation agency undertakes the timing program. The source of funds and program costs are discussed. Targeted intersections in the programs are aiso discussed. The fuel savings, operational improvements, and costs of programs in the several states are discussed. The status of Virginia's program is described.

STATISTICAL ANALYSIS OF OUTPUT RATIOS IN TRAFFIC SIMULATION. Gafarian, AV; Halati, A. Transportation Research Board. Transportation Research Record N1091 1986 p 29-36 2 Fig. 4 Tab. 5 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Simulation models are increasingly becoming the most convenient tool for traffic studies. Users of such models need valid statistical methods to draw correct inferences. Presented in this paper is one such method applicable to several important traffic parameters. The motivation for this research arose from a study sponsored by the FHWA, U.S. Department of Transportation, to develop statistical guidelines for simulation experiments with traffic models. NETSIM, widely used for simulating vehicular tratfic flow on urban streets, was used in the study. The output of the NETSIM model includes estimates of average speed, average delay per vehicle, and average travel time per vehicie mile. Because NETSIM uses the ratio of sample means to estimate these parameters, a situation exists that involves the ratios of observations that are in fact autocorrelated and cross correlated. in this paper, the efficacy of the ratio of sample means (used in NETSIM) as an estimator of the ratio of steady state means is discussed. Monte Cario experiments have demonstrated that the user of the NETSIM model, in estimating these parameters from the model output, must apply statistical techniques based on ratio estimators. A technique that provides a measure of the accuracy of the estimate with a confidence interval is developed and demonstrated. The efficacy of the method is assessed through Monte Cario expeniments. The method is easy to use and can be applied just as readily to field data. Ht can be extended to the comparison of model outputs to field observations for simulation validation studies. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

STOP PROBABILITY AND DELAY ESTIMATIONS AT LOW VOLUMES FOR SEMI-ACTUATED TRAFFIC SIGNALS. Luh, JZ; Lee, CY. Operations Research Society of America. Transportation Science VOL. 25 NO. 1 Feb 1991 pp 65-82 Figs. Tabs. Refs.. AVAILABLE FROM: Operations Research Society of America Mount Royal and Guilford Avenue Baltimore Maryland 21202

Semi-actuated signals have been widely used on arterials, since they provide fiexible controls for miner street traffic to reduce delays and stops. It is very important to estimate average delays and stops under such signal control in designing timing plans or evaluating operational periormance. A common approach is to estimate average green times, then to apply a model for pretimed signals to calculate delays and stops. This method produces reasonable approximations when traffic volumes are moderate to high. When traffic volumes are low, however, this method produces biased approximations since it does not consider phase skipping due to lack of traffic demand. This paper presents an analytical method to directly estimate stop probability and average delay for semi-actuated signals at low volumes, under both isolated and coordinated controls. This method uses probability theory and stochastic processes to consider the various cycle lengths and green times under such signal control with simplified assumptions. A comparison with the results of a simulation demonstrates the validity of the method.

STREET-WISE SCOOT MOVES TRAFFIC THAT OTHER SYSTEMS CAN'T REACH. Bowen, GT; Vincent, RA. Business Press Intemational Limited. Surveyor Public Authority Technology VOL. 165 NO. 4875 Dec 1985 pp 8-9 2 Fig. 1 Phot. avallable from: Business Press International Limited Throwiey Way Sutton Surrey United Kingdom

SCOOT is an on-line, fully adaptive system, developed by TRRL, for coordinating traffic lights in urban areas by adjusting the timing of traffic lights in response to varying traffic conditions. Eight SCOOT systems are in operation and eight more are planned. Details are given of improvements made to the system which include the selection of which arms of junction queues should be allowed to form, e.g., on side roads while main roads are kept clear and the possibilities of applying weighting factors to specific routes so that they are favored (e.g., routes with buses). Other research being undertaken includes the study of severely congested areas where SCOOTs second-by-second adjustments can make full use of the available capacity. Also being developed is the automatic measurement of SCOOT parameters for more rapid installation of the system. (TRRL)

STUDY AND NUMERICAL MODELLING OF NON-STATIONARY TRAFFIC FLOW DEMANDS AT SIGNALIZED INTERSECTIONS. Chodur, J; Tracz, M (Cracow Technical University). VNU Science Press Bv P.O. Box 2073 Utrecht Netherlands 90-6764-008-5. 1984 pp 134-154 13 Fig. 1 Tab. 12 Ref.

Empirical studies of traffic flow vanations and theoretical analyses have been conducted in order to derive characteristics of traffic flow variability, particularly in relation to peak periods. The length of flow counting interval, $t-r$, as well as profiles of flow rate variations for peak periods have been determined. The flow profiles are based on a time scale divided into units $t-r$, within which demand flow is assumed as stationary. A computer simulation program has been developed for modelling of traffic flow with varying flow rates accordingly to an assumed curve. This program simulates the vehicle arrival process at an approach to fixed time traffic signals and calculates delays, stops, queue lengths, saturation ratios and their probabilistic statistics, which characterize level of service in the considered period of time. The primary application of this program lies in a simulation study of the effect of flow rate variability on the effectiveness of signal settings and estimation of traffic conditions during peak periods. (Author/TRRL) Papers presented during the Ninth International Symposium on Transportation and Traffic Theory held in Delft the Netherlands, 11-13 July 1984.

TESTING DELAY MODELS WITH FIELD DATA FOR FOUR-WAY, STOP SIGN-CONTROLLED INTERSECTIONS. Zion, M; List, GF; Manning, C. Transportation Research Board. Transportation Research Record N1225 1989 pp 83-90 10 Fig. 6 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Abstract

Four-way, stop sign-controlled intersections are a relatively common phenomenon, especially in urban networks, yet little analysis has been devoted to determining their capacity and delay characteristics. This paper presents the results of new field studies and compares data collected from two recent delay models. Generally, findings are that delay increases as the intersecting volumes increase; intersections with balanced volumes have lower delays than those without; and the percentage of left tums has a noticeable effect on delay. Statistical analyses suggest that one of the two models considered in this research may provide satisfactory delay estimates. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

TESTING OF DYNAMIC MODELS FOR SIGNAL CONTROLLED INTERSECTIONS. Beskos, DE; Okutani, I; Michalopoulos, P (Minnesota University, Minneapolis; Shinshu University Japan). Pergamon Press Limited. Transportation Research. Part B: Methodological VOL. 18B NO. $4 / 51984$ pp 397-408 3 Fig. 3 Tab. 10 Ref.

Three continuum traffic models and the simple input-output one are implemented at a signalized intersection and tested against limited data collected by time lapse photography. A comparative performance evaluation is made based on estimations of the queue length, the effective queue size and interrupted total travel time. These estimates are obtained from initial and boundary conditions measured in short time increments at each end of the link under consideration. The test results indicate that the continuum modeis are more effective in estimating the above state variables and measure of effectiveness. A simple statistical adjustment suggests that the least sophisticated continuum model performs consistently better than any other alternative. The findings of this study can only be tentative due to the limitations of the data base. (Author/TRRL)

THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Williams, L. Federa! Highway Administration, Office of R\&D. Public Roads VOL 50 NO. 3 Dec 1986 pp 91-96 Figs. 3 Ref.. AVAlLABLE FROM: Government Printing Office Superintendent of Documents Washington D.C. 20402

This article discusses the three component traffic signal timing programs of the Arterial Analysis Package (AAP). The AAP, which was conceived as a tool for timing traffic signals on arterial streets, gathers the most widely used design and analysis programs to provide a framework for sotving signal timing problems using commonly available traffic engineering data. The component timing programs discussed here are as follows: the Signal Operations Analysis Package (SOAP), Progression Analysis and Signal System Evaluation Routine (PASSER), and the Traffic Network Study Tool (TRANSYT). The articie also discusses how to define a problem for analysis, how to prepare the input deck using the support programs, how to interpret results, and how the AAP was tested.

THE BANDWIDTH-CONSTRAINED TRANSYT SIGNAL-OPTIMIZATION PROGRAM (DISCUSSION AND CLOSURE). Cohen, SL; Liu, CC; Chang, EC-P. Transportation Research Board. Transportation Research Record N1057 1986 pp 1.9 5 Fig. 5 Tab. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A discussion is presented of previous attempts to combine bandwidths and delay and stop considerations as criteria for computing signal-timing plans for arterial signal systems. In particular, deficiencies in these previous attempts are pointed out. A new approach that involves constraining the TRANSYT-7F model to preserve the two-way band computed by a bandwidth program is described. This new approach was tested on 10 widely varying arterial data sets by using the MAXBAND program to develop the green bands, and the NETSIM model to evaluate the effectiveness of the resultant signal-timing plans with a weighted combination of delay and stops as the measure of performance. It is shown that no statistically significant improvement in arterial performance is obtained by adjusting offsets only, even in the case of short block spacing. However, if both offsets and green times are adjusted, statistically significant improvements in arterial performance are obtained. This paper appeared in Transportation Research Record N1057, Traffic Signal Systems.

THE CALCULATION OF THE ORIGIN DESTINATION MATRIX FROM THE MEASUREMENT OF TRAFFIC FLOWS BASED ON THE HYPOTHESIS OF PROPORTIONAL ASSIGNMENT. Cascetta, E (Naples University, Italy). Casa Editrice la Fiaccola. Vie e Trasponti VOL. 51 NO. 486 Jan 1982 pp 25-35 3 Fig. 3 Tab. 5 Ref. Italian

This article deals with the problem of determining the transport demand in an urban road network when the traffic flow distribution is known but not that of the origin-destination. Two approaches are analyzed: the geometric approach based on minimum distance modelling; and the maximum probability approach deriving from the theory of entropy. It is concluded that the maximum probability method is to be preferred because, in addition to requining very little memory space, it can make sure of whatever information there is available on the network under examination. An algorithm obtained by the use of Legrange multipliers, is proposed for the solution of the origin destination. (TRRL)

THE DEVELOPMENT OF TRANSIM - A DISPLAY ORIENTED TRAFFIC SIMULATION MODEL. Foster, D; Smare, AD (West Yorkshire Metropolitan County Council). Echo Press Limited. Municipal Engineer VOL. 110 NO. 6 Jun 1983 pp 201-205 5 Fig.

A traffic simulation system is being developed to model the progress of individual vehicles through junctions and highway systems. This enables an examination of proposals for dealing with particular conditions at specific sites. The system also incorporates a visual display facility in color providing a rapid, easily assimilated assessment of traffic movement and conditions for the design engineer and management. Three main phases are involved: specification of data, model construction and operating procedure. Vehicles may be classified as private cars, public service vehicles or goods vehicies and are modelled according to specified origins and destinations. Speed characteristics are also accommodated and modified by highway parameters. Appropriate signal cycle times are specified at each junction with co-ordination data relating to any traffic control system. Vehicles can weave to overtake other slower or stationary vehicles. Outputs are conditioned by hardware availability: hard-copy plotting facilities can be used and graphic images on a color display tube can be photographed sequentially with a cine or video camera. (TRRL)

THE DEVELOPMENT OF UTCSNETSIMICG: AN INTEGRATED URBAN TRAFFIC CONTROL SYSTEM - NETWORK SIMULATION - INTERACTIVE COMPUTER GRAPHICS PROGRAM. Eiger, A; Chin, S-M. Rensselaer Polytechnic Institute Department of Civil Engineering Troy New York 12181; Department of Transportation Office of University Research, 400 7th Street, SW Troy New York 12181. 1982 Final Rpt 50p. REPORT NO: DOT-RSPA-DMA-50/83/5. AVAILABLE FROM: Rensselaer Polytechnic Institute Department of Civil Engineening Troy New York 12181

This report discusses the development of an Urban Traffic Control System simulation program which: 1. provides pseudo real-time graphic displays of signal settings surveillance data and system performance measures, and 2. simulates user intervention by providing interactive capabilities. The development of the simulator supports current and future research in urban traffic control systems, provides the necessary evaluation tool prior to the implementation of these systems, and is potentially useful as a training aid for UTCS operators.

THE EFFECTS OF PELICAN CROSSING FACILITIES IN A LINKED SIGNAL SYSTEM: A SIMULATION STUDY. Taylor, IG. Newcastle upon Tyne University, England Transport Operations Research Group, Claremont Road Newcastle NE1 7RU Tyne and Wear England. May 1984 42p 15 Fig. 2 Tab. 14 Ref.. REPORT NO: 55

Research conducted into the prediction and means of minimizing the delays incurred by both vehicles and pedestrians at light-controlled pedestrian crossings have led to the setting up of recommendations which increase pedestrian satety but also increase vehicle delay. Within a coordinated area traffic control system the signal settings are almost always calculated to minimize vehicle delay. In broad terms, this reduces costs both to drivers and to the environment. Pedestrian crossings, on the other hand, which increase vehicular delay may be seen to be in direct conflict with this strategy. Simulation models have been used to study the effects of pelican pedestrian crossings operating within coordinated signal systems to consider how the delays to both types of user may be minimized by selection of appropriate crossing locations and signal timings. (TRRL)

THE EFFECTS OF TRAFFIC CONTROL OPERATION SYSTEMS WITH SPECIAL REGARD TO THE NOISE SITUATION

 IN THE VICINITY OF"INTERSECTIONS. Teichgraeber, W; Elsner, A; Gudehus, V. Bundesminister fuer Verkahr, Abteilung Strassenbau Lennestrasse 30 D-5300 Bonn West Germany. 1985 40p German. REPORT NO: 443. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161The effects of different kinds of traffic controls (operating systems) on the noise situation was examined at 3 selected junctions at times of little traffic. These operating systems were: priority for traffic from the right; road signs regulating priority; traffic signals with fixed time control; traffic signals with timing of controls depending either partly or wholly on traffic. Apart from the noise measurements near the junction, the methods of driving were also taken into account, which contributed to a noticeable raising of the noise level. At junctions without visible traffic signals, there were noticeably fewer stops at night, and a much better quality of traffic with regard to waiting times. There was an increase in speed, it the traffic signals were switched off. A model for "stopping" and for "braking and driving on" was developed for the noise emission near the junction.

THE FUEL-EFFICIENT TRAFFIC SIGNAL MANAGEMENT PROGRAM: EVALUATION OF THE FOURTH AND FIFTH FUNDING CYCLES. Skabardonis, A; Singh, R; Deakin, EA. California University, Berkeley Institute of Transportation Studies Berkeley California 94720 0192-4095; California Department of Transportation 1120 N Street Sacramento California 95814. Apr 1988 30p 6 Tab. 9 Rei.. REPORT NO: UCB-ITS-RR-88-8. AVAILABLE FROM: California University, Berkeley Institute of Transportation Studies Berkeley California 94720

The Fuel-Efficient Traffic Signal Management (FETSIM) Program was initiated in 1982 to help local agencies retime their traffic signals to reduce stops, delays, and fuel consumption. This report presents the results of the fourth and fitth grant cycles of the FETSIM Program. During the two grant cycles, local agency staff and their consultants were provided training, technical assistance and funding necessary to optimize the timing of their signal systems and to put the new timing plans into operation. In the 1986 grant cycie, thity-one local agencies retimed 1169 signals at a total cost of $\$ 1.5$ million. In the 1987 grant cycle, sixteen cities retimed 797 signals at a cost of $\$ 1.2$ million. The 1986 program produced 12 percent reduction in delays, an 11 percent reduction in stops, and a 7 percent reduction in fuel use in the affected signal systems. The 1987 program produced average reductions of 13 percent in delays, 12 percent in stops, and 8 percent in fuel use. The dollar value of the benefits from the 1986 and 1987 programs total $\$ 47.4$ million annually. Together, the two program cycles will produce a benefit-cost ratio of 53:1, assuming the benefits are sustained for three years on average. In addition, the program will produce benefits which have not been quantified, including reduced pollutant emissions, improved traffic safety due to smoother traffic flows, and enhanced staff capabilities in state of the art signal timing methods. Based on surveys done in

1984 and 1985, it appears that as many as 6,500 additional signals couid be retimed under the program in the future. Additional progran options could be developed to permit retiming of even more signals.

THE NETSIM GRAPHICS SYSTEM. Andrews, B; Lieberman, EB; Santiago, Ad. Transportation Research Board. Transportation Research Record N1112 1987 pp 124-131 14 Fig. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Described in this paper is the development of an interactive computer graphics (ICG) system, named GTRAF, that provides users with a new and highly efficiem methodology for analyzing results generated by the NETSIM microscopic traffic simulation program. This tool may be executed on microcomputers (PCs) with graphics capabilities or on any larger computer that supports Fortran and graphies. Portability of the software is assured through the adherence to ANSI Fortran and the Graphics Kernel System (GKS) standard. Following a discussion outlining the need for and use of ICG systems for the traffic engineering profession, an outline is provided of the concepts and objectives guiding the design of GTRAF, as well as a description of its logical structure. The reader is then walked-through an ICG session with GTRAF. Photographs of the displays are provided to illustrate the process. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

THE NEW NETSIM SIMULATION PROGRAM. Rathi, AK; Santiago, AJ. Printerhall Limited. Traffic Engineering and Control VOL. 31 NO. 5 May 1990 pp 317-320 14 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London W1P 3PE England

The NETSIM simulation program is now a component model of the TRAF simulation system. The current version of the model is therefore referred to as the TRAF-NETSIM program. As part of an effort aimed at developing, maintaining and supporting the TRAF simulation system, TRAF-NETSIM has been extensively modified over the past five years. Four new features have been added to the TRAF-NETSIM simulation program: actuated controlier logic, identical traffic streams, conditional tuming movements and signal transition. Several major modifications have also been made to the simulation logic to resolve the problems encountered during the testing of the simulation program; to enhance the logic to represent complex decision processes; and to enhance and extend the input-output capabilities, user interaction and the computational etficiency of the program. These new features and the modifications incorporated in the TRAF-NETSIM simulation model are described in this paper.

THE PASSER II-84 SYSTEM: A PRACTICAL SIGNAL TIMING TOOL. Marsden, BG; Chang, CP; Derr, BR. Institute of Transportation Engineers. ITE Journal VOL 57 NO. 3 Mar 1987 pp 31-36 Figs. 1 Tab. 13 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

The PASSER II-84 system is described which combines the theories of maximum bandwidth and minimum delay while allowing the maximization process to dominate. It allows traffic engineers to quickly and easily develop signal timing patterns that save motorists delay, stops, and fuel. Although the minimization of delay and maximization of bandwidth methods appear to be in direct conflict, PASSER II-84 incorporates a new series of programming applications to create substantial improvements by combining the apparent advantages of these two methods. Several additional features would enhance PASSER II even further. They include the ability to change embedded values such as lost time per phase and the addition of a rigorous left-turn analysis procedure for protected/permitted phasing. The article gives details of PASSER II-84 input data requirements (movement designation, signal phasing), and measures of effectiveness (volume-to-signal capacity ratio, delay, probability of clearing queue, stops, fuel consumption estimation, efficiency and attainability, maximum, and the time-space diagram).

THE PASSER II-87 MICROCOMPUTER PROGRAM. Chang, EC-P. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 11 Nov 1988 pp 574-578 Figs. Tabs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

PASSER II-87 microcomputer program version 1.0 has been developed and is available for public distribution. PASSER II can be used to assist transportation professionals to analyze isolated intersection timing evaluations, progression signal timing optimization and 'existing' timing evaluations. The system contains the updated microcomputer version of the PASSER II program, advanced analysis similar to and beyond those used in the 1985 Highway Capacity Manual, and the latest Artificial Intelligence technology and Expert Systems design. PASSER II-67 can analyze 'permitted', 'protected' and complicated permitted/protected or protected/permitted 'combined phase' left-turn signal treatments. The microcomputer system will be distributed with the inteligent, user-friendly,
menu-driven, full-function, input/output processor, main executable program, optional user help information, and microcomputer user's guide. The new program provides the enhanced program output and improved signal timing reports, allows the user to modity all the embedded data and accepts all the existing coded PASSER 11 or PASSER II-84 data without requining any user revisions. The PASSER II-87 microcomputer system can provide alternative left-turn analysis and advanced capacity evaluation well beyond the Left-Turn Analysis Package (LEFTTURN) and the 1985 Highway Capacity Software (HCS) packages.

THE POTENTIAL FOR ROUTE GUIDANCE IN ON-LINE COMPUTER CONTROLLED UTC (URBAN TRAFFIC CONTROL) NETWORKS. TRAFFIC OPERATION AND MANAGEMENT. PROCEEDINGS OF SEMINAR M HELD AT THE PTRC SUMMER ANNUAL MEETING, UNIVERSITY OF SUSSEX, ENGLAND, 15-18 JULY 1985, VOLUME P269. McDonaid, M; Hounsell, NB. PTRC Education and Research Services Limited 110 Strand London WC2 England 0266-4593 086050-154-X. 1985 pp 33-43 3 Fig. 1 Tab. 21 Ref.. AVAlLABLE FROM: PTRC Education and Research Services Limited 110 Strand London WC2 England

The TRANSYT method which operates on fixed times plans based on historical data, has been widely used, but more recently the traffic responsive system SCOOT has been demonstrated to offer further delay savings over TRANSYT. This system, in which signal timings are adjusted in frequent small increments to match the latest traffic situation, is already operational in 14 cities in the UK including Southampton. The installation rate is likely to increase in the next few years as on-line computer control of smaller networks becomes increasingly cost-effective. The SCOOT model receives information from traftic detectors on each link "continuously" and determines signal settings that minimize the performance index (pi) in the network. This information can also be used for a variety of traffic management purposes, one potential application being the feedback of information to drivers for route guidance purposes. This could be achieved in a number of ways, ranging from local radio broadcasts based on up-to-the-minute congestion information, through variable message signing for specific routes to fully automatic route guidance incorporating a one or two-way communication link between electronic devices at the roadside and in vehicles. This paper discusses the full range of alternative route guidance systems with particular reference to the SCOOT type of network. The potential benefits are identified in the context of the results of a survey in Southampton which indicated savings of up to 7% from route guidance on a small part of the network. For the covering abstract of the seminar see IRRD 286745. (TRRL)

THE PROBLEM OF PERFORMANCE EVALUATION AT SIGNALIZED INTERSECTIONS WITH VARIOUS TRAFFIC CONTROL STRATEGIES. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Hsu, T-P. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 173-180 9 Fig. 3 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

Different traffic control strategies affect the performance of a signalized intersection through variable signal timing in response to traffic demand. The capacity of signalized intersections can be determined with the combination of signal timing and saturation flow. The performance on signalized intersections also depends on signal timing, e.g., stopped delay can be estimated with the combination of green time, cycle length and the other parameters. A method or a parameter for periormance evaluation on signalized intersections should be able to evaluate the contribution of various traffic control strategies on intersection performance. Therefore, the problem of evaluation by traffic dependent control strategy was addressed in this paper. As example, this paper presents the result by traffic actuated control. Further research is to be expected in the future with respect to the conclusion of this paper.

THE SCOOT ON-LINE TRAFFIC SIGNAL OPTIMIZATION TECHNIQUE. Hunt, PB; Aobertson, DI; Bretherton, RD; Royle, MC. Primterhall Limited. Traffic Engineering and Control VOL. 23 NO. 4 Apr 1982 pp 190-192 2 Fig. 2 Tab. 3 Ref.

Many large cities have, or plan to have, urban traffic control (utc) systems that centrally monitor and control the traffic signals in their jurisdiction. The present generation of utc systems usually co-ordinates the signals on fixed-time plans, which consist of sets of timings that determine when each signal turns red and green. The plans are precalculated to suit average conditions during each part off the day (e.g. A.M. peak) and do not respond to variations in flows in the network. Since 1973 the UK Transport and Road Research Laboratory has been researching a vehicle responsive method of signal control called SCOOT (split, cycle and offset optimization technique). Research was carried out in Glasgow by a small team from TRRL and the Ferranti, GEC and Plessey tratfic companies, with assistance from Strathclyde Regional Council. In 1976 the success of the research phase led to a development project between the departments of transport and of industry and the three traffic companies. TRRL continued research into SCOOT and in 1979 carried out a full-scale trial of SCOOT in Glasgow. As part of
the deveiopment project, and with the co-operation of West Midlands County Council, SCOOT was installed in Coventry. A further full-scale trial of the developed system was carried out in 1980. This paper describes the SCOOT system and the results of the trials which compared SCOOT with up-to-date fixed-time systems. It is concluded that SCOOT reduced vehicie delay by an average of about 12 percent during the working day. The surveys demonstrate that scoot rapidly adapts to unusual traffic conditions as well as to the usual variations in demand that occur throughout the day and night. It is an important benefit of SCOOT that there is no need to periodically prepare new fixed-time plans and that the signal timings are automatically kept up-to-date. The traffic model in SCOOT provides real-time information on flows and queues and is likely to be a key element in the development of new traffic management strategies that make the best overall use of roads in urban areas. This paper is a shortened version of TRRL Report LR 1014 (see TRIS 348845). This paper was presented at the IEE's Conference on Road Traffic signalling, London, March 1982. See also TRIS abstracts 368871 and 368872. (TRRL)

THE TEXAS MODEL FOR INTERSECTION TRAFFIC-A USER-FRIENDLY MICROCOMPUTER VERSION WITH ANIMATED GRAPHICS SCREEN DISPLAY. Lee, CE; Machemehl, RB. Transportation Research Board. Transportation Research Record N1142 1987 pp 1.52 Fig. 1 Tab. 4 Rel.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Two interactive data-entry programs have been incorporated into the TEXAS Model for Intersection Traffic to produce the user-friendly TEXAS model. With these programs, a user, by working through an alphanumeric terminal connected in an interactive time-sharing mode to a mainframe computer or through the keyboard of a microcomputer, can respond to screen-displayed prompts and instructions and enter all the data needed for a simulation run in about one-tenth the time previously required. The actual simulation can then be executed either on a mainframe computer or on an IBM personal computer. During simulation, the progress of each individually characterized vehicle moving through a simulated intersection is recorded and subsequently displayed in real time or in stop action on a microcomputer-driven graphics screen. This animated graphics display allows the user to study the \#̈verall traffic performance at an intersection or to examine the behavior of any selected vehicle or vehicles in great detail. It also offers an effective way of describing atternative intersection traffic flow conditions at public meetings and technical work sessions. Tabular summary statistics may be produced for each simulation run if requested by the user. With the user-friendly version of the TEXAS model, alternative intersection designs and tratfic-control schemes can be evaluated quickly and accurately in a timely and cost-effective manner. This paper appeared in Transportation Research Record No. 1142, Uman Signal Systems and Transportation System Management.

THE TWO AND A HALF LANE RURAL ROAD. Hoban, GJ. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 59-70 4 Fig. 5 Tab. 29 Ref.

Two major methods of improvement for two-lane rural highways are realignment to a higher design speed, and upgrading to a four-lane divided road. An intermediate alternative which is now receiving some attention is the systematic provision of short overtaking lanes along the two-lane road, in effect creating a two and a half lane road". Recent studies have indicated that overtaking lanes may offer substantial benefits in travel time, level of service and safety at comparatively very low costs. This paper uses traffic simulation to compare different options for rural road improvement and to investigate the effects of each option on traftic speeds, bunching and travel times. Construction costs and expected accidemt reductions are also considered, in order to derive overall measures of the relative cost-effectiveness of each option. The results suggest that the "two and a haff lane road" may be a practical and effective alternative to both realignment and duplication of two-lane roads, offering many of the benefits of these improvements at much lower costs. The selective stage construction of long duplication projects is also shown to have many of the advantages of overtaking lanes (a). The number of the covering abstract of the conference is TRIS No. 368448. (TRRL) Proceedings of the Eleventh Australian Road Research Board Conference, held at the University of Melbourne, August 23-27, 1982.

THE USE OF BINARY CHOICE DECISION PROCESS FOR ADAPTIVE SIGNAL CONTROL Lin, F-B. American Society of Civil Engineers. Joumal of Transportation Engineering VOL. 115 NO. 3 May 1989 pp 270-282 Figs. Tabs. Refs. 2 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

This paper identifies and discusses several issues conceming the use of binary-choice decision process for signal-timing adjustment. The problem of making binary choice decisions for timing adjustment is described, and several issues related to the acquisition and synthesis of traffic information for decision making are then identified and analyzed through computer simulation. It is noted that adaptive control based on the binary decision process
can use a very limited amount of advance information to produce efficient signal operations. In applying this decision process, the use of incorrect average travel timing in modeling vehicle arrival patterns has only a slight impact on control efficiency, it the discrepancies between the assumed and the actual average travel times are less than 4 sec. To facilitate a binary choice, it is not necessary to evaluate a large number of alternative green extensions.

THE USE OF MICRO SIMULATION FOR THE DESIGN OF WEAVING SECTIONS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACITY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Vermijs, RGMM. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 905410 011 7. 1991 pp 419-427 6 Fig. 4 Tab. Refs.. AVAILABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

In the Netherlands the American Highway Capacity Manual (HCM) is commonly used for traffic engineering purposes. Because of the differences in traffic legislation and driver behavior between the Netherlands and the USA, the HCM cannot be used for the design of weaving sections an Dutch freeways. To create a new set of standards for weaving sections, the micro simulation model FOSIM is used. FOSIM is developed in the USA for simulation of traffic flow on multi-lane freeways and is fully revised for use in the Netherlands. The paper presents the results of calibration and validation of FOSIM for weaving sections on Dutch freeways. Moreover, it describes a method of using FOSIM as a tool to create up to date standards for all sorts of freeway sections.

THE USE OF SIMULATION AS AN AID TO TRAFFIC ACCIDENT RESEARCH. Corner, JPA (Queensland Institute of Technology). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0869101277. 1983 pp 171-178

Simulation work currently being developed using modified versions of TRARR and elements of the CRASH 3 program is reviewed. The model being developed is for run off the road accidents on lightly trafficked rural roads. Various modirications to TRARR completed and proposed are also outlined. (TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermont South, Victoria, June 2-3, 1983. This paper was presented in Session 5: Further Applications.

THE USE OF SIMULATION IN THE ROAD DESIGN PROCESS. Golding, S (Queensland Main Roads Department, Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0869101277.1983 pp 105-118 5 Fig. 7 Ref.

The use of computer simulation in the road design process is explored and recommendations about the use of these techniques are given. The areas of roadway geometry and tratfic operations are considered, with the greater emphasis on traffic operations. Possible uses of simulation in the area of trattic operations in road design are discussed in relation to some typical examples. (TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermont South, Victoria, June 2-3, 1983. This paper was presented in Session 4: Practical Application of Rural Traffic Simulation.

THE USE OF THE QDELAY SURVEY METHOD IN THE ESTIMATION OF FUEL CONSUMPTION AT SIGNALIZED INTERSECTIONS. Richardson, AJ (Monash University, Australia). Society of Automotive Engineers (Australasia) 191 Royal Parade Parkville Victoria 3052 Australia. May 1982 pp 1-11 1 Fig. 20 Ref.. REPORT NO: Paper 24

This paper describes the use of a field traffic survey method, Gdelay, in the estimation of excess fuel consumption at signalized intersections. The survey method inputs and outputs are described, together with the field procedure for conduct of the survey. Special features of the survey method are then discussed with reference to the estimation of traffic system fuel consumption. In describing the technique currently used within Gdelay for fuel consumption estimation, it is evident that several deficiencies exist. The paper therefore describes ways in which these deficiencies might be overcome, based on recent work using incremental power relationships. Finally, some comments on application of the Gdelay survey method are presented (A). The paper was presented as Paper 24-Session 7-Traffic Modelling (SAE 82154). The number of the covering abstract of the conterence is TRIS no. 367893. (TRRL) Second Conference on Traffic Energy and Emissions, Melboume, May 1982. Program and Papers.
the use of transyt at signalized roundabouts. Lines, \mathbf{G}; Crabtree, Mr. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 6 Jun 1988 pp 332-337 Figs. 9 Ref.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

Increasing tratfic flows at major roundabouts (traffic circles) has necessitated the signalling of some or all entry arms. Studies have shown this can successfully increase capacity and reduce delays at the intersection, and allow the traffic engineer to control where and when queues form. This article describes a Transport and Road Research Laboratory study of the use of the TRANSYT computer program at an experimental site in High Wycombe, England. The details are described of the modelling including links, shared links, flared links, saturation flows, cycle time, limit queues, blocking-back, safety, and coordination. The study found that TRANSYT, when used appropriately, is suitabie for modelling trafic behavior on large fully-signalized roundabouts, and is capabie of producing signal timings which provide good coordination and prevent locking-up.

THE VALUE OF FIXED-TIME SIGNAL CO-ORDINATION IN DEVELOPING COUNTRIES. II. IMPROVED BUS MODELING AND RESULTS. Willumsen, LG; Coeymans, JE. Printerhall Limited. Tratic Engineering and Control VOL. 30 NO. 3 Mar 1989 pp 126-134 Figs. Tabs. Refs.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

This paper addresses the issue of explicitly adapting the model in TRANSYT to the traftic conditions in a network in Santiago, Chile. It is believed that the main source of differences between European traffic conditions and those in Chile is the presence of a large number of unregulated buses. The research reported here confirmed this assumption and developed an improved approach. This resulted in an enhanced link structure, a redefinition of some basic measures like saturation flow and cruise times, and a recalibration of the platoon dispersion parameters in TRANSYT. This additional effort produced considerable improvements in performance, more than doubling the benefits of plans prepared with more conventional TRANSYT values. A complete statistical analysis of these results completes this paper.

THE VTI TRAFFIC SIMULATION MODEL A DESCRIPTION OF THE MODEL AND PROGRAM SYSTEM. Brodin, A; Carlsson, A; Bolling, A. National Swedish Road \& Tratfic Research Institute. VTI Meddelanden N321 1982 Monograph 193p Figs. Tabs. 11 Ref. Swedish

The National Swedish Road and Traffic Research institute has developed a traffic model which uses simulation techniques to describe the trafic sequence on a two lane rural road. A comprehensive program system has been built up in conjunction with the simulation model in order to achieve complete computerized handling of the model. The aim of this report is to provide a general description of the traffic simulation model and its associated program system. (TRRL)

THE VTI TRAFFIC SIMULATION MODEL: DESCRIPTION AND SOME APPLICATIONS. CARLSSON, A. NEW ZEALAND ROADING SYMPOSIUM NEW ZEALAND ROADING VOL 31987 PP 451-463 ENGLISH

BY A. CARLSSON ILL., MAPS, CHART INCLUDES BIBLIOGRAPHICAL REFERENCES NEW ZEALAND ROADING SYMPOSIUM NEW ZEALAND ROADING SYMPOSIUM

THREE-DIMENSHNAL RELATIONSHIPS AMONG TRAFFIC FLOW THEORY VARIABLES. Gilchrist, RS; Hall, FL. Transportation Research Board. Transportation Research Record N1225 1989 pp 99-108 9 Fig. 13 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

This paper is an investigation of the relationships among speed, flow, and occupancy, representing the three variables of traditional theory for uninterrupted traffic flow. The variables were examined in three-dimensional space, rather than two at a time as has previously been the case. Scatter plots showing connected data points were positioned in space using a three-dimensional rectangular coordinate system. Oblique views of the data were projected as two-dimensional plots for presentation purposes. The resulting pictures were evaluated for points of agreement with traditional traffic flow theory and with a possible new approach based on the Cusp catastrophe theory. The results suggest that conventional theory is insufficient to explain the data and that the plotted data are visually consistent with the catastrophe theory model of uninterrupted traffic flow. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

TIMING DESIGN OF TRAFFIC SIGNALS. Sakita, M. Transportation Research Board. Transportation Research Record N1069 1986 pp 83-87 4 Fig. 1 Tab. 5 Ref.. AVAILABLE FROM: Transpontation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A method of optimizing signal timing by the use of a linear programming technique is described. The linear program is based on the premise that the green time given to each traffic movement in the signal cycle must be long enough to handle the traftic coming into the intersection in one cycle. The linear programming method gives minimum signal phase times, minimum cycle time, and critical movements. The optimum signal phase times and cycle time can also be obtained in a nondirect manner. The linear programming method may be used as an off-line tool to analyze signal timing or it may be adopted as the basis for deveioping a new local controller for critical intersections of centrally controlled systems. When used as an off-line tool, the linear programming method is very effective for "what if" analysis of traffic signal timing problems. This paper appeared in Transportation Research Record N1069, Traffic Control Devices and Rail-Highway Crossings.

TIMING OF INTERGREEN PERIODS AT SIGNALIZED INTERSECTIONS: THE GERMAN METHOD. Retzko, HG; Boltze, M. Institute of Transportation Engineers. ITE Journal VOL. 57 NO. 9 Sep 1987 pp 23-26 Figs. Refs.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

This article introduces an algorithm that is part of the official signal timing standards (RiLSA) in the Federal Republic of Germany and is in wide use there. The article also reports a new approach of timing intergreen periods. The new approach to intergreen timing depends on a probabilistic treatment. All cases of conflicts are classified to typical cases. For every type of conflict a specific intergreen time is determined wherein the traffic streams that form a conflict can be alternatively treated as "clearing" or "entering". The intergreen time values have to be increased if there are triangular islands and/or divisional islands. Only car traffic is considered, in so far as the new approach has disadvantages. The new approach of intergreen timing can be applied to intersections with "normal" character. Hy cyclists are considered together with car traffic at large intersections, a value must be added.

TIMING PLAN SENSITIVITY TO CHANGES IN PLATOON DISPERSION SETTINGS. Guebert, AA; Sparks, G. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH $1990131-45$

The TRANSYT simulation, and optimization program incorporates platoon dispersion by applying a form of geometric smoothing to the incoming traffic on each link, in order to predict the arrival pattern of vehides at the next intersection. The calculation of stops and delay by the TRANSYT program, and the effectiveness of the signal timings resulting from the optimization procedure, depend on the platoon dispersion model to predict traffic flow patterns from one signal to another. In much of the research to date, it has been suggested that timing plans are sensitive to platoon dispersion, and that platcon dispersion is a function of roadway, and traffic conditions. This suggests that the platoon dispersion algorithm used in the TRANSYT model should be calibrated for specific conditions. On the other hand, if the optimal timing plans generated by the TRANSYT program are not particularly sensitive to platoon dispersion, then calibration of the algorithm to local site conditions may not be required. The importance of accurate modelling of platoon dispersion in developing signal timing plans depends upon this sensitivity. The purpose of this paper is to determine the sensitivity of optimized signal timing plans to changes in the variables within the TRANSYT model that describes platoon dispersion, and to quantitatively show what effect inappropriate dispersion values have on the resulting timing plans. The results of this sensitivity analysis show that accurate modelling of platoon dispersion in developing traffic signal timing plans is indeed important to the effective and efficient implementation of those plans. In a field where improvements of two or three percent have a major impact on fuel consumption, the amount and type of emissions, as well as traffic accidents, the differences shown in the above analysis indicate that the platoon dispersion algorithm should be calibrated for local site conditions.(A) For the covering abstract of the conference see IRRD 832076.

TOWARD INTELLIGENT TRAFFIC SIGNAL DESIGN SYSTEM. Pattnaik, SB; Rajeev, S; Mukundan, A. American Society of Civil Engineers. Joumal of Transportation Engineering VOL. 117 NO. 5 Sep 1991 pp 524-539 Figs. Refs. 1 App. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

The development of an expert system to act as the postprocessor of the simulation model is discussed. This paper presents a framework for an intelligent traffic signal design system that employs both expert systems and conventional algorithmic programs. For the first stages in the development of the traffic signal design system, an expert system called PHASES is developed. ths development, implementation and validation are described. The
Cord major accomplishments of this work is in selecting a strategy for generating phase plans that can be expressed as a set of rules, and highlighting the advantages of a frame-based representation of the intersection details.

TOWARDS A REVIEW OF THE CONCEPT OF LEVEL OF SERVICE FOR TWO- LANE RURAL ROADS. Hoban, Cl. Australian Road Research Board. Australian Road Research VOL. 13 NO. 3 Sep 1983 pp 216-218 2 Fig. 2 Tab. 9 Ref.

The concept of level of service has been widely used in assessing traffic performance for various raad and traffic conditions. For rural roads, however, the existing definitions have a number of deficiencies. This note considers some of these deficiencies and suggests a new set of criteria based on traffic bunching (or platooning). Bunching appears to closely reflect the quality of rural traffic operations as perceived by the driver, and it has the advantage of being easy to measure in the field. The rural traffic simulation model trarr was used to derive bunching criteria which correspond to the existing level of service definitions. Suggested maximum bunching criteria for leveis of service A, B, C and D respectively are $30,60,75$ and 80 per cent of journey time spent following in bunches. The new criteria were applied to 24 simulated road conditions to derive approximate service volumes for each case. It was found that these were easily defined in terms of bunching and automatically took account of changes in driver expectations on different road types. (Author/TRRL)

TRAF II NETSIM USER GUIDE. FINAL REPORT. Hagerty, BR. Michigan Department of Transportation State Highways Building, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Mar 1987 v.p. 1 App.. REPORT NO: FHWA-MI-RD-87-01. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

This guide is for users of the TRAF II Netsim Surface Street Traffic Simulation model. TRAF II Netsim is a stand-alone version of Netsim, version 99 developed as a submodel of the TRAF II family of models. This documentation is intended for use by Michigan Department of Transportation personnel as an addendum to the TRAF II User Guide (FHWA-RD-85). Interactive data input procedures are covered in the TRAFLOM Forms Display User Manual (FHWA-MI-RD-85-01).

TRAF SYSTEM - TECHNICAL SUMMARY. Final rept. Lieberman-E.; Yedlin-M.; Andrews-B.; Shenidan-K. KLD Associates, Inc., Huntington, NY. Federal Highway Administration, Washington, DC. KLDTR135, FHWARD83084. Apr 85. 34p.

This report presents an overview of the TRAF traffic simulation system. Its purpose is to provide the minimum amount of information needed for making intelligent decisions concerning the use of this system. The models currently included in the system are: Netsim, which simulates uban traffic in a detailed or microscopic fashion; Netflo, which performs a similar simulation at bwer levels of detail; Freflo, for a coarse or macroscopic representation of freeway traffic; and Roadsim, a detailed two-lane, rural road traffic simulator. Each component model is briefly described. The descriptions cover the input requirements and the output capabilities which include measures of effectiveness of traffic performance, fuel consumption, and air polluting emissions.

TRAFFIC MANAGEMENT. RTS ENGLISH ISSUE NUMBER 6. A COMPARISON OF TWO MOTORWAY TRAFFIC SIMULATKN MODELS. Cohen, S; Aron, M; Pierrelee, J-C. Institut National Recherche sur Transp et Securite. Recherche Transports Securite N6 Feb 1991 pp 113-118 Figs. Tabs.. AVAlLABLE FROM: Institut National Recherche sur Transp et Secunte 2, Avenue du General Malleret-Joinvilie, BP 3494114 Arcueil Cedex France

The need for simulation tools able to test, evaluate and compare various raad traffic management systems has arisen for reasons of safety and because of the difficulties and costs associated with field test experiments. This paper describes and compares two macroscopic tratfic simulation models: SIMAUT and META. It presents the steps involved in the calibration and validation of each model through a concrete example: the A13 motorway at the west of Paris. The comparison is based upon the theme of traffic reconstitution. The conclusion presents the results of tests carried out on the chosen site, and underines current developments aimed at improving and extending the field of application of the models tested.

TRAFFIC MODELING TO EVALUATE POTENTLAL BENEFITS OF ADVANCED TRAFFIC MANAGEMENT AND IN-VEHICLE INFORMATION SYSTEMS IN A FREEWAY ARTERIAL CORRIDOR. GARDES, Y; MAY, AD. INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF BERKELEY CALIF. Jun 199015 PP ENGLISH

YONNEL GARDES, ADOLF D. MAY OTHER PHYS. DESCRIPTION: IX ILLUSTRATED PROGRAM ON ADVANCED TECHNOLOGY FOR THE HIGHWAY JUNE 1990 INCLUDES BIBLIOGRAPHICAL REFERENCES

UCB-ITS-PRR-90-3 ADDL CORP. AUTHOR INFO: UNIVERSITY OF CALIFORNIA, BERKELEY. INSTITUTE OF TRANSPORTATION STUDIES ADDL CORP. AUTHOR INFO: PROGRAM ON ADVANCED TECHNOLOGY FOR THE HIGHWAY CALIF INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA AT BERKELEY

TRAFFIC MODELLING AND SIMULATION. Heydecker, BG. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 345-51

The participants in this workshop included practitioners and researchers from local and national government agencies, consultants, manufacturers and universities in the USA, Canada, West Germany and United Kingdom. Wide ranging discussions on a variety of topics were held. These included the potential offered by new hardware and software technoiogy, and the uses that might be made of this potential; advanced traffic modelling requirements; communication between practitioners and researchers; and research needs. For the covering abstract of the conference see IRRD 832076.

TRAFFIC MODELLING IN KUWAIT.: 1., DEVELOPMENT OF A SATURN NETWORK DATABASE. MCSHEEN, JR; HALE, RC. TRAFFIC ENGINEERING \& CONTROL VOL 30 NO. 101989 PP $466-473$ ENGLISH

BY J.R. MCSHEEN AND R.C. HALE ILLUSTRATED BIBLIOGRAPHY: P. 473 BY J.R. MCSHEEN AND R.C. HALE ILLUSTRATED BIBLIOGRAPHY: P. 473

TRAFFIC MODELLING IN KUWAIT.: 2, DEVELOPMENT OF A MULTI-MODAL TRAFFIC MODEL FOR THE KUWAIT METROPOLITAN AREA. HALE, RC; MCSHEEN, JR. TRAFFIC ENGINEERING \& CONTROL VOL. 30 NO. 10 Nov 1989 PP 534-544 ENGLISH

BY R.C. HALE AND J.R. MCSHEEN ILLUSTRATED BIBLIOGRAPHY: P. 544 BY R.C. HALE AND J.R. MCSHEEN ILLUSTRATED BIBLIOGRAPHY: P. 544

TRAFFIC MODELLING TECHNIQUES FOR THE DEVELOPING WORLD. TIMBERLAKE, RS. NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH WASHINGTON DC. 1988 ENGLISH
R.S. TIMBERLAKE OTHER PHYS. DESCRIPTION: 33 LEAVES ILLUSTRATED COVER TIILE PAPER PRESENTED AT THE 1988 ANNUAL MEETING OF THE TRANSPORTATION RESEARCH BOARD, WASHINGTON, D.C INCLUDES BIBLIOGRAPHICAL REFERENCES PAPER NO. 870514 ADDL CORP. AUTHOR INFO: NATIONAL RESEARCH COUNCIL U.S.. TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL TRANSPORTATION RESEARCH BOARD

TRAFFIC MODELLING: 1969-1989. Gipps, PG. Australian Road Research Board. Australian Road Research VOL. 20 NO. 1 Mar 1990 pp 22-29. AVAILABLE FROM: Australian Road Research Board Executive Director, P.O. Box 156 Nunawading Victoria 3131 Australia

This paper reviews some of the developments in traffic flow theory in Australia or relevant to Australia over a twenty year span. The discussion is not exhaustive in the range of topics examined nor in the work done in those topics, rather it tries to provide a general picture of the field and how it was changing. Traffic modelling is one means of obtaining a better understanding of how the road and traffic system operates in order to improve it. Traffic is an example of a large scale system with many sub-systems involving complex interactions, but which is itseff a sub-system within higher level systems such as the transport system in general. The interactions between vehicles, the traftic stream, components of other transport sub-systems, and abutting land use mean that the overall performance of the system is not a simple function of the performance of individual components. The perfect tool for modelling the traffic system would be a unified general theory covering all aspects of the movement of peopie and vehicles in a coherent fashion. Such a theory is recognized as an unobtainable idealization among even the most optimistic traffic modellers, and models must be designed to operate within practical limits on data, and analytical or computational resources (A).

TRAFFIC MODELLING: A REVIEW OF NEEDS AND CAPABILITIES. TAYLOR, MAP; OGDEN, KW; SZWED, N. AUSTRALIAN ROAD RESEARCH BOARD PROCEEDINGS 1986 PP 84-95 ENGLISH
M.A.P. TAYLOR, K.W. OGDEN, N. SZWED BIBLIOGRAPHY: P. 93-95 M.A.P. TAYLOR, K.W. OGDEN, N. SZWED BIBLЮGRAPHY: P. 93-95

TRAFFIC MODELS AND ROAD TRANSPORT INFORMATICS (RTI) SYSTEMS. STERGOU, B; STATHOPOULOS, A. TRAFFIC ENGINEERING \& CONTROL VOL 30 NO. 121989 PP 580-586 ENGLISH

BY BASIL STERGIOU AND ANTONY STATHOPOULOS ILLUSTRATED INCLUDES BIBLIOGRAPHICAL REFERENCES

traffic operation on busy two-lane rural roads in the netherland s. Botma, h. Transportation Research Board. Transportation Research Record N1091 1986 p 127-131 2 Fig. 3 Tab. 7 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

In the framework of updating standards for describing the quality of traffic flow on two-lane rural roads, research into the behavior of the traffic flow on relatively high-volume roads was carried out. Presented in this paper are findings about the relation between the volume and traffic composition as explanatory factors for speeds, headways, and platooning. It was found that mean speed was only marginally influenced by volume and truck percentage, whereas the standard deviation of speeds decreased substantially with increasing volume. An exponential tail model for headways, large enough to be relevant for passing opportunities, was used and its parameters were successfully related to volume. This model fits reality much better than the assumption that headways have a negative exponential distribution, which leads to severe underestimation of passing opportunities. Simple models were developed that relate the proportion of vehicles following in a platoon and the maximum platoon length in 5 min to volume and truck percentage. A comparison is made with results in the proposed Chapter 8 on Two-Lane Highways of the 1985 Highway Capacity Manual. This paper appeared in Transportation Research Record N1091, Traffic Flow Theory, Characteristics, and Highway Capacity.

TRAFFIC OPERATIONS OF BASIC ACTUATED TRAFFIC CONTROL SYSTEMS AT DIAMOND INTERCHANGES. Messer, ©;Chang-M-S. Texas Transportation Institute Texas A\&M University Coilege Station Texas 77843; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Aug 1985 Final Rpt. 76p 30 Fig. 8 Tab. 8 Ref.. REPORT NO: FHWATX-85/75+344-2F; Res Rpt. 344-2F. AVAILABLE FROM: Texas Transportation Institute Texas AsM University College Station Texas 77843

This report contains the results of field studies conducted to evaluate four types of basic, full traffic actuated signal control systems. Two signal phasing strategies were tested. These were three-phase and four-phase with two overlaps. Two small loop (point) detection patterns, singie-and multi- point detection, were evaluated for each type of phasing. An assessment of these systems was conducted based on the results of statistical and observational evidence regarding their operational effects on queues and cycle models that relate queuing delay to traffic characteristics. This report summarizes and research conducted within a HP\&R study entitled "Guidelines for Diamond Interchange Control" sponsored by the Texas Department of Highways and Public Transportation in cooperation with the U.S. Department of Transportation, Federal Highway Administration.

TRAFFIC PATTERNS IN UNSTABLE TRAFFIC FLOW ON FREEWAYS. HIGHWAY CAPACITY AND LEVEL OF SERVICE. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGHWAY CAPACTTY, KARLSRUHE, GERMANY, 24-27 JULY 1991. Kuhne, R. Balkema (AA) P.O. Box 16753000 BR Rotterdam Netherlands 9054100117.1991 pp 211-223 14 Fig. Refs.. AVAlLABLE FROM: Balkema (AA) Publishers Old Post Road Brookfield Vermont 05036

To explain the different traffic patterns for very dense traffic on freeways like spreading shock fronts, irregular stop-start waves, instability and hysteresis phenomena, a dynamic traffic model is presented. This model shows, depending on essentially two control parameters, the quoted variety of different traffic patterns. The patterns are derived as stationary profiles for regular stop-start waves and stable running shock waves and as transients approaching the stationary profiles as bifurcation with supercritical or subcritical dependence on the two control parameters, namely bottleneck capacity and mean density. Finally irregular motion examples are given. These irregularities are explained by means of chaos theory similar to the turbulence description of fluid motion. Freeway tratfic control for dense traffic needs besides a traffic flow model advanced technologies for detection of section related traftic variables. As nonlocal measurement technique which uses a correlation method between neighbored measurement sites a mm-wave radar set up is described.

TRAFFIC PLATOON DISPERSION MODELING. Denney, RW, Jr. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 115 NO. 2 Mar 1989 pp 193-207 Figs. Refs. 1 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017

A review is made of research in platoon dispersion modeling. The models are analyzed to suggest a new mechanism for predicting platoon dispersion. This mechanism consists of an analytical and an empirical component. the acquisition of field data to provide empirical support to test various aspects of this mechanism is described. The use of simulation to provide empirical support is investigated. The effectiveness of the mechanism in predicting field measured platoon flow profiles is analyzed. It is noted that platoon dispersion models can be presented in a form which suggests a simple-to-understand and simple-to-implement mechanism. Areas for future study are indicated.

TRAFFIC-RESPONSIVE SIGNAL CONTROL AT ISOLATED JUNCTIONS. Bell, MGH; Cowell, MPH; Heydecker, BG. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 273-94

Most isolated signal controlled road junctions in Britain now operate under vehicle-actuated control. With the advent of microprocessor controliers, interest is turning to increasingly sophisticated forms of vehicle-actuated control. In this paper, a novel approach to the optimization of traffic signal control in real time is described, in which the current state of traffic at the junction, including queue lengths, is estimated using a model of tratfic behavior. Conventional inductive loop detector information is used in an optimal fitering framework to update and correct the estimates of system state yielded by the traffic model, as well as the model parameters themselves. The traffic model is then used by the optimizer within a dynamic programming framework to evaluate the likely consequences of alternative courses of action. In this framework, the observations are used to counteract the tendency for the predictions of the traffic model to drift away from the true state of the system. This is possible although the observations themselves may relate only indirectly to the state of the system, provided that the condition of observability is fulfilled. Development of the fittering and optimization modules is taking place on a Sun workstation. These modulles are interfaced with a simulation of traffic at the junction which is sufficiently detailed to provide realistic detector output and measures of performance. To achieve this, a vehicle-following sub-model has been adopted which is solved in discrete time. An event-based framework is used to simulate the control and operation of the junction. The computational demands of such a detailed simulation prohibit its use for optimization: here its purpose is to facilitate development of the filtering and optimization techniques before recourse to real traffic is possible. Once development is sufficiently far advanced, the simulation will be removed and an equivalent interface will be made to a real junction for field tests.(A) For the covering abstract of the conference see IRRD 832076.

TRAFFIC SIGNAL TIMING AS A TRANSPORTATION SYSTEM MANAGEMENT MEASURE: THE CALIFORNIA EXPERIENCE. Deakin, EA; Skabardonis, A; May, AD. Transportation Research Board. Transportation Research Record N1081 1986 pp 59-65 1 Fig. 4 Tab. 12 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Traffic signal retiming has long been suggested as a means of improving traffic operations and reducing fuel consumption and emissions. However, few local agencies have been able to muster the resources to systematically retime their signals. In California, a statewide program-the Fuel Efficient Traffic Signal Management (FETSIM) Program-was established to address this need. The FETSIM Program provides funds, training, and technical assistance to local agencies to retime their signal systems for greater operating efficiency. To date, 62 local jurisdictions have participated in the program, receiving grants totaling \$4 million (1983-1985). In 1986 and 1987 an additional $\$ 2$ million will be available for grants. The objectives, design, and results of the FETSIM Program's first three funding cycles are described. The program was intended both to produce immediate transportation benefits and to develop within local agencies the skills needed to use state-of-the-art methods for longer-term signal systems management. The transportation benefits have been substantial, with average first-year reductions of 16 percent in stops, 15 percent in delays, 7.2 percent in travel times, and 8.6 percent in fuel use in the retimed systems. Training benefits to locial agency personnel also have been positive. However, the program has not had a major influence on local priorities; basic problems in funding and staffing for local transportation activities, including signal work, remain. These problems appear likely to work against long-term maintenance of efficient signal-timing plans unless state funding continues to be made available. This paper appeared in Transportation Research Record N1081, Urban Tratfic Management.

TRAFFIC SIGNAL TIMING MODELS FOR OVERSATURATED SIGNALIZED INTERCHANGES. (Interim Report March 1989-January 1992). Kim-Y.; Messer-C.J. Texas Transportation Inst, College Station. Federal Highway Administration, Austin, TX. Texas Div. Texas Dept. of Transportation, Austin. Transporation Planning Div. TT1218881148, RR11482, FHWATX9211482. Jan 92. 123p.

The research report documents the development models for control of signalized diamond interchanges during oversaturated traffic conditions. Oversaturated traffic conditions occur when the average traffic demand exceeds the capacity of the signal system. The dynamic optimization model proposed is the principal product of the research. The control objective of the dynamic model is to provide maximum system productivity as well as minimum delay for a selected roadway system. A special feature predetermined upper limits. The dynamic model was developed for conventional diamond interchanges and three-level diamond interchanges. The model takes the form of mixed integer linear programming. The effectiveness of the control strategies generated by the dynamic model was compared to those derived from conventional signal timing models, using the TRAF-NETSIM microscopic simulation model. It was found that the dynamic models produced optimal signal timing plans for the oversaturated signalized interchanges. The dynamic model consistently outperformed conventional models with respect to system productivity. The condusion was drawn from the TRAF-NETSIM simulation. The dynamic model solutions significantly reduced total system delay for most test cases, while slightly increasing the delay for a few test cases.

TRAFFIC SIGNAL TIMING OPTIMIZATION IN LARGE NETWORKS. VLAHOS, Nu; JOVANIS, PP. Aug 1987 ENGLISH Nicholas J. VLahos, paul p. Jovanis other phys. description: 34 leaves cover title SUBMITTED FOR PRESENTATION AT THE JANUARY, 1988 ANNUAL MEETING OF THE TRANSPORTATION RESEARCH BOARD AUGUST, 1987 INCLUDES BIBLIOGRAPHICAL REFERENCES ADDL CORP. AUTHOR INFO: NORTHWESTERN UNIVERSTTY EVANSTON, ILL.. TRANSPORTATION CENTER

TRAFFIC SIGNAL キiming optimization study For the city of el cajon. Pric voorhees san diego calif. Feb 1984 ENGLISH

BY PRC VORHEES OTHER PHYS. DESCRIPTION: 1 VOL CHARTS, MAPS FINANCED BY THE CALIFORNIA ENERGY COMMISSION FEBRUARY 1984 ADDL CORP. AUTHOR INFO: PRC VOORHEES FIRM ADDL CORP. AUTHOR INFO: CALIFORNIA ENERGY COMMISSION

TRAFFIC SIGNAL TIMING OPTIMIZATION STUDY FOR THE CITY OF SAN DIEGO. PRC VOORHEES SAN DIEGO CALIF. Feb 1984 ENGLISH

BY PRC VORHEES OTHER PHYS. DESCRIPTION: 1 VOL FINANCED BY THE CALIFORNIA ENERGY COMMISSION FEBRUARY 1984 ADDL CORP. AUTHOR INFO: PRC VOORHEES FIRM ADDL CORP. AUTHOR INFO: CALIFORNIA ENERGY COMMISSION

TRAFFIC SIGNAL TIMING PROGRAM PASSER II-84. Chang, E C-P; Messer, CJ. Texas Transportation Institute. Texas Transportation Researcher VOL. 20 NO. 2 Apr 1984 pp 7-9. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street Now York New York 10017

Traffic signal optimization is a very complicated process that determines the proper settings of cycle length, green time interval, phase sequence, and oft-sets between the signals. The optimization resulting from this calculation depends heavily on the relative relationships among the distances between signalized intersections, speed of traffic, cycle length, roadway capacity, and side friction along the arterial. To better improve the popularty used PASSER II computer program, the State Department of Highways and Public Transportation and the Federal Highway Administration sponsored a research project entittled 'Reduced-Delay Optimization and Other Enhancements to PASSER II-80'. The purpose of the study was to find an efficient and usable delay-based search algorithm for practicing traffic engineers in selecting a minimum-delay, arterial signal timing plan that optimize the phasing sequence, cycle length, and offsets based on maximum bandwidth solution as the starting point.

TRAFFIC SIMULATION STUDIES: A REVIEW. KATTI, BK; CHARI, SR. INDIAN HIGHWAYS VOL 13 NO. 4 Apr 1985 PP 5-13 ENGLISH

BY B.K. KATTI AND S. RAGHAVA CHARI INCLUDES BIBLIOGRAPHICAL REFERENCES BY B.K. KATTI AND S. RAGHAVA CHARI INCLUDES BIBLIOGRAPHICAL REFERENCES

TRAFFIC SIMULATION STUDY FOR TWO-LANE RURAL HIGHWAY OVERTAKING IMPROVEMENTS. OKURA, I; MATSUMOTO, K. AUSTRALIAN ROAD RESEARCH BOARD PROCEEDINGS 1990 PP 43-56 ENGLISH

IZUMI OKURA AND KENJIRO MATSUMOTO ILLUSTRATED INCLUDES BIBLIOGRAPHICAL REFERENCES
TRAFFIC SIMULATION: COURSE NOTES. Young, W; Allsop, R; Cornwell, RR; Gipps, PG; Hoban, CJ; Vandebona, U; Johnston, DK; Luk, JYK; Taylor, MAP; Richardson, Al (University College, London; Road Traffic Authority). Monash University, Australia Department of Civil Engineering, Wellington Road Clayton Victoria 3168 Australia 0-86746-337-6. 1984 Monograph n.p. Figs. Tabs. Phots. Reis.

The publication was prepared for a series of courses in traffic science run at Monash University in September 1984. Most of the publication consists of course notes compiled by Young, W. However it also includes a forward: Introduction to Simulation of Road Traffic (Allsop, E) and the following papers on simulation applications: Simset 2-Simulation of Isolated Traffic Signals (Cornwell, PR); Multism: A Simulation Model for Multi-lane Traffic Flows (Gipps, PG); The Use of Computer Graphics in Developing a Simulation Model (Gipps, PG); The "TARR" Rural Traffic Simulation Model (Hoban, WJ); The Trams Package (Vandebona, U); Introduction to Traffic: A Simulation Model for Vehicle and Pedestrian Flows in Complex Road Networks (Johnston, DK); Some Experience with Three Urban Network Models: Saturn, Transyt/8 and NETSIM (Luk, JYK); The LATM Local Area Traffic Management Model (Taylor, MAP); The Simulation of Data Sets for Model Testing (Richardson, Al). (TRRL)

TRAFFIC SOFTWARE INTEGRATED SYSTEM (TSIS). Santiago, AJ; Rathi, AK. ENGINEERING FOUNDATION. TRAFFIC CONTROL METHODS. PROCEEDINGS OF THE FIFTH 1990 307-13

This paper presents the development of the Tratfic Software Integrated System (TSIS) sponsored by the Federal Highway Administration, US, Department of Transportation. TSIS is a comprehensive set of microcomputer programs and models used for the design, test, and analysis of traffic control strategies. The system is composed of an executive software which enables the proper installation of all the component programs, traffic simulation and signal timing optimization programs (referred to as traffic models), pre-processors and post-processors for traffic models, and several utilities which ease the task of using the system by automating the process of loading and retrieving from a microcomputer. The paper is mainly oriented for traffic engineers with little or no computer background. However, some computer related technical information is also provided to assist readers in determining whether or not TSIS will operate on their systems and/or whether or not TSIS will satisfy their needs. The Phase I development of the system was completed and has been released to the US microcomputer software distribution centers at the University of Fiorida (McTRANS Center) and the University of Kansas (PCtrans Center) for public distribution. Phase I includes analysis tools for surface streets traffic operations. Phase II, currently under development, will incorporate analysis tools for freeways and corridors.(A) For the covering abstract of the conference see IRRD 832076.

TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL USER'S MANUAL. Goldblatt, R; Hagerty, B; Laban, T. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746; Michigan Department of Transportation State Highways Building, 425 West Ottawa, P.O. Box 30050 Lansing Michigan 48909; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Oct 1984 Final Rpt. v.p. Figs. Tabs. Rets. 7 App.. REPORT NO: FHWA-MI-RD-85-01. AVAILABLE FROM: KLD Associates Incorporated 300 Broadway Huntington Station New York 11746

This manual is a guide for users of the TRAFLO-M Integrated Traftic Simulation Model. TRAFLO-M is a hybrid version of TRAFLO. The major improvements include: 1) TRAFLO-M contains the DYNEV Freeway Model rather than FREFLO, 2) DYNEV includes special logic to simulate ramp metering strategies, and 3) A special version of TRAFLO-M simulates networks that include Light Rail Transit Vehicles operating in the median of divided highways. (Author)

TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL. USER'S MANUAL. Hagerty, BR. KLD Associates Incorporated 300 Broadway Huntington Station New York 11746. Oct 1984 450p. REPORT NO: FHWAMI/RD-85/01. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfieid Virginia 22161

The manual is a guide for users of the TRAFLO-M Integrated Tratfic Simulation Model. TRAFLO-M is a hybrid version of TRAFLO. The major improvements include: (1) TRAFLO-M contains the DYNEV Freeway Model rather than FREFLO; (2) DYNEV includes special logic to simulate ramp metering strategies; and (3) a special version of TRAFLO-M simulates networks that include Light Rail Transit Vehicles operating in the median of divided highways. See also PB87-166575/WTS.

TRAF-NETSIM: HOW IT WORKS, WHAT IT DOES. Wong, S. (Federal Highway Administration, Washington, D.C.). Institute of Transportation Engineers, ITE Journal, Vol. 60. No. 4, Apr 1990, pp 22-27.

TRAFSIG: A COMPUTER PROGRAM FOR SIGNAL SETTINGS AT AN ISOLATED UNDER- OR OVERSATURATED, FIXED-TIME CONTROLLED INTERSECTION. Reljc, S. Printerhall Limited. Traffic Engineering and Control VOL. 29 NO. 11 Nov 1988 pp 562-566 Figs. Tabs. Reis.. AVAILABLE FROM: Printerhall Limited 29 Newman Street London England

TRAFSIG is a computer program, written in ANSII FORTRAN 77 language, which calculates the signal plan at an isolated, undersaturated or oversaturated fixed-time controlled intersection. The signal plan can be calculated for an intersection with maximum $n=20$ approaches and $m=10$ stages in a cycle. The flow at each approach is allowed to have right-ot-way in only one period within a cycle, even though this period can be made up of several consecutive stages. Several examples of applying the TRAFSIG program indicate that it gives a plan whose cycle duration is shorter than the one obtained by Webster's method or by Akcelik's method, and highly similar to the signal plan obtained by SIGSET (when only the delay is minimized). When one wishes to give importance to the number of stops. TRAFSIG gives a signal plan whose cycle duration is shorter than the cycle time obtained by Akcelik. In comparison with SOAP84 and Akcelik the TRAFSIG program explicitly calculates the optimal signal plan satisfying the imposed constraints.

TRANSPORTATION AND TRAFFIC THEORY. PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON TRANSPORTATION AND TRAFFIC THEORY, HELD JULY 8-10, 1987, AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS. CONTINUED FROM TRIS ACCESSION NO 24XXXX. Gartner, NH; Wilson, NHM. Massachusetts Institute of Technology Center for Transportation Studies Cambridge Massachusetts 02139 0-444-01227-3. 1987 506p Figs. Tabs. Refs.. AVAILABLE FROM: Elsevier North-Holland Incorporated 52 Vanderbilt Avenue New York Now York 10017

Theoretical Considerations for Signal Timing Plan Selection in UTCS First Generation Control Systems; Delay-Minimizing Control and Bandwidth-Maximizing Control of Coordinated Traffic Signals by Dynamic Programming; The Interaction Between Signal Control Policies and Route Choice; Updating of Volume-Density Reiationships for an Urban Expressway Control System; Traflic Responsive Control of Freeway Networks by a State Feedback Approach; Fuzzy On-Ramp Control Model on Urban Expressway and its Extension; The Kalman Filtering Approaches in Some Transportation and Traffic Problems; Equilibrium in Competitive Urban Mass Transportation Markets; Stochastic Properties of Flows in Freight Consolidation Networks; Methods to Combine Different Data Sources and Estimate Origin-Destination Matrices; and Airport Terminal Geometries for Minimal Walking Distances.

TRANSYT-7F AND NETSIM, COMPARISON OF ESTIMATED AND SIMULATED PERFORMANCE DATA. Dudek, G; Goode, L; Poole, M. Institute of Transportation Engineers, ITE Journal, Vol 53., No. 8, Aug 1983, pp 32-34.

TRANSYT-7F OR PASSER II, WHICH IS BETTER - A COMPARISON THROUGH FIELD STUDIES. Shui-Ying Wong, Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Jan 1991. Transportation Research Board. Transportation Research Record N1324, 1991, pp 83-97. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418.

Several studies had compared the arterial signal timings optimized by TRANSYT-7F and PASSER II before. The comparisons, however, were based on simulated results. In this paper, we compared the TRANSYT-7f timing plans to the PASSER II timing plans based on operational characteristics, field results and simulated results. We were able to make these comparisons because 1) the signals on two arterials in San Francisco were optimized by TRANSYT and implemented in 1987, 2) the same signals were retimed by PASSER II and implemented in 1988, and 3) before and after studies were conducted. From our field results, the overall effectiveness of TRANSYT-7F and PASSER II was about the same in terms of travel time and stops along the arterial (excluding cross streets). On one of the atterials, the offset pattern and operational characteristics of the TRANSYT timing were very different from those of PASSER's while on the other arterial, they were very similar. The TRANSYT-7F simulated travel times were reasonably close to the field travel times. However, the simulated measures of effectiveness (MOE's) in general were inclined in favor of the timing plans optimized by TRANSYT-7F. As part of the comparison, we described how and what field data were collected and the required sample size to ensure 95% level of confidence. We found that travel time data were reliable and easy to collect. Statistically it required 1 to 5 samples to attain 95% level of confidence for our example arterials each with thirty or more signalized intersections.

TRANSYT-7F USER'S MANUAL. Wallace, CE; Courage, KG; Reaves, DP; Schoene, GW; Euler, GW. Florida University, Gainesville Transportation Research Center Gainesville Florida 32611; Federal Highway Administration Office of Traffic Operations Washington D.C. 20590. Jun 1984 510p. REPORT NO: UF-TRC-U32 FP-06/07. AVAILABLE FROM: Florida University, Gainesville Transportation Research Center Gainesville Florida 32611

This document is the User's Manual for the computer program TRANSYT-7F (Traffic Network Study Tool, version 7F). TRANSYT is a traffic signal optimization model originally written in Great Britain by the Transport and Road Research Laboratory. Version 7 of the model was modified by the TRC to improve its utility in this country. Modifications included reorganized inputs, U.S. signal timing conventions, improved output formats, estimates of fuel consumption and the provision of time-space diagrams. TRANSYT-7F has proven far easier to use than earlier versions. Field implementation in a number of cities has demonstrated the model's usefulness in retiming traffic signal networks. TRANSYT-7F was developed under FHWA's National Signal Timing Optimization Project. Distribution of Release 4 of the TRANSYT-7F program began in June 1984. The revised version of the User's Manual is being distributed along with the Release 4 version of the program. (FHWA)

TWO-LANE TRAFFIC SIMULATION: A FIELD EVALUATION OF ROADSIM. Morales, JM; Paniati, JF. Transportation Research Board. Transportation Research Record N1100 1986 pp $29-3911$ Fig. 4 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Roadsim is a traffic simulation model for two-lane rural roads developed in 1980 by FHWA. in the subject study the accuracy of the model was evaluated by comparing its results with observed traffic behavior. The field data were collected on a two-lane rural road in Loudoun County, Virginia. Statistical analyses were performed to compare the measures of effectiveness (MOEs) observed in the field with those obtained from the simulation. The selected MOEs included mean vehicle speed, traffic volume, percent of vehicles following, platoon distribution, and average platoon size. Analysis showed that Roadsim's simulation results compared favorably with those observed in the field, Although this study validates Roadsim under a single geometric and tratic condition, results support its potential usefulness to the transportation engineering community. Further validation under a wide range of traffic and geometric conditions, however, is needed. Researchers are encouraged to use Roadsim to further validate its potential and recommend enhancements. This paper appeared in Transportation Research Record N1100, Design and Operational Effects of Geometrics.

TWO-PHASE TRAFFIC SIGNAL TIMING WITH 'CONFLICT POINT METHOD. YANG, P. AUSTRALIAN ROAD RESEARCH VOL. 19 NO. 2 Jun 1989 PP 155-163 ENGLISH

YANG PEI-KUN ILUSTRATED BIBLIOGRAPHY: P. 161 YANG PEI-KUN ILUUSTRATED BIBLIOGRAPHY:P. 161
TWO TRAFFIC-RESPONSIVE AREA TRAFFIC CONTROL METHODS: SCAT AND SCOOT. Luk, JYK (Australian Road Research Board). Printerhall Limited. Traffic Engineering and Control VOL 25 NO. 1 Jan 1984 p 143 Tab. 17 Ref.

Area or urban traffic control systems can now be found in many cities. Traditionally, these systems employ the fixed-time control method by which signal timing plans are switched into operation by time-of-day. Recent research has led to the development of several traffic-responsive methods which allow the basic control elements - cycle time, phase splits and offset - to vary according to prevailing traffic conditions. This paper is concerned with the development and evaluation of this new generation of methodologies. Two such methods are reviewed and compared in this paper. They are the Sydney Coordinated Adaptive Traffic (SCAT) method developed in Australia and the Split, Cycle and Offset Optimization Technique (SCOOT) developed in the UK. The field evaluations of scoot and scat show that both methods are capable of performing better than the simpler fixed-time control method in reducing journey time and stops. By comparing these two methods, future research needs are identified. These include introducing the concept of modelling in the scat offset algorithms and the modification of the scoot models to incorporate vehicle-actuated control tactics available from a microprocessor traffic controller. (Author/TRRL)

UNDERSTANDING THE CUMULATIVE STATISTICS FROM TRAF-NETSIM. Chen, H. and Thor, C. PC-TRANSmission Vol 4., No. 2, October 1989.

This paper discusses the cumulative statistics as generated by TRAF-NETSIM, the Federal Highway Administrations microscopic urban network simulation model.

UNSIGNALISED ISOLATED INTERSECTION SIMULATION MODEL. Stanojevic, M. Savez Inzenjera I Tehn Saobracaja I Veza Jugo. Zbornik III Jugo Savetovanje Tehn Regul Saobracaja Apr 1983 pp 201-209 7 Fig. 7 Ref. Serbian

The paper describes the derivation of a stochastic simulation model of trafic flow for an unsignalised isolated intersection, based on digital simulation of events. The importance of simulation in investigating traffic flow at unsignalised intersections is stressed. Some experimental results referring to traffic flow characteristics at junctions depending on the level of traffic flow on the major road are given. (TRRL)

URBAN NETWORK TRAFFIC SIMULATION: TRAF-NETSIM PROGRAM. Rathi, AK; Santiago, AJ. American Society of Civil Engineers. Journal of Transportation Engineering VOL. 116 NO. 6 Nov 1990 pp $734-743$ Refs. 1 App.. AVAILABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

This paper presents information about the latest version of the NETSIM simulation model. Many new features have been added to the program. These include the following: actuated controlier logic; identical trafic streams; conditional turning movements; and signal transition. Major modifications have been made to the simulation logic to resolve the problems encountered during the testing of the simulation program: to enhance the logic to represent complex decision processes, and to enhance and extend the input-output capabilities, user-interaction, and the computational efficiency of the program.

URBAN ROAD TRAFFIC MODELS FOR ECONOMIC APPRAISAL: STAGES I AND II. FISK, CS; DUNN, RCM. DEPT OF CIVIL ENGINEERING UNIVERSITY OF AUCKLAND. SCHOOL OF ENGINEERING REPORT, NO 428 , N428 Nov 1986 175 PP ENGLISH

BY C.S. FISK AND R.C.M. DUNN OTHER PHYS. DESCRIPTION: XVII FORM SCHOOL OF ENGINEERING REPORT, NO. 428 , ISSN:0111-0136 -UNTRACED SERIES PREPARED FOR AND FUNDED BY THE ROAD RESEARCH UNIT ADMINISTRATIVE COMMITTEE OF THE NATIONAL ROADS BOARD, NEW ZEALAND NOVEMBER, 1986--COVER BIBLIOGRAPHY: P. 149-161 ADDL CORP. AUTHOR INFO: UNIVERSITY OF AUCKLAND. DEPT. OF CIVIL ENGINEERING ADDL CORP. AUTHOR INFO: NEW ZEALAND. ROAD RESEARCH UNIT

URBAN TRAFFIC MODELS FOR OPERATIONAL ANALYSES AND ECONOMIC APPRAISALS. NEW ZEALAND ROADING SYMPOSIUM 1987. VOLUME 3. Fisk, CS; Dunn, RCM. National Roads Board, New Zealand P.O. Box 12-041 Wellington New Zealand 0-477-07156-2. 1987 pp 475-481 2 Ref.. AVAILABLE FROM: National Roads Board, New Zealand P.O. Box 12-041 Wellington New Zealand

This paper is based on a review of urban traffic models available in New Zealand and overseas for predicting impacts of urban road improvement schemes. The review was undertaken for the administration committee of the Road Research Unit (National Roads Board) with the final objective of standardizing modelling procedures for the economic appraisal of proposed improvement projects. The main outcome of this work is a set of recommendations leading to the acquisition of specific models and modifications to some models to cater for New Zealand road traffic rules and control environment. For the covering abstract of the symposium see IRRD 810782. (Author/TRRL)

URBAN TRAFFIC NETWORK FLOW MODELS. Williams, JC; Mahmassani, HS; Herman, R. Transportation Research Board. Transportation Research Record N1112 1987 pp 78-88 14 Fig. 1 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Addressed in this paper are the development and comparative assessment of macroscopic network-level tratfic flow models, which describe the behavior and interrelation between traffic variables defined at the network level. These variables include average speed, concentration, flow, the fraction of vehicies stopped in the network, and the two-fluid running time variables. Three alternative sets of interrelated models, each with a different starting postulate, are presented and tested in terms of their performance against a series of microscopic simulation runs corresponding to different concentration levels. In each model system, a different functional form is postulated for either the speed-concentration relation or the fraction of vehicles stopped versus concentration relation. The functional form for the other relation is then derived from the postulated model by invoking the two-fluid theory of town traftic. The modeis are calibrated and tested using the simulation results. The anatysis indicates that the network-level traffic variables are interrelated in a manner similar to that captured by the traffic models established for individual road sections. In particular, a well-known linear speed-concentration model as well as a nonlinear atternative are found to be generally applicable at the network level. This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

USE AND EFFECTIVENESS OF SYNTHETIC ORIGIN-DESTINATION DATA IN A MACROSCOPIC FREEWAY SIMULATION MODEL. Stokes, RW; Morris, DE. Institute of Transportation Engineers. ITE Journal VOL. 56 NO. 4 Apr 1986 pp 43-47 14 Ref.. AVAILABLE FROM: Engineering Societies Library 345 East 47th Street New York New York 10017

In recent years, the Texas State Department of Highways and Public Transportation and the Texas Transportation Institute have made extensive use of the FREQ simulation programs in evaluating proposed design configurations for freeways in Houston, Dallas, and San Antonio. Relative to other freeway simulation program packages, the FREQ programs offer the following advantages: (1) The programs are relatively simple to use, requiring little knowledge of computers and only a few basic hand calculations; (2) The programs are macroscopic in nature, thus requiring a minimum amount of input data and computer time; (3) The programs are flexible in the sense that they allow the user to input a wide variety of geometric designs and traffic demand patterns.

USE OF PREDICTED VEHICLE ARRIVAL INFORMATION FOR ADAPTIVE SIGNAL CONTROL-AN ASSESSMENT. Lin, F-B; Cooke, D; Vijayakumar, S. Transportation Research Board. Transportation Research Record N1112 1987 pp 89-98 12 Fig. 1 Tab. 14 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Adaptive signal control at individual intersections relies on detectors to provide advance vehicle arrival information for real-time optimization of the signal operations. As much as 25 sec of advance information may be needed to achieve near optimal operations if flow rates reach about 700 vehicles per hour per lane (vphpl). However, it is often impossible or impractical to place detectors far enough from the intersection to provide the desired amount of information. The use of predicted data becomes a tempting atternative under the circumstance. In this paper, computer simulation is used to assess the desirability of using predicted data in combination with the data provided by the detectors for signal optimization. Three predictors are compared and one is chosen to assess the impact of using the predicted data. It is found that reliance on limited advance arrival intormation provided solely by the detectors is more desirable than using predicted data to increase the amount of advance information. This paper appeared iti Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

USE OF THREE-DIMENSIONAL CONJUGATE DIRECTIONS SEARCH METHOD TO IMPROVE TRANSYT-7F COMPUTATIONAL EFFICIENCY. Tsay, H-S; Wang, K-T. Transportation Research Board. Transportation Research Record N1225 1989 pp 116-129 7 Fig. 3 Tab. 11 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

A modification of the computer program TRANSYT-7F has been developed to reduce computational time and improve the performance index by using the conjugate directions search method in three dimensions. The original TRANSYT-7F uses the hill-climbing method to perform a two-step optimization. This type of optimizing procedure has been used in the TRANSYT program for many years, and even TRANSYT-7Fs new version, 6.0, still applies the same algorithm. In this paper, a new search method is developed to obtain simultaneously the final cycle length, split, and offset. It is a one-step optimization algorithm. From tests of 21 cases on a PCIAT, this modified TRANSYT-7F reduces computational time significantly and improves the performance index slightly compared with the new TRANSYT-7F. H also allows the user to consider the spillover effect, periorm arterial priority or link maximum-allowed delay, and fix the offsets for designated intersections. Currently, this program can be used not only as a detailed off-line signal-timing analysis tool but also as a part of computing software for four newly developed traffic control systems in Taiwan to generate on-line signal-timing plans. This paper appears in Transportation Research Record No. 1225, Highway Capacity, Flow Measurement, and Theory.

USE OF TRAFFIC SIMULATION TO EVALUATE RURAL ROAD IMPROVEMENT ALTERNATIVES. Hoban, CJ. Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada. 1985 pp 3-20 6 Fig. 3 Tab. 10 Ref.. AVAILABLE FROM: Roads and Transportation Association of Canada 1765 St Laurent Boulevard Ottawa Ontario K1G 3V4 Canada

This paper describes a rural traftic simulation model called trarr version 3.0 developed at the Australian road research board. The model can be used to simulate the traffic operations on a real road in some detail, and to investigate the effects of changes in road and traffic charactenstics. By changing the road geometry characteristics, alternative road improvement strategies may be compared. By changing the traftic characteristics, the user can investigate the effects of increased volumes, more heavy trucks, or long-term changes in vehicle size and power. Observed traffic characteristics include speed, travel time, bunching, time spent following, overtaking rate and fuel consumption. (TRRL) This paper appeared in RTAC 1985 Annual Conference Proceedings, Volume 2.

USER-FRIENDLY TEXAS MODEL--GUIDE TO DATA ENTRY. FINAL REPORT. Lee, CE; Machemehl, RB; Inman, RF; Copeland, CR, Jr; Sanders, WM. Texas University, Austin Center for Transportation Research Austin Texas 78712; Texas State Department of Highways \& Public Transp Transportation Planning Division, P.O. Box 5051 Austin Texas 78763; Federal Highway Administration 400 7th Street, SW Washington D.C. 20590. Nov 1985 210p 11 Fig. 6 Tab. 3 Ref. 3 App.. REPORT NO: FHWATX-86/54+361-1F; Res Rept 361-1F. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springtield Virginia 22161

Two interactive data-entry programs have been incorporated into the TEXAS Model for Intersection Traffic to produce the User-Friendly TEXAS Model. Now, a user, working through an alphanumeric terminal connected in an interactive time-sharing mode to a mainframe computer or through the keyboard of a microcomputer, can enter all the data needed for a simulation run in about $1 / 10$ the time previously required. During simulation, the progress of each individually-characterized vehicle moving through a simulated intersection is recorded and subsequently displayed in real-time or in stop-action on a microcomputer-driven graphics screen. This animated graphics display allows the user to study the overal traffic performance at an intersection or to examine the behavior of any selected vehicie(s) in great detail. Tabular summary statistics are also produced for each simulation run it requested by the user. With the user-friendly version of the TEXAS Model that is described in this guide, alternative intersection designs and traffic-control schemes can be evaluated quickly and accurately in a timely and cost-effective manner. Research study title: User-Friendly TEXAS Model for Intersection Traffic.

USER GUIDE TO CONTRAM VERSFN 4. Leonard, DR; Gower, P. Transport and Road Research Laboratory Old Wokingham Road Crowthorne RG11 6AU Berkshire England 0305-1315 GRATIS. 1982 Monograph 68p 4 Fig. 6 Ref.. REPORT NO: SR 735

Contram is a tratfic assignment model for use in the design of traffic management schemes. The model predicts vehicle routes, flows and queues in a network of streets and junctions; junctions may be controlled by traffic signals or "give-way" rules. It is assumed that the numbers of trips between each origin and destination are known and that they may vary with time so that the growth and decay of congestion in peak periods can be studied. Allowance is made for the physical size of queues which may block back and restrict the throughput capacity at upstream junctions. Up to three classes of vehicles (eg cars, buses and lorries) can be represented, and selected vehicles (usually buses) can be sent along fixed routes. Contram provides comprehensive information on traffic conditions, including link delay times, turning movements and fuel consumption, to heip the traffic engineer to understand and assess the merits of altemative traffic management schemes. This user guide gives a brief description of the model, details of data input and output, a test example to illustrate the use of the model and an outine of the structure and operation of the computer program. (Author/TRRL)

USER'S GUIDE FOR TRAF \| NETSIM (OBJ)P Q 44414 ON OBJECTS: SURFACE STREET TRAFFIC SIMULATION MODEL. HAGERTY, BR. MICHIGAN DEPT OF TRANSPORTATION LANSING MICH. 1987 ENGLISH

PREPARED BY BRADLEY R. HAGERTY OTHER PHYS. DESCRIPTION: III ILLUSTRATED ADDL CORP. AUTHOR INFO: MICHIGAN. DEPT. OF TRANSPORTATION. CN

USER'S MANUAL FOR OBJP Q 44411 ON OBJECTS AND OBJP Q 44413 ON OBJECTS : TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL. HAGERTY, BR. MICHIGAN DEPT OF TRANSPORTATION LANSING MICH. 1985 FINAL REPO ENGLISH. REPORT NO: FHWAMLRD-85/01

COMPILED BY BRADLEY R. HAGERTY OTHER PHYS. DESCRIPTION: $~$ I V ILLUSTRATED COVER TITLE: TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL USER'S MANUAL PREPARED BY KLD ASSOCIATES IN COOPERATION WITH THE FEDERAL HIGHWAY ADMINISTRATION ADDL CORP. AUTHOR INFO: MICHIGAN. DEPT. OF TRANSPORTATION ADDL CORP. AUTHOR INFO: KLD ASSOCIATES

USING TRAF-NETSIM TO EVALUATE THE EFFECTS OF DRAWBRIDGE OPENINGS ON ADJACENT SIGNALIZED INTERSECTIONS. Yauch, P; Gray, J; Lewis, W. Institute of Transportation Engineers, ITE Journal, Vol. 58, No. 5, May 1988, pp 35-39.

USING SIMULATION TO INVESTIGATE MATHEMATICAL TRAFFIC FLOW RELATIONSHIPS. McLean, JR. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 179-193 5 Fig. 1 Tab. 13 Ref.

Preliminary work aimed at the development of a macroscopic model of two-lane traffic flow suitable for the evaluation of design and improvement options on a route specific basis is described. Early theoretical treatments of platooning in two-lane flow are shown to provide a possible framework for such a model. An equilibrium model is proposed, with level of platooning as the dependent variable, and overtaking opportunity and desired overtaking rate as the independent variables. An exploratory simulation study was conducted to examine equilibrium platooning characteristics and the feasibility of the modelling approach. The simulation generated data exhibited greater consistency when interpreted in a platooned flow context than in the conventional average speed versus total flow format. (TRRL) Program and papers from Workshop on Rural Traffic Simulation, Vermont South, Victoria, June 2-3, 1983. This paper was presented in Session 5: Further Applications.

USING TRANSYT FOR TRAFFIC SIGNAL OPTIMIZATION IN PARRAMATTA. Luk, JYK; Lowrie, PR; Sims, AG (New South Wales Department of Main Roads,Australia). Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 0572-1431. 1982 pp 12-22 7 Fig. 5 Tab. 21 Ref.

This paper summarizes the experience of using the computer program TRANSYT for the optimization of traffic signal timing plans for Parramatta, a regional center about 20 km west of Sydney. It describes the use of Version 7 of TRANSYT in a study for comparing the performance of various area traffic control methods. The selection of input parameters is discussed; in particular, the choice of the stop penalty and the period of flow are described in detail. The limitation of TRANSYT in modelling local signalized intersection designs is explained. These problems are illustrated with an intersection in the survey area and include assigning proper saturation fiows which vary with time during green. On-site performance indicated that, with a stop penalty of 20 , fixed-time control using TRANSYT plans is simjlar to the Sydney Adaptive Coordinated Traffic (SCAT) method in reducing journey times, but is poorer in reducing stops. The principle of adopting starting offsets for the reduction of stops is also discussed in detail (A). The number of the covering abstract of the conference is TRIS No. 368448. (TRRL) Proceedings of the Eleventh Australian Road Research Board Conference, held at the University of Melbourne, August 23-27, 1982.

USING VOLUME-TO-CAPACITY RATIOS TO SUPPLEMENT DELAY AS CRITERIA FOR LEVELS OF SERVICE AT TRAFFIC SIGNALS. Berry, DS. Transportation Research Board. Transportation Research Record N1112 1987 pp 23-28 2 Fig. 7 Tab. 8 Rel.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The feasibility of using voiume-to-capacity (V / c) ratios to supplement stopped delay for determining levels of service (LOS) at traffic signals when operating at near-capacity conditions is examined. Results indicate that the supplemental v/c criteria would be applicable in identifying LOS B, C, D, and E for many combinations of signal timing. Timing plans using the shorter cycle lengths and the longer green-to-cycle length (g / C) ratios benefitted the most because use of stopped delay criteria alone for those cases frequently requires that v/c exceed 1.00 in order to attain a delay value associated with LOS B, C, D, and E. Use of delay Equation 9-18 of the 1985 Highway Capacity Manual should be avoided when there is an overflow queue at the beginning of the 15-min analysis period, or when duration of overflow queuing lasts for more than 15 min . This paper appeared in Transportation Research Record No. 1112, Highway Capacity and Flow Theory and Characteristics.

VALDATION OF A TRAFFIC MODEL Cronje, WB. Transportation Research Board. Transportation Research Record N1069 1986 pp 73-79 6 Fig. 11 Tab. 6 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

Simulation is very useful for generating traffic data. However, for validating a traffic model, field data are essential. Because of the random variation of the traffic arriving at signalized intersections, a large number of observations are necessary at a particular intersection. To obviate the collection of a large amount of data, the Bootstrap technique was applied to a limited amount of field data that were coliected at three fixed-time signalized intersections. In addition, the data were supplemented by simulation to cover a wide range of cycle lengths, types of flow, degrees of saturation, and ratios of the variation in the mean of the number of arrivals per cycle. A recently developed traffic model based on a Markov process and a geometric probability distribution, the Modified Geometric Model (M Geom Model), was used to estimate the measures of effectiveness commonty used for optimization purposes, namely, delay and stops. Satisfactory results were obtained, indicating that a limited amount of field data
is required for validating a traffic model. This paper appeared in Transportation Research Record N1069, Traffic Control Devices and Rail-Highway Crossings.

VARIABILITY ASSESSMENT FOR TRAF-NETSIM. Chang, G-L; Kanaan, A. American Society of Civil Engineers. Joumal of Transportation Engineering VOL. 116 NO. 5 Sep 1990 pp 636-657 Figs. Tabs. Refs. 3 App.. AVAlLABLE FROM: American Society of Civil Engineers 345 East 47th Street New York New York 10017-2398

Statistical issues involved in the use of stochastic traffic simulation are briefly discussed, and simulation experiments using TRAF-NETSIM are described, with emphasis on effective procedures for output analyses. The expioratory results obtained from simulation experiments are further investigated, along with the deveiopment of guidelines for output variability assessment. It is noted that the variability of variables generated by a traffic simulation model can be assessed by variables' confidence intervals computed via the two most convenient approaches, the batch means, and replication methods.

VARIANCE REDUCTION APPLIED TO URBAN NETWORK TRAFFIC SIMULATION. Rathi-A.K.; Venigalla-M.M. Oak Ridge National Lab., TN. Department of Energy, Washington, DC. Sep 91. 31p.

This paper describes and illustrates the effectiveness of variance reduction techniques that users can apply to improve the efficiency and reliability of simulation experiments with the TRAF-NETSIM simulation model. The two variance reduction techniques, antithetic variates and common random numbers, reduce the variance of simulation output by replacing the original sampling procedure by a new procedure that yields the same parameter estimate but with a smaller variance. Thus, the user can obtain greater amount of statistical accuracy for the same number of simulation runs. A recent moditication in the stochastic sampling process has made the TRAF-NETSIM model amenable to these variance reduction techniques, and aliows the user to apply these techniques with minimal additional effort. The effectiveness of these techniques is evaluated through an analysis of simulation output from two TRAF-NETSIM data sets. The estimated values and variances are computed for some representative measures of effectiveness atter 10,20 , and 30 replications. The results of this study indicate that both techniques are quite effective in reducing variance of the model output. By using the antithetic variates sampling procedure, the variance of simulation parameter estimates can be reduced by as much as 88 percent. In all cases studied, better statistical precision is obtained by making two-thirds fewer simulations than under conventional multiple replications-based experimentation. The common random number strategy also reduces the variance but is not as effective as the antithetic variates technique in this case study.

VEHICLES, PCUS AND TCUS IN TRAFFIC SIGNAL CALCULATIONS. Heydecker, BG (University College, London). Printerhall Limited. Traffic Engineering and Control VOL. 24 NO. 3 Mar 1983 pp 111-114 13 Ref.

There are many references in the literature to the fact that the time taken for a vehicie to cross the stop-line at a signal-controlled road junction varies according to the type of vehicle and the manoeuvre it performs. Aliowance for these effects has iong been a common feature of standard procedures in various countries for making estimates of capacity and delay at single-controlted road junctions. However, there has been relatively little discussion of exactly how these allowances should be applied. In this paper, one of the methods available is identified as being suitable for making these allowances. Another method which might seem to be suitable, is described and the errors which would result were it to be adopted are quantified. Full details are given of methods in which various combinations of estimates and raw data can be processed to give the quantities required for the estimation of capacity and delay. Some difficulties of data acquisition and processing are discussed and an approximate method is described which has much reduced requirements for raw data. (Author/TRRL)

VEHICULAR FUEL-CONSUMPTION MAPS AND PASSENGER VEHICLE FLEET PROJECTIONS. Santiago, AJ (Federal Highway Administration). Transportation Research Board. Transportation Research Record N901 1983 pp 5-11 7 Fig. 1 Tab. 8 Ref.. AVAILABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The procedures and preliminary results of a study aimed at assessing the fuel-consumption characteristics of passenger vehicles that are representative of the current and near-future fleet in order to update the fuel-consumption models of computerized traffic simulation and optimization programs are presented. The paper idertifies 21 engine-drivetrain combinations that are representative of 74 percent of the 1979-1985 passenger vehicle fleet and describes an instrumentation system that permits the collection of the microscopic on-the-road and laboratory test data necessary to fully assess the real-world fuel-consumption characteristics of vehicles.
(Author) This paper appeared in Transportation Research Record No. 901, Energy Impacts of Geometrics-A Symposium.

VOLUME-DELAY RELATIONSHIP AT FOUR-WAY-STOP CONTROLLED INTERSECTIONS: A RESPONSE-SURFACE MODEL. Chan, Y; Flynn, لW; Stocker, KJ. Institute of Transportation Engineers. ITE Joumal VOL. 59 NO. 3 Mar 1989 pp 27-34 Figs. Tabs. 16 Ref.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024

This study arrived at a single analytical equation that summarizes the varied volume-delay characteristics at 4 -way-stop controlled intersections. A middle path is taken between a purely empincal approach and an analytical one through the construction of a response surface out of a collection of simulation and field data. A 4-way-stop intersection simulation program, STOP-4, is described. Computer runs from the model generated a majority of the statistics on volumes and delays at a one-lane approach intersection. These were field tested. It was found that the delay at an intersection is related statistically to split, left tums, and volume. Also, left-turn movements appear to have a larger effect on capacity reduction than previously reported.

VTI TRAFFIC SIMULATION MODEL - A USER GUIDE. Bolling, A; Junghard, O. National Swedish Road \& Traffic Research Institute Fack S-581 01 Linkoeping Sweden. 1987 48p Swedish. REPORT NO: VTVMEDDELANDE-542. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The bulietin is a user guide to the most important programs included in VTI's traffic simulation model. The programs concern road and traffic description, which produce input files for the simulation programs, stant of the simulation programs and statistical treatment of the results from the simulation. See also PB87-121851.

VTI TRAFFIC SIMULATION MODEL-REVISED USER GUIDE. Boling, A; Junghard, O; Soerensen, G. National Swedish Road \& Traffic Research institute Fack S-581 01 Linkoeping Sweden. 1988 56p Swedish. REPORT NO: VTIMEDDELANDE-580. AVAILABLE FROM: National Technical Information Service 5285 Port Royal Road Springfield Virginia 22161

The bulletin is a revised edition of VTi Meddelande 542. It is a user guide to the most important programs included in VTI's tratfic simulation model. The programs concern road and traffic description, which produce input files for the simulation programs. See also PB88-143755.

VTI TRAFFIC SIMULATION MODEL. A PROGRAM FOR THE MONTE CARLO SIMULATION OF VEHICLE TRAFFIC ALONG TWO-LANE RURAL ROADS. AN APPLICATION OF JSP AND SIMULA -67 LANGUAGE. REVISED EDITION. Brodin, A. National Swedish Road \& Traffic Research Institute. VTI Topics N322A 1983 Monograph 81p 1 Fig. 6 Ref.

This report deals with a simulation program which describes the dynamic sequence of vehicle traffic over defined stretches of road for given traffic volumes and traffic compositions. In the program the stretch of road considered consists of a sequence of consecutive road block objects and a sight distance function in each direction of travel. Each road block object is homogeneous with regard to the following: (1) road width and road surface type, (2) auxiliary lane/lateral space (i.e. wide shoulder), (3) slope, (4) horizontal curvature, (5) speed limit, and (6) overtaking restrictions. Jackson Structured Programming tectnique (JSP) has been used in system and programming work and the programming language is SIMULA 67. (Author/TRRL)

WAITING TO CROSS A MAJOR STREAM AT AN UNCONTROLLED ROAD JUNCTION. Hurdle, VF; Hauser, E; Steuart, GN; Golias, JC. Toronto University Press Toronto Ontario Canada 080202461 0. 1983 pp 292-230 3 Fig. 16 Ret.

An analytical model is suggested which estimates the statistics of delay to drivers who arrive randomly at an uncontrolled junction and wait to cross a major stream. The complexity of the problem does not allow all the details of the real crossing process to be taken into account in the model. Some simplifying assumptions are therefore made in the analysis concerning the probability distribution of the first "gap" encountered by the waiting driver and the independence between certain distributions. Using thorough simulation, the effects of these assumptions on the estimated average delay have been investigated in the case of a cumulative Erlang distribution for the gap acceptance function, an Erlang distribution for the move-up time, and a gamma distribution for the major stream headways. The mean delay estimated by the analytical modei was always well within 5 per cent of the value obtained by simuiation, and the two values were usually almost equal. These results support the simplitying assumptions of the analytical model and suggest that it gives a satisfactory estimate of delay. For the covering
abstract of the symposium see TRIS 452544. (Author/TRRL) Proceedings of the Eighth International Symposium on Transportation and Traffic Theory, Toronto, Canada, June 24-26, 1981.

WARRANTS FOR INTERCONNECTION OF ISOLATED TRAFFIC SIGNALS. Research rept. Sep 79-Aug 86 (Final). Chang-E.C.; Messer-C.J. Texas Transportation Inst., College Station. Texas State Dept. of Highways and Public Transportation, Austin. Transportation Planning Div. Federal Highway Administration, Austin, TX. Texas Div. TT121880293, FHWATX86672931F. Aug 86. 77p.

The project suggests guidelines and procedures to identity when adjacent signalized intersections should be interconnected. Field data from several Texas cities were used to calibrate the TRANSYT-7F and PASSER II computer programs. These programs were used to address the effects of progression changes in travel time and travel volume. Detailed field studies were performed at six (6) intersections.

WHATS NEW IN SIGNAL TIMING OPTIMIZATION MODELS?. Wilbur, AD. Institute of Transportation Engineers. ITE Journal VOL. 61 NO. 4 Apr 1991 pp 41 -45 Figs. 1 Tab. Refs.. AVAILABLE FROM: Institute of Transportation Engineers 525 School Street, SW, Suite 410 Washington D.C. 20024-2729

Over the years, optimization models have evolved to take advantage of advances in microcomputer technology. Data are now entered through user-friendly input programs, and many outputs are presented graphically. Programs summarized in this article include the latest versions of TRANSYT-7F and PASSER-II signal timing optimization models, as well as a number of auxiliary programs designed to run in conjunction with them. Enhancements to TRANSYT-7F are described, as well as support programs that make entering data and analyzing the results of a TRANSYT-7F less tedious and error prone. PASSER II and improvements to it are described. The use of TRANSYT-7F and PASSER II together is also described. Comments are made on software availability.

WORK ZONE ANALYSIS MODEL FOR THE SIGNALIZED ARTERIAL Joseph, CT; Radwan, E; Rouphail, NM. Transportation Resẻarch Board. Transportation Research Record N1194 1988 pp 112-119 4 Fig. 2 Tab. 4 Ref.. AVAlLABLE FROM: Transportation Research Board Publications Office 2101 Constitution Avenue, NW Washington D.C. 20418

The purpose of this paper is to illustrate new theoretical concepts used to represent traffic flow in work zones. The paper presents the development and applications of a microcomputer program-Work Zone Analysis Toot for the Arterial (WZATA)-for the analysis and evaluation of a system consisting of a lane closure between two signalized intersections. The program consists of two parts: a semi-simulation model to represent and analyze flow between the intersections, and a macroscopic model to represent traffic characteristics at the downstream intersection. New techniques were developed to represent percentage merges and vehicle merge characteristics before the lane closure. The user was provided direct control over the merging of every vehicie. A modified version of the continuum-flow theory was utilized to represent and analyze traffic flow at the downstream intersection. Flow was considered to be composed of two parts: the platoon flow and the non-platoon flow. The techniques of analysis used also considered acceleration, deceleration, and start/stop losses. The program is written in Microsof BASIC for the IBM-PC/XT/AT and is structured to facilitate easy modification of data as well as analysis of various hypothetical situations. Attempts are being made to include graphical display faciilities in the model. This paper appears in Transportation Research Record No. 1194, Traffic Flow Theory and Highway Capacity.

This Page Intentionally Blank

[^0]: Operating System and
 Environment Requirement and Compatibility

[^1]: - SI is the symbol for the International System of Units. Appropriate

[^2]: ** Indicates that all parameters for vehicle type assume default values

[^3]: WARNING - MESSAGE NUMBER 705, ROUTINE ANTWRN, PARAMETER (S) - pi

[^4]: AST CASE PROCEGSED

[^5]: STAGE CODES

[^6]: TOL $7=0.5$

[^7]: I - MAXBAND 86-9

[^8]: \star_{\star} Remalning periods deleted from output

[^9]: USER'S MANUAL FOR OBJP Q 44411 ON OBJECTS AND OBJP Q 44413 ON OBJECTS : TRAFLO-M MACROSCOPIC TRAFFIC SIMULATION MODEL. HAGERTY, BR. MICHIGAN DEPT OF TRANSPORTATION LANSING MICH. 1985 FINAL REPO ENGLISH. REPORT NO: FHWAMMUD-85/01

 USING SIMULATION TO INVESTIGATE MATHEMATICAL TRAFFIC FLOW RELATIONSHIPS. McLean, JR. Australian Road Research Board 500 Burwood Road Vermont South Victoria 3133 Australia 086910127 7. 1983 pp 179-193 5 Fig. 1 Tab. 13 Ret.

[^11]: Three continuum traffic models and the simple input-output one are implemented at a signalized intersection and tested against limited data collected by time lapse photography. A comparative performance evaluation is made based on estimations of the queue length, the effective queue size and interrupted total travel time. These estimates are obtained from initial and boundary conditions measured in short time increments at each end of the link under consideration. The test results indicate that the continuum models are more effective in estimating the above state variables and measure of effectiveness. A simple statistical adjustment suggests that the least sophisticated continuum model performs consistently better than any other altemative. The findings of this study can only be tentative due to the limitations of the data base. (Author/TRRL)

 THE ARTERIAL ANALYSIS PACKAGE. Gibson, DRP; Williams, L. Federal Highway Administration, Office of R\&D. Public Roads VOL 50 NO. 3 Dec 1986 pp 91-96 Figs. 3 Ref.. AVAILABLE FROM: Government Printing Office Superintendent of Documents Washington D.C. 20402

