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In putting together this document, one of the things we wrestled with was the title.  Should we
use the term “procurement”? “acquisition”? “purchase”?  What we found was that the same
word has different meanings to different agencies.  To some, “procurement” or “procure” means
the whole process from project conception to operational use.  To others, “procurement” refers
to only that part of an acquisition concerning the legal and contractual issues associated with
issuing an RFP and awarding a contract.  To them, “acquisition” is a more encompassing term,
and that is the one we went with in writing this report.  By acquisition we mean “The process of
obtaining a system or software product.” [IEEE, 1993, page 5]  But whatever term you prefer,
we are referring to the entire process of “getting” the software.

For our purposes, we view the customer as being in the public sector.  Customers are the
personnel -- project managers, end users, contracting officers, and others -- who work in a
traffic or transit agency.  They issue contracts to acquire software from private sector
contractors.  This software can be custom-built from scratch, or it can be an existing product
that is bought by the public agency.  Clearly, other paradigms are possible.  (The agency could
develop its own software, for example.)

PREFACE

Perhaps you are a project leader, a technical manager for a contract, or a decision maker
who is responsible for one or more Intelligent Transportation Systems (ITS).  You may
work in a state or local department of transportation or in a transit agency.  Or you may
be a consultant advising one of the above.  In any case, this document is intended to help
you, the customer, acquire the software components of an ITS system.  We do not
assume any software background on your part.  We recognize you probably won’t be
acquiring software per se.  However, if it’s an ITS system, it undoubtedly has a significant

software component.  And software acquisitions often mean trouble.  

In preparing this document, we surveyed the software engineering literature and
conducted many interviews with public-sector and private-sector personnel who had been
involved with ITS projects.  Whether they were involved with traffic or transit projects,
the interviewees raised the same general issues.  Public-sector and private-sector
interviewees also tended to raise the same issues, albeit with different perceptions of those
issues.  Most of the public-sector interviewees indicated that they had experienced
troubles of one sort or another with their software or software acquisitions.  At the same
time, the system suppliers (typically contractors) said that they lose money on ITS
software, typically twenty percent of the size of the software contract.  

A true lose-lose situation.  

Certainly, software problems are not unique to ITS, to transportation, or even to the
public sector.  In fact, it would be surprising if ITS hadn’t experienced them. 
Furthermore, although most of the interviewees were new to software, the problems they
encountered, and the solutions they proffered, were largely in agreement with findings in
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the software engineering literature.  This tends to reinforce our belief that sound practices,
applied successfully elsewhere, are largely applicable to ITS systems.
Accordingly, we have attempted to assemble best practices and present practical advice
on how to carry out a software acquisition.  This document is not meant as “thou shall
comply”; rather it is a collection of helpful ideas.  Please do not treat our
recommendations as rigid guidelines or standards that you must follow.  Choose from
them selectively; they may not all be applicable to your particular project.  Pick the ones
that seem the most useful or beneficial to you.  Tailor your approach, but do take
advantage of the information presented here to improve your chance of success.  

Our scope is the overall system, including the software and the computing platforms on
which it resides.  Not included are such items as the building facilities or the field sensors. 
Even though the target audience is the customer— that is, public-sector officials who work
in transportation or transit agencies— we also present private-sector perspectives on the
issues.  We address generic acquisition and management issues and do not focus on the
particular functions that a freeway management system or transit vehicle location system
should possess.  To be sure, we don’t have all the answers.  Indeed, one of our recurring
themes is that there are no silver bullets.  Also this is not an academic text book on
software or a handbook on how to develop it.  So we do not include, for example,
material on how to code or design a software system.  

One senior ITS official noted, “I’ve never been involved in a software [acquisition for
which] I’ve been truly satisfied at the end.”  If this document helps enable you to be
satisfied with your software acquisition experiences, or improves the success rate of
software acquisitions, then we’ve succeeded in our mission.



vii

!
CAUTION

DOCUMENT ROADMAP

We recognize that probably no one would ever pick up this document and read it straight
through from beginning to end.  Therefore, to make it more convenient for the reader,
we’ve divided it into two volumes.  The shorter Volume I, Overview and Themes,
presents the foundation upon which the rest of the document is written.  We strongly urge
you to read it in its entirety first.  A software acquisition should be built around the
themes discussed in this volume.  The longer Volume II, Software Acquisition Process
Reference Guide, has the specific activities that build upon these themes.  As your
acquisition unfolds, various topics discussed in this volume will become relevant to your
needs.  When they do, you can turn to the appropriate chapters.  

Chapters may become relevant sooner than you expect.  Many acquisition
activities have to be first addressed long before they actually occur.  Take
acceptance testing, for example.  Even though acceptance testing does not take
place until after development activities are complete, it must be planned for
early.  In other words, the chapter on acceptance testing will become relevant

long before testing actually takes place.

The chapters in this document are grouped into six parts.  Parts One and Two appear in
Volume I; Parts Three through Six appear in Volume II.  

Volume I

Part One sets the stage for the recommendations that follow later.  It begins with a
discussion of software in general and shows how software acquisitions are different from
other acquisitions that you may be familiar with.

• Chapter 1, The Nature of Software explains how “software is different.”  The
purpose is to motivate the reader to be receptive towards new approaches for their
software acquisitions.  

• Chapter 2, Software Acquisition In A Larger Context shows where software fits
into the overall system acquisition process.

• Chapter 3, Differing Perceptions of ITS Software gets closer to home, showing
how the public and private sectors within the ITS community view software
acquisitions very differently.  Much of the mistrust that arises between the two
camps can perhaps be overcome if each learns where the other “is coming from.”

• Chapter 4, Types of ITS Software Systems is more specific.  It presents the range
of ITS systems whose acquisition is the subject of this document.
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Part Two responds to the differences discussed in Part One.  

• Chapter 5, Themes of Successful Software Acquisition introduces a number of
themes around which successful software acquisitions are built.  These themes
guide the various acquisition activities and are applied over and over again if your
software acquisition is to be successful.  Collectively, they represent a different
way of doing business; our response to “software is different.”

Volume II

Parts Three and Four discuss the various activities that constitute a software acquisition. 
Each chapter discusses a separate activity.  Collectively, these activities encompass the
entire period from the system’s initial concept, through the software development, on to
the end of the system’s operational life.  The themes introduced in Part Two recur
throughout the various activities.  When they do, we’ll call them out.

The activities in Part Three have defined beginning and end points.  

•• Chapter 6, Sequence of Acquisition Activities gives an overview of these activities
and discusses how no single timeline can be generated to describe all acquisitions.

The next two chapters discuss activities that necessarily take place early in the
acquisition.

• Chapter 7, Building A Team discusses the players that must be assembled to work
together.  This must be done early, so they can work together and carry out the
acquisition.  

• Chapter 8, Planning The Project discusses the project plan used to organize an
acquisition.  Even activities that will not take place until late in the acquisition
must be included in this plan.  The plan helps to ensure that all the team members
are trying to achieve a common goal.  

The next three chapters discuss key activities that drive the rest of the acquisition: 
These activities all feed off one another and to some extent take place in parallel.

• Chapter 9, Requirements is divided into two subchapters: 9A, Developing
Requirements and 9B, Requirements Management.  Developing requirements
culminates in a requirements document.  However, attention to requirements
cannot end at that point.  Requirements management is still needed for the
remainder of the acquisition.  Requirements creep must be avoided, but at the
same time requirements cannot be “thrown over the fence” and forgotten. 
Although requirements management is an on-going activity that could have been
discussed in Part Four, we chose to include it here to keep all the requirements-
related material in one chapter.  The length of this chapter reflects the importance
of requirements in a software acquisition.
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• Chapter 10, Build/Buy Decision(s) urges you to give serious consideration to
using off-the-shelf systems or system components, rather than building your own. 
However, this is not a panacea, and the risks in doing so are also discussed.

• Chapter 11, Selecting the Contracting Vehicle introduces the various contracting
options and discusses their applicability to software acquisitions.

• Chapter 12, Identifying The Software Environment discusses the hardware,
software, and communications context of the system.  

• Chapter 13, Resolving The Intellectual Property Rights addresses the contentious
issue of who has what rights to the software once it’s developed.   

• Chapter 14, Project Scheduling shows how to pull together the various planned
activities into a realistic and achievable schedule.

The last two chapters in this part address activities that do not take place until the
end of the acquisition.  Nonetheless, planning and preparation for these activities
must begin much earlier.

• Chapter 15, Acceptance Testing discusses how to determine whether the system
is ready to go operational in a way that is fair to both the customer and the
contractor.

• Chapter 16, Training, Operations, and Software Maintenance discusses three
important activities that collectively will probably take up considerably more than
half the budget over the life cycle of the system.

The activities in Part Four take place throughout the entire acquisition.  The contractor
may do the bulk of the technical work, but the customer still has an active and vital role to
play even after contract award.  Since the various activities have no natural time sequence
to them— they all take place simultaneously— the chapters are ordered alphabetically.  As
in Part Three, we call out the various themes when they occur. 

• Chapter 17, Project Management focuses on gaining visibility into the project and
what to do if that visibility uncovers a schedule slippage.  It also addresses quality
management steps that can be carried out to achieve various quality factors such
as reliability and maintainability of the system.  

• Chapter 18, Software Configuration Management discusses configuration
management and baselining activities.  Without these activities, the various parts
of the acquisition can rapidly become out of “synch” with one another.  

• Chapter 19, Software Risk Management, focuses on how to identify risks and
manage them before they become problems.

Part Five wraps things up.

• Chapter 20, Best Practices Checklist and Key Points Summary provides a final
checklist summarizing best practices.  It also collects together the key point
summaries and checklists that appear throughout the document.
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The themes icon is used to highlight when an activity or recommendation is a specific
instance of one of the acquisition themes introduced in Part Two of Volume I.

Key Points

Chapters end with a bulleted list of key points that summarize the main messages of
the chapter.

Sidebars are used to clarify various points or to relate “war stories” on the software
acquisition experiences of the ITS community.

The dictionary icon appears when new terminology is defined.

The stack of reference books appears when references are given to the outside
literature.

• Chapter 21, Where To Get More Help, suggests outside sources of information.

• Chapter 22, Concluding Remarks sets you on the road to your software
acquisition.

Part Six contains a series of stand-alone topic sheets.  Typically one or two pages in
length, these introduce various software topics “offline,” without interrupting the main
flow of the document.

Throughout the document, checklists supplement the text.  In addition the following icons
 appear throughout:
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EXECUTIVE SUMMARY

Software is Different

“Unfortunately, software development does not progress in accordance
with the rather simple rules that govern most functions.” 

— [Putnam and Myers, 1996]

“The odds of a large [software] project finishing on time are close to
zero.” — [McConnell, 1996]

Acquisitions that involve a significant amount of software development are notorious for
their problems.  Missed schedules and cost overruns plague the acquisition process. 
When systems are finally delivered, they are often unreliable and do not meet all their
requirements.  Some projects are even canceled before any products are delivered.  

Experienced project managers find that proven managerial techniques, which previously
worked so well for them on other types of projects, fail for software.  They complain
about their lack of insight into what the final system will be like and their lack of visibility
into progress by the contractor.  “It’s not like seeing asphalt being laid down.”  More than
one manager has concluded that “software is different,” that it often defies intuition
gained elsewhere.  

Unfortunately, ITS software acquisitions are no exception to this software norm.  One
senior ITS manager lamented he’d never been involved on a software acquisition that he
was satisfied with.  

Representatives from the public and private sectors who have been involved on ITS
software acquisitions have very different perceptions as to what goes wrong.  Each feels
that the other takes advantage of the situation.  They perceive that the other party “wins”
while they “lose.”  In fact both parties lose: while public-sector customers face the
problems cited above, private-sector contractors often lose significant amounts of money
on software.  This leads to mistrust.  Both sides then resort to acquisition practices that
further exacerbate the situation.

The good news is that there are proven techniques for managing software acquisitions. 
This document presents best practices, not rigid guidelines, to assist you.  Use them
selectively, choosing those most appropriate for your agency and project.  
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The top five percent of software organizations have no canceled projects, consistently control
costs within 5 percent of budget, and meet schedules within three percent. [Jones, 1997]
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Figure ES-1 summarizes the themes upon which successful software acquisitions are
built.  Collectively they represent a different way of doing business, the response to
“software is different.”  The themes recur again and again throughout a software
acquisition and guide the various acquisition activities.

 

Figure ES-1.  Themes On The Road To Successful Software Acquisition

The people themes have been likened to partnering, whose practice has proven beneficial
on construction projects.  For transportation agencies that don’t build ITS software with
in-house staff (the usual case), the customer works together with a contractor to achieve
common goals instead of having an adversarial relationship.  They continually work at
open communications, and collaborate on all activities, from requirements to risk
management to system acceptance.  This requires a greater customer role than many are
used to; active customer involvement is essential.  This in turn requires that project
managers not go it alone.  Instead, they practice team building, both within their agency
and with the software contractor.  

The management themes guide the management of an acquisition.  Flexibility is needed
in the contract to accommodate change and take advantage of the opportunities presented
by application of the people themes.  There must be the recognition that there are no
silver bullets; no one acquisition practice or contracting mechanism is a panacea that can
be relied upon to rescue a project.  Up-front planning is needed early in the acquisition,
even for activities such as system acceptance that do not take place until late in the
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One ITS manager successfully teamed with his contractor by treating them as part of his
staff.  They were invited to attend staff meetings and participated in setting milestones for
the project.

acquisition process.  

System themes relate directly to the final product.  Don’t build if you can buy existing
products.  Purchasing pre-existing products alleviates many of the risks associated with
building custom software.  For most types of ITS systems, off-the-shelf products or
components are available.  Unique requirements can preclude their use, but any such
requirements should be examined to determine whether they really are important or
whether the system is over-specified.  Ask yourself why your requirements are so much
different from everyone else’s.  Many projects fail because they attempt to do too much
at once.  By taking bite-size pieces, an acquisition is more manageable.  Contracting
mechanisms must be chosen that allow for this instead of those that call for an all-at-once
“big bang” approach.  

The various software acquisition activities that are built upon these themes will now be
discussed.

Acquisition Activities

An early activity in an acquisition is building a team.  Following are some of the skills
that must be tapped (from within your agency, if possible) and included on the team:

• Software technical experts assist with requirements, scheduling, costing, technical
reviews, and eventually liaison with the software contractor.  These individuals are
difficult to find, especially for public agencies.  

• End users, maintainers, and system administrators have very different
perspectives on systems than do engineers.  Their membership on the team helps
ensure that their needs are addressed.

• Domain experts ensure that a system addresses operational needs and guide the
end users in understanding and operating the system.

• Contracting and purchasing officials help select the most appropriate
contracting vehicles.  A full range of options must be considered as traditional
vehicles used on construction, consulting, and other types of transportation

projects are not appropriate for software.

• Software-specific legal staff assist in resolving intellectual property rights issues
to avoid litigation over them.

Once the software contractor is selected, they become an essential member who must be
incorporated into the team.
An initial activity for the assembled team is project planning.  Write a short project plan. 
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A few ITS examples illustrate what can happen when human interface requirements are
specified on paper.  In the transit arena, a box on a bus needed multiple keystrokes for a
simple function like changing the volume control.  This was not apparent from reading the
written requirements and was not realized until the box was used operationally.  In the
traffic arena, incident reports could not be filed until all the fields of an on-line form were
filled out.  Many of the fields were not particularly important and filling them out delayed
the transmission of critical information.  But the requirements did not specify the capability
to transmit a partially filled out form or allow the ability to retrieve a form and add the
missing fields later.  Because rapid prototyping techniques had not been used in either
case, it was not possible to visualize the implication of the written requirements.  Only
real-world interactions with the system revealed the flaws that were inherent in the
requirements.  If you buy existing products, you will at least gain the benefits of someone
else’s experiences.

Several parts of this plan are unique to software, or at least more critical for software than
they are for other types of projects.  These include identification of the following: 
facilities, acquisition strategy, system environment, risk management, project oversight
techniques, end users, acceptance strategy, training concept, and maintenance concept. 
Clearly, many of these planning activities, especially the acquisition strategy, will take
place before the contractor is on board.  Writing a plan helps achieve “buy in” for
subsequent activities and gives everyone an awareness of the trade-offs that have to be
made.  Although written during the early part of a project, several sections of the plan
address activities that will not take place until late in the life cycle.

Three key activities take place in parallel and feed off one another: developing
requirements, making build/buy decisions, and selecting the contracting vehicle.

The first key activity, developing requirements, is one of the most important that takes
place on a software acquisition.  The team members participate in developing a good,
sound set of functional and performance requirements.  Functional requirements define
automated and manual system capabilities.  Performance requirements define such items
as response time, capacity, reliability, safety, and security.  Unlike other transportation

projects, software acquisitions should not develop design specs or technical requirements
at this stage.  (Software is different!)  The requirements give the what’s not the how’s. 
They address such topics as system functions, response times, reliability, maintainability,
security, safety, interfaces, inputs, and outputs.  Noticeably missing from this list is
detailed human interface requirements on how operators and end users will interact with
the system.  Rapid prototyping is a better approach for addressing them.

In developing requirements, don’t ask for too much.  Avoid the temptation to “add just
one more requirement, it’s only a matter of some more software.”  This keeps the project
manageable, minimizes risk, and achieves an operational capability sooner.  Use scrub
sessions to eliminate inessential requirements.  Furthermore, over-specified systems
inevitably dictate design and preclude off-the-shelf solutions.  Once operational
experience is gained with an initial implementation, there’s always time to build upon
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One ITS software developer cites the example of an unnamed customer who refused to
carry out a requirements walk-through.  So the contractor proceeded as best they could
in designing the system.  Then came the critical design review, a major milestone.  But
instead of addressing design issues, the review quickly back-tracked to the unaddressed
requirements issues.  The contractor and customer finally reached a mutual
understanding of the requirements, but not without cost.  By then, much of the previous
design work had to be discarded and re-done.  This could have been avoided with a
timely walk-through of the requirements.

success and add features.  

Related to requirements are quality factors.  The quality factors address “how well” the
system meets requirements and include such “ilities” as reliability, availability, and
maintainability.  System flexibility should also be addressed.  Software is inherently
flexible.  Ironically, software systems often are often inflexible; they are not robust to
change.  You can help achieve more flexibility by asking “what if” questions in regards to
future features and what is likely to change.  (For example, “What if we added another
jurisdiction to a regional ATMS?”  “What if the ramp metering algorithms were
changed?”)  Then see if the system can accommodate those changes.

Fundamental flaw of software acquisition:  “One can specify a
satisfactory system in advance, get bids for its construction, have it
built, and install it… this assumption is fundamentally wrong. ...It is
necessary to allow for extensive iteration between the client and the

designer as part of the system definition.” — [Brooks, 1987]

At one time it was thought that the key to software success was i) develop a rigorous,
complete set of requirements, ii) freeze them for the entire project, and iii) insist that the
contractor meet all the shall’s.  Although it would be nice to set aside the requirements
and go on to other tasks once the requirements are documented, you unfortunately
cannot dismiss them as a “done deal.”  Unless you go strictly with an off-the-shelf buy
(see below), an on-going requirements management process will be needed, carried out
collaboratively by customer and contractor.  This includes conducting a requirements

walk-through with the software contractor.  

“Rule 1 of Systems Integration: The agency and the integrator will never
interpret the functional definition in the same manner.” — [Phil Tarnoff]

In a walk-through, every requirement is thoroughly examined until the customer and
contractor achieve a common understanding of it.  An example of our open
communications and collaboration themes, a walk-through also provides another
opportunity to scrub requirements and to explore alternatives that replace high risk
requirements with lower risk ones.  This is true whether you build or buy.  If you buy an
off-the-shelf product, the supplier is in the best position to identify which modifications
are easy and which ones are hard or risky.
Once the requirements are revised to reflect the mutual agreements of customer and
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One satisfied customer told his long-time contractor, “The reason we’re so successful
together is because you always give me 80% of what I ask for.”

The consideration of the availability of existing products and the willingness to trade off
functionality to decrease cost and schedule has been cited as a “best commercial
practice” that is used by the private sector.  [Ferguson and DeRiso, 1994.]

contractor, they are signed and placed under configuration control (“baselined”).  From
this point on, changes to requirements are carefully controlled.  A careful balancing act

that must be practiced.  On the one hand,   having a stable set of requirements is essential
for successful software development.  Changing requirements and scope creep can be
fatal.  On the other hand, “controlled” should not be equated with “frozen.” 
Requirements issues must be addressed as they arise, with all changes agreed to in writing
by all parties before they take effect.  There should be sufficient teamwork and contractual
flexibility to clarify ambiguities, flesh out lower-level requirements not initially addressed,
and relax requirements that pose unexpected risk or prove technically difficulty to
implement.
The requirements become the basis for size, schedule, and cost estimates; build/buy
decisions; design and development activities; and acceptance testing.  (On too many
projects, these other activities are carried out independently of the requirements.)  If
changes increase the scope of the project, they must be accompanied by schedule and
budget relief, or compensated for by eliminating other requirements in the system.

“The most radical possible solution for constructing software is not to
construct it at all.” — [Brooks, 1987]

The second key activity is making build/buy decisions.  This decision-making activity is

often neglected in spite of the fact that it has the potential of overcoming many of the
problems incurred on software acquisitions.  Never build the system (or portions of the
system) if you can buy it.  A matrix showing which vendor products meet which high-
level requirements can be used to help you make this decision.  Product demonstrations
(perhaps at your site) or visits to other sites are some of the ways that will allow you to
find out what’s available in the marketplace.  If no vendor products meet a requirement,
carefully consider its necessity and technical risk.  Ask yourself whether you are
unnecessarily precluding off-the-shelf products.  Is a pre-existing, 80% solution good
enough?
For the portions of the system that you buy, only high-level requirements (a features list)
may be necessary.  For those portions of the system that you decide to have built, a
requirements management process such as that described above will be needed.

Although buying the system can reduce risk, purchasing software is not a panacea and
has its own associated risks.  Mitigation strategies are available for addressing them. 
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A leading-edge traffic management center was successfully built using a time-and-
materials contract.  A “rolling” development approach was used.  The system evolved
over time by having new pieces of the system put in place at frequent intervals, typically
on the order of several weeks.  The contracting approach was credited with being able to
adapt quickly to the unforeseen popularity of the Internet when that became a viable
vehicle for transmitting traffic information.

Engineer/contractor often leads to multiple layers of subcontracting.  One ITS software
contractor found themselves third tier down on the subcontracting arrangement of a
construction contract.  They were effectively shut off from all direct contact with the
customer.  This lack of contact predictably led to a very bad software experience for all
parties.

These include “kicking the tires” or meeting with prior customers before committing to an
existing product.  

The third key activity is selecting a contracting vehicle for the acquisition. 

Unfortunately, no acquisition vehicles are ideal for software, and the familiar
engineer/contractor (design-bid-build) approach is particularly inappropriate.  
Therefore you will need to work with your contracting and legal representatives on your
team to explore the full range of options.  Among them are cost-reimbursement, time-
and-materials, design/build, design to cost and schedule, and build to budget contracts. 
Although not often used, time-and-materials contracting offers a number of advantages
for software and is allowed under Federal-aid regulations.

The build/buy decisions influence the selection of a contracting vehicle.  In particular,
fixed-price contracting (or any type of contract with firm deliverables and fixed ceilings
for price and cost) does not provide the needed flexibility for building software, or
modifying existing products, although it may be appropriate for some off-the-shelf buys. 
For fixed-price contracts, requirements will need to be issued as part of the RFP. 
However, if you decide to go with a cost-plus or time-and-materials contract for building
software, then only high-level requirements or a features list need be issued as part of the
RFP.  For such contracting vehicles, detailed requirements development and requirements
management activities are best deferred until after contract award.  Regardless of the
contracting vehicle that is chosen, it should not be regarded as a substitute for sound
management and application of the acquisition themes.

The following paragraphs describe the remaining acquisition activities that have defined
beginning and end points.  These are followed by descriptions of several on-going
activities that take place throughout an acquisition.  

The software environment includes interfaces to field equipment, legacy systems, other
software products (e.g., operating systems, database management systems),
communications equipment, and systems in neighboring jurisdictions.  Identifying the
software environment is analogous to performing a site survey on civil engineering
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The meaning of the term “software” in the contract language has been a frequent point of
contention between customers and software contractors.  Often the customer interpreted
“software” to include the source code, whereas the contractor meant for “software” to
apply to executable or object code.

On one ITS project, milestones were so ill-defined that the participants were openly
puzzled as to whether they had met them or not.

projects.  This gives an overall picture of what the project entails.  However, do not
unnecessarily constrain the system design or preclude the use of existing products by
prematurely specifying computing hardware or operating systems as part of the
environment.  A product that works well in one location may require significant re-
tailoring if it is placed in a different location with a different environment.  Choosing a
contracting vehicle that results in a low-bid purchase of computing hardware or field
devices without regard to the software may inadvertently preclude the use of an existing

software product.  Or it may result in significant cost and development risk for re-tailoring
the software to fit the new environment.

Unfortunately, many acquisitions culminate in conflict and even litigation because of
unclear understandings of who has what rights to the software.  Resolving the intellectual
property rights must be done before a contract is signed.  Be very explicit and reach
detailed agreements with the contractor; a checklist is provided in the body of this
document to assist with this.  
Even though intellectual property rights issues do not arise until after the system is
completed, walk through the checklist with the contractor before a contract is signed. 
This can be an initial step toward achieving the open communications theme.  Procuring
the services of an intellectual property rights lawyer who specializes in software has
proven to be “money well spent” on several acquisitions.  

“More software projects have gone awry for lack of calendar time than
for all other causes combined.” — [Brooks, 1975]  

Two common flaws are common with software project scheduling: First, schedules are
established independently of the requirements.  Second, they are squeezed so tightly that
they are set in the impossible-to-do zone, even if everything goes perfectly.  Instead,
develop a schedule that realistically matches the requirements.  More often than not
“realistic” equates to “pessimistic.”  In developing the schedule, use well-defined
“yes/no” or “done/not done” milestones. 
 In establishing a schedule, get as many independent size estimates for your system as
possible, including those of the contractor and the software experts on your team.  
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“[You] can reduce effort, cost, (and defects) by planning a little longer
schedule.” — [Putnam and Myers, 1996]  

Once a realistic schedule has been drafted, one of the most cost-effective ways of
lowering the cost and the total effort on a project is simply stretch out the schedule. 
Doing so may defy intuition, but is another example of “software is different.”  

Once a schedule is set, if the requirements change, make corresponding changes in the
schedule to keep the two in agreement.  After the software contractor’s activities begin,
use actual progress to derive more realistic schedule estimates for the remaining activities.

Even though system testing does not take place until after the system is built or bought,
plan a formal system acceptance testing strategy early, before an RFP is issued.  Reflect
your approach in the contract.  Acceptance test preparations (preparing test cases, setting
up a testing environment, etc.) need to begin soon after contract award.  Schedule them to
take place in parallel with other software activities.  This will avoid a common problem of
treating acceptance testing as an after-thought.

Acceptance tests are based on the requirements.  They should be rigorous; simple benign
tests are not sufficient.  Tests should include functional tests, maximum capacity and
stress tests, erroneous inputs tests, stability tests, and integrity tests.  When testing takes
place, carry it out as a collaborative teaming activity.

One ITS manager told us that “maintenance kind of caught us by surprise.”  Don’t let that
happen to you.  Plan for the support activities— training, operations, and
maintenance— early in the acquisition.  Assign contractor responsibilities for support
activities in the contract, and allot adequate time to prepare for them.  Give serious
consideration to including contractor maintenance in these responsibilities as opposed to
having maintenance carried out by in-house staff.  Adequate resources are also needed: 
over the life of a system, support activities generally consume more budget resources than
it costs to build the system initially.

On-Going Management Activities

We now turn to several on-going activities that take place in parallel throughout an
acquisition.  We have already addressed one of these— requirements management.

Even after a contract is issued, the customer still has an active role to play.  Project
management activities include project reviews, document reviews, and the use of
quantitative measurement data to gain visibility into contractor progress.  If schedule slips
occurs, do not try to play “catch-up.”  

Intuition gained from other endeavors for meeting a schedule “more
workers, money, overtime, computer time— doesn’t seem to work for

software.” — [Putnam and Myers, 1992]
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Either stretch the remaining schedule in accordance with the slip or reduce functionality in
the same proportion as the schedule slip.  Project management entails not only contract
management, but also expectations management of other stakeholders not directly
working on the project.

Software configuration management is another essential on-going activity.  Baselines are
established and serve as a controlled basis for future work.  (A baseline is a “snapshot” of
everything associated with the software including such items as the source and object
code, requirements and other technical documentation, test cases, and problem reports
and their status.)  Formal procedures are established and followed for making changes to
the baseline; otherwise, different aspects of the system will rapidly become “out of
synch” with one another.  The customer must ensure that the contractor establishes sound
configuration management procedures and follows them.

Software risk management is another on-going activity that is carried out throughout the
life of a software project.  Risk management steps include risk identification, analysis,
planning, resolution, and monitoring.  Risk management is most effectively done as a
teaming activity between customer and contractor since their different perspectives on the
system lead them to identify different risks.  For risk management to work, there must be
an atmosphere that fosters project personnel to come forward with risks without “finger
pointing.”

Topic Sheets

Several pertinent software topics are addressed in the following topic sheets at the end of
Volume II of this document:

• Rapid prototyping is the recommended approach for fleshing out human
interface requirements.

• Security must be built into system from the outset.  A number of security
mechanisms are available to provide a range of necessary security services.

• The Software Acquisition Capability Maturity Model can be used by an agency
to assess its readiness to acquire software.  

• The Software Capability Maturity Model can be used to assess contractor
capabilities to develop software.

• Software Safety is concerned with ensuring that the software does not cause
hazardous, life-threatening, or other highly undesirable conditions to occur.

• The Year 2000 Problem (Y2K) and the similar GPS-rollover problem are
challenges faced by software acquisitions.
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Concluding Remarks

We hope this document will help you with your ITS software acquisition.  It starts out by
explaining how software is different.  The rest of the document is essentially our
recommended response to that difference.  We have taken a process-oriented approach. 
It is centered around a series of themes that deal with the system, the management
outlook, and most importantly, the people.  Then we built upon those themes, showing
how they play out in certain key activities.

To be sure, we haven’t been able to give you all the answers.  Your software acquisition
will still be hard work, requiring your hands-on, active management involvement.  The
road ahead may not be a totally smooth one; there are no silver bullets.  But perhaps it
will be less bumpy because you'll know the potholes to avoid.  And that may help keep
small risks from growing into major problems.  

As Brooks wrote in his classic paper No Silver Bullet: Essence and Accidents of Software
Engineering, “There is no easy road, but there is a road.”



PART ONE

SETTING THE STAGE:
THE BIG PICTURE
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CHAPTER 1
THE NATURE OF SOFTWARE

“Unfortunately, software development does not progress in accordance
with the rather simple rules that govern most functions.  That is why

software projects run beyond delivery dates by many months; overrun
budgets, often significantly; and are even canceled about one-quarter of

the time.  Consequently, you need help to find your way through this
thicket.” — [Putnam and Myers, 1996]

“Studies have shown that for every six new large-scale software systems
that are put into operation, two others are canceled.  The average

software development project overshoots its schedule by half; larger
projects generally do worse.  And some three-quarters of all large

systems are ‘operating failures,’ that either do not function as intended
or are not used at all …  55 percent of the projects cost more than

expected, 68 percent overran their schedules, and 88 percent had to be
substantially redesigned.” — [Gibbs, 1994]

“The odds of a large [software] project finishing on time are close to
zero.  The odds of a large project being canceled are an even-money

bet.”
 — [McConnell, 1996, page 81]

Two problems characterize acquisitions that involve a significant amount of software
development:

• Products are late.

• Costs overrun the budget.

Not merely risks, these characteristics are near certainties.  An unpublished review of
seventeen major Department of Defense software contracts showed that none were
completed on time.  [Humphrey, 1993, page 5]  Unfortunately, the difficulties found on
software acquisitions are not always apparent at the outset of a project.  As Brooks writes
in his classic paper No Silver Bullet: Essence and Accidents of Software Engineering,
“The familiar software project, at least as seen by the nontechnical manager …  is usually
innocent and straightforward, but is capable of becoming a monster of missed schedules,
blown budgets, and flawed products.” [Brooks, 1987]  

Why are we emphasizing these problems so early in this document?  Because individuals
responsible for the software acquisition on an ITS project may not really understand how
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often these problems do occur.  They may carry with them attitudes that reflect their
experience with the more familiar civil engineering projects where, according to one
interviewee, “overrunning on concrete is considered really bad.”  

Software engineering is a relatively new field, only a few decades old.  But even mature
industries have cost and schedule uncertainties when dealing with one-of-a-kind
products.  Consider the following newspaper article quoting the owner of an arena under
construction:  “[It] will open ‘sometime in the fall.’  As for a date, ‘we don’t know yet.’ ”
[Washington Post, April 24, 1997, page C11.]   Or a report addressing a 42 percent
increase in school construction costs and cost overruns ranging from 21 to 36 percent.
[Rockville Gazette, March 26, 1997, page A-1.]  These two examples are taken from the
building industry, which dates back at least to the days of the pyramids.  So is it too
surprising that one-time custom software developments should experience similar
troubles?

So why do software acquisitions so often fail?  There a number of factors:1

• Software systems are generally more complex than other types of systems.  Like
roads and structures, they have static characteristics, such as the interfaces
between systems.  But they also have temporal characteristics, such as sensor data
inputs or operator interactions, with many subtle timing interactions. 
Furthermore, systems integration, the most complex and difficult aspect of an
overall system, is primarily a software concern.

• Human interfaces— whether they be report layouts on paper or real-time
user/operator interactions at a terminal— are a common target of user complaints. 
Even though the complaints are often based on the operator’s subjective criteria,
responding to the complaints necessitates changes.  These interfaces are generally
implemented in software.  

• The ratio of design costs to production costs is the reverse from that found on
hardware acquisitions or on construction projects.  On construction projects, an
architecture design and blueprints are relatively inexpensive when compared with
the actual fabrication costs.  This serves as a natural impediment to making
unrestricted changes to the finished product.  It may be years before a new lane is
added to a highway, or an addition is placed on a structure.  “The high cost of
change dampens the whim of [would be] changers.”  [Brooks, 1987, page 10] 
However, on software projects, production costs are relatively inexpensive (e.g.,
copying a program onto a diskette).  This gives the illusion that changes are
relatively easy to make.  So changes are made over and over again.  

• Monitoring progress on software projects is difficult.  Progress measures that work
elsewhere don’t seem to work with software.  “It’s not like seeing asphalt being
laid down.”  



Chapter 1:  The Nature of Software

The Road to Successful ITS Software Acquisition 1-3

• Gaining visibility into the software is difficult.  Managers complain that paper
documents and deliverables provide little insight.  “It was difficult to get a sense of
the look and feel of the eventual system.”  

• Even after a software system has been successfully implemented, there can be
differences.  Traditional capital investments made by DOTs— from telephones to
street lamps— have typical life expectancies of twenty years or more.  However,
software systems may have a life expectancy of as little as five years.  

In short, across multiple disciplines, many have come to realize that, in general

“Software is Different”

ITS software appears to be no exception to this general observation.  Transportation and
transit officials who have acquired ITS systems have come to the same conclusion.  One
interviewee from the ITS community said it best: “Software is a very different animal.” 
What can be done to accommodate the differences?

The Bad News: Obvious approaches that don’t work

Let us consider some possibilities.

Suppose you hire an experienced manager with a good track record on other types of
transportation projects.  Unfortunately, the schedule and budget woes inherent in
software are different from the experiences gained on more familiar civil engineering
projects.  The successful experiences elsewhere can lead the manager to false
expectations for their first software project.  As the project progresses, this is
compounded as the managers struggle to find an effective means to monitor progress. 
Measures that had been successfully used in the past may prove to be grossly inaccurate
for software.  [Putnam and Myers, 1996, page iv]  In addition, acquisition practices that
are successful on materials contracts (e.g., fixed-cost contracts) don’t necessarily work
with software.  In short, the intuitions gained from managing other types of projects don’t
necessarily apply to software.

How about hiring a manager with a little software experience?  Perhaps one who has
taken a course on computer programming.  Actually that may do more harm than good. 
It turns out that the intuitions and insight gained on small software projects are misleading
and don’t scale up on real-world systems.  
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Perhaps an analogy to a familiar real-world problem will give an indication as to why
intuition gained on small scale problems simply does not scale up.  Suppose you are
about to embark on a car trip across the country, but your only travel experience has
been on short, local trips of a mile or less.  What have you learned from them?  Things
like getting the kids buckled in, adjusting your mirrors, and warming up the engine are big
deals and the most time-consuming parts of a trip.  Once those tasks are carried out,
driving to your destination is relatively quick.  However, these lessons have not prepared
you for the cross-country trek, where obtaining maps, planning routes, making
reservations, finding restaurants, and keeping the gas tank filled are the challenges.  The
small trip experiences are still there at the start of the trip, but are dwarfed by the much
longer time spent driving across the country,

In short, the quick and easy approaches won’t suffice.  

The Good News: The differences can be accommodated

Since software is different, it must be acquired and managed differently.  Traditional
approaches, which are oriented towards civil engineering projects and focus on
production, must be adjusted to accommodate the nature of software.  There are
established techniques that do work.  We’ll cover some of them later on in this document. 
For example, we’ll introduce techniques that overcome the problems associated with
gaining visibility into a software project.

In contrast to the pessimistic experiences cited in the quotes at the beginning of this
chapter, the top five percent of software organizations have no canceled projects,
consistently control costs within 5 percent of budget, and meet schedules within three
percent. [Jones, 1997]

• Software acquisitions are different from other types of projects.
• Missed schedules, cost overruns, and lack of visibility into the software and

software development are common.
• Different approaches are therefore needed to manage software projects.
• There are established managerial techniques that can be relied upon to

overcome the problems.
• ITS software experiences are similar to those encountered on other types of

software projects.
• This document is intended to help you find your way through what has been

termed the “software thicket.”

Key Points
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CHAPTER 2
SOFTWARE ACQUISITION IN A LARGER

CONTEXT

Software is seldom acquired for its own sake.  It is generally acquired as part of a system
acquisition in the context of an overall acquisition process.  

Figure 2-1 is a high level overview of this context.  

Needs
Analysis

Transportation
Planning

System
Acquisition

Operations
and

Maintenance

System
Concept

Transportation
Planning

Figure 2-1.  Overall Context For A Software Acquisition

The process begins with a needs analysis, which identifies transportation needs or
problems.  

Transportation Planning proposes solutions to these problems.  It entails regional
planning activities, and the development of a Transportation Improvement Program or
TIP.  The TIP identifies particular systems, perhaps including an ITS system that you will
be responsible for.  Use the National ITS Architecture as one of your inputs in generating
the TIP.

With project go-ahead, the system concept drives your acquisition.  Again, the National
ITS Architecture can be used, this time to help in defining your concept.  At this early
stage of a project, the concept may only be a vision in your head of where the project is
headed.  Or it could be a formal document, setting forth system goals and objectives. 
Whatever form it takes, it serves as your starting point, showing the direction in which
you are headed.  Projects without a vision can easily get lost along the way.  They may
result in a collection of components that work, but do not produce intended results.  Or
they can get completely derailed and never produce a working product.
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The system acquisition turns the concept into reality.  Included in a system acquisition
are software acquisition activities, the subject of this document, discussed in parts three
and four.  If the acquisition is successful, the system will become operational. 
Evaluations of the operational system provide feedback that is used to drive further needs
analysis.  At the same time that operations take place, there are maintenance activities. 
There are both hardware and software maintenance activities.  In fact, over the life of a
system, the total effort, and cost, devoted to software maintenance often dwarfs the
amount spent on software development activities during the acquisition phase.  

Let’s take a closer look at the System Acquisition box.  Figure 2-2 expands Systems
Acquisition into a number of activities, encompassing both hardware and software.  

System
Requirements

System
Design

Hardware
Acquisition

Software
Acquisition

•Hardware Requirements
•Hardware Design [etc.]

•Software Requirements
•Software Design [etc.]

Systems
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System
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Figure 2-2.  System Acquisition Activities

The system design allocates functions between the two.  This is the basis for the software
requirements, which in turn drive the software design and subsequent software
acquisition activities.  

As shown in the figure, the hardware and software must be integrated before a system can
be accepted and used operationally.  Let us stress that figure 2-2 is a conceptual viewpoint
only.  Not every activity would necessarily take place as a distinct step on every project. 
Furthermore, system requirements, system design, and software requirements usually
don’t proceed as a series of sequential steps, each one waiting for the completion of the
previous one.  
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• Although we will focus our attention on the software acquisition activities, they
take place in the context of a system acquisition, which in turn is part of an
overall process.

Key Point
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CHAPTER 3
DIFFERING PERCEPTIONS OF ITS SOFTWARE

“The perception is more important than the reality.”

As we interviewed ITS personnel for this document, it became apparent that the public
sector and private sector have very different perceptions of the software acquisition
process.  Since these perceptions drive many of their decisions, it is important for each
sector to know where the other is “coming from.”  

Before we began writing this document, we interviewed over thirty individuals with ITS
software experience in traffic and transit management.  The interviews were equally
divided between public-sector (the customer) and private-sector (the contractor)
individuals.  We wanted to know what types of information would be useful to the
practitioner.  The interviews also provided us with the opportunity to capture “war stories”
that are sprinkled throughout this document as sidebars to the main text.

Interviewees were promised anonymity so they could speak freely.  In spite of their busy
schedules, almost without exception the interviewees willingly gave of their time and
offered additional help if needed.  Even though we cannot acknowledge them by name,
we are very grateful to them.

The following paragraphs summarize comments of the public-sector and private-sector
interviewees on a number of issues.  The perceptions presented are those that were
typically expressed.  However, it is recognized that any given individual may not hold all
the views indicated for their corresponding sector.

Not Getting “Locked In” —  Public-Sector Perception

The most common viewpoint expressed by the public sector is the importance of not
getting locked into a single contractor.  When they do get locked in, they lose all
leverage in negotiating follow-on work.  Then they get burned by contractors who,
they perceive, charge exorbitant prices for, what the public sector perceives to be,
trivial changes to the software.  Even worse is what happens when a contractor goes
out of business or abandons transportation work.  Then the customer is left with
unsupported and unsupportable software.  Several public-sector interviewees cited
examples of this happening.  To avoid getting locked-in, public-sector customers
often require that source code be delivered along with the rest of the system when the
project is complete.

Not Getting “Locked In” —  Private-Sector Perception

The private sector perception is that getting access to source code is not the answer for
not getting locked in.  It just adds to the cost.  After paying extra for a license to the
source code, customers find that it does not prove useful to them.  The software is too
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complicated for an outside party to maintain or modify it.  Many seemingly trivial
changes to software can in fact subtly impact hundreds of lines of code or be very
difficult to implement.  Even if the customer succeeds in using the source code to
make changes to the software, there may be several undesirable consequences.  The
changes may negate any warranties associated with the system.  For off-the-shelf
systems, the changes will be lost if the system is upgraded to the next version of the
vendor’s product.  The customer thus faces two undesirable options: i) either upgrade
and re-implement the changes, or ii) get locked into what soon becomes an obsolete
version of the software.  The latter option precludes maintenance support since
vendors cannot simultaneously maintain all previous versions of their product line.  

In at least one case, customer insistence on having access to source code resulted in the
contractor re-developing existing software from scratch.  They delivered this custom
version to the customer rather than releasing their proprietary product.  This is an
extreme example of how gaining access to the source code resulted in increased costs.
It probably also resulted in a less reliable system.

Customization —  Public-Sector Perception

The public sector cites several reasons for customization.  First, they need to ensure
that the system will meet their needs.  The perceive that their location has truly unique
requirements that must be met.  In addition, the public sector may not agree that the
algorithms in an existing package are optimal for their application.  Second, there are
certain established procedures that their end users are already familiar with.  The end
users cannot be expected to relearn their jobs to accommodate a piece of software. 
Third, the opportunity to acquire a system does not come along very often.  Funding
is scarce.  So once they get the opportunity, they want to take best advantage of it and
not acquire a system that will become obsolete in a few years, even if that means
adding custom features.  Fourth, since few large, complex ITS systems are purchased
nationwide, there may be no acceptable off-the-shelf packages with the needed level
of integration or innovation for use region-wide.  Finally, custom-engineered solutions
are the norm on other transportation projects.  Agencies don’t buy off-the-shelf
bridges, for example.

Customization —  Private-Sector Perception

The problem most commonly cited by almost all the private-sector interviewees is the
high degree of customization that the public sector insists upon in their systems.  The
private sector recognizes that any given site may have some truly unique needs.  But
they perceive that most customization is unnecessary.  It results from their customers
trying to engineer the system instead of establishing requirements and then finding the
system that provides the best overall solution.  When a customer designs a system, it
almost always precludes an off-the-shelf solution.  The private sector complains that
such behavior would not be tolerated in any other field.  They complain that for
virtually anything else, we buy the off-the-shelf products that best meet our needs. 
When we buy an automobile we trade off luxury for price, but we don’t go back to
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the manufacturers and insist that they re-engineer their products.  So why, the
vendors ask, shouldn’t the same philosophy apply to ITS software?  One cited the
example of buying a toaster— you shop around and find the best one.  You may not
get a perfect match to what you’re seeking, but you would never go back to the
manufacturer and tell them to re-engineer their product by putting the knobs on the
left side rather than on the right side.  But in software such changes seem to be the
norm.

Customization leads to unique software being developed for each customer.  One
vendor complains that they have installed their system in multiple cities, all the
installations do essentially the same thing, yet no two copies are identical.  This also
adds unnecessary risk and reduces system reliability.  The contractor’s basic system
may be a mature product, well tested and operational in many locations.  Most of the
problems have been exposed and weeded out over time.  But new custom-developed
software can never have the same assurance of reliability.

One vendor notes that insistence on too much customization precludes customer
access to qualified contractors.  This vendor has established expertise in a sector of
ITS.  Since they have a bona fide product to sell, they are not interested in custom
development software jobs.  There’s too much risk and such jobs aren’t profitable in
any case.  If they accepted custom developments, they view the risk of having
dissatisfied customers as threatening their good reputation.  Consequently companies,
whom they view as having no particular expertise in their area, win the contracts. 
They perform poorly, which further feeds the cycle of mistrust.

Customization —  Private Sector’s Recommended Alternative Approach

The private sector suggests that it would be to everyone’s advantage to have vendors
resell existing software since this would amortize (spread out) development costs over
multiple buyers.  (See The Nature of Software, Chapter 1 where it is noted that
development costs and not production drive the costs of software.)  Under the current
approach, customers repay for development over and over again.  One vendor wrote,
“More widespread use of [existing products] would foster more competition and
useful innovation.  Right now, software providers are forced to consume resources
just keeping up with the customization required by different customers, which may or
may not appear in the next spec.”  In other words, they feel that under the proposed
alternative, customers would pay less and get more as the state-of-the-art would be
given a chance to advance.  Transit vehicle tracking and traffic management are
examples of systems where vendors claim that satisfactory products are available, but
customers insist upon unnecessary customization.  

Being Taken Advantage Of —  Public-Sector Perception

Public-sector interviewees feel that the private sector takes advantage of the
contracting environment.  They perceive that high prices are charged for fairly trivial
changes to the software that the public sector feels they should have been entitled to
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anyway.  They argue that even if a change was not explicitly called out in the contract,
they should not have to pay for its full development cost since the contractor can
resell the change many times to other customers.  After systems are accepted, they
sometimes fail totally and the customer has no choice but to call the contractors for
assistance.  To be sure, this may happen beyond the end of a formal contract, but a
failed system is not what they bargained for.

Being Taken Advantage Of —  Private-Sector Perception

Private-sector interviewees also feel that the other side (in this case the public sector)
takes advantage of the contracting environment.  The private sector perceives that the
public sector has no incentive to accept a system since this would mean the end of the
contract support.  The private sector states that contractors are not getting rich off the
software.  In fact, they lose money on contracts as the public sector continually
requests more changes before accepting a system, without providing additional funds. 
The private sector says that expecting a contractor to make in-kind contributions is
unrealistic: customers should understand that private firms are in the business to make
a profit, not as a public service.  Vendors complain that in the case of ITS software,
they are not contributing excess profit and do not later recover their costs; instead,
they swallow the costs and forfeit the ability to even recover their own investments. 
Indeed in-kind contributions made earlier in the ITS program (on operational tests or
early deployment studies, for example) were justified on the basis that those
investments would pay off during deployments.  The private sector also complains
that even after system acceptance, customers call and expect additional support to
maintain the system.  Contractors have no contractual obligation to provide this
support but often must do so to maintain good working relationships.

How this document can help

Clearly the differing perceptions do not reflect a healthy situation.  Each sector can cite
examples of how they were “burned” by the other.  Recommendations in this document
are intended to overcome some of the problems and help achieve a win-win situation.  In
particular, 

• By buying existing products much of the risk and mistrust that result from custom
build acquisitions would be avoided.  Team Building would also help in this
regard.

• With open communications contractors would better understand customer needs
and realize that not all the customization requirements are arbitrary.  At the same
time, customers would better understand the implications of some of their
requirements on the level of effort required, and they would scale back on how
much customization is requested.

• Formal acceptance test plans would clarify what criteria are used to accept a
system.  This allows contracts to reach closure and the contractor to get paid.  At
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the same time, it gives greater assurance to the customer that the system meets
requirements and provides sufficient reliability.

• Attention to maintenance and training would clarify expected roles during these
phases of a project.  Provisions for contractor maintenance would allow bugs to
be fixed.  Documentation addressing system administration functions and
interfaces would help alleviate customer dependence on the contractor, who
doesn’t want to be called upon in any case once a contract has finished.

During the clarification of the maintenance and training roles, mutually beneficial solutions
may be discovered.  For example, by delivering Graphical User Interface (GUI)
development tools, like “report formatters”, as part of the contract, many of the
customization requirements levied on the contractors can be eliminated.  Report
formatters are software packages that allow customers to make changes to output reports
and screen formats to meet their own needs.  If the customer has staff trained in their
use, the customers would have less reluctance to formally accept a system, since they
would be empowered to make the changes they need.  Also they would not need to come
back to the contractor so often for support after the system is accepted.

• Contracting language addressing intellectual property rights issues may alleviate
the need for having source code delivered as part of the contract.

Further details on these topics will be found in the coming chapters of this document.

Key Points

• The public and private sectors have very different perceptions of software.
These differences manifest themselves in the ways that they approach software
acquisitions and each other.

• Each sector perceives the situation as lose-win:  they lose while the other sector
wins.  In fact, it’s lose-lose; both sectors lose.
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CHAPTER 4
TYPES OF ITS SOFTWARE SYSTEMS

For the most part, ITS project managers are not interested in acquiring software for its
own sake.  Rather, they are involved in acquiring systems, of which software is a key
component.  And even when it is not the cost driver of a system, the software often drives
the schedule and is the key determiner of system functionality, usability, and reliability. 
Software is the “glue” that holds the rest of the components together and makes the
system work.

What types of systems are we talking about?  The figure below ranks various ITS systems
in order of increasing software development risk.  What these systems have in common is
their demanding real-time constraints, which differentiate them from information
technology software.  Depending upon the function, they must be able to respond within
minutes or even seconds to their inputs.  They must be extremely reliable, running around
the clock without interruption.  This contrasts with desktop applications, where system
“crashes” are not uncommon, and rebooting the software several times a day may be
necessary.  Meeting these real-time requirements adds complexity and cost to the
software (and to the hardware on which it operates).  That, along with the relatively small
customer base, explains why these types of ITS software will never be available “shrink
wrapped” at $99.

>Regional Advanced Traffic Management Systems

>Traveler Information Systems

>Freeway Management Systems

>Traffic Management Systems
>Transit Management Systems

>Large Signal Systems

>Small Signal Systems

Figure 4-1.  Ranking of Various ITS Systems

What is striking from the figure, is that the systems are also ordered by the maturity of the
technology, the number of installed systems, and the availability of off-the-shelf product
offerings.  For most of these systems, off-the-shelf product offerings are available, often
from several vendors.  The systems at the bottom of the list represent mature technology
that can often be bought as commodity products.  As one proceeds towards the middle of
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the list, off-the-shelf products exist in the form of system components that must be
integrated.  For example, for Freeway Management Systems, off-the-shelf components
exist for variable message sign control, but not for traffic-adaptive ramp metering.  The
Regional Advanced Traffic Management Systems at the top are less mature and represent
more developmental risk in regards to software.  R&D may be needed on the traffic
algorithms in them as well.  This imposes additional risk, beyond that inherent in the
software.  Unfortunately for these systems, there are relatively few or no existing
commercial products that could be bought off-the-shelf to mitigate the developmental
risk.  Customers need to consider whether they have the expertise to acquire such
systems.  

For the most part the software that integrates one type of system with another (traffic
management with transit management, for example), or software that integrates peer
systems across jurisdictional boundaries must be custom built and poses development
risk.

While this document does not explicitly consider the software acquisition needs of
electronic toll collection systems, in-vehicle systems, or systems for Commercial Vehicle
Operations, undoubtedly many of the recommendations pertain to them as well.  (And,
we can speculate, probably even to systems that have nothing whatsoever to do with
ITS.)  
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CHAPTER 5
THEMES OF SUCCESSFUL SOFTWARE

ACQUISITION

Dictionary definitions of theme: 
"a recurring unifying subject or idea” [Webster’s]; 

“a melody forming the basis of a set of variations” [American Heritage]

In Part One, we discussed some of the problems that commonly occur on software
acquisitions.  To address these problems, this chapter introduces several themes around
which a software acquisition should be built.  Collectively, they constitute a different way
of approaching an acquisition, in response to the fact that “software is different.”  To be
sure, not all of the themes are totally new or unique to software.  Some represent good
management practices that are touted elsewhere, the difference being that, while not doing
them on other projects may be acceptable, not doing them for software is fatal.  Some of
the themes are different, not in kind, but in the rigorous degree to which they must be
applied for software.  And still others are unique to software and not commonly found on
other types of acquisitions, at least not those in the transportation community.  

Figure 5-1 illustrates our themes.  Let us now consider each of them in turn.

People themes

Collaboration.  A software acquisition is a collaborative process.  A project manager
cannot do it alone or make unilateral decisions.  Instead, you must work closely
with others in your agency.  For example, the end users must be involved at all
points to help decide what the system should do, determine how users will interact
with the system, and participate in making tradeoffs between cost and functionality. 
Collaboration also extends beyond organizational boundaries to involve others,
especially the software contractor.  Only the contractor has the ability to determine
the possible design ramifications of seemingly innocent requirements.  The
contractor also has experience for you to draw upon in determining how best to
meet the customer needs.

You can’t collaborate unless there’s someone to collaborate with.  So that brings us
to our next theme: Team Building.

Team Building.  Many skills are needed for carrying out a software acquisition.  No one
individual or agency can possibly have all of them.  Therefore, a team of
professionals is needed.  Some of the diverse skills represented on the team include
hardware, software, and systems engineering; contracting, operational, domain, and
legal expertise.  By having your contracting office on the team, you will be able to
explore the range of contracting mechanisms and work with them to find the one 
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that is most appropriate for software.  The various members of the team bring not
only different skills but also different perspectives to a problem.  For example, the
end users on your team will be watching for operational issues that impact their
ability to use the system.  The team may include other departments in your agency
or even other agencies in your region.  Peer agencies can be used to provide advice.  
A most important member of your team will be the software contractor.  Even risk
management is a teaming activity and should not take place solely on the customer
side.  The customer and supplier cannot be working at cross purposes; it is essential
that they work together to achieve common objectives.  If a win-lose mindset
develops to “hold the contractor’s feet to the fire” or to squeeze the contractor to
get something for nothing, that is not teaming.  The result is not the hoped-for win-
lose, but inevitably lose-lose.  Instead, you must strive to achieve a win-win situation.

A team is more than a collection of players with diverse skills.  To be a team, the
member must work together towards common goals and objectives.  Potential
bureaucratic obstacles to acquiring a system— whether they be end users,
contracting officials, or whoever— must be won over and share in the goal of
fielding the system.  All must share in the benefits of a successful acquisition.  This
team building will require maximum use of your political and management skills. 
The goal sought after is mutual trust.

Team building requires constant nurturing.  A key practice to foster team building is
the maintenance of continual open communications, our next theme.

Open Communications.  Throughout a software acquisition, there needs to be open
communications.  Open communications with the contractor are especially
important.  Because customers and suppliers approach software from very different
perspectives, there will be misunderstandings unless open communications are
continually worked at.  The communications must start even before a contract is
signed in regards to terms and conditions, especially in regards to intellectual
property rights.  Open communications proceed with discussions on requirements
and continue with any and all decisions on through acceptance testing and
maintenance.  Throughout the acquisition, each side needs to be able to bring bad
news to the other party without fear of being “shot down” or facing recrimination.  

The contract must allow for open communications to take place, even if the
software is developed by a subcontractor.  Requiring a formal communications
process for every customer/contractor interaction will only serve to hinder effective
communications.  But even during formal reviews, open communications must be
encouraged.



Chapter 5: Themes of Successful Software Acquisition

5-4 The Road to Successful ITS Software Acquisition

One successful ITS manager emphasized the need for the contractor to bring forth
problems as soon as they arise.  “If it’s [messed] up, tell me it’s [messed] up, and I’ll work
with you.”  And, he did.  (The exact opposite of a “shooting the messenger” approach.)
But he also let them know that if they delayed in bringing forth problems, then the
problems were theirs and they would have to absorb any resultant cost overruns.

Another ITS manager cites an example of the misunderstandings that can result when
there are not open communications.  The contract had required the software vendor to
deliver documentation describing the system.  The manager was expecting a list of
modules, with descriptions of their functions, interfaces, etc.  The vendor, reading the
contract language differently, supplied an equipment list.

Active Customer Involvement.  Collaboration, team building, and open
communications all require continuous, active involvement by the customer.  You
cannot simply “turn things over” to a contractor or systems manager.  On other
types of transportation projects, it may be sufficient for the customer to take a more
passive role, perhaps conducting inspections.  But for software, up to half the total
requirements and design effort may actually be expended by the customer and end
users, even after a software contract has been issued.  Clearly, sufficient resources
must be allocated for this customer involvement to take place.  Active customer
involvement also means a willingness to decide upon and commit (in writing, as
appropriate) to a specific course of action after open communications have aired the
various options.  

Seveal readers have noted the similarily between the people themes discussed here and
partnering, which is practiced on construction projects.

Management themes

Flexibility.  Construction projects are successfully built to a rigid set of design
specifications, at the bid price and for a profit.  With software there needs to be
more give and take.  Flexibility is needed throughout the acquisition: in the
requirements, in the working relationships, in the contracting mechanism.  But most
importantly, there needs to be flexibility in the mindset of those involved.  The
recognition, as one interviewee said, that “there will be many changes.”  (Even on
construction projects, one expects changes between the initial concept sketches and
the final “as built” specifications.  As we noted in part one, these design phase
activities are more akin to software development than is the actual building of a road
or structure.)  At the outset of a project, a flexible mindset allows a whole range of
options to be considered in selecting the most appropriate contracting mechanism,
perhaps even some that have not been tried previously.  Similarly, in developing the
requirements for a system, there has to be the flexible mindset that the users may
not be able to get everything they want; there have to be tradeoffs between
functionality and price and schedule.

Requirements will evolve over time.  Typically, two percent of the requirements will
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change per month. [Jones, 1997]  The idea that software requirements can be
developed, fixed for all time, and then “thrown over the fence” will not work.  The
implications of certain requirements may not be apparent at first.  Only after the
acquisition proceeds will it become apparent that they have unacceptable
operational implications.  Sometimes a seemingly innocent requirement, one that
may not even be that important, turns out to have significant impact on the design,
imposing significant technical, cost, or schedule risk.  The acquisition must be
structured in such a way that there is the flexibility to change or remove such
requirements.  (Identifying them requires open communications.)  This is especially
true in regards to requirements for the use of specific hardware or software products
that may become obsolete by the time they are needed on the project.  As tradeoffs
are made in cost, schedule, and functionality, it may turn out that a partial solution
is the best one.  The system may not be able to achieve all that was desired, at least
not on the first iteration.  Meeting only 80 or 90 percent of the perceived needs may
be the most realistic and cost-effective solution.  Insisting on more may preclude
your buying a rather satisfactory, pre-existing system and instead throw you into a
lengthy, risky software development process.  “Rigid specifications almost without
exception require that systems be custom developed.” [Cappelletti and Gerdes,
1994, page 12]

For there to be flexibility in the technical arena, the contracting mechanism must
accommodate it and allow change to take place.  (And that can only happen if you
have already teamed with the contracting office, and initiated open communications
with them.)  For example, you can encourage innovation by allowing contractors to
propose deviations to the requirements.  “Best value” procurements enable these
proposed deviations to requirements to be accommodated in the contract.  

There also needs to be flexibility with respect to cost.  For software, it is generally
impossible to provide precise, reliable cost estimates at the beginning of a project;
only a range is possible.  When unforeseen difficulties arise, there must be the
flexibility to trade off costs with schedule and functionality as the acquisition
unfolds.  This may require adding resources through the use of contingency funds
(more cost, same functionality) or re-allocating resources (same cost, less
functionality).  Novel approaches that re-scope the project at each stage of the
acquisition process may have to be considered.  This would involve the flexibility to
have loosely defined contract options that are more precisely defined as the project
proceeds.  

However, as will be discussed below, too much flexibility is not good either. 
Requirements creep, in which new requirements are continually added or the scope
of the project is increased, must be avoided.  One noted software consultant cites
stable requirements as one of the two key practices found on successful software
acquisitions.  (A realistic schedule is the other one.)

No Silver Bullets.  As software projects run into trouble, people naturally look for that
magic potion that will cure all their software ills.  Perhaps it involves placing faith in
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a particular management practice, a new software tool, a programming language, or
a development methodology.  Also termed “silver bullets,” the cure-alls
unfortunately don’t exist.  For example, some in the ITS community feel that new
contracting mechanisms are needed for software.  This is probably a good idea,
since the traditional ones were developed without software in mind.  But if and
when new contracting options become available, they will not be panaceas. 
Software issues regarding requirements, costing, testing, and quality control, will
still need to be addressed.  Successful software acquisition requires the use of
multiple sound management and technical practices.  Each helps incrementally, but
none does the whole trick.  

Brooks wrote a classic essay on this theme entitled “No Silver Bullets:  Essence and
Accidents of Software Engineering.” It is highly readable and is “must” reading for anyone
embarking on a software acquisition.  [See Brooks, 1987.]

Up-Front Planning.  Various acquisition activities such as requirements walk-throughs,
design reviews, training, acceptance testing, and maintenance do not take place until
after a contract is awarded.  In fact, some of these do not take place until very late in
the acquisition.  Nonetheless you must plan for them up front, before an RFP is
issued.  This allows the project schedule to call out the various activities and allocate
time to them.  It also enables the RFP and contract to address the operations and
maintenance concept, system acceptance criteria, and the intellectual property rights
to the software.  

In the technical arena, planning is needed up front to address such issues as
software safety, open systems, and security.  Such features must be designed into
the system from the start; they cannot be added later, at least not without
considerable cost.  Conformity with the National ITS Architecture is another area to
address in the up-front planning of a project. 

Related to the concept of up-front planning is the need to address problems as they
occur, early rather than later.  There is considerable cost impact if problems are
swept under the rug or deferred.  But surfacing problems early requires open
communications; addressing them requires team building.

System themes

Don’t Build If You Can Buy.  Whenever possible, buy existing software products
instead of building custom software from scratch.  Product offerings, ranging from
system components that must be integrated to commodity products, are available
for many types of ITS systems.  Building new, custom software adds risk to a
system.  It also adds cost, since for off-the-shelf products, the development costs
are amortized across many customers.  To allow for an off-the-shelf solution, you
must have the flexibility (see the flexibility management theme above) to relax
requirements and buy a system that provides the “best fit.”  This requires being able
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to live with the recognition that an off-the-shelf solution probably won’t match your
vision of the ideal solution.  An off-the-shelf product may not do everything on
your wish list, but an 80% solution may be good enough.  “Do not seek exactness
when only an approximation of the truth is possible.”  [Aristotle]  

The off-the-shelf theme is one that the private sector particularly endorses.  Now we
recognize that buying off-the-shelf software is not a silver bullet.  (See Build/Buy
Decisions, Chapter 10.)  The theme here is not that you should always go with an
off-the-shelf solution.  But rather, that you should give it serious consideration, and
use it where it makes sense.  If you have requirements that preclude off-the-shelf
solutions, think them through and determine how important they are to have and at
what cost.  If you then decide that you must have the software built to meet truly
unique situations, and building it is within the state-of-the-art, by all means do so. 
But give the buy option a fair chance.  If you later decide to upgrade, the need for
customization will be based upon operational experience, not conjecture.  Of
course, any such customization is done as a teaming process with your supplier to
determine what is readily doable and what isn’t.  Then carry out the customization a
piece at a time-which brings us to our next theme.  

While private-sector vendors are the most outspoken on this topic, they are not the only
ones to endorse off-the-shelf software solutions.  Consider the experiences of one public-
sector project manager who had been through a difficult acquisition to build ITS software.
He told us that although he had not considered the off-the-shelf option, in retrospect he
should have.  It seems likely that what had been built could have been bought off-the-
shelf with much less angst.  Even the Department of Defense, which has a long history in
building software, has taken steps in recent years to encourage the use of off-the-shelf
solutions.

Take Bite-Size Pieces.  A frequent problem with software acquisitions is that they
attempt to do too much.  To be sure, it’s desirable to have an ambitious long-term
vision, to “think big.”  But this is best accomplished a step at a time.  At all points,
resist requirements or scope creep.  

Consider establishing a baseline capability, buying an off-the-shelf product if
possible, as the first bite-size piece.  Develop an overall framework and build in the
flexibility for future expansion.  Once a high-quality baseline is fielded, it can serve
as the foundation for further acquisition activities, allowing more functions to be
added later.

There are a number of advantages in taking bite-size pieces: 

• It makes the acquisition more manageable.  Large projects may seem
technically doable.  But when they fail, it’s not because of the technology,
but because they go beyond the state-of-the-art (or at least the state-of-the-
practice) of software management.  

• As a system becomes larger, error rates increase, and the mean time to
failure decreases.  [Putnam and Myers, 1992, page 136]  There is some



Chapter 5: Themes of Successful Software Acquisition

5-8 The Road to Successful ITS Software Acquisition

Scope
Creep

Requirements
Creep

evidence that as added requirements interact in unanticipated ways, system
complexity goes up and reliability goes down in proportion to the square of
the size.  So if you cut back on the size, you will get disproportionate
benefits.  

• “Because the effort to build software increases disproportionately faster than
the size of the software, a reduction in size will increase development speed
disproportionately.”  A rough guideline is that cutting the size in half reduces
the overall effort by two-thirds.  [McConnell, 1996]  

• With smaller pieces, something gets fielded sooner.  You will find that as
new systems are implemented, they usually get used in unexpected ways. 
By allowing the users to “kick the tires” of a tangible product, later pieces
can then benefit from this operational experience, addressing unanticipated
needs of the users.  This is preferable to acquiring a system that addresses all
the needs conjectured at the outset, only to find that much of the effort was
wasted on developing features that never got used.  [Costantino et al., 1995] 
Moreover, having a tangible product to show is an effective way to build
political support for achieving your long range objectives.  It also improves
morale as developers and managers see the fruits of their labor.  

• With a smaller acquisition and its shorter schedule, many of the same team
members will still be around at the conclusion of the project.  A major
problem that plagues big acquisitions is high turnover in personnel, with few
of the original players remaining at the end.  This is true in both the public
and private sector.  One sector’s turnover negatively impacts the other sector
because of the loss of corporate memory. The new team members may not
accept the original requirements, and even though the system is “done” (per
the original requirements) additional work is needed to satisfy the perceived
needs of the new players.  With a shorter acquisition, the problem is
reduced.  

• Long acquisitions perpetually try to chase the ever accelerating pace of
advances in computer technology.  By the time a new advance is
accommodated, yet another one appears.

How do you go about resisting requirements or scope creep, keeping the pieces
small, without unduly limiting your vision of the ultimate goals and objectives? 
One way is to constrain the functionality so it can reasonably be expected to be
implemented in a relatively short schedule.  (However, be careful about imposing an
unrealistic short schedule.  The schedule should be based on what you are trying to
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achieve, not on wishful thinking.)  If you find that a piece will take longer than a
year to implement, subdivide it into smaller pieces.  “Big steps are killers.”  Studies
of software organizations with successful track records show that they take bite-size
pieces needing no more than nine months from requirements to delivery. [Jones, 1997]

Related to the design to schedule approach discussed in the preceding paragraph is
design to cost.  Develop a list of mandatory and optional features, and only tackle
those that can be implemented within cost constraints.

Another approach is to have a task-order contract, with only the first one or several
tasks “turned on.”  Each task can include an activity to plan the next one. 
Additional tasks are turned on one at a time.  In effect, a large acquisition is turned
into a series of smaller ones.  For this to work, the contract must have the flexibility
to allow you to chart your course as you go.  

There have been a number of notable ITS successes achieved through the use of
incremental development.  In Houston, Texas, a basic traffic management center was
established and expanded to incorporate other agencies over time as they saw the
benefits of closer coordination.  This was seen as more effective than attempting to have
all the parties reach up-front agreements on a coordination plan.  In Montgomery County,
Maryland, basic traffic data on cable TV led to public support for more capabilities.  It
would have been much more difficult to generate public support for a comprehensive
paper concept when they had no prior experience with what the data could offer.
[Federal Highway Administration, 1996.]

Counterparts to themes: what not to do

Several philosophies are commonly heard on software acquisitions that run counter to the
themes.  They almost invariably lead to trouble:

• “holding the contractor’s feet to the fire”

• squeezing the schedule (“we know it’s unrealistic, but...”)

• building everything in one fell swoop and turning it all on at once (the “big bang
theory”)

• asking for more than what’s in the contract (the “free lunch”)

• picking the right contractor and leaving them alone (“laissez-faire”)

• being overly optimistic with unrealistic expectations (“sure it’s risky, but if all the
chips fall in place...”)

• by the contractor: low-balling the project to “get in the door” and position oneself
for future work, counting on engineering changes to “get well”

• on a fixed-price contract, requiring the contractor to supply cost details that are
suitable for cost-reimbursement contracts instead of paying for completed tasks or
milestones
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Applying themes to software acquisition activities

In Part Three and Part Four of this document (see Volume II), we relate the themes to the
various activities that occur on a software acquisition.  Many of the themes will recur
again and again.  When we come across a theme, we’ll call it out.  Indeed, many of our
recommended activities are just specific illustrations of one of the themes, a variation on
the “software acquisition melody.”

Before closing this chapter, we provide a quote that nicely summarizes several of our
themes:

“A most important ingredient for the success of a software project is an
environment of communications and mutual trust between the buyer and seller. 
Many buyers believe that sellers are knowledgeable and experienced in
development and that they should be left to their own devices.  Too often the
buyer relies totally on the contract as a management vehicle.  The buyer’s
approach is to consider problems that arise to be the seller’s problems and to
expect contractual pressure on the seller to solve them.  The adage, “Hold the
contractor’s feet to the fire,” has been a common management mistake.  When a
problem occurs, the seller is therefore always to blame.  This intractable
approach has proved unworkable time and again.

“The contract represents the best written communication for the requirements
of the effort at the initiation of development.  It is only a document, however,
and cannot take the place of effective management by the buyer and seller. The
objective of the development is not the exercise of the contract— it is the delivery
of a viable capability.  To achieve a successful delivery requires communication
and cooperation by both the seller and buyer— in other words, it calls for a team
effort.” [Marciniak and Reifer, 1990]

• Build your software acquisition around certain themes that should recur
throughout the various acquisition activities:

– People themes, which are akin to partnering.
– Management themes, on how to approach the acquisition.
– System themes, relating to the end product.

• The themes can guide you as to the best practices to employ in approaching
your software acquisition.

• Collectively, the themes address the problems commonly associated with
software and represent our response to the overarching theme that “software is
different.”

Key Points



The Road to Successful ITS Software Acquisition

CONCLUDING REMARKS TO VOLUME I

This concludes Volume I of The Road to Successful ITS Software Acquisition.  In this
volume, we explained how software is different and introduced a set of themes for dealing
with those differences.  Volume II builds upon the themes.  It discusses the activities
associated with a software acquisition and shows how the themes can be used to guide
the activities.  

We invite you now to turn to Volume II.
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