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1.0  INTRODUCTION

The National Highway Traffic Safety Administration (NHTSA) estimates that each year in the United

States, approximately 1,550 people are killed and 40,000 people are injured in crashes related to, if

not primarily caused by, drowsy driving (Knipling and Wang, 1994).  Furthermore, it is believed that

many more crashes are caused by drowsy driving than are indicated by crash reports (Wang, Knipling,

and Goodman, 1996).  For example, driver inattention has been implicated as a major causal factor

in many different crash types (Tijerina, 1996), yet the possibility exists that drowsiness or fatigue

contributes to inattention while driving.  

Drowsy driving can be caused by a combination of sleep loss, driving when circadian rhythms are low

(early morning hours and mid- afternoon), or driving for long periods of time.  A 1994 survey

conducted by the Institute for Traffic Safety and Fact Finders, Inc. found that about half of the New

York State drivers polled reported driving while drowsy within the previous year and  25 percent of

the drivers reported having fallen asleep at the wheel (Institute for Traffic Safety, 1998).  These

results have been corroborated by other surveys as well (e.g., Garder and Alexander, 1995).  This

troubling trend suggests a need to address the problem of drowsy driving through a variety of means.

For these reasons, the Department of Transportation (DOT) is conducting basic and applied research

into the problem of drowsy driving and driver inattention.

Educational and outreach programs are one means to address the problem of drowsy driving. The

National Sleep Foundation’s “Drive Alert...Drive Alive” program, for example, provides instructional

videos, cassettes and brochures to educate the driving public on the nature of the problem and steps

to counteract it.  Sleep disorders that contribute to drowsy driving are also addressed in some of these

types of materials.  These types of programs provide useful information to the driving public about

the problem of drowsy driving and are the target of public information and education programs under

development at the National Highway Traffic Safety Administration (Butler, 1998).  An interesting

research effort might involve assessing the impact such educational and outreach programs have in

reducing the incidence of drowsy driving and related crashes over time.
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Road design changes are another means to mitigate or reduce the incidence of drowsy driving or

inattention-related crashes.  One such road design change is the installation of rumble strips along the

shoulder of selected roadways to alert the driver who is drifting off the road due to sleepiness and/or

inattention (Wood, 1994; Garder and Alexander, 1995).  In principle, drivers take corrective action

before they leave the roadway completely. The National Sleep Foundation (1997) empaneled a group

of experts to review existing research on the safety impacts of continuous shoulder  rumble strips.

The expert panel determined that rumble strips are beneficial in reducing roadway departure crashes

on rural interstates and similar roadways.  However, there was insufficient data to demonstrate a

benefit on other types of roads.  Furthermore, there were data that suggested that shoulder rumble

strips might cause crash migration, i.e., a shift in the crash location to another location without rumble

strips. This was interpreted as a temporary postponement of a drowsy driver-related crash.  The

panel’s report recommended that rumble strip deployment be accompanied with educational and

outreach programs to inform drivers that hitting the rumble strips may indicate severe impairment and

therefore the potentially impaired driver should pull off the road as soon as possible to rest.

Research indicates that people are not necessarily good at gauging how drowsy they are or when they

are likely to fall asleep. Itoi, Cliveti, Voth, Danth, Hyde, Gupta, and Dement (1993), for example,

conducted a laboratory study on sleep deprived test participants to address this question.  The

participants engaged in a one-hour computer exercise in which they predicted the likelihood of sleep

over the next 2-minute interval by using a 0% to 100% likelihood scale.  They also reported any

perceived physical signs of drowsiness by selecting from icons on the computer screen that

represented involuntary eye closure, yawning, involuntary head nodding, and the like.  The results

indicated widely varying abilities of individuals to predict sleep onset, with people predicting, on

average,  a likelihood of only 55% that they would fall asleep prior to their first sleep onset. Self

reports of physical indicators of drowsiness were, on average, higher prior to sleep onset than prior

to epochs where sleep did not occur.  It was reported that test participants whose likelihood estimates

seemed to ignore the frequency of physical indicators tended to be poor predictors.  Also, those test

participants whose physical indicators of drowsiness did not necessarily provide a strong indication

of sleep onset also tended to be poor predictors.  Together, these results were interpreted to mean
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that people’s inability to judge sleep onset may be related either to a lack of meaningful physical

warning signs in some persons or a failure to appreciate the significance of these indicators in other

persons.

Technology may be able to provide earlier or more robust warnings of degraded driving status so as

to preclude a drowsy driving-related crash.  Drowsy driver detection algorithms and approaches have

been a topic of considerable research in recent years.  A key ingredient  in the development of such

algorithms is selection of an appropriate “criterion” measure for drowsiness.  Such a measure of

drowsiness should ideally be valid (i.e., relate to observed performance decrements in meaningful

ways) and reliable (i.e., consistently vary with levels of sleepiness, circadian troughs, or time on task).

Numerous physiological measures of driver arousal or wakefulness exist (Wylie, Shultz, Miller,

Mitler, and Mackie, 1996).   These include electroencephalograms (EEGs), heart rate and heart rate

variability, core body temperature, and various measures of the eyes.  

Eyelid closure has recently proven to be among the most robust and meaningful operational indicators

of drowsiness while driving.  Wierwille, Wreggitt, Kirn, Ellsworth, and Fairbanks, 1994)

demonstrated that PERCLOS, defined as the proportion of a time interval that the eyes were 80%

to 100% closed (exclusive of blinks), was highly correlated with other physiological indicators of

drowsiness and was a useful criterion for drowsiness prediction algorithms that employed driver-

vehicle performance measures as predictors.  PERCLOS has an operational relevance that is hard to

dispute.  Wierwille et al. (1994) found that it was indicative of sleep onset and was connected to poor

performance in visual tasks.  In driving, the authors point out, “...it seems obvious that if a driver’s

eyelids are closed, the ability to operate a vehicle would be greatly hampered.” (Wierwille et al.,

1994, pg. 13). 

Numerous attempts have been made to correlate various measures of driving to drowsiness.

Variations in lanekeeping, steering inputs, and speed maintenance have been reported as a function

of level of fatigue (Wierwille et al., 1994).  Of the various measures, those related to steering inputs

and lanekeeping appear to be the most promising indicators of drowsiness or impaired driving
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performance.  When the eyes are closed due to drowsiness, visual inputs to the driver are temporarily

halted.  The driver may hold the steering wheel at a nearly fixed angle during eye closure and the

vehicle continues in a straight line.  However, given road crown, road surface variations, wind gusts,

and variations in road geometry, the vehicle may drift out of lane.  The driver who successfully

completes a trip will, when subjective uncertainty about the driving situation builds up, open the

eyelids to assess the driving situation. This, in turn, will be associated with a corrective steering input

and more or less sudden shift in lane position back to lane center.  This process is consistent with

models of the driver as a intermittent controller (Senders, Kristofferson, Levison, Dietrich, and Ward,

1967).  Speed and accelerator pedal variations have been reported by some researchers (e.g., Artaud,

Planque, Lavergne, Cara, de Lepine, Tarriere, and Geuguen, 1994; Siegmund, King, and Mumford,

1996) but these are more  variable in their relation to drowsiness levels than the steering and

lanekeeping effects just described.  

The National Highway Traffic Safety Administration (NHTSA) has sponsored research into the

drowsiness detection problem.  Of particular interest in this report is the drowsy driver research

program recently completed by Wierwille and his associates (Wierwille, Lewin, and Fairbanks, 1996a,

1996b, 1996c).  This research focused on the development of a vehicle-based driver drowsiness

detection system.  This is a system of continuous, unobtrusive measurements of driving performance

(e.g., steering wheel inputs, lanekeeping performance) and an algorithm to classify a driver as

“drowsy” or “not drowsy”.  Such a detection system would eventually be integrated into a driver-

system interface to present warning signals to the driver and possibly countermeasures to drowsiness

as well (e.g., cool air, mint scent, seat shaker). 

During the course of research into drowsy driver detection algorithms, Wierwille and his associates

conducted extensive studies in the driving simulator located at the Vehicle Analysis and Simulation

Laboratory at the Virginia Polytechnic Institute and State University. The general research paradigm

was as follows.  Test participants were asked to rise by 7:00am on the testing day and carry on with

normal activities but avoid naps.  At 6:00pm they were picked up by an associate experimenter, taken

to dinner, and asked to avoid stimulants during and after dinner.  The test participant was brought
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to the laboratory after dinner and engaged in various activities but avoided naps.  At approximately

midnight, the test participant entered the simulator and began a simulator driving session that lasted

roughly 2.75 hours. During this time, various driver-vehicle performance measures were captured,

and video of the driver’s face was recorded.  Drowsiness was operationally defined by  PERCLOS,

the percentage of a sample driving period (generally 3 to 6 minutes) where the eyes were 80 to 100

percent closed.  (Other measures of drowsiness were developed, but they will not be discussed here).

Various statistical analyses were conducted, the most robust of which proved to be multiple linear

regression.  This method of detection algorithm development allowed Wierwille and his associates

to set thresholds after the model was fitted to the data.

Algorithms to estimate PERCLOS by means of the regression models had multiple R values ranging

from approximately 0.79 to 0.87, depending on what predictors were used in the algorithm.  Late in

the program, however, these early algorithms were found to be ineffective in detecting drowsiness

(Wierwille et al., 1996b).  It was surmised that earlier simulator studies had not sufficiently

emphasized good lanekeeping as would be expected in normal driving.  During the subsequent test

and evaluation studies, however, the simulator study paradigm was modified to encourage better

lanekeeping by means of monetary penalties for lane departures, a “laneminder” device that sounded

an auditory alarm when lane boundaries were exceeded, and a seat vibration “rumble” cue that was

presented when lane excursions were excessive.  

New studies on the driving simulator were conducted with the new protocol that emphasized good

lanekeeping.  The best algorithm developed to estimate PERCLOS, referred to as algorithm F4e-3,

had a multiple-R value of R = 0.48, with a threshold of 0.012 (i.e. a classification criterion of an

estimated total of (0.012)x(180 seconds) or approximately 2 seconds or more in a 3-minute driving

period or epoch with eyelids 80 percent or more closed, disregarding eye blinks) .  The classification

accuracy for drowsy vs. non-drowsy states was a false alarm rate of 0.038 or 3.8% and a miss rate

of 0.51 or 51.0% (Wierwille et al., 1996a, pg. 57).  To improve classification accuracy, Wierwille and

his associates then logically OR’d the estimated PERCLOS (ePERCLOS) algorithm with LANEX.

LANEX is defined as the proportion of a driving interval the vehicle exceeded a lane line (threshold
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0.06667 or 12 seconds for a 3-minute driving interval or epoch).  This approach lead to a

reconsideration of the phenomenon of interest from drowsy driving detection alone to drowsy driving

or impaired lanekeeping performance.  By this redefinition, the false alarm rate was reduced to 0.002

or 0.2 % and the miss rate was reduced to 0.211 or 21.1%.   Wierwille and his colleagues (Wierwille

et al., 1996c) concluded that constructing conditional OR classification schemes by using both

estimated PERCLOS algorithm output and observed LANEX was necessary to  significantly improve

classification accuracy levels.  Lane exceedences are taken as prima facie safety relevant to road

departure, lane change, and other types of crashes.  Theoretically, intended lane changes or other lane

departure maneuvers could be distinguished by the driver’s use of directional signals. 

LNMNSQ values are  highly correlated with lane departures so are considered safety relevant as well.

LNMNSQ is defined as the lane position mean square error about lane center within a 3-minute

driving epoch.  A threshold and criterion of 3.00  feet2  was applied.  Estimated PERCLOS was

logically OR’d with LNMNSQ to detect degraded driving performance or drowsiness.  This lead to

a  false alarm rate of 0.005 or 0.5 % and a miss rate of 0.1973 or 19.73 %.  The research program

concluded at this point with the recommended PERCLOS algorithm F4e-3 and a recommended driver

interface.  It was beyond the scope of that effort to validate the algorithms on the road or test the

efficacy of driver warnings or countermeasures in a real world setting. 

There were two objectives in the present study.  One objective was to collect real-world driving data

from a small sample of drivers, including face video, video of the road scene, and various engineering

measures.  These data would then be processed to determine periods of drowsy and inattentive

driving and selected segments would then be available for use as exhibits in NHTSA-sponsored

educational and outreach programs.  A second objective of this effort was to use real world

naturalistic driving data to examine the Wierwille et al. (1996) drowsy driver detection algorithm’s

performance in a real world driving environment as compared to the simulator environment in which

it was originally developed.   The test participants were chosen as representatives of drivers thought

to be at heightened risk for drowsy driving.  They included shift workers, military personnel on leave,

and students traveling during breaks in classes.  The test participants were not informed of specific
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interests of the study in an effort to avoid any reactive behavior that might bias the results away from

naturalistic driving.  However, they were aware of the instrumentation in their vehicles and that a

variety of measures were being collected.

2.0  METHOD

2.1  Test Participants

College students were recruited by placing display advertisements in the school newspaper and by

posting flyers in public places on campus.  Shift workers were recruited by pre-shift announcements

by management, in plant TV announcements, and posting flyers in public places at the plant.  Military

personnel were recruited by placing display advertisements in a base newspaper and posting flyers

in public places on base.  All recruitment took place in central Ohio.

The advertisements specified the test participant must be from the population of interest and be

planning a drive of at least 5 hours duration each way (or a commute of at least 45 minutes for the

shift workers).  The ads also specified that the volunteer be healthy, have a good driving record, and

drive a passenger car.  The ads explained that the purpose of the study was to collect data on long

distance drives or commutes, how the data would be collected, how much they would be

compensated for participation, and the time frame in which test participants were needed.

When prospective test participants called NHTSA’s Vehicle Research and Test Center (VRTC), the

program was explained in more detail.  The program was only described as a study of long distance

driving; drowsy driving was not discussed.  If the prospective test participants were still interested,

eligibility and trip information would be taken.  Then this  information was reviewed and  participants

were selected.

The participants were selected from the available pool based on many criteria.  Foremost, they had

to meet the below listed requirements:
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a. have a valid drivers license without restrictions.  If eyeglasses or contacts are required

by the test participant for driving, they must be worn for testing.

b. have a driving record with no DUI convictions, no more than one crash in the last five

years, no more than two moving violations in the last three years

c. have at least the automobile insurance coverage required by state law

d.  have a minimum of two years of driving experience;

e.  be at least 21 years of age and not more than 55 years of age.

f.  not have any diagnosed sleep-related disorder or physical handicaps;

g.  not be under the influence of any emotional stress that may impair driving ability.

h drive a late model car in good mechanical condition.

I. be willing to sign a waiver to allow video and engineering data taken of the driver while

driving to be used without constraint by NHTSA for educational outreach and research

purposes.

From the reduced pool of those who met the above requirements, test participants who were most

likely to experience drowsy driving because of their planned itinerary were selected.  Once selected,

a driving abstract was obtained from the Ohio Bureau of Motor Vehicles to verify the information

taken over the telephone, and participants would be called back and asked to participate.  If they

agreed to participate, their vehicles would be scheduled for pick-up.  Table 1 provides descriptive

information on the sample of test participants analyzed in this study.  They were paid between

$310.00 and $390.00, depending on the length of time their vehicle was “leased” to VRTC for

instrumentation work and when the data collection was carried out.
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TABLE 1.  Test Participant Description, Vehicle Driven, and Trip Description

Participant
 Code

Description Vehicle Driven Trip Descriptions

1 Male, 51 years of
age, shift worker

1989 Ford
Taurus

Worked from 2:45 p.m. to 11:15 p.m. 
His drive to work varied from 50 to 60
minutes, predominantly on a rural divided
highway

2 Male, 30 years of
age, college
student

1988 VW
Sirocco

Drove to Washington D.C. from
Columbus, Ohio and back.  This trip
normally takes about 7 hours, one way.

3 Male, 32 years of
age, college
student

1992 Honda
Accord

Drove to New Jersey from Columbus,
Ohio and back.  This trip normally takes
about 8 hours.  Individual stated he made
this trip almost every weekend.

5 Male, 53 years of
age, shift worker

1987 Honda
Accord

Worked from 10:30 p.m. to 7:00 a.m. 
His drive to work varied from 45 to 50
minutes and took place on rural highways
and a rural interstate highway.

6 Male, 34 years of
age, college
student

1990 Honda
Civic

Drove to Coventry, Conn. from
Columbus, Ohio and back.  This trip
normally takes about 11 hours.

7 Male, 28 years of
age, college
student

1994 Honda
Civic

Drove to Richmond, Virginia from
Columbus, Ohio and back.  This trip
normally takes about 7 hours.

8 Male, 35 years of
age, military
personnel

1995 Dodge
Intrepid

Drove to East Saint Louis, Illinois from
Dayton, Ohio and back.  This trip
normally takes about 7 hours.

Note: Test Participant 4 was not included because of data loss. Two additional test participants
(Test Participants 9 and 10) were also not included because of data loss.

2.2  Apparatus

Each test participant’s personal vehicle was equipped with MicroDAS instrumentation.   The system

of sensors and processing captured steering wheel position, travel speed, lane position, lane
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exceedences, lateral and longitudinal accelerations, and yaw rate. In addition, digitized video of the

road scene and driver eye glance behavior were also recorded and synchronized to the engineering

data .  Infrared lighting was used so as to allow high quality video of the driver’s face to be taken at

night.  All data were captured at a sampling rate of 30 Hz. Further details on MicroDAS are provided

in  Barickman (1998).  The MicroDAS was programmed to collect data only when the vehicle was

traveling approximately 49 mph or faster.  The MicroDAS continued recording until the vehicle travel

speed fell below 43 mph.  Such minimum travel speed criteria were suggested by Wierwille et al.

(1996a) as indicative of a condition relatively more likely to induce drowsy driving and for which a

usable algorithm for drowsiness detection might be obtained.  Eye glance video was later manually

reduced to obtain eye closure data needed to determine the observed measure of drowsiness,

PERCLOS.    It should be noted that the MicroDAS lane trackers are essentially cameras whose

images are processed to discern the line pavement marking from the surrounding pavement.  Worn

lane lines, specular reflections, and other phenomena contributed to loss of lane tracker data.

2.3  Procedure

At the time a test participant’s vehicle was picked up for MicroDAS installation, the individual was

asked to read and sign an informed consent and waiver of confidentiality form. This form described

the program in general terms, the risks, benefits, confidentiality, compensation, and requirements.

The individual was also asked to sign a vehicle lease agreement, which gave the owner’s permission

for VRTC to take the vehicle and install MicroDAS.  The return of the vehicle was scheduled and

delivered upon completion of MicroDAS installation.  Depending on the individual test participant’s

driving plans, the pickup of the vehicle for MicroDAS removal was also scheduled. The test

participant then completed the planned driving, during which data was collected.   When the vehicle

was returned at the end of the test, after removal of the MicroDAS, the test participants were paid

and informally interviewed.  They were asked about any problems or observations about MicroDAS

or any problems or unusual events that occurred during their driving.  Additionally, the shift workers

were interviewed about their sleep habits.
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Care was taken to ensure that test participants were not alerted to a special interest in drowsy driving.

The informed consent form, for example, described the study purpose only in general terms, i.e., to

gather data on how people normally drive in a variety of driving conditions and evaluate the

MicroDAS instrumentation (both true).  No attempts were made to collect sleep logs, subjective sleep

scale ratings, or any other data that might prompt a reaction on the part of the test participant.  Also,

the driving undertaken by the test participants was fully discretionary and had been planned regardless

of involvement in this study.  These factors, together with the absence of an experimenter on the

drives, the unobtrusive nature of MicroDAS, and its installation into test participant’s own vehicles,

represent a comprehensive effort to gather naturalistic driving data with a minimum of experimental

artifacts. 

2.4  Measured Variables

A list of the measured variables is provided in Table 2.  These variables include those used to assess

the Wierwille et al. (1996a) drowsy driver detection algorithm.  Additional variables in the table were

also collected so that new algorithms might be developed from the collected data.  

TABLE 2.  Response Variables Collected/Calculated for Drowsy/Inattentive Driving Study 
(Source: Wierwille, Lewin, and Fairbanks, 1996a; Wierwille, personal communication, 1998) 

Measured
Variable

Definition Collection/Calculation

PERCLOS The proportion of time that a test
participant’s eyes were 80% to
100% closed.

Manual data reduction eye closure data from
face camera video.  Magnitude and duration
of eye closure used to calculate PERCLOS

STVELV The variance of steering wheel
velocity, where steering velocity is
measured in degrees/sec.  Thus,
STVELV is in units of 
(degrees/sec)2. 

Steering wheel position was recorded at
approximately 0.1 degree resolution.  This
signal was post-processed (filtered )and then
differentiated to derive STVELV, applying
standard sample estimates of variance.  The
steering velocity noise was within 2 degrees /
sec.
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TABLE 2.  (Continued)

LGREV The number of times that the
steering wheel movement exceeded
15 degrees after steering velocity
passed through zero.

LGREV and MDREV were post-processed
from measured steering wheel position and
calculated steering wheel velocity with a 2
deg/sec deadband (i.e., operational definition
of zero velocity).

MDREV The number of times that the
steering wheel movement exceeded
5 degrees, but did not exceed 15
degrees, after steering velocity
passed through zero.

See LGREV comments.

LNMNSQ The mean square of lane position
with respect to lane center,
measured in feet2.

Calculated from two rear-mounted,
downward-facing cameras that captured
approximately a 7-foot field of view each.
Video output was processed through a
VRTC-built video processing board to
determine lane line position with respect to
vehicle reference points. Resolution of the
system averaged approximately 1inch.

LANVAR The variance of lateral position
relative to lane center, in feet2.

See previous comments.  Note that LANVAR
is equal to LNMNSQ only when the mean
lane position is zero (i.e., lane center).

LANEX The proportion of time any part of
the  vehicle is outside the lane
boundary .

Derived from lane position sensor
information.

INTAC
DEV

INTAC
DEV*

The standard deviation of the
lateral velocity of the vehicle,
measured in volts where one volt
equals 73.34 feet/sec.
INTACDEV* is INTACDEV in
feet/second. It was assessed with
stepwise regression (see text).

Lateral acceleration calculated from yaw rate
(in degrees/second) and travel speed (in
feet/second).  This is then integrated and
filtered via a “leaking integrator function”
applied to derive lateral velocity, which is then
converted to volts.

HPYAW
RTDEV
and
HPYAW
VAR

The standard deviation of yaw rate
after high pass filtering, in units of
degrees/sec.

HPYAWRTVAR is the square of
HPYAWRTDEV.

Yaw rate sensor output is  high pass filtered in
post-processing with a  corner frequency of
0.08Hz.  The purpose of high pass filtering is
to remove the effects of curvature on the yaw
rate signal.  The result is a measure that
reflects changes in control of vehicle
alignment
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3.0  RESULTS

The analysis of the reduced video and engineering data was conducted in several stages.  First, quality

assurance criteria were established such that a) only full 3-minute epochs were analyzed, b) eye

closure data had to be available for 2.5 minutes or more of each analyzed 3-minute epoch, and c)

engineering data (specifically lane position data) had to be available for 2.5 minutes or more for each

analyzed 3-minute epoch.  Video data loss might have arisen due to equipment malfunction en route

(e.g., a system crash or face camera misalignment) or insufficient data in the face video (e.g., due to

shadows or variations in driver head position) to allow the manual data reductionist to reliably

measure eye closure.  Engineering data such as the lane position channel might be unavailable due to

such factors as worn lane line pavement markings, shadows on the lane markings, or specular

reflections off the pavement from bright sunlight.  These quality assurance criteria were based on the

fact that 3-minute epochs were used in the final recommended estimated PERCLOS (ePERCLOS)

algorithm, algorithm F4e-3 in Wierwille et al. (1996a).  Furthermore, when lane information is not

available for a substantial period of time, no reasonable degree of detection accuracy can be achieved

with steering inputs alone (Wierwille et al., 199c, pg. 40).   In all, 283 3-minute epochs were retained

for further analysis. 

A total of 20 epochs of drowsiness occurred among  the 283 epochs analyzed.  These were

operationally defined by means of an observed PERCLOS value greater than or equal to 0.012. 

Table 3 presents these 20 epochs.  By looking down the SUBJECT column, one may see that test

participants 1, 3, 5, 6, 7,and 8 all had at least one drowsy driving epoch each.  However, test

participants 3 and 8 account for the majority of the drowsy driving epochs observed. Within a file

(FILENAME), the sequence of drowsy driving epochs (EPOKSEQ) were sometimes consecutive,

indicating drowsy driving that extended beyond a single 3-minute period.  For example, test

participant 3 had consecutive epoch sequence numbers 20 and 21 for file 3070 and test participant

8 had consecutive epoch sequence numbers 14 and 15 for file 8007.  The longest single bout of

drowsy driving that contributed to these PERCLOS values was approximately 13 seconds for test

participant 3, epoch sequence 26 in file 3070.  There were no drowsiness-related crashes or serious
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mishaps recorded during the study.  One close call was recorded; a heavy truck ahead of one test

participant blew a tire and its tread flew toward the test participant’s windshield.  Luckily, the test

participant made a successful evasive maneuver (lane change) and avoided the tread.

TABLE 3.  True Drowsiness Epochs

                          True Drowsiness Epochs  

              SUBJECT    FILENAME    EPOKSEQ    PERCLOS     LNMNSQ     LANEX

               1         1122         13       0.016     0.94155    0.00000
               3         3070         19       0.032     3.07173    0.06972
               3         3070         20       0.017     4.44423    0.15518
               3         3070         21       0.024     3.58716    0.07776
               3         3070         26       0.041     4.36884    0.09091
               3         3072          8       0.018     3.03197    0.03113
               3         3072         11       0.044     5.00633    0.10175
               3         3072         18       0.019     1.78454    0.00000
               3         3109          2       0.031     4.45339    0.06549
               3         3109          3       0.057     2.61978    0.01973
               3         3109          5       0.057     1.27367    0.01745
               3         3110          7       0.031     1.49403    0.00563
               5         5007          1       0.050     1.60610    0.00000
               6         6011         14       0.014     0.69562    0.00000
               7         7005         21       0.012     1.57067    0.04486
               8         8007         14       0.016     1.30125    0.00683
               8         8007         15       0.016     0.72378    0.00631
               8         8007         28       0.013     0.52367    0.00000
               8         8023         38       0.014     1.50358    0.00000
               8         8024         15       0.014     2.11609    0.00000

Note: Drowsiness operationally defined by an observed PERCLOS value greater than or equal to 0.012.

Inasmuch as detection of degraded driving was also of interest in this project, degraded driving as

defined in terms of  lanekeeping measures were also examined.  Table 4 presents the instances of

degraded lanekeeping, given no drowsy driving occurred.  The top portion of the table shows epochs

with degraded lanekeeping, operationally defined with a lane mean square lane position value for the

epoch of 3.0 ft2 or greater.  The lower portion shows epochs with observed lane exceedence

(LANEX) values of 0.06667 or greater for a 3-minute epoch.  Interestingly, all of these degraded

lanekeeping events occurred with test participant 3.  These were the data to which driver status

monitoring assessments were directed.
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TABLE 4. True Degraded Driving Epochs, Exclusive of Drowsy Driving

   True Degraded Driving Epochs,LNMNSQ Criterion, Excluding Drowsy Driving          
   
             OBS    SUBJECT    FILENAME    EPOKSEQ    PC80PCT     LNMNSQ   

               1       2         2018         14        .000     3.79630   
               2       2         2021          1        .000     3.08035   
               3       3         3070          3        .000     5.18908   
               4       3         3070         10        .000     3.41268  
               5       3         3070         17        .000     3.57719   
               6       3         3072          4        .000     5.21237   
               7       3         3072          5        .000     5.18546 
               8       3         3072          6        .007     4.29919   
               9       3         3072         12        .000     3.66169   
              10       3         3072         15        .000     3.81875   
              11       3         3072         16        .006     4.25305   
              12       3         3086          5        .000     3.05906   
              13       3         3101          5        .000     3.12766  
              14       3         3102          3        .000     7.86231   
              15       3         3102          5        .000     3.64000   

True Degraded Driving Epochs, Lanex Defined, excluding Drowsy Driving   
      
             OBS    SUBJECT    FILENAME    EPOKSEQ    PC80PCT    LANEX

              1        3         3070          3         0       0.11290
              2        3         3070         10         0       0.07202
              3        3         3072          4         0       0.11723
              4        3         3072          5         0       0.09600
              5        3         3072         15         0       0.08989
              6        3         3102          3         0       0.21120

Note: The LNMNSQ criterion was an observed lane position mean square of 3.0 ft 2 or more.
The LANEX criterion was an observed lane exceedence of 0.06667 or more.

3.1  Drowsiness Detection Results

Derived by means of backward stepwise multiple linear regression, Wierwille et al. (1996a)

recommended Algorithm F4e-3 to generate estimates of PERCLOS (ePERCLOS):

ePERCLOS = -0.00304 + 0.000055 (STVELV) - 0.00153 (LGREV) - 0.00038(MDREV)

+ 0.003326(LNMNSQ) + 0.00524(LANVAR) - 0.00796(INTACDEV)

where all terms are defined in Table 2.  This model had an multiple correlation coefficient of  R =

0.482 in the report by Wierwille et al. (1996a)  and all regression coefficients were statistically
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significantly different from zero at least a 0.05 alpha level.  The algorithm was intended for use with

predictor values calculated over 3-minute epochs.  It should be noted that  multiple regression

models, in maximizing multiple correlation, take advantage of any correlated errors or specific

variations in the original derivation study (Grimm and Yarnold, 1995).  Therefore, the measures of

association and accuracy of prediction (or classification) are expected to be lower or shrink somewhat

when the regression equation is applied to a new sample of data.  How much shrinkage arises depends

on the degree of similarity between the original model building data set and the new sample.

Algorithm F4e-3 was applied to the naturalistic driving data set in order to assess its classification

performance.  Figure 1 depicts a scatterplot of observed PERCLOS, versus ePERCLOS as calculated

from algorithm F4e-3.   There is a small but significant positive correlation between PERCLOS and

ePERCLOS, r = 0.274, p < 0.0001, N = 283.  Table 5 presents the drowsiness classification accuracy

of algorithm F4e-3's ePERCLOS with the selected naturalistic driving data set.  The classification

assumed an ePERCLOS threshold and a PERCLOS criterion for drowsy driving of  0.012.  This

amounts to cumulative eye closure (80% or more eyelid closure) of approximately 2 seconds or more

over a 180 second epoch, disregarding blinks.  As indicated in Table 5, when drowsy driving was not

present (as operationally defined by observed PERCLOS less than 0.012), the classification accuracy

was approximately 94%, close to the 96% reported by Wierwille et al. (1996a, 1996c) with the same

threshold and criterion values.  When drowsiness was present, the correct detection or true positive

rate was 35% as compared with 48.5% in Wierwille et al. (1996a, 1996c).  This suggests the

ePERCLOS algorithm extrapolated relatively well in terms of its intended purpose from the simulator

to real world driving.  
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Figure 1.  Scatter Plot of observed PERCLOS  versus estimated PERCLOS (ePERCLOS) calculated
from algorithm F4e-3, N =283 3-minute epochs from 7 test participants.

TABLE 5.  Drowsiness Classification Accuracy of Algorithm F4e-3 calculated ePERCLOS

Observed PERCLOS

Low High Total

ePERCLOS,
Algorithm F4e-3
Output

High 
(i.e. Drowsy)

16 7 23

Low
(i.e. Not Drowsy)

247 13 260

Total 263 20 283

% Correct 93.9% 35.0% Overall: 89.7%

Note: ePERCLOS threshold = 0.012; PERCLOS criterion = 0.012.
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An effort was made to refit the same set of predictors to the naturalistic data by means of multiple

linear regression using the SAS PROC GLM routine (SAS Institute, 1990).  The intention was to

assume that the set of predictors in algorithm F4e-3 were a “best” subset of predictors and simply

adjust the regression weights to improve the fit to the current data set. This effort led to substantially

different results in the multiple regression, as indicated in Table 6.  Unlike the results reported in

Wierwille et al. (1996a) no predictor except for LNMNSQ had a regression weight significantly

different from zero.  Furthermore, this model led to no substantially larger multiple R than the

correlation between PERCLOS and the original algorithm. For this reason,  algorithm F4e-3 was

retained for further assessment.

TABLE 6.  Multiple regression results to refit Algorithm F4e-3 to naturalistic driving data
collected in this study.

Dependent Variable:PERCLOS
                                      Analysis of Variance

                                         Sum of         Mean
                Source          DF      Squares       Square      F Value       Prob>F

                Model            6      0.00151      0.00025        4.208       0.0005
                Error          276      0.01651      0.00006
                C Total        282      0.01802

                    Root MSE       0.00773     R-square       0.0838 Multiple R = 0.289
                    Dep Mean       0.00227     Adj R-sq       0.0639
                    C.V.         340.90941

                                      Parameter Estimates

                               Parameter      Standard    T for H0:
              Variable  DF      Estimate         Error   Parameter=0    Prob > |T|

              INTERCEPT  1     -0.000928    0.00157240        -0.590        0.5555
              STVELV     1  -0.000024132    0.00026202        -0.092        0.9267
              LGREV      1  -0.000031506    0.00148892        -0.021        0.9831
              MDREV      1   0.000004708    0.00022534         0.021        0.9833
              LNMNSQ     1      0.001780    0.00058252         3.055        0.0025
              LANVAR     1      0.001718    0.00141590         1.213        0.2261
              INTACDEV   1     -0.010286    0.02075054        -0.496        0.6205

Wierwille et al. (1996a) also recommended that algorithm F4e-3 be logically OR’d with observed

LANEX to enhance classification performance.  The criterion applied to LANEX was a measured

value of 0.06667 or greater for a 3-minute epoch.  This translates into traveling with any part of the

vehicle exceeding a lane boundary for approximately 0.06667 x (180 seconds) or approximately 12

seconds or more, cumulatively, within a 3-minute period. Table 7 presents the classification results

of this approach applied to drowsiness detection.  As can be seen in comparison to Table 5, there is
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no change in the classification accuracy over algorithm F4e-3 alone.  Examination of the false positive

cases revealed they were the same in both instances.

TABLE 7.  Drowsiness Classification Accuracy of Algorithm F4e-3 OR’d with observed
LANEX

Observed PERCLOS

Low High Total

ePERCLOS,
Algorithm F4e-3
OR Observed
LANEX
Output

High 
(i.e. Drowsy)

16 7 23

Low
(i.e. Not Drowsy)

247 13 260

Total 263 20 283

% Correct 93.9% 35.0% Overall: 89.7%

Note: ePERCLOS threshold = 0.012; LANEX threshold = 0.06667; PERCLOS criterion = 0.012.

Wierwille et al. (1996a) also applied algorithm F4e-3 logically OR’d with LNMNSQ.  Table 8 shows

that, relative to algorithm F4e-3 alone, this  results in a slight increase in false positives with no

increase in true positive detections. Such results indicate this approach is not recommended if the goal

is to maximize the number of correct classifications.

TABLE 8.  Drowsiness Classification Accuracy of Algorithm F4e-3 OR’d with observed
LNMNSQ

Observed PERCLOS

Low High Total

ePERCLOS,
Algorithm F4e-3
OR 
LNMNSQ
Output

High 
(i.e. Drowsy)

19 7 26

Low
(i.e. Not Drowsy)

244 13 257

Total 263 20 283

% Correct 92.8% 35.0% Overall: 88.7%

Note: ePERCLOS threshold = 0.012; LNMNSQ threshold = 3.00; PERCLOS criterion = 0.012.
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In an attempt to be as parsimonious as possible, a classification was made using observed LANEX

alone for classifying drowsiness (as defined by observed PERCLOS).  That is, an observed LANEX

of 0.06667 or greater for a 3-minute epoch to predict drowsiness.  Table 9 shows that this simple rule

reduces false alarms to approximately 2.3 % but it does so at the expense of greater numbers of

missed detections of drowsiness (approximately 75%).

TABLE 9.  Drowsiness Classification Accuracy with observed LANEX alone

Observed PERCLOS

Low High Total

Observed
LANEX
Alone
Output

High 
(i.e. Drowsy)

 6 5 11

Low
(i.e. Not Drowsy)

257 15 272

Total 263 20 283

% Correct 97.7% 25.0% Overall: 92.6%

Note: LANEX threshold = 0.06667; PERCLOS criterion = 0.012.

A simple classification scheme based on observed LNMNSQ alone was also attempted.  For this

scheme, a drowsy classification was estimated if the observed LNMNSQ value for a 3-minute epoch

was 3.00 ft2 or greater.  Table 10 indicates that this rule is as good as Algorithm F4e-3 in terms of

hit rate (35%) and even better in terms of false alarm rate (5.7% as opposed to 6.1% with Algorithm

F4e-3).  

TABLE 10.  Drowsiness Classification Accuracy of observed LNMNSQ alone 

Observed PERCLOS

Low High Total

Observed
LNMNSQ
alone
Output

High 
(i.e. Drowsy)

15 7 22

Low
(i.e. Not Drowsy)

248 13 261

Total 263 20 283

% Correct 94.3% 35.0% Overall: 90.1%

Note: LNMNSQ threshold = 3.00; PERCLOS criterion = 0.012.
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A final analysis was carried out in an attempt to arrive at a better classification algorithm based on

selection of predictor variables from all of the measures in Table 2.  Stepwise, forward selection, and

backward elimination methods were applied to the data set using the SAS®  PROC GLM procedure

(SAS Institute, 1992).  The results of all three selection procedures were the same.  The solution

(Table 11) for the “best” estimated PERCLOS value (i.e, BESTePERC) is:

BESTePERC = -0.00011822 + 0.00225082* LANEX + 0.07517621* LANVAR

TABLE 11.  Best-Fit Model obtained with  Stepwise, Forward, and Backward Regression

Multiple R = 0.3063268  R-square = 0.09383618   adj. R-square = 0.0873894

                         DF         Sum of Squares      Mean Square          F   Prob>F

         Regression       2             0.00169070       0.00084535      14.50   0.0001
         Error          280             0.01632689       0.00005831
         Total          282             0.01801759

                         Parameter        Standard          Type II
         Variable         Estimate           Error   Sum of Squares          F   Prob>F

         INTERCEP      -0.00011822      0.00092225       0.00000096       0.02   0.8981
         LANVAR         0.00225082      0.00114123       0.00022682       3.89   0.0496
         LANEX          0.07517621      0.02081958       0.00076026      13.04   0.0004

Figure 2 presents a scatter plot of observed PERCLOS versus BESTePERC .  In comparison to

Figure 1, again one sees a small positive correlation between PERCLOS and its estimate (multiple

R = 0.306, p < 0.0001, N = 283)..  Like Figure 1, it is also plain that the epochs indicative of

drowsiness (i.e., those with y-axis values of 0.012 or greater) are spread over a fairly wide range of

BESTePERC values.  This suggests that the distributions of drowsy and non-drowsy epochs overlap

in terms of BESTePERC, much like they did with algorithm F4e-3's ePERCLOS.
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Figure 2.  Scatter Plot of PERCLOS versus BESTePERC. 

Table 12 shows the classification accuracy of BESTePERC with a threshold of 0.012.  With this

threshold, the number of false alarms drops to 2 epochs but the number of true positives also drops.

The threshold was varied in an attempt to improve the classification accuracy but no threshold value

could be found that surpassed the classification performance of LNMNSQ alone. 

TABLE 12.  Drowsiness Classification Accuracy with “Best” Derived Algorithm

Observed PERCLOS

Low High Total

BESTePERC

“best fit” model

Output

High 

(i.e. Drowsy)

  2 1   3

Low

(i.e. Not Drowsy)

261 19 280

Total 263 20 283

% Correct 99.2 % 5.0 % Overall:92.6 %

Note: BESTePERC threshold = 0.012; PERCLOS criterion = 0.012.
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Furthermore, since the entire data set was used to obtain the BESTePERC results, no validation

sample was set aside for validation.  It is expected that using only half of the sample would result in

poorer fit of the BESTePERC model.  Finally, since the simple approach of using observed

LNMNSQ alone did not require any estimation at all, (i.e., observed LNMNSQ was used to

determine if it was above or below 3.00 ft2), no further analysis of BESTePERC was carried out.

Table 13 shows the false alarm cases generated with each of the detection approaches.  Inspection

of the contents of this table reveal several interesting and important results.  First, 17 out of 19

epochs belong to the same driver, Test Participant 3.  This suggests that Test Participant 3 was in

some sense idiosyncratic relative to the other drivers.  Second, all of the false alarm epochs share in

common high lanekeeping variability or lengthy lane exceedences (or both).  These are often, but not

always, associated with higher ePERCLOS values.  This suggests that degraded lanekeeping is the

key, not only to drowsiness detection, but also to false alarms.  A further consideration of degraded

lanekeeping is offered in the next section.

TABLE 13.  False Alarm Cases for Drowsiness Detection

OBS    SUBJECT    FILENAME    EPOCH       PERCLOS  LNMNSQ     ePERCLOS    LANEX
                                                              (Algo.F4e-3)
 1       2         2018         14        .000     3.79630    0.019518    0.02724
 2       2         2021          1        .000     3.08035    0.004807    0.00000
 3       3         3070          3        .000     5.18908    0.023937    0.11290
 4       3         3070          4        .000     2.86242    0.015490    0.04997
 5       3         3070         10        .000     3.41268    0.015437    0.07202
 6       3         3070         17        .000     3.57719    0.010005    0.04631
 7       3         3070         18        .000     2.64038    0.013098    0.02558
 8       3         3072          4        .000     5.21237    0.019496    0.11723
 9       3         3072          5        .000     5.18546    0.017852    0.09600
10       3         3072          6        .007     4.29919    0.014622    0.04798
11       3         3072         12        .000     3.66169    0.012716    0.04473
12       3         3072         15        .000     3.81875    0.012443    0.08989
13       3         3072         16        .006     4.25305    0.017679    0.06457
14       3         3086          4        .000     2.27819    0.012799    0.00515
15       3         3086          5        .000     3.05906    0.019946    0.02740
16       3         3101          5        .000     3.12766    0.010446    0.00000
17       3         3102          3        .000     7.86231    0.023498    0.21120
18       3         3102          5        .000     3.64000    0.015692    0.04713
19       3         3110          6        .000     2.52050    0.017141    0.00915

To recapitulate, the following results were obtained with the naturalistic driving data.  Algorithm F4e-

3 provided a substantial degree of classification accuracy (relative to the upper limit represented by

the simulator work of Wierwille et al., 1996a; 1996c).  However, observed LNMNSQ with a criterion
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of 3.00 ft2  provided the best classification performance of any other approach tried.  It appears that

lanekeeping variation is a key predictor variable for detecting drowsiness while driving.

3.2  Drowsiness or Degraded Performance Detection Results

It was mentioned earlier that Wierwille et al. (1996c) attempted to improve classification accuracy

by methods that logically OR’d algorithm F4e-3 with LANEX or with LNMNSQ.  No comparisons

with their classification accuracy were provided in the previous section for a subtle reason.  In the

previous section, the phenomenon of interest was drowsiness detection only.  Wierwille et al.

(1996a), on the other hand, assessed drowsiness or degraded driving performance (as evidenced by

degraded lanekeeping).  Their line of reasoning was that lane exceedences are prima facie evidence

of driving performance that can result in crashes such as roadway departures.  Thus, they

characterized them as indicative of degraded driving performance with probability 1.0.  The present

authors attempted a similar analysis. 

Algorithm F4e-3 was logically OR’d with LANEX to arrive at a “drowsy driver or degraded

performance” detection approach.  The phenomenon to be detected was redefined and the 283

selected epochs were reclassified as low versus high drowsiness or degraded performance driving

periods. Both the criterion and threshold applied for LANEX was a measured value of 0.06667 or

greater for a 3-minute epoch.  This translates into traveling with any part of the vehicle exceeding a

lane boundary for approximately 0.06667 x (180 seconds) or approximately 12 seconds or more,

cumulatively, within a 3-minute period.  By reclassifying any such lane exceedences as, de facto,

degraded performance, this has the effect of moving data points from the drowsiness algorithm

classification matrices from classification as missed detections, false alarms, or correct rejections to

classification as correct detections if the LANEX data for a given epoch was above threshold

(Wierwille et al., 1996c, pg. 35).  

Table 14 presents the classification results of algorithm F4e-3 OR’d with LANEX.  As indicated, the

reclassification to identify drowsiness or degraded lanekeeping performance lead to an improvement
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in classification: 96.1% correct classifications in the absence of degraded driver status, 50% correct

detections (true positives) when degraded driver status was present.  Inspection of the true positive

and false positive epochs revealed that the incorporation of LANEX and operational redefinition of

degraded driver status lead to a migration of false positive cases to the true positive category.  No

other migration was observed.  By way of comparison, Wierwille et al. (1996a) reported classification

performance of 0.25% false positives and 78.87% correct detections. 

TABLE 14.  Classification Accuracy of Algorithm F4e-3 calculated ePERCLOS  OR observed
LANEX for Drowsiness or Degraded Performance Detection (LANEX-defined) 

Observed PERCLOS or Degraded LANEX-Defined Lanekeeping

Low High Total

ePERCLOS OR
LANEX
Algorithm
Output

High (i.e., degraded
status)

10 13 23

Low(i.e., no
degraded status)

247 13 260

Total 257 26 283

% Correct 96.1% 50.0% Overall: 91.9%

Note: ePERCLOS threshold = 0.012; LANEX threshold and criterion  = 0.06667; PERCLOS
criterion = 0.012.

A similar analysis was conducted by use of algorithm F4e-3 OR’d with LNMNSQ.  The criterion and

threshold for degraded lanekeeping performance was set to LNMNSQ = 3.00 ft2.   Again, by

reclassification of the phenomenon to be detected, application of this revised algorithm improved

classification accuracy.  As indicated in Table 15,  the false positive rate fell to 1.6 percent of 3-

minute epochs while the true positive rate increased to 62.8%.  This is lower, though similar to the

0.5% false positive and 80.28% true positive rates reported in Wierwille et al. (1996a; 1996c) from

the simulator research.
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TABLE 15.  Classification Accuracy of Algorithm F4e-3 calculated ePERCLOS OR observed
LNMNSQ for Drowsiness or Degraded Performance Detection 

Observed PERCLOS or Degraded LNMNSQ-Defined Lanekeeping

Low High Total

ePERCLOS OR
LNMNSQ
Algorithm
Output

High (i.e.,
degraded status)

  4 22  26

Low(i.e., no
degraded status)

244 13 257

Total 248 35 283

% Correct 98.4% 62.8% Overall: 94.0%

Note: ePERCLOS threshold = 0.012; LNMNSQ threshold and criterion = 3.00 ft2; PERCLOS
criterion = 0.012.

Next, an attempt was made to find a simpler prediction scheme by use of observed LANEX alone.

A criterion and threshold value of 0.06667 for LANEX was applied to recategorize the epochs and

reclassify them.  The results are presented in Table 16.   Note that there are no false positives but the

true positive rate is only 42.3%, less than that reported for the previous two classification approaches.

TABLE 16.  Classification Accuracy of LANEX Alone for Drowsiness or Degraded
Performance Detection (LANEX-defined)

Observed PERCLOS or Degraded LANEX-Defined Lanekeeping

Low High Total

Measured 
LANEX
Criterion Alone
as Predictor

High (i.e.,
degraded status)

  0 11  11

Low(i.e., no
degraded status)

257 15 272

Total 257 26 283

% Correct 100% 42.3% Overall: 94.7%

Note: LANEX threshold and criterion = 0.06667; PERCLOS criterion = 0.012.
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A similar approach was carried out using observed LNMNSQ to redefine driver status as drowsiness

or degraded performance (as indicated by LNMNSQ greater than or equal to 3.00 ft 2 within a 3-

minute epoch).  Table 17 presents the results of this classification.   In this instance, the false alarm

rate again fell to 0.0% and the hit rate grew to 62.8%.  The suppression of false alarms surpasses

even the best results reported by Wierwille et al. (1996c) for algorithm F4e-3 OR’d with LNMNSQ.

However, the hit rate is below the 80.28% correct detections reported by Wierwille et al. (1996a).

TABLE 17.  Classification Accuracy of Observed LNMNSQ alone for Drowsiness or degraded
Performance (LNMNSQ-defined)

Observed PERCLOS or Degraded LNMNSQ-Defined Lanekeeping 

Low High Total

Measured
LNMNSQ
Criterion Alone
as Predictor

High (i.e.,
drowsy)

   0  22 22

Low(i.e., not
drowsy)

248 13 261

Total 248 35 283

% Correct 100% 62.8% Overall: 95.4%

Note: LNMNSQ threshold and criterion = 3.00 ft2 ; PERCLOS criterion = 0.012.

3.3  Further Analysis of False Positive Epochs in Terms of Curve Cutting

One possibility to explain the higher lanekeeping variability present in the False Positive epochs for

drowsiness detection alone  is that it relates to a voluntary strategy on the part of the driver.  For

example, drivers sometimes negotiate curves by crossing the lane line in the curve, a strategy referred

to as “curve cutting” (Koenig, Pape, and Pomerleau, 1995).  This might be done to reduce the

perceived centrifugal forces acting upon the driver and vehicle while going through the curve.   If this

was the driver’s strategy during false positive epochs, a warning by the driver status monitoring

system might be perceived as a nuisance rather than as an indicator of degraded performance.



28

To evaluate this hypothesis, the yaw rate channel was low-passed filtered at a nominal 0.08 Hz cutoff

frequency.  The intent was to provide a rough surrogate measure of road “curviness” during an epoch

by filtering out the higher-frequency yaw rate variability that might be attributable to the driver’s

inputs rather than the demand of the road geometry.  This was done for 17 false positive epochs from

Test Participant 3 and 20 true negative epochs from Test Participant 3.  The results are graphically

depicted as an empirical quantile plot in Figure 3 in terms of low-pass filtered yaw rate variance

(LPYAWRTVAR).  A quantile is the proportion of the observations that fall at or below the scale

value of  the data (Chambers, Cleveland, Kleiner, and Tukey, 1983).  Thus, Q(0.85) defines that value

of LPYAWRTVAR at or below which a fraction 0.85 of the observations fall. The difference between

a percentile and a quantile is that the percentile refers to a percentage of the data and the quantile

refers to a fraction of the data.  Note that in the Figure the False Positive observations are plotted as

“F” and the True Negative observations are plotted as “T”.  If there was a substantially higher low-

pass yaw rate variance associated with the False Positives (indicative of increased road curviness),

the curve of “F” points would be shifted to the right and separated from the curve of “T” points.

There is some evidence of this in the plot but only  beyond about 0.5 (deg/s)2 .  Further, the separation

between the False Positive and True Negative points does not appear to be substantial.  Thus, the

low-pass filtered yaw rate variance data are suggestive of increased road curviness during False

Positive epochs, but they are not definitive.  
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Figure 3.  Empirical Quantile Plot of Low-Pass Filtered Yaw Rate Variance (LPYAWRTVAR), by
False Positive (F) epochs and True Negative (T) epochs, for Test Participant 3

3.4  Further Analysis of False Alarm Epochs in Terms of Driver Eye Glance Behavior

Vision is the primary information channel a driver uses to drive safely.  It is for this reason that

measures of driver eye glance behavior have been widely used in highway safety research (Wierwille,

1993).  An intriguing hypothesis about the false alarms epochs is that at least some portion of them

might be prompted by substantial periods of eyes-off-road ahead time.  This might arise as a result

of a variety of in-vehicle or roadside distraction sources.  Some of the in-vehicle distractions from the

road scene ahead observed in the data set include looking at a road atlas, changing a compact disc,

drinking beverages, and eating food or snacks.  If during a distraction, lanekeeping was to be

degraded, a driver status monitoring system might nonetheless provide value to the driver in alerting

him or her to that fact.  
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To examine this hypothesis, selected epochs associated with Test Participant 3 were reanalyzed, this

time in terms of driver eye glance behavior.  The video of the driver’s face was manually reviewed

and glance locations and durations were manually reduced from the video for the false positive and

true negative epochs.  Then a new variable was created as an analogue to PERCLOS.  This variable

was the Eyes Off Road-ahead Time Proportion (EORTP).  This was defined as the proportion of a

3-minute epoch that the driver’s eyes were diverted from the road ahead.  Figure 4 depicts the

empirical quantile plot for the EORTP measure, by False Positive (“F”) and True Negative (“T”)

epochs, for Test Participant 3.  Contrary to expectation, the True Negative epochs actually often had

longer EORT proportions and the range was wider.  Thus, this data set does not support the

hypothesis that the driver status monitoring schemes evaluated here are sensitive to or indicative of

significant eye glance behavior away from the road scene ahead.

Figure 4.  Empirical Quantile plot of Eyes-Off-Road-Time proportion, by False Positive (F)
epochs and True Negative (T) epochs, for Test Participant 3
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3.5  A Qualitative Analysis of False Alarm Epochs as Preliminary to Drowsiness Epochs

Table 18 presents the false positive and true positive epochs for Test Participant 3, sequenced in time.

In this table, the filename data are rank-ordered (i.e., filename 3070 was created before filename

3072) and epoch numbers within a filename are sequentially ordered by time (e.g., epoch 17 was the

3-minute period prior to epoch 18).  A close review of the sequence of those false positive epochs

along with the drowsiness epochs (both true positives and false negatives) generated by this test

participant reveals that they were often interleaved.  (Missing epochs in a sequence were removed

from analysis because they did not meet the quality assurance filters described earlier).  This suggests

that the erratic driving that triggered a false positive indication may have been an attempt by the

driver to fight off the effects of drowsiness.  If so, these false positives were in themselves

drowsiness-related.  An alternative interpretation is that this interleaving represents some form of

cyclical effect of drowsiness wherein driving performance is degraded while eye closure is unaffected,

followed by periods when both performance is degraded and eye closure increases.

TABLE 18.  False Positive (FP) and  Positive (P) Epochs of Drowsiness, arranged in temporal sequence,
Test Participant 3

Codea    SUBJECT    FILENAME    EPOKSEQ   
 FP       3         3070          3       
 FP       3         3070          4
 FP       3         3070         10
 FP       3         3070         17
 FP       3         3070         18
  P       3         3070         19
  P       3         3070         20
  P       3         3070         21
  P       3         3070         26
 FP       3         3072          4
 FP       3         3072          5
 FP       3         3072          6
 FP       3         3072         12
 FP       3         3072         15
 FP       3         3072         16
  P       3         3072          8
  P       3         3072         11
  P       3         3072         18
 FP       3         3086          4
 FP       3         3086          5
 FP       3         3101          5
 FP       3         3102          3
 FP       3         3102          5
  P       3         3109          2
  P       3         3109          3
  P       3         3109          5
 FP       3         3110          6
  P       3         3110          7
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Note:  a.  P indicates a  Positive epoch (either True Positive or False Negative).  FP indicates a “False Positive”
epoch

4.0  DISCUSSION

This research effort represents a first attempt to validate the drowsy driver detection algorithm of

Wierwille et al. (1996a) using real world driving data.  This study is unique for several reasons.  Test

participants were passenger car drivers rather than commercial vehicle drivers who are more often

the subject of drowsy driving research (e.g., Wylie et al., 1996).  Drivers’ personal vehicles were

instrumented for unobtrusive data collection in a naturalistic setting rather than being provided with

an unfamiliar test vehicle.  Drivers were not informed of the specific interest in drowsy driving nor

were any procedures used that might prompt a sensitivity to this issue (e.g., sleep questionnaire, sleep

logs, etc.).  Drivers made trips of their own choosing rather than those prescribed by the researchers.

And drivers drove on real roads, rather than in a simulator or a test track.

The underlying logic of using deterioration in driving performance to indicate drowsiness 

is sound on several counts.  Ideally, one would monitor PERCLOS directly.  Work is ongoing to

monitor eye closure directly (American Trucking Associations Foundation, 1996; Richard Grace,

personal communication, 1998).  Presently,  available prototype systems are not sufficiently robust

to be used in automobiles.  Furthermore, the technical challenges associated with unobtrusive eye

closure measurement over a wide range of driving conditions (e.g., variations in lighting, use of

sunglasses) are daunting.  This suggests that indirect as well as direct measurement of drowsiness (via

PERCLOS) are worth further development effort.

The mechanisms behind performance deterioration with increased fatigue or drowsiness are only

partially understood.  However, three sources are of particular relevance to this issue.  First, Brown

(1994) describes fatigue effects in terms of general and selective withdrawal of attention.  General

withdrawal of attention involves degraded vehicle control as well as degraded object and event

detection.  These effects are thought to be due primarily to eye closure.  Selective withdrawal of

attention is more insidious in that it leaves lanekeeping performance intact yet degrades object and
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event detection.  This type of effect is due to central processing degradation that might manifest itself

in “lost in thought” crash contributors.  Clearly, the algorithmic approach assessed here is compatible

with detection of general withdrawal of attention effects.  It may be less applicable to selective

withdrawal of attention effects.

A second source relevant to relating drowsiness to degraded driver performance is Hockey (1986).

In his review of the fatigue literature, Hockey points out that a central feature of the fatigue state is

an aversion to effort.  That is, the hypothesis is that prolonged work effects manifest themselves in

terms of less active control over behavior and the selection of easy but more risky alternatives.

Research by Holding (1974) is cited wherein it was experimentally demonstrated that with prolonged

work, test participants chose low effort/low probability of success options.  This way of thinking

about fatigue in the driving context lead to predictions of less effort applied to “crisp” vehicle control

with nominal increased (though subjectively acceptable) crash risk.

A third source that suggests how drowsiness might affect degraded driver performance comes from

optimal control models of driving performance.  In such models (Levison, 1989), control activities

are pursued in an attempt to minimize a cost function expressed in terms of control precision (e.g.,

lanekeeping error)  and control effort (e.g., steering inputs).  Depending on the driver’s strategy,

these parameters may be traded off to some extent, including that suggested by Holding (1974) under

conditions of drowsiness.  

The results of the drowsy detection algorithm F4e-3 found that it performed less well than in the

simulator studies.  However, classification was actually relatively good.  An attempt to improve the

fit of algorithm F4e-3 to the real world data set was largely unsuccessful.  In particular, except for

LNMNSQ, no other predictor variable from algorithm F4e-3 had a regression weight significantly

different from zero.    There are many possible reasons for this.  However, one of the most plausible

reasons why variables such as INTACDEV or STVELV had no predictive power in the real world

data set is because of range restrictions in the real world data.  It is possible that, in the simulator,

drivers exhibited a greater range of variability in lateral acceleration or steering inputs.  The simulated
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environment did not, for example, include roadside appurtenances or ditches that are common in the

real world.  This would suggest that drivers on the road simply could not and did not let their driving

deteriorate to the same degree as the test participants in the Virginia Tech research.

Further evidence lending support to this explanation comes from the Virginia Tech research program

itself.  Early on, simulator studies were conducted in such a fashion that fatigued drivers were not

penalized for poor lanekeeping.  In later studies, this protocol was changed to emphasize better

lanekeeping and new models were needed as a result.  It is plausible to carry this progression further

from the simulator to the real world and find even greater penalties for poor lanekeeping (e.g., bodily

injury and property damage!) that affect the form and performance of detection algorithms.  

A very simple rule, observed LNMNSQ of 3.00 ft2 or greater,  was found to produce the best

drowsiness classification accuracy. Allen, Parseghian, and Stein (1996) reported that as the standard

deviation of lane position increased beyond about 0.8 ft (relative to lane center), the probability of

a lane departure goes up dramatically.  The square root of the LNMNSQ criterion of 3.00 ft2 is 1.73

ft, well beyond the cutoff of Allen et al. (1996).  The threshold value of 3.00 ft2  therefore represents

an extreme performance profile, one that merits attention.

The possibility exists that increased lanekeeping variability might sometimes result from deliberate

driver action.  In particular, curve cutting was examined indirectly by plotting the variance of  low-

pass filtered yaw rate both for False Positive and True Negative epochs.  The plots provide some

indication that False Positive epochs sometimes involved curvier road segments than the true negative

epochs but the effect appears to be small.  The implications of deliberate driver action on a driver

status monitoring system are discussed later in this section.

It was thought possible that false positives were related to driver visual inattention that manifested

itself in degraded lanekeeping. One indication of this would be longer times the driver looked away

from the road scene ahead for the false positive epochs as opposed to the true negative epochs.  To

examine this hypothesis, empirical quantile plots of the eyes-off-road time proportion (EORTP) were
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prepared.  Unexpectedly, the EORT proportions were often longer for the true negative epochs, i.e.,

the periods where no degraded lanekeeping performance was manifested.  Thus, no evidence in

support of the hypothesis was found.

A third look at the nature of the false positive epochs was attempted by examining their relationship

to true positive epochs or drowsiness.   It is interesting to note that, in the present data set, Test

Participant 3 generated 17 out of 19 false positive epochs.  A close review of the sequence of those

false positive epochs along with the true drowsiness epochs generated by this test participant revealed

that they were highly interleaved.  This suggests that the erratic driving that triggered a false positive

indication may have been an attempt by the driver to fight off the effects of drowsiness.  If so, these

false positives were in themselves drowsiness-related and so might not be perceived as nuisance

alarms by such a driver.  An alternative interpretation is that this interleaving represents some form

of cyclical effect of drowsiness wherein driving performance is degraded while eye closure is

unaffected,  followed by periods when both performance is degraded and eye closure increases.

Further research is needed to determine how drivers might process warnings under such situations.

Wierwille et al. (1996a) expressed the opinion that, though it is not desirable to have a system that

misses detections, it is less desirable to have a system that produces a large number of false alarms

since this erodes driver acceptance.  As mentioned previously, in one portion of their algorithm

development they redefined the phenomena to be detected as drowsiness or degraded driving.  The

latter was operationally defined in terms of observed rather than estimated measures of lanekeeping.

This had a salutary effect in eliminating virtually all false alarms.  Elsewhere, Wierwille has pointed

out that a driver who has a drowsy driver detection system installed in his or her vehicle would have

to receive instruction to maintain good lanekeeping performance.  (It should be kept in mind that the

test participants in the naturalistic driving study received no such instruction).  If the driver wished

to depart the lane, (e.g., to make a lane change, to cut a curve, or to deviate to avoid an object in the

lane), the driver might be instructed to engage the turn signals, even if only momentarily.  The

detection system could then be programmed to delete a segment of data from the determination of

estimated PERCLOS, thereby reducing false alarm rates substantially.  Theoretically, this would leave
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only unintended lane deviations to be detected.  It is an open research issue how a driver would react

to a driver performance monitoring system and the instruction to maintain lanekeeping except with

purposely deviating. It would be desirable to repeat the study with a larger number of test participants

and instructions to use turn signals when intentionally departing the lane.  

It is clear that detection algorithms presented here for drowsy or degraded driving are  imperfect.

There are many missed detections of drowsiness regardless of the approach taken here.  In such cases,

above-threshold PERCLOS values were not accompanied by any steering or lanekeeping anomalies.

In one instance, a test participant had an eye closure bout that lasted approximately 13 seconds.

Despite driving at highway speeds, the video and MicroDAS data revealed no lane departures.

Presumably this occurred because there were no wind gusts, road surface variations, objects, or other

“forcing functions” to perturb the vehicle for that segment of driving.  Thus, there will sometimes be

periods of drowsy driving in which there are no disturbances to the vehicle that result in drowsiness

indicators rising above threshold for detection. It should be recognized, however, that performance

degradation and eye closures do not always occur simultaneously.  However, they usually do occur

in time proximity.  Thus, averaging should increase the probability of detection.  Wierwille, et al.

(1996a) have generally used 3- and 6-minute averages for this very reason.  

It is likely to be the case that the best in-vehicle driver status monitoring system will use a multiplicity

of approaches which are collectively better than any single approach alone.  The present research has

found that a single observed measure, with a fixed threshold value, reduced all false alarms (when

drowsy driving or degraded lanekeeping were to be detected) and provided an approximately 63%

hit rate.  These results indicate a promising direction for future research and development to provide

driver support to combat the potentially lethal effects of drowsiness and degraded lanekeeping while

driving.   It should be noted, however, that the lane tracking data were frequently missing or of

unreliable quality.  As mentioned earlier, the lane trackers used in MicroDAS are essentially cameras

whose images are processed to discern the lane line pavement marking from the surrounding

pavement.  Worn lane lines, specular reflections, and other phenomena contributed to lanekeeping
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data loss.  More robust systems (i.e., ones that process the optical flow field rather than lane lines)

are therefore needed to implement even the simple rules that depend on measured lanekeeping. 

If a multiplicity of approaches or technologies are needed for driver status monitoring, a multiplicity

of approaches are needed to address the overall problem of drowsy and inattentive driving.  It was

mentioned earlier that drivers whose vehicles are equipped with such systems must be instructed in

the system’s use.  More generally, education and outreach programs could  provide a pamphlet or

videotape to individuals when they get their driver's license renewed. The materials contained therein

would provide information on the dangers of drowsy or inattentive driving, signs or symptoms to

note, proper sleep hygiene, scientifically based facts on drowsiness countermeasures, and the like.

Perhaps a nominal charge (e.g.,  25 cents for a pamphlet or $2 for a videotape) would provide an

incentive to the driver to actually review the material.

Under certain circumstances, the benefit of a drowsy driver detection system depends on the extent

to which the driver will adhere to a warning to pull off the road and rest.  For some people, the

infrastructure plays a role in their willingness to stop driving.  People are sometimes reluctant to pull

off the road unless there is a rest stop available.  Thus, there could be more rest stops put in at the

side of the road, including interstate, state, county, and possibly township roads.  The rest stops might

only need to be a small gravel area.  If no rest stops are available then drivers would have to

improvise as best they could (e.g., pull off onto a side street to rest).  It is ironic that while efforts are

underway to improve drowsiness detection and driver awareness of the dangers of fatigue while

driving, some states are closing rest stops to save money.

Just as there is concern about driver acceptance, so there should be concern about risk compensation

or over-reliance on a driver status monitoring system.  It is important to research the extent and

circumstances under which this driver reaction to the technology might arise as well as means to

counteract it.  Indeed, if the level of missed detections achieved with the best approach still leaves

perhaps 30% to 40% of drowsiness periods undetected, this might have the benefit of counteracting

over-reliance.   For example, some degree of missed detections (either caused by inherent system
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limitations or built-in random error)  might be found such that, while the driver finds value in the

system, he or she does not over rely on the system. Given that all sensor systems occasionally fail,

over reliance on such technologies presents a real concern for broad scale implementation.  Beyond

this, there is concern that a driver may use such a system to keeping driving (e.g., “I can keep going

cause it will warn me if necessary”).  This type of unintended consequence also merits assessment in

future research.

The question of what can be done once drowsiness has been detected should be researched further.

More in-depth studies or surveys may find methods of fighting the affects of drowsiness and

determine what methods truly work under what conditions.  Example countermeasures could be mint

odors or mint candy, loud music, cold air, short duration exercise, caffeine, chewing ice cubes or fruit

snacks, shaking of the head, rocking fore/aft, taking a 10 to 20 minute nap, or getting involved in a

mentally stimulating activity such as listening to a controversial talk show.  

How should an ideal warning system work?  An intelligent system would, by definition, perform like

another attentive person in the vehicle and would, therefore, have situational awareness.  The system

would know the condition of the driver, the driver's habits, weather conditions, lighting conditions,

time of day, and sense when the driver is not driving like he or she normally does.  Conceivably, the

driver could also "tell" this intelligent monitor and warning system how he or she is doing or feeling,

to adjust the system sensitivity up or down, as prevailing conditions dictate.  Such an intelligent

system is clearly some distance off in the future, though research to develop it should be ongoing

now.

In addition to technology, education and outreach, and infrastructure interventions, dealing effectively

with the drowsy or inattentive driver problem should also encompass law enforcement.  For example,

if there have been any cases where the legal system has found a driver guilty of intentional

manslaughter due to driving while drowsy, then all drivers should be made aware of this.  There are

current penalties in place for driving while drunk and outreach programs incorporate them as

appropriate.  In principle,  then, there might be strict penalties if it can be shown without a doubt that
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a person had an accident due to driving while profoundly drowsy, thereby placing himself or herself

in peril, along with fellow road users.

Additional research could be conducted to determine the usefulness of a system that needs three

minutes of data collection and processing prior to any kind of drowsiness warning to a driver.  It

would be useful to determine the effectiveness of a system that provided drowsiness warnings within

shorter and longer time intervals.  A driver status monitoring system that monitored driver

performance (e.g., unintended lane departure) would presumably have to warn the driver very quickly

to avoid a roadway departure, opposite direction, or lane change crash, for instance.  In the final

recommended system design proposed Wierwille et al. (1996a), an instantaneous roadway departure

system was integrated into the longer-term status/performance monitoring system in an attempt to

“catch” rapidly occurring lapses in driver alertness and attention.  

Due to pressures involved with our society, people frequently do drive even though they know that

they are drowsy.  They attempt to maximize the use of their time by sometimes engaging in

distracting activities while driving.  These problems of drowsy and inattentive driving will most likely

only get worse, as schedules get more hectic.  Therefore, a multi disciplinary approach to improving

highway safety is not only advisable, it may be imperative.
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